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The applicability of optical satellite data to quantify coastal erosion across the Arctic

is limited due to frequent cloud cover. Synthetic Aperture Radar (SAR) may provide

an alternative. The interpretation of SAR data for coastal erosion monitoring in Arctic

regions is, however, challenging due to issues of viewing geometry, ambiguities in

scattering behavior and inconsistencies in acquisition strategies. In order to assess

SAR applicability, we have investigated data acquired at three different wavelengths

(X-, C-, L-band; TerraSAR-X, Sentinel-1, ALOS PALSAR 1/2). In a first step we

developed a pre-processing workflow which considers viewing geometry issues

(shoreline orientation, incidence angle relationships with respect to different landcover

types). We distinguish between areas with foreshortening along cliffs facing the sensor,

radar shadow along cliffs facing away and traditional land-water boundary discrimination.

Results are compared to retrievals from Landsat trends. Four regions which feature high

erosion rates have been selected. All three wavelengths have been investigated for Kay

Point (Canadian Beaufort Sea Coast). C- and L-band have been studied at all sites,

including also Herschel Island (Canadian Beaufort Sea Coast), Varandai (Barents Sea

Coast, Russia), and Bykovsky Peninsula (Laptev Sea coast, Russia). Erosion rates have

been derived for a 1-year period (2017–2018) and in case of L-band also over 11 years

(2007–2018). Results indicate applicability of all wavelengths, but acquisitions need to be

selected with care to deal with potential ambiguities in scattering behavior. Furthermore,

incidence angle dependencies need to be considered for discrimination of the land-water

boundary in case of L- and C-band. However, L-band has the lowest sensitivity to

wave action and relevant future missions are expected to be of value for coastal erosion

monitoring. The utilization of trends derived from Landsat is also promising for efficient

long-term trend retrieval. The high spatial resolution of TerraSAR-X staring spot light mode

(< 1 m) also allows the use of radar shadow for cliff-top monitoring in all seasons. Derived

retreat rates agree with rates available from other data sources, but the applicability for

automatic retrieval is partially limited. The derived rates suggest an increase of erosion at

all four sites in recent years, but uncertainties are also high.
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1. INTRODUCTION

Arctic regions are some of the most rapidly changing
environments on Earth, and their coastlines are especially
vulnerable to climate change due to permafrost thaw and marine
changes (Lantuit, 2008; Overland et al., 2019; Nielsen et al.,
2020). The latter includes decrease in sea ice extent due to
warming temperatures and change in wave action (driven by
length of open water season and sea ice concentration anomalies,
Nielsen et al., 2020). They impact thermo-denudation and
thermo-abrasion along the coast. The annual erosion rates at the
Alaskan and northwest Canadian Arctic coastlines are among the
highest in the world, but Siberian coastlines also show high rates
(Frederick et al., 2016). These irreversible coastal changes are a
threat to communities and wildlife in those areas. Communities
have needed to be relocated, and houses and archaeological sites
have been damaged (Jones et al., 2008; Arp et al., 2010; Frederick
et al., 2016; Radosavljevic et al., 2016; Irrgang et al., 2019). In
addition to these directly visible effects, the erosion mobilizes
significant amounts of carbon and contaminants (e.g., Steele
et al., 2008; Couture et al., 2018; Schuster et al., 2018; Overland
et al., 2019). There is a clear need to quantify erosion regularly on
circumpolar scale, but available studies focus on local to regional
level. A first account for circumpolar rates has been published
in 2012 (Lantuit et al., 2012). It is based on published rates from
in situmeasurements and partially from satellite data from a wide
range of studies, which have been aggregated for coast segments
to tackle scale differences. That study provides a first account
of circumpolar coastal dynamics, but is inconsistent. Moreover,
global initiatives on quantification of shore line changes based
solely on satellite data omit the Arctic (e.g., Mentaschi et al.,
2018).

