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Chapter 1

Introduction

Large scaled calculations by The Cryosphere Today (2016) show that the extension and

thickness distribution of sea ice follows a downward trend in all months since 1978. It

reaches its annual minimum near the end of September and its annual maximum around

the end of March (Stroeve et al., 2012; Cassano et al., 2013). Miles et al. (2014) calculated

a mean sea ice extent decline rate of 0.40x106km2(10yr)−1[or3

By September 2016 it is likely there will be a new record minimum sea ice extent. This

development has also a high impact on the Arctic marine ecosystem (Lange, 2016). Lange

(2016) demonstrated that springtime biomass of MYI may be largely underestimated with

further implications to Arctic-wide ecosystems. As a given example Katlein et al. (2014)

and Lange (2016) observed a relatively high biomass of under-ice algal aggregates and

in-ice-algal in regions, which are dominated by MYI, in comparison to FYI dominated

areas. To get a better knowledge about the physiological conditions of this part of the sea

ice ecology system, it is necessary to find out how much they are controlled by physical

sea ice properties such as its thickness and snow cover. Lange (2016) used light extinction

coefficients, as a function of the snow and the sea ice thickness (chapter 2.2), as a proxy for

sea ice algae habitat to identify spots on the sea ice with a high potential for bottom-ice

algal growth. Since the light extinction coefficient is correlated to the amount of snow

and the ice thickness, it might be useful to estimate the spatial distribution of sea ice

habitats over a larger area by using interpolation that can extrapolate the characteristic

variability of snow and ice thickness on MYI and on FYI.

There is a huge field of different statistical and non-statistical interpolation methods to

solve this problem such as Inverse Distance Weightning (non-statistical), Kriging (sta-

tistical) or the Polygon method (non-statistical). Ordinary Kriging is a popular and

commonly used geostatistical method to explain spatial variability of three dimensional

data and therefore was chosen to try to solve the given problem. This does not mean that

other methods could be used instead as good as or better as Ordinary Kriging.

The objective of this study is to show if and how the geostatistical method Ordinary

Kriging – implemented in R and performed by using the Exponential model and a hole-

effect model - can be used to interpolate the snow and the ice thickness of a FYI floe
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and a MYI floe. The fitting of this method shall capture the actual pattern of the data

in any direction and shall satisfactorily produce a realistic snow and sea ice matrix in

three dimensions, which also accurately captures important features of the sea ice such as

hummocks, snow drift patterns and interconnected melt pond systems. The second aim

is to investigate the spatial distribution of the physical properties and try to lead them

to observed relationships between these properties.

Chapter 2 gives a brief overview of the origin of the data in its first subsection. The

second subsection, methods, explains the principle of Ordinary Kriging and its theoretical

background.

Chapter 3 deals with the results. First the distribution of the snow and sea ice thicknesses

within the transects of both stations will be described. The following subsection focusses

on the interpolated spatial distribution of the snow and sea ice properties. The last two

chapters focus on how we parameterized the Ordinary Kriging and its variograms, and

compare the performance of the two different models.

Chapter 4 summarizes and discusses briefly the final outcomes of the study and gives a

short conclusion.



Chapter 2

Data and methods

2.1 Data

Figure 2.1: Overview map of the data loca-

tion (modified by the author and taken from

Lange, 2016)

The data used for this study were sam-

pled during early May 2013 on sea ice

located within the Lincoln Sea, north of

Ellesmere Island, Nunavut, Canada (Fig-

ure 2.1; Lange, 2016). Station A2 was mea-

sured on a FYI floe and station A6 was

sampled on a MYI floe. The electromag-

netic (EM) thickness of the snow and the

ice were performed by using the EMP-400

from GSSI (Lange, 2016). A more detailed

description of the data sampling and pro-

cessing of sea ice freeboard, sea ice thick-

ness and snow thickness over two perpen-

dicular transects, which cross in the mid-

dle, can be found in Lange (2016). The

Bulk integrated light extinction coefficient,

in this study named as Bulk k, was calcu-

lated from Lange (2016) as a function of

the light extinction coefficients (m-1) for ice

and snow by the given equation:

kB = (snowi ∗ 20) + (icei ∗ 1.55) (2.1)

where snowi is the given thickness of the snow and icei the given thickness of the ice

at particular location i . The snow and ice thickness parameter were transformed to a

measurement scale of cm to provide a uniform usage of thickness units.
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5 2.2. Spatial Analyses

2.2 Spatial Analyses

The interpolation was performed by using Ordinary Kriging. The following subsections

will give an introduction to Kriging theory in general and to the Ordinary Kriging with

the models used for these thesis.

2.2.1 Kriging

Kriging is a geostatistical method based on the ansatz, that the Euclidian distance and

the direction between two reference points do reflect a dependency (Deutsch & Journel,

1998). It explains the observed variability of surfaces (Schabenberger & Gotway, 2005),

such as sea ice or snow. As a statistical and mathematical basis for Ordinary Kriging

analyses, the theoretical and the experimental (i.e., empirical) variograms are necessary.

They are described in the following subsection.

Kriging is named after the South-African mining engineer D.G. Krige, who developed

the first steps of the Kriging theory (Deutsch & Journel, 1998) and G. Matheron further

developed upon this theory in the middle of the 20th century (Deutsch & Journel, 1998).

It is a best linear unbiased estimator (BLUE) that provides an unbiased estimation at

locations with unknown values (Deutsch & Journel, 1998). There are three different main

methods of Kriging: Simple Kriging, Ordinary Kriging and Universal Kriging. Simple

Kriging assumes, that the constant mean of the observed values is known (Montero &

Mateu, 2015). Since this is often unknown, this method is rarely used (Schabenberger

& Gotway, 2005). Conversely, Ordinary Kriging assumes that the constant mean of the

observed values is unknown (Montero & Mateu, 2015) and Universal Kriging, as being

an extension of Ordinary Kriging, provides additionally a supplementary estimation of

trends in the data. This is considered in the Kriging as a modelled polynomial (Montero

& Mateu, 2015). Since Ordinary Kriging is used in this thesis, it will be explained in

more detail in the following subsections.

