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Abstract: Species of the dinophyte genus Alexandrium are widely distributed and are notorious
bloom formers and producers of various potent phycotoxins. The species Alexandrium taylorii is
known to form recurrent and dense blooms in the Mediterranean, but its toxin production potential
is poorly studied. Here we investigated toxin production potential of a Mediterranean A. taylorii
clonal strain by combining state-of-the-art screening for various toxins known to be produced
within Alexandrium with a sound morphological and molecular designation of the studied strain.
As shown by a detailed thecal plate analysis, morphology of the A. taylorii strain AY7T from the
Adriatic Sea conformed with the original species description. Moreover, newly obtained Large
Subunit (LSU) and Internal Transcribed Spacers (ITS) rDNA sequences perfectly matched with
the majority of other Mediterranean A. taylorii strains from the databases. Based on both ion pair
chromatography coupled to post-column derivatization and fluorescence detection (LC-FLD) and
liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis it is shown
that A. taylorii AY7T does not produce paralytic shellfish toxins (PST) above a detection limit of
ca. 1 fg cell−1, and also lacks any traces of spirolides and gymnodimines. The strain caused cell
lysis of protistan species due to poorly characterized lytic compounds, with a density of 185 cells
mL−1 causing 50% cell lysis of cryptophyte bioassay target cells (EC50). As shown here for the first
time A. taylorii AY7T produced goniodomin A (GDA) at a cellular level of 11.7 pg cell−1. This first
report of goniodomin (GD) production of A. taylorii supports the close evolutionary relationship of
A. taylorii to other identified GD-producing Alexandrium species. As GD have been causatively linked
to fish kills, future studies of Mediterranean A. taylorii blooms should include analysis of GD and
should draw attention to potential links to fish kills or other environmental damage.

Keywords: goniodomin; Gessnerium; toxins; paralytic shellfish poisoning (PSP); spirolides;
lytic compounds

Key Contribution: First full toxin analysis of a Mediterranean Alexandrium taylorii and first report of
production of the phycotoxin Goniodomin A by this notorious bloom-forming species.

1. Introduction

Exceptional densities of marine microalgae, commonly reported as blooms, are recurrently
observed in many coastal areas around the world. A number of dinophycean microalgae are producers
of potent phycotoxins which, during such blooms, may have major ecological (e.g., fish kills), economic
(e.g., on tourism or exploitation of marine resources) and/or sanitary impacts (e.g., human poisoning).
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Among toxigenic dinophytes, the genus Alexandrium Halim is perhaps the most intensely studied group.
The taxonomic history of this typical gonyaulacoid genus is quite complex and includes numerous
rearrangements of species formerly classified in Gonyaulax, Protogonyaulax, Gessnerium, Goniodoma and
Pyrodinium [1,2]. Some new species have recently been described and today the genus Alexandrium
comprises 34 species. The importance of the genus is mainly attributed to the devastating effects of
toxigenic blooms related to human poisoning via contaminated shellfish. Species of Alexandrium may
produce a large variety of toxic compounds including paralytic shellfish toxins (PST) (saxitoxin and
derivatives), spiroimines (spirolides, gymnodimines), goniodomins (GD), and poorly characterized
extracellular lytic compounds [3]. Among these various compounds, the neurotoxic saxitoxin and its
derivatives are the most well-known and widely distributed, and blooms of PST producing species
regularly have devastating effects on aquaculture industry around the world. For example, in 2016 a
severe Alexandrium catenella bloom of outstanding intensity and geographical extent hit Chile with
devastating effects on salmon aquaculture [4,5].

Whereas toxin production is well studied for the main PST-producing species, for example for
species of the former tamarense/fundyense/catenella species complex or for A. minutum, much less is
known about toxin production potential of other Alexandrium species. One of these is Alexandrium
taylorii. The species was described by Balech [6] in the French Atlantic (Bay of Arcachon, France)
and since then has been reported from various Mediterranean areas [7] as well as from Indonesia [8],
Malaysia [9], and Japan [10]. Alexandrium taylorii is a high biomass producer species causing very
dense and recurrent blooms in various parts of the Mediterranean Sea including the Catalano-Balearic,
Adriatic, Tyrrhenian and Ionian Sea, where peak densities of 106–107 cells L−1 and intense water
discolorations are reported [7,11–16]. However, toxin production potential of A. taylorii is poorly
known and there are only few and partly contradictory studies available. Mediterranean strains are
usually listed and cited as non-PST-producers [15,17,18], however, this belief is not based on actual
data or is simply based on “pers. comm.” information [19]. The same refers to a strain classified as
A. taylorii from Indonesia, which was referred to as a strain that did not produce PST, but again only
based on “pers.comm.” and not on published data [8]. Nevertheless, for one Mediterranean strain,
AY1T, methodological details confirming lack of detectable PST was published [20]. In contrast, PST
production based on high performance liquid chromatography (HPLC) toxin analysis was claimed for
a Malaysian strain of A. taylorii [9].

Moreover, A. taylorii has been reported to severely affect oyster larvae [8] and to produce hemolytic
exotoxins [10]. It must be noted, however, that in both reports neither morphological nor sequence
data is provided supporting the species identification. On the other hand, the Mediterranean strain
AY1T, for which sequence data are available in GenBank, was shown to immobilize and lyse a protistan
grazer which is indicative of the production of extracellular lytic compounds by A. taylorii [20].

Morphological evidence, i.e., a pentagonal first apical plate disconnected from the apical pore
plate [6], indicates a close relationship of A. taylorii with other species of the subgenus Gessnerium
as defined by Balech [21], and such a relationship is confirmed in phylogenetic trees for A. taylorii
with A. monilatum, A. pseudogonyaulax, A. hiranoi, and A. satoanum [22,23]. Interestingly, species of
this cluster are known as producers of goniodomin A (GDA) (Figure 1), a potent antifungal toxin
associated with invertebrate mortality [24], which was first identified by Sharma et al. [25]. Whereas the
species identity of the Alexandrium sp. source organism studied by Sharma et al. [25] cannot be
determined retrospectively [26], GDA has been identified in A. hiranoi [27], A. monilatum [28], and A.
pseudogonyaulax [29]. The other two species of the phylogenetic cluster, A. satoanum and A. taylorii,
have never been tested for the presence of this toxin.
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Figure 1. Chemical structure of goniodomin A.

The aim of the present study is thus to investigate the toxin production potential of a Mediterranean
A. taylorii strain by combining state-of-the-art screening for various toxins known to be produced
within Alexandrium with a sound morphological and molecular designation of the studied strain.

