South-western

shear margin

Flow direction

Ice stream

Deformation structures at the margins of ice streams

Polar 6 with fuse

tenna array of th

Airborne campaign 2018

The North-East-Greenland Ice Stream (NEGIS)

The NEGIS has clear surface expression in velocity field as seen from satellites which gives a snapshot for present time and indicates the effective drainage of solid ice.

But beneath the surface the ice stream also leaves an imprint, made visible by distortion and deformation of the internal stratigraphy. These structures at depth of ice stream margins have not been investigated in detail so far, and the EGRIP Ice Core drilling project provides the possibility to do just that by extensive radar surveys

- From the air: using the 8-channel ultra-wide band radar on POLAR 6
- On the ground: with the new 8 channel UHF-Mills Cross radar and the 4 channel VHF Radar, both developed at University of Alabama

10 km

North-eastern

shear margin

The airborne campaign from spring 2018 covers a large region around the EGRIP drilling camp and thus provides the data to understand the impact of ice stream flow on stratigraphy on a larger scale. The profile shown to the right is located 5 km upstream of the Camp.

The shear margins show a distinctive pattern, which is due to the compressive stress regime the ice experiences when entering the ice stream, leading to chevron or zig-zag folding in the active margin. The folding is preserved when the ice is entering different $_{\mbox{\scriptsize E}}$ regimes or if the stress regime is changing over time. Picking internal reflectors throughout the entire survey area and connecting them to horizons show the 3D-imprint of the ice stream at depth.

3-D Horizons from picked reflections

The ice stream margins leave a distinct folding pattern imprinted into the radar stratigraphy. The high velocity gradients lead to a compressive stress regime perpendicular to the flow direction, causing the characteristic chevron folds. Larger irregular features are also entering the ice stream and are assimilated into the shear margins from the sides. This is most prominent at the western shear margin. Advection of older features outside of the ice stream leads to a tilt in the vertical fold plane, which is probably causing the strong distortion of the radar layers in the west, where in deeper reflection the continuity is lost.

500 m

References: Joughin I, Smith BE and Howat IM (2018) A complete map of Greenland ice velocity derived from satellite data collected over 20 years. Journal of Glaciology, 64(243), 1–11, ISSN 0022-1430 (doi:10.1017/jog.2017.73) Vallelonga P, and others (2014) Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS). Cryosphere, 8(4), 1275– 1287, ISSN 1990424 (doi:10.5014/ice-81275-2014) Acknowledgements: We would like to thank the crew of Polar 6, system engineer Lukas Kandora, and the EGRIP logistics team for support during the campaigns. EGRIP is directed and organice by the Center of ice and Climate at the Niels Bohr Institute (https://eastgrip.org/). The ground-based radar Campaign was partly finded by the BeyondEPICA: Oldest Ice project (https://www.beyondepica.eu). Thanks also to Sept Kpifstuhl for providing the photo of Polar 6.

The Radar Instruments

The three deployed radars are Chirp radars, using different frequency ranges. For data evaluation, the raw data are interpolated to achieve a fixed trace separation.

- The VHF radar operates at 170-230 MHz, trace distance after processing usually 2 m
- UHF 600-900 MHz ("Mills Cross"), trace distance is 2.5 m
- The Ultra Wide Band (UWB) airborne radar has been operated in narrow band mode, 180-210 MHz, and is thus comparable to the VHF radar frequency range, trace distance after final processing is 15 m

	VHF	UHF	UWB	Units	
	ground	ground	airborne		Suctor
Polarization	Linear	Linear	Linear		JYSLEIII
Frequency	200	750	195	MHz	,
Bandwith	60	300	30	MHz	
Sweep lenght	10	10	1/3/10	μs	narameter
PRF	5	10	10	KHz	parameter
TX power	4,8	4,8	6	KW	
Antenna Gain	25	60	30	dBi	
Ice loss (3km -2way)	60	90	60	dB	
Pulse compression gain	25	30	max 25	dB	
Stacking gain	24	15	20	dB	
Spreading loss (r2)	92	92	92	dB	
System losses	8	10	10	dB	
Processing gain	15	15	15	dB	
SNR at hed	74	62	60	dB	

Comparison of different data sets

The map shows the location of the profiles measured with different radar instruments. Colour represents ice flow, and the grey-shaded layer is the 7259 y horizon, indicating the position of the folds

The airborne data gives a good representation of the folded reflectors. However, due to the slower survey speed and resulting narrower trace distance, the ground based data from the VHF and UHF instruments resolve even the steeply dipping flanks of the folds. This becomes even more apparent when further reducing survey speed, as shown below to the right, with an approximate trace distance of 1 m after processing.

Flow direction

Summary

- Airborne radar data are essential for understanding large scale structures in ice sheet stratigraphy, and the quality of the data allows for analysing highly deformed structures, as found in the shear margins of ice streams
- In some areas the folds could not be retraced, as the steep reflectors, which are also subject to a secondary deformation process likely due to shearing (bended fold axes, see above) are lost.
- For a detailed analysis of highly deformed ice as in shear margins or in the lowermost part of the ice sheets it is necessary to perform ground based surveys to close the gaps.

ALFRED-WEGENER-INSTITUT HELPHOLIT2.2ENTRUM FOR POLAR-HELMHOLTZ

Affiliations: (1) Affed Wegener Institute, Helmholtz-Center for Polar and Marine Research, Bremerhaven, Germany (2) Department of Geosciences, University of Bremen, Germany (3) Neis Bohr Institute, University of Openhagen, Denmark 4) Centre for Earth Observation Science, University of Manitoba, Winn MR B 817 392 - Grada MB R3T 2N2 Canada (5) Remote Sensing Center, University of Alabama, Tuscaloosa, AL 35487, USA

Airborne UWF

Groundbased UHE (reduced speed)