2.2.2 The Variogram

The variogram is the foundation of Ordinary Kriging and describes the spatial variability

between the given data points referring to their Euclidian distance (i.e., lag distance).

It is based on two different models: the experimental (i.e., empirical) variogram and

the theoretical variogram. The experimental variogram estimates for each distance h

a value for the variogram by using the classical variogram estimator for the distance

vertices of the observed values (Journel & Huikbregts, 1978). The values are classified

afterwards and divided into distance- and direction classes to estimate the distance vertices

without known observation values (Journel & Huikbregts, 1978) and is established in

a geostatistical model. The observed values z(u1), . . . , z(un) at the observed locations

u1, . . . , un are used as realisations of random variables Z(u1), . . . , Z(un) and locations

with unknown values are also regarded as random values (Deutsch & Journel, 1998).
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The sum of both are defined as a random function or the stochastic process (Deutsch &

Journel, 1998).

Within the model, the spatial relationship between the random values is defined by their

Euclidian distance and their direction (Deutsch & Journel, 1998). This property of the

model is described as an intrinsic stationary process if the estimation value of all random

values is equal (Deutsch & Journel, 1998)

E[Z(u)] = µ (2.2)

and the spatial relationship is not dependent on the present localization but on the dis-

tance vertices u and v in the study area (Robinson & Metternicht, 2006):

Zus[Z(u), Z(v)] = γ(h) (2.3)

h = v − u (2.4)

The variance of the difference between these two data values is used and defines their

distance vertices as (Deutsch & Journel, 1998):

γ(h) = V ar[Z(u)− Z(u+ h)] (2.5)

In theory, the variogram is expected to grow continuously with its lag distance, which

means the larger the lag distance the less the relationship between two variables and

therefore the higher the variance of its difference (Deutsch & Journel, 1998).

The experimental variogram is the foundation of the theoretical variogram that needs to be

established afterwards. The theoretical variogram is built up on a mathematical function,

where its progress is known respectively can be predicted. They have to be conditional

negative semidefinite (Deutsch & Journel, 1998), but Pyrcz & Deutsch (2003) pointed

out that in case of using a hole-effect model the covariance pendant of the theoretical

variogram has to be positive definite.

Commonly used functions, which accomplish these requirements, are the Gaußian model,

the Spherical model, the Matern model, the Stein-Matern model, the Exponential model

and the Linear model (Deutsch & Journel, 1998; Schabenberger & Gotway, 2005; Montero

& Mateu, 2015). As it will be shown in chapter 3.3, the experimental variograms do not

show an expected monotonic growth. Therefore we decided to compare for this thesis the

Exponential model

γ(h) = c ∗ (1− exp(
−3h

a
)) (2.6)

where h is the lag distance, a is the range and c the sill, with a hole-effect model, the

Wave model (Deutsch & Journel, 1998; Schabenberger & Gotway, 2005; Montero & Mateu,

2015):

γ(h) = (
a

h
) sin

h

a
(2.7)
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The progress of those functions within the previously established experimental variogram

is controlled by three parameters: Sill, nugget and range. The setting of these three

parameters shall reflect the pattern of the experimental variogram as good as possible

(Deutsch & Journel, 1998).The sill of the variogram is in theory defined as the semivari-

ance value, where the variogram levels off (Schabenberger & Gotway, 2005; Deutsch &

Journel, 1998; Montero & Mateu, 2015). Based on other studies (Das, Rao, & Boshnakov,

2012; Sajid,Rudra & Parkin, 2013), the sill values were always calculated as the squared

standard deviation (i.e., variance) of each property for this study. The nugget is defined

to represent the variability of values with smaller distances rather than the common over-

all variability (Schabenberger & Gotway, 2005). It is common to set the nugget values

by using the given value of the (semi-)variogram at the first lag interval (Sajid,Rudra

& Parkin, 2013; Schabenberger & Gotway, 2005; Montero & Mateu, 2015). This solu-

tion was also used in this study. The range describes the scale of the distance, where

the semivariogram reaches the sill and can also be interpreted as the patch size of the

property (Schabenberger & Gotway, 2005). This definition was used for estimating the

range of the Exponential model. Since there are only a few studies published, which use

and parameterize the Wave model (e.g. Das, Subba Rao & Boshnakov, 2012) the range

for this model was estimated by following the instructions of Pyrcz & Deutsch (2003) to

reproduce the observed hole-effect structures in the variograms. So for estimating those

ranges the distances to the first peaks and the dampening factors were considered. It is

supposed to result in a modelled amplitude that is almost equal to the original amplitude

of the experimental variogram.

In summary it can be said that the aim of the fitted theoretical variogram is to build a

spatial relationship between a value patter, whose progress is not described by a mathe-

matical function, represented by the experimental variogram, and a value patter, whose

progress can be described by a mathematical function and their parameterization, repre-

sented by the theoretical variogram.

2.2.3 Ordinary Kriging

The Krige estimator z ∗ (u0) is defined in Deutsch & Journel (1998) as

z ∗ (u0) =
∑

vi, z(ui) (2.8)

with its determination of the weights for the given point u0 by solving the extremum

problem:

E[F (u0)] = 0 (2.9)

with its secondary condition, the Kriging variance

V ar[F (u0)] = min {F (u0), v1, ..., vn real numbers} (2.10)
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where F (u0) is the estimation error, which is zero on average. This second condition

requires the error estimate has minimal variance (Deutsch & Journel, 1998). The linearity

of the estimation value and the stationarity of the process can be simplify the Kriging

variance by the following equation (Deutsch & Journel, 1998):

0 = E[F (u0)] = E[Z(u0)−
∑

vi Z(ui)] (2.11)

0 = E[Z(u0]− (
∑

viE[Z(ui)]) = E[Z(u0)](1−
∑

vi) (2.12)

which sums the weights up to one and define the variance of the error estimate as (Deutsch

& Journel, 1998):

1 =
∑

vi (2.13)

The equation is solved by using system of linear equations, the Lagrange multiplier

(Deutsch & Journel, 1998; Schabenberger & Gotway, 2005). The solution value is the

weight of the estimator and has to be calculated for each value that needs to be estimated

(Deutsch & Journel, 1998): ∑
vjγ(ui − uj) + ν = γ(ui − u0) (2.14)

1 =
∑

vi (2.15)
γ11 ... γ1n 1

... ... ... ...