Arctic coastal erosion has been monitored through airborne
and spaceborne optical imagery or in situ measurements (e.g.,
Obu et al., 2016; Irrgang et al., 2018; Cunliffe et al., 2019). In situ
measurements only cover small areas, and optical images can be
unreliable due to frequent cloud cover in the Arctic (Stettner
et al., 2017; Zwieback et al., 2018). Microwave radiation on the
other hand is barely affected by the atmosphere, and does not
rely on solar illumination, which can be especially useful for
monitoring Arctic regions (Jones and Vaughan, 2010). This has
motivated recent interest in using microwave technologies like
Synthetic Aperture Radar (SAR) to monitor Arctic regions. The
interpretation of SAR data for coastal erosion in Arctic regions
is, however, challenging (Stettner et al., 2017). Differential SAR
interferometry (DInSAR) and SAR interferometry (InSAR) have
been successfully used to measure gradual surface displacement
in Arctic environments (e.g., Liu et al., 2012; Strozzi et al.,
2018). However, detecting mass movements is difficult, because
repeat-pass interferometry methods are not effective in rapidly
changing terrain such as the Arctic coasts. The changes between
the satellite revisit times are too large in comparison to the SAR
wavelength, and no useful correlation can be found between the
images (Short et al., 2011; Zwieback et al., 2018). Therefore,
Stettner et al. (2017) introduced a backscatter-based threshold
method with TerraSAR-X images to classify and evaluate inter-
and intra-annual cliff-top erosion rates. The high backscatter
difference between tundra, water and steep cliffs facing the sensor

justifies the simple approach. Unfortunately, only a limited
number of high spatial resolution (in respect to the erosion
rates) SAR acquisitions of the Arctic region exist. A further
challenge is the limitation of the approach to steep cliffs facing
toward the sensor. A different method is needed for cliffs
facing away and coasts without steep cliffs. As an alternative,
to cover also all other parts of the coastline, the separability
between the land-water boundary needs to be investigated. Banks
et al. (2014) analyzed the backscatter characteristics of Arctic
shore and near-shore landcover types for C-band images in
various incidence angle ranges and polarizations. They found
that the separability between sand and water backscatter in C-
band strongly depends on the incidence angle and polarization.
Differences in applicability of certain wavelengths are also to
be expected due to their varying sensitivity to waves on the
water and surface roughness (modified by vegetation and snow;
examples from Arctic sites in Stettner et al., 2018; Bartsch et al.,
2020) on land, which leads to ambiguities. Wet snow appears
similar to water (low backscatter), as do radar shadow areas.
Waves and sea ice show similar or even higher backscatter
than typical undisturbed tundra. An additional challenge poses
the variation of spatial resolution across commonly used SAR
spaceborne missions.

This study tests the accuracy and transferability of the
threshold-based method proposed by Stettner et al. (2017)
for comparably low resolution PALSAR/PALSAR-2 L-band
and Sentinel-1 C-band images in addition to high-resolution
TerraSAR-X X-band acquisitions. The overall goal is to identify
options for operational mapping of coastal erosion along Arctic
coasts. This requires the analyses of the land-water boundary in
addition to represent all coast types.

The first objective is therefore to implement and demonstrate
a landcover classification scheme for X-, C- and L-band data
building on the approach suggested by Stettner et al. (2017).
Specifically, the classification should correctly identify steep
coasts, land, and water surfaces for applicability across various
coast types. To achieve this, the classification approach must
account for the landcover specific angular dependence in the
classification step. Where available, different polarization needs
to be assessed. Previously, thresholds have been determined
only visually (Stettner et al., 2017). A quantitative approach is,
however, required.

The second objective is to demonstrate the use of the
proposed classifications to analyze coastline change in the Arctic.
Specifically, annual coastline movement rates are calculated
for steep cliff coastlines. The accuracy of these estimates is
assessed by comparison with trends derived from multi-spectral
data, published results from previous studies, and by cross-
comparisons between sensors within this study.