2. Results

2.1. Species Identification

Cells were slightly variable in shape from subspherical to irregularly hexagonal (Figure 2A,B)
without significant dorsoventral compression. The epitheca was rounder than the trapezoidal
hypotheca. Cell size ranged from 34.3 to 48.2 µm in cell length (mean 40.4 ± 3.3 µm) and 33.6 to
49.3 µm in cell width (mean: 41.6 ± 3.7 µm) with a mean length/width ratio of 0.97 ± 0.03 (n = 52).
The cingulum was narrow, excavated, without lists, and ventrally displaced by slightly more than
one cingular width (Figure 2C). The cell content was brownish (Figure 2C–E) and could be quite dark
and granular. There were numerous regularly distributed small chloroplasts visible in fluorescence
microscopy (Figure 2K,L). Position and shape of the nucleus was difficult to resolve in unstained cells,
but with DAPI staining it was seen to be elongated and located in the cingular plane (Figure 2K–M)
with its U-shape clearly visible in apical view (Figure 2N,O). In the culture there were two types of
cell division. Cells divided in the motile stage with an oblique fission line by desmoschisis, i.e., the
thecal plates were shared between the two new cells (Figure 2D,E). Additionally, cells could shed their
theca (ecdysis) (Figure 2F,G) forming temporary cysts, which subsequently may undergo cell division
(Figure 2H–J).

The theca was composed of thin and smooth plates which were irregularly covered by minute
pores (Figure 3). Staining of thecal plates revealed the plate formula typical for Alexandrium (Po, 4′,
6′′, 6c, 8(?)s, 5′′′, 2′′′′) (Figure 3). The first apical plate was slightly variable in its size and shape (see
Figure S1), but generally short and consistently and entirely disconnected from the apical pore plate
(Po). In most cases it was pentagonal with two anterior margins, with the left side touching plate
2′ being shorter than the right margin touching plate 4′ (Figure 3A,B). However, plate 1′ could also
be rather quadrangular with just one long apical suture and without contact to plate 2′ (Figure 3C).
A usually large ventral pore (vp) was located above plate 1′ at the junction of plates 1′, 2′ and 4′ and
could occasionally also be seen in light microscopy (Figure 2C). When the left anterior margin of plate
1′ was missing the vp was located at the confluence of plates 1′, 2′, 4′ and 1′′. The vp may touch
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the 1′ plate but in many cases was slightly more anterior in position on the suture of plates 2′ and 4′

(Figure 3A,B). Exceptionally, no vp could be detected or two vp were present (Figure S1). The Po had
a rounded dorsal and more pointed ventral side and had a large comma shaped pore (Figure 3D,E).
The three apical plates surrounding Po were comparable in size with an almost symmetrical plate 3′ in
dorsal position (Figure 3D). Precingular plates were of comparable size (Figure 3D), but the ventrally
located plate 6′′ was distinctly smaller, comparable in size to plate 1′, pentagonal in shape, and longer
than wide (Figure 3A–C). The anterior sulcal plate (sa) was located below plate 1′ and 6′′. It was very
narrow and its left lateral suture to plate C1 was not extending the left lateral suture of plate 1′ with
plate 1′′ (Figure 3A–C,G). The posterior sulcal plate (sp) was variable in shape and appearance (Figure
S2), but generally elongated, longer than wide, and with a characteristically V-shaped anterior part
touching the other sulcal plates (Figure 3B,G,H). This plate most often was rather smooth (Figure 3G,H),
but also could have a straight or slightly curved line or groove eventually ending with a small pore
(Figure 3I). In the central sulcal area six smaller plates could clearly be identified (Figure 3G). Plate
ssa was large and appeared more as a precingular than a sulcal plate and had a small list around its
sutures (Figure 3A–C,F,G). The right posterior sulcal plate (sdp) was slenderer and longer than the left
posterior sulcal plate (ssp) (Figure 3G). The presence of two additional very tiny accessory sulcal plates
was adumbrated but could not be unambiguously demonstrated.

1 
 

 

 

 

Figure 2. Alexandrium taylorii AY7T, LM micrographs of living (A–D,F–J) or fixed (E,K–O) cells. (A–C)
General size and shape. Note the ventral pore (arrow) in (C). (D) Newly divided motile pair of cells.
(E) Newly divided cell stained with Solophenyl Flavine showing presence of half of the parent thecal
plates. (F,G) Temporary cyst formation after ecdysis of the whole theca. (H–J) Different temporary
cysts with cells in division. (K–M) Different focal planes and illumination of the same cell stained with
DAPI to indicate shape and position of the nucleus (blue). (N,O) Two views of the same DAPI-stained
cell in apical view. Scale bars = 10 µm.

The newly obtained AY7T large subunit (LSU) sequence was identical with most LSU reference
sequences (Table 1). Only strain AY4T differed from all others (including the new AY7T) by two
nucleotides. Three identical A. taylorii LSU sequences from Japan (strains Atay99Shio, Table S1)
revealed significant base pair differences compared to Mediterranean A. taylorii, e.g., 5.5% different
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to AY7T, 8.3% different to AY1T, or 8.1% different to AY4T. There were no previously deposited LSU
sequences of strain AY7T.

Internal Transcribed Spacers (ITS) sequence comparison of AY7T revealed 100% identity with AY7T
sequences previously deposited in Genbank and with most other ITS A. taylorii reference sequences.
Among other Mediterranean strains, only strains CSIC-AV8 (La Fosca, Spain) and VGOE6 (Pagueroa,
Spain) differed from other Mediterranean strains (including the new AY7T) by one nucleotide each
(Table 2). However, as was the case for the LSU sequences, there were significant differences between
ITS sequences of Mediterranean strains and ITS of the Japanese strain Atay99Shio-06 (AB841262.1,
Table S1), with, for example, 109 bp differences compared to strain AY7T (equivalent to 18.8%), or 107
bp differences compared to strain AT1T (equivalent to 21.6%), respectively.