γn1 ... γnn 1

1 ... 1 0

 =


v1

...

vn

v

 =


γ10

...

γn1

1

 (2.16)

C · v = D (2.17)

Where v is an auxiliary variable from the Lagrange multiplier and i = 1, . . . n. Its solution

is:

v = C−1D (2.18)

Because γ is definite, the matrix C is thus invertible (Deutsch & Journel, 1998). This is

giving the weights of the Krige estimator for the location u0. Therefore the estimation

value is defined as (Deutsch & Journel, 1998):

z ∗ (u0) :=
∑

viz(ui) (2.19)

Matrix D consists of the variogram values between the estimated value and the neigh-

boured values that are considered for the estimation (Deutsch & Journel, 1998). This

describes the relationship between these values (Deutsch & Journel, 1998). Kriging fits

the weights to the real prediction by using the Euclidian distance instead of using the

variogram values (Deutsch & Journel, 1998). Matrix C sums up the variogram values be-

tween all values that are neighboured to the estimated value (Deutsch & Journel, 1998).

This means that two values with a close distance will result in a low variogram value and
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vice versa.

weights(v) = cluster(C−1) ∗ distance(D) (2.20)

Multiplying the matrices C and D catches the clusters of the neighboured points. It

reduces the weight of close points, and distribute them to other values in the neighbour-

hood (Deutsch & Journel, 1998). This produces the dependence between the Euclidian

distance and the direction between two reference points (Deutsch & Journel, 1998). The

Kriging variance is the variance of the error estimate and describe the configuration of

the grid (Schabenberger & Gotway, 2005). The (semi-)variograms have a large influence

on the Kriging variance, e.g. a high range of the theoretical function reduces the Kriging

variance and vice versa (Schabenberger & Gotway, 2005; Deutsch & Journel, 1998).



Chapter 3

Results

3.1 Site description

3.1.1 Station A2

Figure 3.1: : Distribution of the measurements at Station A2 as

vertical profiles (modified by the author; taken from Lange, 2016).

All observed prop-

erties at station A2

were characteristic

to First-Year sea ice

(FYI) regarding their

measures of disper-

sion, presented in

Table 3.1 (chapter

3.2), and the snow

and sea ice pro-

files in Figure 3.1

(Thomas & Dieck-

mann, 2009). The

range of values show

a relatively uniform distribution for the sea ice thickness (IQR: 169-180 cm) and ice cm)

and ice freeboard (IQR: 10-14 cm). This can be confirmed by the profiles in both di-

rections (Figure 3.1). However, the variability of snow might has a higher variability

(IQR: 10-23 cm) and by looking at the profiles the amount of snow is slightly less in the

south-north direction than it is observed in the east-west profile and varies in its surface

topography more than the sea ice freeboard. Since the measurements cover a distance of

100 m in each direction, it can be assumed that these variations are caused by small scale

snow drifts. There is a negative correlation between the snow thickness and the total ice

thickness regarding to its overall distribution (Lange 2016). This is the result of increased

thermal insulation in regions of thicker snow, which thus limits sea ice growth by reducing

the heat flux between ocean, sea ice and the atmosphere.

10



11 3.1. Site description

3.1.2 Station A6

The summary of snow and ice properties from station A6 are presented in Table 3.1. The

corresponding profiles in S-N direction and E-W direction for A6 are shown in Figure 3.2.

Both profiles show characteristic properties of Multi-Year sea ice (MYI; Thomas & Dieck-

mann, 2009). For one, the overall thickness of snow depth is thicker than the FYI site A2,

Furthermore, the spatial distribution of the snow and ice thickness much more variable

than FYI site A2 (Figure 3.1 and Figure 3.2). By choosing the mean and maximum sea

ice thickness and correlating it to a typical timescale of growth by Eicken and Petrich

(2009), the MYI is estimated to have an age of approximately 2 – 2.5 years. All observed

snow and ice surface properties have highly undulating patterns. The bottom of the sea

ice also shows a high varying under-ice topography.

Figure 3.2: : Distribution of the measurements at Station A6 as

vertical profiles (modified by the author; taken from Lange, 2016).

The deepest accu-

mulations of snow

can be observed close

to the intersection

of the two transects

(i.e., at the centre

of the cross; Fig-

ure 3.2). In this

area, the weight of

the snow pushes the

sea ice below the sea

level, which results

in negative measure-

ments of the sea ice

freeboard. For comparison, the total sea ice thickness in this area decreases to the median

level, 175 cm, of the sea ice thickness at station A2. This combination of the snow and

sea ice properties may indicate the presence of a melt pond in the former summer(s),

which resulted in reduced sea ice thickness by two processes. First, it can be assumed

that the low albedo of the melt pond increased the solar transmittance and absorption

of solar radiation by the sea ice, which enhanced melt in the melt pond regions during

summer. Second, the high amount of snow that accumulated over winter and into springs

in these low topographic regions by precipitation, drift and transport processes resulted

in limited sea ice growth due to thermal insulation, as described for the FYI. Its effect

of thermal insulation limits the growth of sea ice to a thinner level compared to adjacent

regions with thinner or no snow cover. Many similar features, which could represent melt

ponds, were observed by looking at the profiles (Figure 3.2).

Since these profiles give only a two dimensional overview, we assumed that the sea ice

surface topography shows a cross-section of an interconnected network of melt ponds,

which formed and grew during the previous summers.
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3.2 Spatial variability of the snow and sea ice prop-

erties

Ordinary Kriging with the Wave model produced a spatial distribution that estimates

the in-situ variability and patch-size of the properties more reliably and realistically than

the exponential model (Figure 3.4 - Figure 3.9). From the Wave model it is possible to

identify and to validate observations that were made on the two-dimensional profile in

the previous chapter. Therefore the following subsections discuss the observations of the

snow and sea ice properties that were made by looking at the outcome of the Wave model.