2. MATERIALS AND METHODS

2.1. Study Areas and Reference Data for
Coastal Erosion Rates
In order to judge the utility of different SAR parameters to
detect and measure coastal erosion, we conducted our analysis
in areas where coastal erosion has been measured before. This
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study focuses on four coastal sites in three regions with existing
records of comparably high erosion rates from previous studies:
two sites at the Canadian Beaufort Sea (Herschel Island, 139.3◦W
69.6◦N; Kay Point, 138.4◦W 69.3◦N), one at the Russian Laptev
Sea (Bykovsky Peninsula, 129.3◦E 71.8◦N), and one at the Barents
Sea Coast (Varandai, 58.3◦E 68.9◦N) (Figure 1). Satellite image
acquisitions of two further areas along the Beaufort Sea coast are
considered for calibration purposes (King Point, 138◦W 69.1◦N
and Stokes Point, 138.7◦W 69.3◦N).

Erosion dynamics in Arctic shorelines relate to cold climate
and geomorphic impacts of permafrost, ground-ice, snow, and
sea-ice. The evolution of coastal features occurs during the
thawing and sea-ice-free seasons (Kroon, 2014). Depending
on the morphology of the coastline and the ground ice
content, thermo-abrasion (block failures) or thermo-denudation
(retrogressive thaw slumps) are the main erosion processes
(Lantuit, 2008; Hoque and Pollard, 2009). Coastal zones with
horizontal thermo-erosional niches, especially when combined
with large surface areas separated by ice wedges, are prone
to block failures (Hoque and Pollard, 2004). The thermal-
mechanical erosion undercuts the frozen cliff, and under the
force of gravity, the heavy overhanging blocks of soil detaches
from the coast (Lantuit, 2008). On average the erosion rate
on Arctic coasts is 0.5 m/year, but in the Laptev East Siberian
and the US and Canadian Beaufort Seas the rates are much
higher (3 m/year and more) (Lantuit et al., 2012, see also
Figure 1). The Barents Sea coast also includes low-gradient
sandy shores with comparably high erosion rates (2–5 m/yr,
Sinitsyn et al., 2020).

2.1.1. Canadian Beaufort (Yukon) Sea Coast
The approximately 280 km long Yukon Coast lies between
the Alaskan border and the Mackenzie Delta in Canada, in
the continuous permafrost zone. The climate has a continental
character in winter andmaritime influences in summer. Herschel
Island is located approximately in its center. Komakuk Beach,
around 40 km west of Herschel Island, is the closest weather
station in this area (Obu et al., 2016). From 1971 to 2000 themean
air temperature was −11.3◦C. The coldest temperatures were
measured in February and the warmest in July, with averages of
−25.3◦C and 7.8◦C, respectively (Government Canada, 2019).
The coastal areas of the Beaufort Sea are typically ice-covered
from October to June. From late August to September, storms
become increasingly frequent and can generate significant high
waves greater than 4 m (Solomon, 2005). Tides are in the order of
0.3 to 0.5 m in this region (Hequette et al., 1995). The coastal
erosion processes mainly take place during this ice-free storm
season (Obu et al., 2016).

In this area, low-relief landforms like beaches, barrier islands
and spits, inundated tundra, tundra flats and slopes, and active
cliffs are common (Irrgang et al., 2018). Around 33% of the
coast shows active slumps, and 13% shows high bluffs with no
slumping. Such slumps as well as bluffs exist, for example, on
Herschel Island. A site with active slumps on the west coast
(Avadlek as described in Obu et al., 2016) with a length of about
700 m and bluff heights of 10–25 m has been selected for analyses
(Figure 2A). The slope orientation of the Avadlek site favors tests

for the cliff-top detection approach as the majority of available
satellite data is acquired by right looking system set ups and from
ascending orbits (see Table 1).