 

2 

 

Figure 3. Alexandrium taylorii AY7T, different thecae of Lugol-fixed cells stained with Solophenyl
Flavine and viewed with epifluorescence and blue light excitation. (A–C) Cells in ventral view. (D)
Epithecal plates in apical view. (E) Detailed apical view of the pore plate (Po) and the ventral pore
(vp). (F) Detailed view of the sulcal area to show shape of the anterior sulcal plate (sa). (G) Hypothecal
and sulcal plates in ventral view. (H,I) Hypothecal plates in antapical view. Note the groove ending
with a small pore (arrow in I). Plate labels according to the Kofoidian system. Sulcal plate labels: sp =

posterior sulcal plate; sdp = right posterior sulcal plate; ssp = left posterior sulcal plate; sda = right
anterior sulcal plate; smp = median posterior sulcal plate; sma = median anterior sulcal plate; sa =

anterior sulcal plate. Scale bars = 10 µm.
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Table 1. Sequence alignment of the homologous fragment for the A. taylorii large subunit
(LSU) sequences.

Strain Sequence (5′-3′) Nucleotide Positions (bp)

AY7T (this study) CATTAATTTGGACTTGGTGCAA 547–568

AY4T ———————AG——————— 555–576

AY1T ———————————————- 516–537

AY2T ———————————————- 551–572

Table 2. Sequence alignment of the homologous fragment for the A. taylorii Internal Transcribed Spacers
(ITS) sequences. Dots represent 134 base pairs, which are identical in the ITS sequences of all strains
shown in the table.

Strain Sequence (5′-3′) Nucleotide Positions (bp)

AY7T (this study) GATCCAA . . . . . . . . . .AGGCATC 354–360 . . . . . . . . . .494–500

CSIC-AV8 ——T—— . . . . . . . . . ..————– 314–320 . . . . . . . . . .454–460

VGO704, VGOE6 ————– . . . . . . . . . ..——A—– 314–320 . . . . . . . . . .454–460

AY10T ————– . . . . . . . . . ..————– 314–320 . . . . . . . . . .454–460

AY1T ————– . . . . . . . . . ..————– 314–320 . . . . . . . . . .454–460

AY7T ————– . . . . . . . . . ..————– 314–320 . . . . . . . . . .454–460

CBA-1 ————– . . . . . . . . . ..————– 314–320 . . . . . . . . . .454–460

CNR-AT4 ————– . . . . . . . . . ..————– 314–320 . . . . . . . . . .454–460

CNR-ATAYB2 ————– . . . . . . . . . ..————– 314–320 . . . . . . . . . .454–460

Field sample ————– . . . . . . . . . ..————– 314–320 . . . . . . . . . .454–460

Temporary-cyst ————– . . . . . . . . . ..————– 314–320 . . . . . . . . . .454–460

VGO705 ————– . . . . . . . . . ..————– 314–320 . . . . . . . . . .454–460

2.2. Toxin Analysis

2.2.1. PST

No PST were detected in A. taylorii AY7T by either ion pair chromatography coupled to
post-column derivatization and fluorescence detection (LC-FLD) (Figure S3) or hydrophilic interaction
liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) (Figure S4), two independent
methodological approaches. LC-FLD resulted in higher detection limits ranging for individual PST
from 25 to 715 fg cell−1. In contrast, HILIC-MS/MS yielded orders of magnitude lower detection limit
(LOD) between 0.1 and 1.9 fg cell−1 (Table 3).



Toxins 2020, 12, 564 7 of 20

Table 3. Cellular detection limits (LOD) of paralytic shellfish toxins (PST) determined by ion pair
chromatography coupled to post-column derivatization and fluorescence detection (LC-FLD) and
hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). nd =

not determined.

Toxin LOD (FLD) [fg
cell−1]

LOD (MS/MS)
[fg cell−1]

C1 57 0.25

C2 57 0.76

C3 nd 0.49

C4 nd 1.87

B1 141 0.12

B2 nd 0.49

STX 35 0.13

NEO 516 0.63

GTX1 715 0.07

GTX2 26 0.24

GTX3 32 0.18

GTX4 722 0.16

dcSTX 51 0.15

dcNEO nd 0.34

dcGTX1 nd 0.35

dcGTX2 25 0.49

dcGTX3 25 0.45

dcGTX4 nd 0.84

doSTX nd 0.09

TTX nd 0.18

2.2.2. Lipophilic Compounds

In addition to PST, the A. taylorii AY7T strain also was analysed for other toxin groups known
to be produced by species of the genus Alexandrium, namely cycloimines, such as spirolides (SPX),
gymnodimines (GYM) and goniodomins (GD). No cycloimines were detected above the LOD of 0.6 fg
cell−1 of SPX and 0.8 fg cell−1 of GYM based on the molecular response of 13-desmethyl SPX (SPX-1)
and GYM A, respectively. Alexandrium taylorii was instead found to contain goniodomin A (GDA)
(Figure 4) at a level of 11.7 pg cell−1. In addition, our data/analysis profiles/analytical results showed
evidence of additional GD analogues that will be the subject to future research.
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Figure 4. LC-MS/MS chromatograms of the ion transitions m/z 786 > 607 and 786 > 733 of (A) a
goniodomin A (GDA) standard solution of 500 pg µL−1 and (B) a methanolic extract of Alexandrium
taylorii AY7T as well as collision induced dissociation (CID) spectra of (C) a GDA standard solution of
500 pg µL−1 and (D) a methanolic extract of Alexandrium taylorii AY7T.

2.2.3. Lytic Capacity

The dose response curve of Rhodomonas cell lysis exposed to different A. taylorii densities (Figure 5)
revealed no significant effect on the target cells for the two lowest A. taylorii AY7T concentrations <50
cell mL−1. At higher A. taylorii densities, the number of intact Rhodomonas decreased consequently and
total cell lysis was observed at the highest A. taylorii concentration of 1.9 × 103 cells mL−1. EC50 was
calculated as 185 cells mL−1 (95% confidence interval: 176–195 cells mL−1).

 

3 

 

 
Figure 5. Cell bioassay with the cryptophyte Rhodomonas salina undergoing cell lysis when exposed to
whole cells of Alexandrium taylorii AY7T. Intact target cells (% of control) plotted against log-transformed
A. taylorii density (mL−1). Results are expressed as triplicate mean ± 1 SD.
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3. Discussion

Species-level toxinological data from the literature are only as good as the underlying taxonomical
determination of the species/strains under study. It is therefore desirable to document the identification
of the organism either morphologically or with molecular techniques when conducting chemical toxin
analyses, as was done here. If the strain is sufficiently documented elsewhere, a strain identifier
and literature citation should be provided. However, use of a previously described strain does not
provide 100% certainty, as cross-contamination or even misidentification at the culture collection
cannot be ruled out. The problem of reliable species identification especially refers to Alexandrium
where most taxa are rather similar in general size and shape [21]. Alexandrium species identification
is thus not a simple task and requires a thorough examination of subtle morphological differences
in size and shape of diagnostic thecal plates such as the apical pore plate, the first apical plate, or
of sulcal plates [3,21]. Moreover, recent phylogenetic studies revealed cryptic speciation and also
invalidated some of the described morphospecies [30,31]. A prominent example of an Alexandrium
morphospecies concept failure for species circumscriptions is the former A. tamarense species complex
consisting of the morphospecies A. tamarense, A. catenella, and A. fundyense [30,32,33], where new species
(i.e., A. catenella, A. mediterraneum, A. tamarense, A. pacificum, A. australiense) are now defined based on
sequence data and the segregation into five genetic distinct clades [34].