The statistical summary of the ice thickness distribution is shown in Table 3.1 for each

station, model and property.

3.2.1 Snow thickness at Station A2

The snow thickness of the Wave model at station A2 varies between 6,74 cm and 28,45 cm

and has a mean thickness of 15,83 (Table 3.1). This is a smaller range of values than the

observed snow thicknesses, which shows a maximum snow thickness of 40 cm. This might

be caused by how the performance of the interpolation was set. The parameterization is

described in chapter 2.2.1. The IQR of the wave model prediction is 3,66 cm (Table 3.1),

which indicates that the snow thickness has a relatively uniform distribution, but by

looking at the spatial distribution of all given data points on the map (Figure 3.5), some

general patterns are apparent that may be interpreted as transport processes. On and

close to the data point axes, three little snow drifts were identified (Figure 3.5). The

highest one is located close to the centre of map (Figure 3.5). They are interpreted to be

accumulation deposits formed by precipitation and wind transport processes. We assume

that the snow drift close to the centre of the map was interpolated with a higher elevation

value, because the closer Euclidian distances from the data points resulted in a higher

estimation accuracy than in case of the two snow drifts on the outer East-West axis.

Beyond that we assume that the snow drift in the very east of the map is connected

with the drift in the centre, because the observed and the interpolated values in the

area between these two features differ only slightly (Figure 3.5). The overall interpolated

surface of the Wave model does not reflect the real in-situ situation, but is giving some

clues, which are supported by the observed data values. Regarding to the spatial scale of

all observations, measured and interpolated, it might be possible that the snow surface

shows a large system of snow drifts and valleys, which do group into areas with a higher

amount of snow drifts and areas with less amount of snow accumulation. This drifting

wave-like pattern can be linked primarily to snow accumulation and transport processes by

wind coming probably from one direction since snow drifts typically form perpendicular

to the wind direction (e.g., Gosselin et al., 1988). Figure 3.3 shows a sketch of this

assumed overall distribution based on results from the Ordinary Kriging analyses. Since

snow thickness and distribution varies on shorter time scales than sea ice, because of its
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Table 3.1: Statistical summary of the results divided by Models (Mdl) = observed (obs),
wave (WAV), exponential (EXP); station (ST) = A2, A6; Property (P) = Bulk K (BK),
sea ice (I), snow (S), sea ice freeboard (IF); Minimum value (Min), Interquartile range
(IQR), maximum (Max)

ST P Mdl Min IQR Max ArM SSE BIAS RMSE N

A2 BK Obs 3,587 2,24 10 6,136 201

A2 I Obs 150,5 11,3 192,7 174,4 201

A2 S Obs 3 12,5 40 17,17 201

A2 IF Obs 6 4 22 11,78 201

A6 BK Obs 4,587 4,142 20 10,077 201

A6 I Obs 175 96,1 379 275,2 201

A6 S Obs 0,5 25 75 29,06 201

A6 IF Obs -4 30 52 21,95 201

A2 BK Exp 3,677 0,326 10,013 6,059 41,9939 0,0581 0,6804 10609

A2 I Exp 152,2 1,4 192 174,2 1599,503 -0,6262 4,6009 10609

A2 S Exp 3,508 1,647 38,309 16,807 1253,21 0,3367 3,7271 10609

A2 IF Exp 7,083 2,798 16,978 11,465 250,0146 -0,1726 1,3519 10609

A2 BK Wav 4,106 0,904 8,341 6,032 126,8017 0,1637 1,0412 10609

A2 I Wav 161,3 4,1 187,3 174,7 4235,636 -0,7364 6,2211 10609

A2 S Wav 6,101 4,818 29,074 16,572 3728,474 0,8752 5,6202 10609

A2 IF Wav 8,726 2,442 16,912 11,887 308,866 -0,0072 1,6362 10609

A6 BK Exp 4,704 0,205 18,49 10,044 352,007 0,1312 1,6048 10609

A6 I Exp 177 35 369,3 276,3 26949,1 -1,6701 14,4356 10609

A6 S Exp 1,008 1,753 67,127 28,721 10937,69 0,7176 8,7549 10609

A6 IF Exp -1,791 0,655 49,136 22,336 9883,06 -0,4287 8,1103 10609

A6 BK Wav 4,982 1,178 15,236 10,014 478,9805 0,191 2,1923 10609

A6 I Wav 178,2 35 353,8 279,2 41806,55 0,3033 21,0402 10609

A6 S Wav -2,734 6,857 52,79 29,259 14972,81 1,3145 11,746 10609

A6 IF Wav 0,3079 6,7138 43,6457 22,0338 14527,3 0,3748 10,9941 10609
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Figure 3.3: : Sketches of the assumed overall surface structures.

high sensitivity to atmospheric related processes such as solar radiation or wind (Rösel

et al., 2012), this pattern is only a snapshot and may be a representation of the overall

long-term processes of snow accumulation and re-distribution.

3.2.2 Snow thickness at Station A6

The snow thickness of the Wave model at station A6 varies between 4.4 cm and 54,4

cm and has a mean thickness of 29 cm (Table 3.1). Similar to station A2, this is also

a smaller range than the observed range, which shows a maximum snow thickness of

75 cm and is also interpreted to be caused by how the theoretical semivariogram of the

interpolation was set. The IQR of the wave model prediction is 5,1 cm (Table 3.1), which

may also indicate that the snow thickness has a uniform distribution similar to station A2.

However, it is likely that this model does not reflect the real in-situ situation of the surface,

but may still provide some clues, which can be supported by the observed data values.