In 2006 around 78% of the Yukon coastline, including
Herschel Island, was affected by coastal erosion processes (Obu
et al., 2016). Excluding Herschel Island, the mean annual rate of
shoreline change from 1950 to 2011 was −0.7± 0.2 m/year. The
highest erosion rates were measured at shorelines characterized
by spits (Irrgang et al., 2018) and capes. One example is Kay
Point (Figure 2B). It includes a NE facing coastline stretch of
approximately 2km length characterized by approximately 4 m
high bluffs, but no thaw slumps. This coast segment has been
selected for analyses, since it is a long-term monitoring site of
the Geological Survey of Canada (Forbes et al., 1995, site 5280),
as well as due to satellite data availability (Table 1), specifically
very high spatial resolution SAR, which allows investigation of
radar shadow occurrence. Reference erosion rates with geospatial
information is available from Irrgang et al. (2017) for this region.
Both sites (Avadlek onHerschel Island and Kay Point) are located
in areas with comparably high Soil Organic Carbon (SOC)
mobilization (Couture et al., 2018).

2.1.2. Bykovsky Peninsula, Laptev Sea Coast
The Bykovsky peninsula is located southeast of the Lena Delta
in northeastern Siberia, and lies within the zone of continuous
permafrost. The weather has an almost continental character,
although it is surrounded by the Laptev sea (Lantuit et al.,
2011). The mean annual temperature is−11.5◦C with long harsh
winters and short cold summers. The open water season is
between July and September, but can begin as early as late May
(Lantuit et al., 2011; Günther et al., 2013). The length of the
open water season at the Laptev Sea Coast has a strong influence
on annual rates and is conditioned by the Arctic Oscillation in
winter and summer (Nielsen et al., 2020). Concurrent with the
open water season, the highest storm activity takes place in these
months (Lantuit et al., 2011). Storms are in general the largest
driver of erosion in the Arctic, and therefore the coastal erosion
is mostly limited to the open water season in July to September.
However, even during this period chunks of sea ice can reduce
the wave activity (Lantuit, 2008).

The relief of the peninsula is dominated by flat elevated
areas up to 40 m above sea level and thermokarst depressions
near sea level (Grosse et al., 2005). At the over 150 km long
shoreline, various coastal landforms exist, such as sandbars,
lagoon barriers, ice complex cliffs, thermokarst basins (alases),
and thaw slump coasts according to Lantuit et al. (2011).
Between 1951 and 2006, alases and retrogressive thaw slumps
underwent erosion at a rate of 1.02 and 0.91 m/year, respectively
(Lantuit et al., 2011). These rates are significantly higher than the
other coast types on the Bykovsky Peninsula, which underwent
erosion at rates between 0.40 and 0.47 m/year (Lantuit et al.,
2011). A three kilometer long stretch along the west coast,
which is characterized by retrogressive thaw slumps has been
selected for this study (Figure 3A). Similarly to the Herschel
Island site, the slope orientation favors testing the cliff-top
detection approach.
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FIGURE 1 | (A) Location of study areas, annual erosion rates (source: Lantuit et al., 2012) and permafrost zones (source: Obu et al., 2019b). (B) zoom for Beaufort

Sea coast, (C) zoom for Barents Sea Coast, (D) zoom for Laptev Sea Coast.
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FIGURE 2 | Study sites along the Beaufort Sea Coast, Canada: (A) Avadlek on Herschel Island, (B) Kay Point, including shoreline points for rate calculations from

Irrgang et al. (2017) and Landsat trend data based on probability of land to water change between 1999 and 2014 (Nitze et al., 2018) (visualization based on

vectorized 30 × 30 m pixels). The baseline for rate calculations in this paper is shown in addition. Background: RGB (band 4, 3, and 2) composite of Sentinel-2

(optical, multi-spectral), Sep 20 2018.

2.1.3. Varandai, Barents Sea Coast
The study region at the Barents sea coast in the northwest of
Russia is warmer regarding ground and air temperatures than
the other sites. It lies in the zone of sporadic to discontinuous
permafrost (Figure 1). Le et al. (2018) report a mean annual
air temperature between −3.8 and −4.8◦C in 2012–2014. The
coldest air temperature of −39.4◦C was measured in January,
and the warmest, 30◦C, in July. Storm surges with magnitudes
of 1.5–2 m, and tides with high amplitudes of 0.5 m are common
(Leont’yev, 2003).