Species determination of A. taylorii is also challenging. The description of the species [6] was
based on field samples and no DNA sequences are available and linked to the type material. This
ambiguity is illustrated by divergent sequences deposited in GenBank under the name A. taylorii;
sequences labelled as A. taylorii based on strains isolated from Japan (Table S1) differ substantially
from sequence data obtained from Mediterranean A. taylorii. No morphological data are linked to the
Japanese strains. For Mediterranean A. taylorii, field populations of two Spanish coastal sites were
compared morphologically with A. taylorii populations from the type locality (French Atlantic) and
were found to be within the range of intraspecific morphological variability [14]. For Mediterranean
strain-based sequence data, there is thus at least indirect evidence that their morphology is likely to
conform to A. taylorii sensu Balech. Moreover, for five Mediterranean strains, for which ITS sequence
data were deposited in GenBank, morphology was examined by staining thecal plates [7], even though
description or micrograph documentation was not provided. Likewise, six strains of A. taylorii from the
Mediterranean with identical ITS sequences were examined morphologically by thecal plate dissection,
and two A. taylorii cells of unknown strain identity were depicted [18]. For Adriatic A. taylorii strains
with sequence data deposited at GenBank (AY1T, AY2T AY4T, AY7T, AY10T), no detailed morphological
examination is published yet, but are now available for AY7T (Figure 2; Figure 3, Figures S1 and S2).

Morphology of AY7T largely conformed with the original species description of A. taylorii [6]. Cells
of AY7T were slightly larger (length range 34.3–48.2 µm) than reported by Balech [6] (length range 31–44
µm), and larger than cells of the Spanish A. taylorii field population, where cell length ranged from 27
to 43 µm and from 26 to 43 µm for cells from Palmira and La Fosca, respectively [14]. In the original [6]
and subsequent species descriptions [21], Balech did not explicitly mention variability in shape of
plate 1′. However, such a variability, ranging from asymmetrical pentagonal to almost quadrangular,
without contact to plate 2′ is evident in strain AY7T and has been documented for field population from
the type locality (Arcachon, French Atlantic) and also from the Spanish Mediterranean [14]. Moreover,
position of the ventral pore was also variable in the before mentioned field study [14] and in strain
AY7T (Figure 3A–C, Figure S1). Notably, the exceptional presence of two ventral pores (Figure S1T) was
also noted by Balech [21] and Delgado et al. [14]. An exceptional lack of a ventral pore (Figure S1S) was
not reported before but confirms previous notions for other Alexandrium species that presence/absence
of a vp is not a stable character [35]. One feature of thecal pattern differed consistently in strain AY7T
compared to Balech’s original species description: the anterior sulcal plate sa. This plate is described
and depicted by Balech [6,21] as very long with a significant anterior contact line to plate 1′′. However,
for strain AY7T, sa was narrow and its right border was almost lined up with the right suture of plate
1′ so that there was almost no contact of plate sa and 1′′ (Figure 2A–C,F, Figure S1). Such a narrow sa
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plate was also described by Delgado et al. [14] for field samples from the type locality and from the
Mediterranean and is also visible for cultured specimens from other Mediterranean localities [18,19,36].
Length of sa plate and the relative position of its right suture is thus not a constant and reliable feature
of A. taylorii. In cultured cells of AY7T there was also a large variability in shapes of the posterior
sulcal plate. Whereas this plate was consistently longer than wide and oblique to the right, there was
consistent variability in presence/absence of the oblique groove extending from the right margin to the
center and the presence/absence of a small pore at its end. Balech [21] noted that such a pore occurred
“frequently” but it was only occasionally visible in cells of AY7T. Despite such minor deviation from
Balech’s cell description, we are confident that strain AY7T corresponds to A. taylorii.

The notion that other Mediterranean A. taylorii strains do not produce PST [17–19] is now
substantiated by detailed data on strain AY7T, which is solidly based on two different analytical
methods and detailed estimated LOD values of about 1 fg cell−1. Given the fact that PST-producing
Alexandrium species usually have PST cell quotas in the pg cell−1 range, A. taylorii AY7T can be regarded
as a non-PST-producing strain. However, it has to be discussed whether or not toxin production is a
stable species-specific trait. Whereas for a given clonal strain toxin production is generally proposed to
be a genetically fixed and stable character [3,37], both toxic and non-toxic strains of the same species may
occur. For PST, recent molecular work on presence/absence of genes responsible for toxin production
as well as chemical toxin analysis of multiple strains indicate that, among the new species of the
former tamarense/catenella/fundyense species complex, strains of A. catenella and A. pacificum consistently
produce PST, whereas strains of A. tamarense and A. mediterraneum do not [32]. However, whereas most
strains of the fifth species of this complex, A. australiense, do not produce saxitoxins above detection
limits, one PST-producing strain of this species was described [38]. Likewise, for the very well-studied
A. minutum and A. ostenfeldii, both PST-producing strains and strains without PST production have
been reported [31,39–41]. Conflicting reports of PST-producing and non-toxic strains within less well
studied Alexandrium are also present, for example, for A. affine [42,43], A. andersonii [43,44], or A.
leii [42,45]. Thus, the debated question as to whether PST production is a stable species attribute has no
clear answer which underlines the value of the present study, adding sound data to clarify the situation
for A. taylorii. Nevertheless, additional analyses of multiple A. taylorii strains from different areas
are needed to finally evaluate if lack of PST production for A. taylorii is a stable species-specific trait,
especially since one deviating report on PST in A. taylorii exists. For a Malaysian strain of A. taylorii
Lim et al. [9] reported the presence of PST. Whereas the documented morphological examination of the
strain supports the species determination, neither a strain identifier nor sequence data of the strain in
question were provided. Of more importance, however, is the fact that the reported toxin amounts
were fairly low (<1 fmol cell−1), and that the reported A. taylorii PST profile exactly matched with the
PST profile of a strain of A. ostenfeldii which was simultaneously studied [9]. Although such a 1:1 match
of PST toxin profile of two different but simultaneously analysed Alexandrium species of course cannot
be excluded, it may at least provoke some skepticism and the consideration of cross-contamination as
a potential source of reporting the presence of trace PST amounts for A. taylorii. In any case, additional
analyses of the Malaysian strain and other strains of A. taylorii from the Pacific area are urgently needed
for a final clarification of the PST production potential of this species.