The spatial distribution of all given data points on the map (Figure 3.8), can be linked

to different processes of snow and sea ice morphology. The surface map shows a highly

undulating and hummocky topography (Figure 3.8). These bumps and troughs spread

out on larger distances of the grid form an interconnected network of snow and sea ice

features. In chapter 3.1 we suggest, that the highly undulating surface with interconnected

features could be interpreted as the result of a refrozen melt water accumulation network

from previous summer(s). The interpolated surface of the snow thickness supports this

assumption and therefore these bumps and troughs are interpreted to be snow packs that

fill up a refrozen melt pond or melt channel. The dimensions of the shown channelized

topography could fit to the real dimensions of interconnected melt pond systems (Rösel et

al., 2012). Figure 3.3 shows a sketch with an assumption of the spatial distribution from

an interconnected channel system, based on the Kriging result from the snow thickness

and the thickness of the sea ice freeboard.
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Figure 3.4: Maps with Ordinary Kriging results for sea ice at station A2: a) Exponential
model predicted value, b) Exponential model predicted error, c) Wave model predicted
value, d) Wave model predicted error.
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Figure 3.5: Maps with Ordinary Kriging results for snow at station A2: a) Exponential
model predicted value, b) Exponential model predicted error, c) Wave model predicted
value, d) Wave model predicted error.



17 3.2. Spatial variability of the snow and sea ice properties

Figure 3.6: Maps with Ordinary Kriging results for sea ice freeboard at station A2: a)
Exponential model predicted value, b) Exponential model predicted error, c) Wave model
predicted value, d) Wave model predicted error.
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Figure 3.7: Maps with Ordinary Kriging results for sea ice at station A6: a) Exponential
model predicted value, b) Exponential model predicted error, c) Wave model predicted
value, d) Wave model predicted error.
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Figure 3.8: Maps with Ordinary Kriging results for snow at station A6: a) Exponential
model predicted value, b) Exponential model predicted error, c) Wave model predicted
value, d) Wave model predicted error.
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Figure 3.9: Maps with Ordinary Kriging results for sea ice freeboard at station A6: a)
Exponential model predicted value, b) Exponential model predicted error, c) Wave model
predicted value, d) Wave model predicted error.



21 3.2. Spatial variability of the snow and sea ice properties

3.2.3 Ice thickness and ice freeboard at station A2

The Kriging results of the Wave model from ice freeboard at station A2 varies between

8,7 cm and 16,9 cm with a mean of 11,9 cm (Table 3.1). The total sea ice thickness varies

between 164 cm and 185 cm with a mean thickness of 175 cm. These values differ from the

observed data, but the mean values and the IQR range of 2,44 cm for the sea ice freeboard

and 3,3 for the total sea ice thickness indicate, that the value distribution is similar to

the observed distribution. The Kriging settings for these interpolations are described in

chapter 3.3. The IQR of the wave model prediction shows that the sea ice thickness

has a variable distribution such as it has been the case with the observations of the snow.

Nevertheless, the values of the spatial distribution of all estimated data points on the map

(Figure 3.4, Figure 3.5 and Figure 3.6) lead to the assumption that there is a relationship

between the snow and the sea ice thickness. Lange (2016) showed a negative correlation

between the sea ice freeboard and the snow thickness, which is also reflected in the results

of the Kriging. The sea ice freeboard values of the whole area are interpreted to reflect

the strength and amount of the overlying snow pack that pushes the sea ice surface down.

This assumption seems to be consistent with the Kriging results of the snow (Figure 3.5)

and therefore supports the sketch of the assumed snow distribution in Figure 3.3. In

addition, the relatively thin sea ice close to the centre of the map (Figure 3.4) indicates

that there is a lower elevation melt pond, which may also have lower freeboard due to the

heavy, thick snow pack pushing the sea ice surface slightly downward in comparison to

adjacent sea ice. The modification to the sea ice freboard would be substantially smaller

than on FYI station A2 due to the thicker sea ice at MYI station A6. Beyond that, it

does show in its overall distribution different grades of thickness than the sea ice freeboard

does. This observation can be linked to locally different sea ice growth rates controlled by

the thermal insulation of the overlying snow (i.e., more snow has higher thermal insulation

and lower ice growth rates resulting in thinner sea ice). This is consistent with results

from Lange (2016), who found a negative correlation between snow depth and sea ice

thickness and also attributed this to the thermal insulation of snow.

3.2.4 Ice thickness and ice freeboard at station A6

The Kriging results of the Wave model for ice freeboard at station A6 varies between

0.3 cm and 43,6 cm with a mean thickness of 22 cm (Table 3.1). The sea ice thickness

varies between 181.14 cm and 353 cm with a mean thickness of 277,5 cm. These values

differ from the observed data. The mean values and the IQR of 6,7 cm for the sea ice

freeboard and 39,4 for the total sea ice thickness indicate, that the value distribution is

not similar to the observed distribution. The Kriging settings for these interpolations

are given in chapter 3.2. The IQR of the Wave model prediction shows that the sea ice

thickness appears to have an undulating distribution such as it has been the case with

the observations of the snow. Nevertheless, the values of the spatial distribution of all
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estimated data points on the map (Figure 3.7 and Figure 3.9) lead to the assumption, that

there is a relationship between the snow and the sea ice thickness. Lange (2016) showed

a negative correlation between the sea ice freeboard and the snow thickness, which is

also reflected in our results of the Kriging. The sea ice freeboard values of the whole area

show a mix of hummocky and channelized features, whose elevations do mainly match the

values of the snow Kriging. This means that areas with high sea ice freeboard (i.e., higher

ice topography) values do have a thinner snow cover on it and vice versa. Therefore, it

also supports the sketch of the melt ponds and previous summer(s) melt channel systems

that was done by looking on the snow elevations (Figure 3.3). Furthermore, it turned

out that there is probably a new or relatively young refrozen melt pond close to the

centre of the map on top of a hummock, which is only covered by a thin layer of snow

(Figure 3.8 and Figure 3.9). The high overall sea ice thickness may indicate, that the

observed area is located within stable conditions for sea ice, which supported its growth,

even if it was obviously thinning a bit out at some locations by melting events during

previous summer(s), e.g. the low spots close to the centre of the map or in the very north

of the data cross in Figure 3.7.