In general, the landscape varies fromwide, low-gradient sandy
shores with dune belts to sub-vertical ice-rich bluffs and narrow
beaches (Guégan and Christiansen, 2016). The coast is formed
by a marine terrace 2 to 6 km wide, and the sediment body is
predominantly sand. The coastal cliffs, where present, are mostly
between 3 and 10 m high. Thermal erosion only occurs locally,
and does not play a large role in the coastal dynamics. Coastal
erosion rates of 1 to 4 m/year are common (Leont’yev, 2003).
This applies to specifically the area near Varandai, which has been
selected as example for low relief coast with an extensive sandy
beach area (approximately 700 m, Figure 3B). Sinitsyn et al.
(2020) report on average −1.8 m/year from 1951 to 2013 in the
proximity. Several buildings have been destroyed between 2004

and 2012. This period included a storm surge which occurred in
summer 2010.

2.2. Synthetic Aperture Radar Data
Three different wavelengths from SAR sensors from four
different satellite missions have been investigated. This also
included the analyses of different polarization combinations. The
choice of acquisition dates and wavelengths was determined
by data availability. A further issue is also spatial resolution.
Although a long history of C- and L-band SAR acquisition
exists, older platforms such as ERS-1/2 (European remote
sensing satellites 1 and 2, 1991–2011) or JERS-1 (Japanese
Earth Resources Satellite 1) offer only comparably coarse
spatial resolution (about 30 and 18 m, respectively) and
limited polarization combinations. Open access and continuous
acquisitions only exist for C-band (Sentinel-1 Copernicus
mission). X-band and L-band availability and access is in
general limited. Table 1 provides an overview of used sensors,
their specifications and dates. Recent annual erosion rates were
determined for 2017 to 2018 using L-band and C-band data and
for part of the open water season of 2018 in case of X-band
data. A longer time period (decadal time scale) could be only
investigated for L-band as only in this case consecutive missions
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TABLE 1 | List of available Synthetic Aperture Radar acquisitions grouped by sensor and study area.

Sensor (band, polarization,

incidence angle range)

Region Date Nominal Pass Site specific

resolution [m] incidence angle [◦]

PALSAR/

PALSAR-2

(L-band,

HH, HV;

33–43◦)

Herschel Island &

Kay Point

2007-08-31 12.5 Ascending 37.5 & 39

2008-09-02 12.5 Ascending 38 & 39.5

2017-07-26 10 Ascending 34.3 & 36

2018-07-25 10 Ascending 34.5 & 36

Bykovsky Peninsula

2007-09-04 12.5 Ascending 38

2008-09-06 12.5 Ascending 38.5

2017-09-05 10 Ascending 40

2018-08-07 10 Ascending 40

Varandai

2007-08-01 12.5 Ascending 38

2008-08-03 12.5 Ascending 38

2017-09-23 10 Ascending 41

2018-07-14 10 Ascending 41

Sentinel-1

(C-band,

VV, VH;

34–42.5◦ )

Herschel Island &

Kay Point

2017-07-15 10 Ascending 40 & 40.5

2018-07-22 10 Ascending 40 & 40.5

2017-07-29 10 Descending 43.2 &40.2

2018-07-24 10 Descending 43.2 &40.2

Bykovsky Peninsula
2017-07-25* 10 Descending 39.8

2018-07-20* 10 Descending 39.8

Varandai
2017-07-28 10 Descending 38

2018-07-23 10 Descending 38

TerraSAR-X

(X-band,

HH;

19–53◦)

King Point
2018-06-15* 0.62 Descending 51

2018-07-07* 0.62 Descending 51

Kay Point

2018-07-13 0.69 Ascending 40

2019-01-27 0.69 Ascending 40

2018-08-12* 1.35 Descending 19.5

Stokes Point 2018-07-16* 0.96 Descending 29.5

*indicates use for incidence angle and landcover analyses only.

with similar acquisition properties are existing. The years 2007
and 2008 have been therefore analyzed for L-band in addition to
2017 and 2018. The actual dates varied from sensor to sensor also
due to acquisition strategies, revisit intervals and image quality.
The availability of polarization combinations also varies across
the sensors. At maximum two types of combinations have been
available for the study sites, including HH (horizontally sent and
horizontally received), VV (vertically sent and vertically received)
as well as HV and VH.