Whereas it is often stated that spiroimines within Alexandrium are only produced by
A. ostenfeldii [3,46], corresponding analyses of these compounds for other Alexandrium species are
largely missing. In general, reporting negative results is unspectacular and, to be ratable, require
detailed reporting of the methods and limits of detection and quantification. Nevertheless, it is
important to have this information for better understanding of the chemo-taxonomical relevance of
toxins within Alexandrium. It is provided here with respect to excluding spirolides and gymnodimines
from the toxin repertoire of Mediterranean A. taylorii AY7T.

The present results of lytic capacity of the Mediterranean AY7T confirm that A. taylorii produce
and release lytic compounds. Another strain (AY1T) isolated from the same area has been shown
before to negatively affect protistan target species [20]. Other reports on the presence of bioactive
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compounds and negative effects of Pacific A. taylorii on oyster larvae [8] or on Artemia and mammalian
erythrocytes [10] are present in the literature. However, both papers do not provide supporting
morphological and/or molecular evidence that indeed A. taylorii had been studied. In the paper of
Emura et al. [10], not even a strain designation is included so that a reliable attribution of the reported
finding to A. taylorii is considerably weakened.

Whereas lack of PST and presence of lytic activity of A. taylorii thus confirms previous
reports [19,20], the presence of goniodomin A in A. taylorii as reported here has not been reported
before. Goniodomin A production by A. taylorii might have been expected as this matches with its
phylogenetic placement. In rRNA based phylogenetic trees A. taylorii forms a well-supported clade
with A. monilatum (the type of Balech’s subgenus Gessnerium), A. pseudogonyaulax, A. hiranoi and A.
satoanum [22,23]. Among those, GDA has been identified in A. monilatum [28], A. pseudogonyaulax [29],
and A. hiranoi [27,47], while GDA production of A. satoanum has not yet been investigated. All species
of this cluster belong to the subgenus Gessnerium which is defined by species where the first apical plate
1′ is not connected and not linked in any way with the apical pore plate [21]. However, some of the
species that morphologically are classified into Gessnerium, and for which molecular data are available,
such as A. insuetum, A. margalefii and A. pohangense, clearly cluster outside of the core Gessnerium
group [3,48]. Thus, Balech’s morphological definition does not define a monophyletic group and new
morphological unifiers for the core Gessnerium species would be needed. Anyhow, the current chemical
evidence indicates that the Gessnerium core-species might chemotaxonomically be unique by presence
of GDA and lack of PST, but this hypothesis will require the analysis of a higher number of Alexandrium
species and strains, including A. satoanum, A. margalefii, A. insuetum and A. pohhangense, as well as yet
uncultured species with a pentagonal and disconnected 1′ plate (A. balechii, A. foedum, A. concavum,
A. camurascutulum, A. globosum) for the presence of GDA. Crude extract of the GDA producing A.
monilatum was shown to cause hemolysis to erythrocytes from several mammalian species including
humans [49], but lytic capacity of purified GDA has not yet unequivocally been shown. Future studies
are needed to test if the lytic activity of AY7T (Figure 5) towards protistan targets are due to GDA or
caused (or intensified) by other yet uncharacterized extracellular compounds.

Goniodomin A production by A. taylorii is of importance for the Mediterranean area where dense
and recurrent blooms of this species occur [7,11–16]. For GDA producing A. monilatum, blooms have
been linked to mortality of finfish and/or shellfish [50,51]. However, Mediterranean A. taylorii blooms
have not yet been causatively linked to fish kills and are considered mainly to be of concern for tourism
and recreational use of coastal waters and beaches [15,16]. Nevertheless, in 1999 a dense bloom with
27 × 106 cells L−1 of A. taylorii in the lagoon of Marano (Northern Adriatic Sea) was associated with high
mortality of seabass (Dicentrarchus labrax) which is extensively cultivated in the area (Beran et Cabrini,
unpublished data; presented at the Riunione Scientifica Annuale del Gruppo di Algologia Italiana,
Ancona, 2000). Thus, future studies of Mediterranean A. taylorii blooms should include analysis of
GDA and should draw attention to potential links to fish kills or other environmental damage.

4. Materials and Methods

4.1. Strain Isolation and Harvest

Strain AY7T (=CoSMi1017) of Alexandrium taylorii was isolated form a benthic sample collected in
the lagoon of Marano in May 2000. The lagoon of Marano is a shallow and semi open lagoon connected
to the Northern Adriatic Sea. Salinity during summer normally ranges from 29 to 36. Part of the
lagoon is divided in so-called “valli di pesca”, where seabass (Dicentrarchus labrax) is maintained in
extensive culture. A massive bloom of A. taylorii identified by epifluorescence light microscopy using
calcofluor [52] during July/August 1999 caused the loss of most of the stock. Standard tests for PST
using HPLC in 1999 were negative and it was concluded at the time that the high fish mortality had
probably been caused by occlusion of the gills, where many A. taylorii cells had been found in samples
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of dead fish. It was decided to test in 2000 if the mud would release fresh A. taylorii cells from resting
cysts—in fact a second much smaller bloom developed in July 2000 without serious consequences.

For cell isolation, samples of ca 1 mL of mud were incubated in 50 mL of half strength medium
B [53] (salinity 32) at 20 ◦C under cool white fluorescent light (80 µmol photons m−2 s−1) at a light: dark
cycle of 12:12 h. First motile cells appeared in the sample after six days. Single cells were washed by
transferring them three times into fresh medium under a dissection microscope (M10, Wild, Heerbrugg,
Switzerland) using drawn micropipettes. Finally, single isolates were incubated at the same conditions
into single wells of 24 well tissue culture plates (Corning, New York, NY, USA) containing 1 mL of
medium. Growing cultures were adapted to full strength medium B. Several clonal strains were
isolated but only strain AY7T was maintained and is now integrated in the Culture Collection of Sea
Microorganisms (CoSMi) at the OGS—Trieste (http:/cosmi.inogs.it) as strain CoSMi1017.