3.3 The Variogram

The experimental sample semivariograms were calculated for each property of each station.

It is defined as the average degree of dissimilarity between unsampled and nearby data

and can show autocorrelations at different distances (Deutsch & Journel, 1998). For a

given distance of h, the value is half the average squared difference between z(ui) and

z(ui + h) (Deutsch & Journel, 1998):

γ́(h) =
1

2N(h)

N(h)∑
i=1

[z(ui)− z(ui + h)]2 (3.1)

where N(h) is the number of points within the given distance class and direction (Robin-

son & Metternicht, 2006). Based on these values, 15 semivariance measurements were

calculated equally over an Euclidian distance of 50. This approach is also known as the

“classic” sample semivariogram (Journel & Huikbregts, 1978).

By looking at the semivariograms presented in Figure 3.10 - Figure 3.13 it is apparent

that all snow and sea ice properties at each station display a irregular cyclical pattern,

which is a typical pattern for a hole-effect in a semivariogram model. The hole-effect is

given when there is a non-monotonic growth of the ordinary least squares estimations

in the semivariograms, which presents peaks and valleys (Journel & Froidevaux, 1982).

Since our data are three-dimensional, we decided to build up a unique omnidirectional,

experimental 3d model. The equation is given in chapter 2.2.1.

A common solution is to ignore the complexity of a cyclical semivariogram and fit the

experimental sample semivariogram by using a Spherical or Exponential model through
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Figure 3.10: Semivariogram of each property at station A2 using the Exponential model

the peaks and troughs (Journel & Froidevaux, 1982). Journel & Froidevaux (1982) pointed

out that neglecting the hole-effects is caused by the assumption of high uncertainty at the

peaks and troughs, because of missing data, but could also be caused by representing real

topographic features of the property. Since there is no measurement lag in the data, we

expect that the data describe particular features of the snow and ice properties. The hole-

effects of our data are not related to high uncertainty at the peaks and troughs. In the

case that the properties are showing a real cyclical patter, this needs to be accounted for

to representatively model and interpolate the property. Since one objective of this study

is to reproduce the three dimensional local variations of the snow and sea ice properties,

which are known to show some cyclical patterns (e.g., Gosselin et al., 1986), we used

the Wave model (i.e., a type of hole-effects model) in combination with the Exponential

model; and compared the results. The characteristic cyclical pattern of the Wave model

(i.e., hole effects) semivariograms (Journel & Froidevaux, 1982) for the snow and sea ice

properties (Figure 3.10 - Figure 3.13) do reflect the typical undulating snow and sea ice

topography, such as snow drifts (Gosselin et al., 1988), and MYI hummocks and refrozen

melt ponds (Perovich et al., 2003; Sturm et al., 2003). In addition, the Exponential model

was chosen to show for comparison the behaviour of an asymptotic and more commonly

used function in semivariogram modelling and Ordinary Kriging.

As previously mentioned, the theoretical variogram models (chapter 2.2.1) were built up
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Figure 3.11: Semivariogram of each property at station A2 using the Wave model

Figure 3.12: Semivariogram of each property at station A6 using the Exponential model
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Figure 3.13: Semivariogram of each property at station A6 using the Wave model

with two different model types, the Exponential model and the Wave model. The single

values of the partial sill, the partial range and the nugget are shown in Table 3.2 for

each station and each model. The workflows for calculating the sill, the range and the

nugget are presented in chapter 2.2.1. Fitting the experimental sample semivariogram

proportional to the theoretical model was approached by the following weighting (Journel

& Huikbregts, 1978):
N(h)

h2
(3.2)

Where N(h) is the number of point pairs at its distance interval h. The iterative procedure

did not guarantee an overall perfect estimation by non-linear estimation. It turned out

that a suitable initialisation of the parameters – nugget, sill and range – did not produce

the best fit. Therefore, each fit experiment was checked by looking on a common plot

of the experimental sample semivariogram and the theoretical model. The results of the

best fits are presented in Figure 3.10 - Figure 3.13 and their parametrizations are shown

in Table 3.2. Those best fits were used to conduct the Ordinary Kriging interpolation

analyses (Chapter 3.4). By looking at the fitted variogram models (Figure 3.10 - Fig-

ure 3.13), it is apparent from a visual inspection that the amplitudes of the Wave models

describe the overall undulating cyclical pattern of the sample variogram better than the

Exponential model.

The variograms of the Bulk K, sea ice thickness, sea ice freeboard and the snow depth at

station A2 show a slightly better fit using the Exponential model than the Wave model
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in the short Euclidian distances between 10 – 20 (Figure 3.10). At the large distances,

20 m – 50 m, the Exponential model levels at approximately the sill value, however,

never reaching it since it is an exponential function (Figure 3.10). The Wave model has a

slightly poorer fit at the short lag distances (2 - 20) compared to the Exponential model

for the K bulk, the sea ice and the snow, however, the Wave model shows a much better

fit at the large distances 20-50 (Figure 3.10 and Figure 3.11). Modelling and fitting the

sea ice freeboard (i.e., the sea ice surface) was a bit difficult, because it grows more or less

monotonic with small irregular hole-effects and shows then a strict hole-effect at the lag

distance of around 38 – 40 (Figure 3.10 and Figure 3.11). Therefore, a large range had to

be set for both models. Both models produced a gentle overestimation of the data, but

the overall progression was also reached slightly better by the Wave model. The sample

variograms of site A2 do represent the more constant spatial thickness distribution of

the sea ice properties than it can be seen in the sample variograms of station A6. The

sample variograms of station A6 do show a higher variation of the periodicity (Figure 3.12

and Figure 3.13), which more accurately represents the highly undulating and hummocky

topographical surface features of MYI (Perovich et al., 2003). On the lag distance between

0 and approximately 9 the Exponential model provides a better fit (Figure 3.12). However,

the amplitude of the Wave model estimates the overall cyclical pattern better even if it

still overestimates and underestimates at some distances along the sample semivariogram

(Figure 3.13).