For the experiment reported here, the strain was grown in a seawater K-medium [54] supplemented
with selenite, prepared from 0.2 µm sterile-filtered (VacuCap, Pall Life Sciences, Dreieich, Germany)
North Sea seawater (salinity of 32) at 15 ◦C, under cool-white fluorescent light at a photon flux density
(PFD) of 50 µmol photons m−2 s−1 on a 16 h light: 8 h dark photo-cycle. For DNA sampling strain AY7T
was grown in 70 mL plastic culture flasks. Cells in exponential phase were harvested by centrifugation
at 3220× g for 10 min (Eppendorf 5810R, Hamburg, Germany) of 50 mL culture, and cell pellets
were stored at −20 ◦C until further analysis. For toxin analysis, strain AY7T was grown in 250 mL
plastic culture flasks under standard culture conditions. Cell concentrations from cultures in early
stationary phase (at cell densities ranging from 1000 to 2000 cells mL−1) were determined by settling
Lugol’s iodine-fixed samples and counting >400 cells under an inverted microscope. Cell pellets were
harvested by centrifugation (Eppendorf 5810R, 3220× g, 10 min) and one pellet containing 227,000 cells
was extracted for lipophilic toxins with 500 µL methanol, and another pellet containing 37,900 cells
was extracted for paralytic shellfish toxins (PST) with 500 µL 0.03 M acetic acid, respectively. Therefore,
samples were reciprocally shaken for 45 s at 6. 5 m s−1 with 0.9 g lysing matrix D (Thermo Savant,
Illkirch, France) in a FP120 FastPrep instrument. Extracts were then centrifuged (Eppendorf 5415 R)
for 15 min at 16,100× g at 4 ◦C. Each supernatant was transferred to a 0.45 µm pore-size spin-filter
(Millipore Ultrafree), and centrifuged for 30 s at 800× g, the resulting filtrate being transferred into an
ultra performance liquid chromatography (UPLC) autosampler vial for UPLC–MS/MS analysis.

4.2. Microscopy

Observation of living or fixed cells (formaldehyde: 1% final concentration, or neutral Lugol-fixed:
1% final concentration) was carried out using a compound microscope (Axiovert 2; Zeiss, Göttingen,
Germany) equipped with epifluorescence and differential interference contrast optics. Light microscopic
examination of thecal plates of A. taylorii was performed on fixed cells (neutral Lugol) stained with
Solophenyl Flavine 7GFE500, a fluorescent dye specific to cellulose [55], which were examined with
epifluorescence filter set 09 (Zeiss; BP 450-490; FT 510; LP 515). Images were taken with a digital camera
(Axiocam MRc5; Zeiss). Cell length and width were measured at 1000×microscopic magnification
using freshly fixed cells (formaldehyde, 1% final concentration) from dense, but healthy and growing
strains (based on stereomicroscopic inspection of the living material) at early exponential phase and
the Axiovision software (Zeiss).

4.3. DNA Extraction and Sequencing

For DNA extraction, the cell pellets were rinsed with 1 mL pre-heated (60 ◦C) PL1 DNA lysis
buffer of the NucleoSpin Plant II DNA extraction kit (Macherey & Nagel, Düren, Germany). The lysis
buffer containing the cells was subsequently transferred to a 2 mL cryovial prefilled with 200 µL glass
beads (acid-washed, 212–300 µm, Sigma-Aldrich, St. Louis, MO, USA) and stored at −20 ◦C. DNA
was extracted using the NucleoSpin Plant II kit according to the manufacturer’s instructions, with an
additional cell disruption step within the beat tubes. Therefore, the samples were shaken for 45 s and
another 30 s at a speed of 4.0 m s−1 in a cell disrupter (FastPrep FP120, Thermo-Savant). DNA elution

http:/cosmi.inogs.it
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was performed according to the manufacturer’s instructions, using 2 × 30 µL of the provided elution
buffer, leading to a total elution volume of 60 µL.

The extracted DNA of A. taylorii AY7T was subjected to polymerase strain reaction (PCR),
amplifying the large subunit (LSU/28S, D1-D2 region) and the Internal Transcribed Spacers
(ITS1-5.8S-ITS2) of the ribosomal DNA (rDNA). The forward and reverse primers for amplification of
28S rDNA were Dir-F (5′-ACC CGC TGA ATT TAA GCA TA-3′) and Dir-2CR (5′-CCT TGG TCC GTG
TTT CAA GA-3′), respectively. The primers for amplification of the ITS region were ITSa (5′-CCA
AGC TTC TAG ATC GTA ACA AGG (ACT)TC CGT AGG T-3′) and ITSb (5′-CCT GCA GTC GAC
A(GT)A TGC TTA A(AG)T TCA GC(AG) GG-3′), respectively. Each PCR reaction contained 16.3 µL
of high-grade PCR H2O, 2.0 µL of Hotmaster Taq PCR Buffer (10×) (Quantabio, Beverly, MA, USA),
0.2 µL of each primer (10 µM), 0.2 µL of dNTP (10 µM) (Quantabio), 0.1 µL of Taq Polymerase
(Quantabio) and 1 µL of DNA template (10 ng µL−1) to a final volume of 20 µL.

Cycler conditions for LSU amplification were as follows: initial denaturation at 94 ◦C for 2 min,
followed by 30 cycles of denaturation at 94 ◦C for 30 s, annealing at 55 ◦C for 30 s and elongation
at 68 ◦C for 2 min. A final extension step at 68 ◦C for 10 min was performed. Cycler conditions for
ITS amplification were as follows: initial denaturation at 94 ◦C for 4 min, followed by 10 cycles of
denaturation at 94 ◦C for 50 s, annealing at 58 ◦C for 40 s and elongation at 70 ◦C for 1 min, then 30
cycles of denaturation at 94 ◦C for 45 s, annealing at 50 ◦C for 45 s and elongation at 70 ◦C for 1 min.
A final extension step at 70 ◦C for 5 min was performed.

The PCR amplicons were run on a 1% agarose gel at 70 mV for 40 min in TE buffer to verify that the
PCR amplicons were of the expected length. The PCR amplicon was purified using the NucleoSpin Gel
and PCR clean-up kit (Macherey-Nagel, Düren, Germany) and sequenced directly in both directions
on an ABI PRISM 3730XL (Applied Biosystems by Thermo Fisher Scientific, Waltham, MA, USA)
as described in Tillmann et al. [56]. Raw sequence data were processed using the CLC Genomics
Workbench 12 (Qiagen, Hilden, Germany).