3.4 Ordinary Kriging

The data implementation of the Ordinary Kriging was approached in two steps. First the

settings of the theoretical models were calculated by fitting them to the sample semivari-

ograms of the original data sets. To validate the estimation performance of the Ordinary

Kriging method by using two different models, we used a second step: we took a ran-

dom sample of 100 data points from the 201 total measurements to use for the Ordinary

Kriging interpolations. There were always different random samples taken for each sta-

tion, because we wanted to focus on the general accuracy skills of the models and not on

reaching the same accuracy for the same coordinates at each station. Range, nugget and

sill were set by using the value calculations of the observed data (Table 3.2). The total

data sets of each property at each station, which were not used for the Ordinary Kriging

procedure, were stored as well to compare and measure the accuracy of the estimation

afterwards. Ordinary Kriging estimated 10609 data points for each property on a given

grid with an overall dimension of 100 m x 100 m. The size of a single grid cell was set to

1 m x 1 m. The comparison of the Kriging values at each given sample location with the

original value was done by calculating several statistical metrices. First we calculated for

each location with a reference value in the observed data set the single error value (SEV)
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Table 3.2: Summary of the settings for the theoretical variogram for each station and
each property. R = Range; S = Sill; Ng = Nugget

ST P Mdl R S Ng

A2 BK Exp 10 2,1021 0,5493

A2 I Exp 10 63,957 21,207

A2 S Exp 10 60,546 16,2375

A2 IF Exp 44 7,9345 1,4137

A2 BK Wav 18 2,1021 0,5493

A2 I Wav 15,5 63,957 21,207

A2 S Wav 18 60,546 16,2375

A2 IF Wav 26 7,9345 1,4137

A6 BK Exp 12 9,2356 3,4539

A6 I Exp 7 2821,2 232,45

A6 S Exp 7 295,24 102,789

A6 IF Exp 7 234,95 90,8664

A6 BK Wav 8,5 9,2356 3,4539

A6 I Wav 15 2821,2 232,45

A6 S Wav 9 295,24 102,789

A6 IF Wav 12 234,95 90,8664
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Table 3.3: Statistical summary of the Error value distribution from the Ordinary Kriging
for each station and each property. P= Property; St = Statistical metric; ST Mdl =
Station & Model (e.g., A2/EXP = station/model).

P St / ST & Mdl A2/EXP A2/WAV A6/EXP A6/WAV

BK Min 0,07555 0,04443 0,296 0,3106

BK IQR 0,96059 1,27299 1,458 0,8864

BK Mean 2,50461 1,58905 10,044 6,5529

BK Max 3,19454 2,43261 11,425 8,0603

I Min 1,662 1,573 30,46 15,83

I IQR 26,032 35,144 1777,22 1376,36

I Mean 81,7 52,837 2635,41 1986,68

I Max 100,839 78,144 4116,95 2992,01

S Min 2,117 1,305 8,819 8,869

S IQR 26,472 36,599 64,138 38,449

S Mean 72,405 45,847 336,858 223,261

S Max 91,48 70,16 391,096 284,696

IF Min 0,1728 0,05503 7,42 7,06

IF IQR 5,5904 6,54144 41,9 43,05

IF Mean 6,7706 4,73394 262,24 169,73

IF Max 12,3807 8,67396 300,29 223,84
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as being the difference between the predicted and the observed value:

SEV = z(ei)− z′(ei) (3.3)

where z(ei) is the Ordinary Kriging estimated value and z′(ei) the observed value not

included in the Ordinary Kriging estimation (i.e., the 100 measurements not included in

the Ordinary Kriging interpolation). These values were then used to calculate the mean

error (BIAS), the squared sum of the single errors (SSE) and the root mean squared error

(RMSE) by the given equations:

BIAS =
N∑
i=n

{z(ei)− z′(ei)}
N

(3.4)

SSE =
1

N

N∑
i=n

{z(ei)− z′(ei)}2 (3.5)

RMSE =

√√√√ 1

N

N∑
i=n

{z(ei)− z′(ei)}2 (3.6)

where N is the number of values. The results are given in Table 3.1. The RMSE values

do show that the Exponential model has a bit better accuracy than the Wave model for

all observed properties. These differences, however, are relatively small compared to the

actual values (i.e., 100 measurement points not used in the Ordinary Kriging analyses).

Since the Kriging method is based on a best linear unbiased estimator (BLUE, chapter

2.2) the given BIAS values reflect an estimate from an unbiased estimator. Although the

BIAS is a random BIAS, for the K bulk calibration it was caught very well (Table 3.1) by

both models. The calibration of the sea ice freeboard at station A2 was also very good.

However, the BIAS of the sea ice thickness at station A6 estimated by the Exponential

model displays a bad result, while the same occurs at the snow thickness at station A6 by

using the Wave model. The other properties of both stations indicate to moderate BIAS

values (Table 3.1).

On the contrary, the prediction error maps of all observed properties from both stations

(Figure 3.4 - Figure 3.9) show that the Wave model always has smaller error values than

the Exponential model. The error values level out in an asymptotic way similar to as

it was observed previously on the spatial distribution of the prediction values (chapter

3.1). The prediction error maps of the Wave model also level out, but in a more cyclical

way (i.e., dampening of the cycles), which might be responsible for the lower error value,

because it is not aspire against a certain value and shows still variations instead, even

they are not braced that much to the data points anymore.