Gained LSU and ITS sequences of the actual sample of A. taylorii AY7T were aligned and compared
to published sequences of A. taylorii (Table S1) using the MUSCLE algorithm implemented in the
software MEGA7 (version 7.0.26; [57]). ITS sequence data of strain AY7T previously (2006) deposited
in GenBank (Acc no. AM296012.1) were included in the comparison.

4.4. Toxin Analysis

A cell pellet was extracted with 300 µL 0.03 M acetic acid and another with 300 µL methanol
for lipophilic toxins and lyzing Matrix D (Thermo Savant) in a homogenizer (MagnaLyzer, Roche
Diagnostics, Mannheim, Germany) for 45 s at 5500 m s−1. The homogenates were centrifuged for
five min at 13,200× g. The supernatants were transferred to spin filters (0.45 µm, UltraFree, Millipore,
Eschborn, Germany) and centrifuged for 30 s at 5700× g. The filtrates were transferred to HPLC vials
and stored at −20 ◦C until analysis.

4.4.1. Paralytic Shellfish Toxins

PSP toxin (PST) analysis was performed by two independent methodological approaches: by ion
pair chromatography coupled to post-column derivatization and fluorescence detection (LC-FLD) and
hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS/MS).

LC-FLD analysis was performed on a LC1100 series liquid chromatography system consisting of
a G1379A degasser, a G1311A quaternary pump, a G1229A autosampler, and a G1321A fluorescence
detector (Agilent Technologies, Waldbronn, Germany), equipped with a Phenomenex Luna C18
reversed-phase column (250 mm × 4.6 mm id, 5 µm pore size) (Phenomenex, Aschaffenburg, Germany)
with a Phenomenex SecuriGuard precolumn. The column was coupled to a PCX 2500 post-column
derivatization system (Pickering Laboratories, Mountain View, CA, USA). Eluent A contained 6 mM
octane-sulfonic acid, 6 mM heptane-sulfonic acid, 40 mM ammonium phosphate, adjusted to pH 6.95
with dilute phosphoric acid, and 0.75% tetrahydrofuran. Eluent B contained 13 mM octane-sulfonic
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acid, 50 mM phosphoric acid, adjusted to pH 6.9 with ammonium hydroxide, 15% acetonitrile and
1.5% tetrahydrofuran. The flow rate was 1 mL min−1 with the following gradient: 0–5 min isocratic A,
15–16 min switch to B, 16–35 min isocratic B, 35–36 min switch to A, 36–45 min isocratic A. The injection
volume was 20 µL and the autosampler was cooled to 4 ◦C. The eluate from the column was oxidized
with 10 mM periodic acid in 555 mM ammonium hydroxide before entering the 50 ◦C reaction coil,
after which it was acidified with 0.75 M nitric acid. Both the oxidizing and acidifying reagents entered
the system at a rate of 0.4 mL min−1. The toxins were detected by dual-monochromator fluorescence
(lex 333 nm; lem 395 nm). The data were processed with Chemstation software (Agilent, Santa Clara,
CA, USA) and calibrated against external standards.

HILIC-MS/MS analysis was achieved on an Acquity UPLC Glycan BEH Amide column (130 Å,
150 mm × 2.1 mm, 1.7 µm, Waters, Eschborn, Germany) equipped with an in-line 0.2 µm Acquity
filter and thermostated at 60 ◦C with an isocratic elution to 5 min with 98% eluent B followed by a
linear gradient of 2.5 min to 50% B and 1.5 min isocratic elution. The flow rate was 0.4 mL min−1, and
the injection volume was 2 µL. Mobile phase A consisted of water with 0.15% formic acid and 0.6%
ammonia (25%). Mobile phase B consisted of water/acetonitrile (3:7, v/v) with 0.1% formic acid. Mass
spectrometric experiments were performed in the selected reaction monitoring (SRM) mode on a Xevo
TQ-XS triple quadrupole mass spectrometer equipped with a Z-Spray source (Waters, Halethorpe, MD,
USA). Instrument parameters are given in Table S2 and used mass transitions in Table 4. PSTs were
quantified by external calibration with standard mix solutions of 4 concentration levels consisting
of the following PSTs: STX, NEO, GTX2/3, GTX1/4, dcSTX, dcGTX2/3, B1, and C1/2. All individual
standard solutions were purchased from the Certified Reference Materials Program (CRMP) of the
Institute for Marine Biosciences, National Research Council (Halifax, Canada).

Table 4. Mass transitions of PST and GC toxins. +/- indicates positive or negative ionization mode.

Quantifier + Qualifier + Quantifier - Qualifier -

doSTX 241 > 60 241 > 206

dcSTX 257 > 126 257 > 222

dcNEO 273 > 126 273 > 225

STX 300 > 126 300 > 204

NEO 316 > 126 316 > 220

TTX 320 > 302 320 > 162

dcGTX2 351 > 164 351 > 333

dcGTX3 353 > 255 351 > 333

dcGTX1 367 > 274 367 > 349

dcGTX4 369 > 271 367 > 349

B1 380 > 300 378 > 122

B2 396 > 316 394 > 122

GTX2 394 > 351 394 > 333

GTX3 396 > 298 394 > 333

GTX1 410 > 367 410 > 349

GTX4 412 > 314 410 > 367
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Table 4. Cont.

Quantifier + Qualifier + Quantifier - Qualifier -

C1 474 > 122 474 > 351

C2 396 > 298 474 > 122

C3 412 > 332 490 > 410

C4 412 > 314 490 > 392

GC3 377 > 359 377 > 257

GC3a 393 > 375 393 > 257

GC6 393 > 375 393 > 273

GC6a 409 > 391 409 > 273

GC3b 457 > 359 457 > 377

GC1/2 473 > 375 473 > 455

GC6b 473 > 375 473 > 393

GC1a/2a 489 > 409 489 > 471

GC4/5 489 > 489 489 > 471

GC4a/5a 505 > 425 505 > 487

GC1b/GC2b 553 > 393 553 > 473

GC4b 569 > 489 569 > 409

GC5b 569 > 409 569 > 489

4.4.2. Lipophilic Compounds

LC-MS/MS analysis for lipophilic toxins was performed on a reversed phase C18 column
(Purospher STAR RP-18 end-capped (2 µm) Hibar HR 50-2.1, Merck, Darmstadt, Germany) equipped
with a guard column (EXP Pre-column Filter Cartridge, Merck) and thermostated at 40 ◦C with an
isocratic elution to 5 min with 5% eluent B followed by a linear gradient of 2.0 min to 100% B and
3.0 min isocratic elution prior to return to initial conditions. The flow rate was 0.6 mL min−1, and
the injection volume was 0.5 µL. Mobile phase A consisted of 500 mL water with 955 µL formic acid
and 75 µL 25% ammonia. Mobile phase B consisted of 475 mL acetonitrile, 25 mL deionized water,
955 µL formic acid and 75 µL 25% ammonia. Mass spectrometric experiments were performed in the
selected reaction monitoring (SRM) mode in positive polarity on a Xevo TQ-XS triple quadrupole mass
spectrometer equipped with a Z-Spray source (Waters). Instrument parameters are given in Table
S3 and used mass transitions in Table 5. A standard solution of 500 pg µL−1 GDA [58] was used for
quantification. Standard solutions of 100 pg µL−1 SPX 1 and 50 pg µL−1 GYM A (CRMP, IMB-NRC,
Halifax, NS, Canada) were used for the determination of detection limits.
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Table 5. Mass transitions of monitored lipophilic toxins. + indicates positive ionization mode.

Toxin Quantifier + Qualifier +

GYM A 508 > 490 508 > 162

GYM D 510 > 492

12-me-GYM A 522 > 504

GYM B/C 524 > 506

GYM E 526 > 508

GYM (uncharacterized) 540 > 522

GYM (uncharacterized) 542 > 524

SPX (uncharacterized) 592 > 164

SPX (uncharacterized) 618 > 164

SPX H 650 > 164

SPX I 652 > 164

SPX (uncharacterized) 658 > 164

SPX (uncharacterized) 666 > 164

SPX (uncharacterized) 666 > 180

SPX (uncharacterized) 678 > 150

13,19-Didesmethyl-SPX C 678 > 164

SPX (uncharacterized) 686 > 164

SPX A 692 > 150

13-Desme-SPX C, SPX G 692 > 164

SPX (uncharacterized) 692 > 180

SPX B 694 > 150

13-Desme-SPX D, PnTx G,
20-Hydroxy-13,19-didesmethyl SPX C 694 > 164

27-Hydroxy-13-desmethyl SPX C 694 > 180

20-Hydroxy-13,19-didesmethyl-SPX D 696 > 164

SPX (uncharacterized) 698 > 164

SPX (uncharacterized) 704 > 164

SPX (uncharacterized) 706 > 150

SPX C, 20-Methyl-SPX G 706 > 164

SPX D 708 > 164

SPX (uncharacterized) 708 > 180

SPX (uncharacterized) 710 > 150

SPX (uncharacterized) 710 > 164

SPX (uncharacterized) 718 > 164

SPX (uncharacterized) 720 > 150

SPX (uncharacterized) 720 > 164

SPX (uncharacterized) 722 > 164

SPX (uncharacterized) 722 > 180

PnTx F 766 > 164

PnTx E 784 > 164

GDA 786 > 607 786 > 733
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4.4.3. Lytic Compounds

The presence of extracellular bioactive compounds with lytic capacity was investigated using a
whole cell cryptophyte Rhodomonas salina 24-h-bioassay [59,60]. Rhodomonas salina (Strain KAC30) was
grown with the same medium and light/temperature settings as described for A. taylorii. A culture
of A. taylorii AY7T at late exponential phase (1.9 × 103 cells mL−1) was used to prepare triplicate
glass-vials (3.9 mL each) with seven dilutions spanning from 0.02 × 103 to 1.9 × 103 cells mL−1.
Triplicate glass-vials with culture medium served as control. A dense R. salina culture was diluted with
filtered culture medium to a density of 4 × 105 cells mL−1. Each sample including controls was spiked
(100 µL) with this R. salina culture to yield a final R. salina concentration of 1 × 104 cells mL−1 and a
final assay volume of 4 mL Samples were incubated for 24 h in the dark at 15 ◦C. Subsequently, samples
were fixed with Lugol’s iodine solution (2% final conc.) and intact target cells were counted with an
inverted microscope (Axiovert 40c, Zeiss). Percentage of intact Rhodomonas cells were calculated as
Rhofinal/Rhocontrol × 100%. EC50 was calculated using the non-linear fit procedure of Statistika (version
9.1, StatSoft, Tulsa, OK, USA) regression of a sigmoidal curve as %intact cells = 100/[1 + (X/EC50)h];
with X = the log-transformed A. taylorii cell concentrations and EC50 and h as fit-parameters. EC50,
i.e., the concentration of A. taylorii where 50% of Rhodomonas were lysed, is expressed as cells mL−1,
including 95% confidence intervals.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6651/12/9/564/s1,
Table S1: Reference LSU and ITS DNA sequences for A. taylorii, Table S2: MS parameters of PST and GC toxin
analysis, Table S3: MS/MS parameters of lipophilic toxin analysis, Figure S1: Alexandrium taylorii AY7T. Detailed
ventral views of epithecal plates of different Lugol-fixed cells stained with Solophenyl Flavine and viewed with
epifluorescence and blue light excitation to illustrate shape variability of plates 1′ and 6′′ and variability in
position of the ventral pore (vp). Note that in (S) no vp could be identified, whereas in (T) two vp were present.
Plate label exemplarily shown in (A). Scale bars = 10 µm, Figure S2: Alexandrium taylorii AY7T. Detailed ventral or
antapical views of hypothecal plates of different Lugol-fixed cells stained with Solophenyl Flavine and viewed
with epifluorescence and blue light excitation to illustrate shape variability of the posterior sulcal plate sp. Note
the faint groove that extends from the right margin of sp in K–T (arrows) which occasionally ended in a small pore
(S) or continued to the left margin (T). Scale bars = 10 µm, Figure S3: LC-FLD chromatograms of a PST standard
mix (upper panel) and the Alexandrium taylorii extract (lower panel). Concentrations of the PST standard solution
are the following: C1: 100.3 pg µL−1; C2: 28.6 pg µL−1; GTX1: 205.4 pg µL−1; GTX4: 54.7 pg µL−1; dcGTX2: 16.1
pg µL−1; dcGTX3: 4.5 pg µL−1; GTX2: 16.3 pg µL−1; GTX3: 5.4 pg µL−1; B1: 26.3 pg µL−1; NEO: 100 pg µL−1;
dcSTX: 12.8 pg µL−1; STX: 14.7 pg µL−1, Figure S4: Extracted Ion chromatograms of a PST standard mix (upper
panels) and the A. taylorii extract (lower panels).
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