These results finally point out that the Exponential model fits and estimates data at the

short distances better than the Wave model, because at the short distances the sample

semivariograms do show mainly a more asymptotic progression than a periodic pattern
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(Figure 3.10 - Figure 3.13). This likely had a higher impact on the results of the statistical

analysis because the hold-out points (i.e., 100 measurements not used in Ordinary Kriging)

were likely in close proximity to the points used for Ordinary Kriging interpolation. On

the other hand, the maps of the prediction errors (Figure 3.4 - Figure 3.9) and their value

distributions (Table 3.3) indicate that for higher topographical and spatial variations,

such as it has been observed on the MYI at station A6, the Wave model may produce

a more representative snow and ice surface by capturing the real cyclical the patterns

of the snow and sea ice features better than the Exponential model. For sea ice with

a more level spatial distribution, such as the FYI of station A2 with a less pronounced

cyclical pattern, simple models such as the Exponential model may provide a similar fit

and estimate the larger patch sizes (i.e., peaks and troughs) equally good in comparison

to the Wave model. For MYI with much larger variability in magnitude and on smaller

spatial scales of all properties, which is apparent from the higher frequency and amplitudes

of the MYI sample semivariograms (Figure 3.10 - Figure 3.13), the Wave model is superior

than a simple model such as the Exponential model.
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Discussion

The main outcome of chapter 3.1 and chapter 3.2 is, that as every model and method

with a theoretical and statistical background such as it was performed in this study by

using Ordinary Kriging with a hole-effect model cannot estimate the exactly observed

prediction range, but it can confirm assumptions of the main surface topography such as

snow drift and melt ponds, that were made by looking only on to the observed data.

For station A6, the MYI station, it confirms that the accumulation of water in low spots

during summer (e.g., melt ponds) results in enhanced melt in these locations, due to

increase solar absorption, compared to the adjacent white ice. This process results in

differential melt rates between white ice and melt ponds, which creates high elevation

spots (e.g., hummocks) and low elevation spots (e.g., melt ponds). This process would

cause even larger ice thickness differences between hummock ice and melt pond, by further

exasperating the differential melt by inducing differential growth, i.e., more growth at low

snow hummocks due to less thermal insulation and less growth in areas of high snow

accumulation such as melt ponds.

For station A2, the FYI station, it confirms that the snow accumulation can be mainly

controlled by wind transport which results in a widespreaded surface cover of snow drifts.

Observations by Pyrcz & Deutsch (2003) tell us, that all semivariance values above the

sill are negative correlated between their locations. This pattern of negative correlation

does exist in all data sets used in this study (Table 3.1, Figure 3.5 - Figure 3.9) and

therefore also confirms the negative correlations between the properties that has already

been observed on these data by Lange (2016).

The aim of fitting the experimental model by adding a theoretical model such as the

Exponential model and the Wave model was to capture the actual pattern of the data in

any direction and to satisfactorily produce a realistic snow and sea ice matrix in three

dimensions, which also accurately captures important features of the sea ice such as

hummocks, snow drift patterns and interconnected melt pond systems. It turned out

that using Ordinary Kriging provided by an Exponential model produces a surface that is

heterogenic and does not represent the (spatial) variability of the snow and ice properties.

It ignores the uncontinuously growth of the experimental variogram and therefore seems

31
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to be unrealistic. Against that the Wave model seems to be more effective and realistic,

because it considers those irregularities in the experimental variogram.

This study also shows, that the Wave model can estimate results better for the main

objective of this study, even when these results in comparison to the Exponential model

are not supported by the statistical outcome such as RMSE or BIAS. In addition I think

a more spacious distribution of the measurements could improve the results.

Using sinusoidal, isotropic second order stationary models for (Ordinary) Kriging is still

an underrepresented topic of performing geostatistical interpolation and there are less

studies published using those methods such as Das, Subba Rao & Boshnakov (2012).

Journel & Froidevauy (1982) have already noticed it 34 years ago and suggest that it is

caused by its internal complexity. Modelling with a hole-effect model should get much

more attention in the field of sea ice research and in general.

It has the potential to become a very useful and supportive tool for estimating the spatial

patch size of habitats for ice algae and other members of the Arctic ecosystem within a

scale of 100 m x 100 m such as it has been done for this study, but it still needs to be

further tested wether other scales can be applied as well.

This study has shown that Ordinary Kriging as a method itself and the way of modelling

with Ordinary Kriging might be the best for the spatial variability of snow and sea ice

properties, but it needs to be developed furher. There are several opportunities such as

using Universal Kriging, trying other hole-effect models or combining two different hole-

effect models that need to be implemented and tested in particular. It is also necessary

to test those different approaches with many data sets of snow and sea ice properties

from different environmental areas and different distribution patterns of the measurement

points to verify the chosen way of thinking, to find out, which measuring pattern of

the snow and sea ice properties produces the most reliable prediction. It also has to

be considered how and if other features of sea ice such as polynyas can be reproduced

in those models. Another way could be to sample a few data sets from FYI floes and

MYI floes within a regular sampling interval of 1 – 2 m over an area of 100 m x 100 m.

Those data sets could be used to test, train and optimize Ordinary Kriging modelling

for the aims of this study. Furthermore, it should be used to implement and test other

modelling methods from the non-statistical and the statistical families such as Inverse

Distance Weighting Interpolation, Nearest Neighbour Interpolation or Universal Kriging,

by extracting different measurement patterns from those data sets. However, sampling

those training data sets is very time consuming. Nevertheless in my opinion the best

verification is still our own background and knowledge of the matter, sea ice and snow, if

those methods can be used for our objectives.
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Conclusion

Ordinary Kriging with using hole-effect models appears to be the most realistic way to

reproduce and estimate the spatial variability of the snow and ice properties. Using the

Wave model can confirm and develop for both stations on a three dimensional scale most

of the previously observed variability and relationships between the snow and sea ice

properties, but not within the exactly observed prediction range.

The Wave model – and probably further hole-effect models – has the potential to estimate

the spatial patch size of habitats for ice algae and other members of the Arctic ecosystem

on different spatial scales.

The Exponential model does not produce a surface and estimates a prediction range that

represents this variability. It is assumed that similar models such as the Spherical model

would perform in a similar way as the Exponential model does. The better results of the

Exponential model in the statistical analysis cannot be fully explained.

Modelling with a hole-effect model is still an underrepresented topic in geostatistics and

should get much more attention.

This study represents a first approach of modelling the spatial variability of snow and sea

ice properties, but needs to be developed further.
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