The Phased Array type L-band Synthetic Aperture Radar
(PALSAR) and PALSAR-2 are L-band SARs with a center
frequency around 1.2 GHz (JAXA, 2008, 2018). They are follow-
on missions of JERS-1. PALSAR was launched on board the
Advanced Land Observation Satellite (ALOS) in January 2006
and sent information until its failure in April 2011. ALOS was
replaced in May 2014 by ALOS-2, carrying the PALSAR-2. Both
satellites have a sun-synchronous, sub-recurrent orbit, but the
14-day revisit time of ALOS-2 is much shorter than the ALOS
revisit time of 46 days (Shimada, 2009; JAXA, 2018). Due to
their duration and orbits, the PALSAR datasets are suitable for
long-term studies of the Arctic. Two sets of data were used
from the PALSAR satellites. First, PALSAR Fine Beam (FB) dual

polarization images with 12.5 m nominal resolution in HH and
HV polarizations were analyzed. Second, PALSAR-2 Stripmap
mode 3 (SM3) images with 10 m nominal resolution, also in
HH and HV polarizations, were investigated. In total four images
with the same orbit, one image per year, for each area of interest
were used.

The Sentinel-1 mission is part of the European Union’s
Copernicus program. The mission consists currently of two
satellites with a near-polar, sun-synchronous orbit, 180 degrees
apart from each other. The two earth observation satellites
Sentinel-1A (launched in April 2014) and Sentinel-1B (launched
in April 2016) have an identical C-band SAR sensor on board
(Schubert et al., 2017). The Interferometric Wide Swath (IW)
mode combines a swath width of 250 km with a medium-
high ground resolution of 5 × 20 m. Products in ground range
are distributed with 10 m nominal resolution. The incidence
angle range is potentially 31◦ to 46◦. Images can be captured
in dual polarization (HH+HV or VV+VH). Only VV+VH is
available for the study areas for this mode and resolution. Like
the PALSAR/PALSAR-2 data sets, one image per year with the
same relative orbit for every area of interest was analyzed. The
years 2017 and 2018 were chosen to enable the comparison of the
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FIGURE 3 | Russian study sites: (A) West coast of the Bykovsky Peninsula, (B) Varandai, Barents Sea Coast. The baseline for rate calculations in this paper is shown

in addition. Background: RGB (band 4, 3, and 2) composite of Sentinel-2 (optical, multi-spectral), Aug 28 2018 and Aug 8 2019.

coastal erosion rates with the PALSAR/PALSAR-2 images. Images
with ascending and descending pass directions were available
for the Canadian Beaufort Sea Coast, and both were used for
this study.

TerraSAR-X was launched in June 2007, and is a commercial
German X-band SAR earth observation satellite. It has a sun-
synchronous orbit and a repeat period of 11 days. The standard
operational mode is the single receive antenna mode, which
can be used in three different modes: SpotLight (SL), StripMap
(SM) and ScanSAR (SC). The SpotLight mode uses phased array
beam steering in azimuth direction to increase the illumination
time. It can further be divided in the High Resolution SpotLight
(HS) and Staring SpotLight (ST) mode. The ST scene size and
resolution is highly dependent on the incidence angle, because
the antenna footprint depends on the scene, and the scene length
corresponds to the length of the antenna footprint. The Spotlight
mode achieves an azimuth resolution up to 0.24 m. For this
mode only single polarization acquisitions are available (HH).
In this study TerraSAR-X images in ST mode with incidence
angles between 19◦ and 51◦ as well as ascending and descending
acquisitions are available for parts of the Beaufort Sea Coast (Kay
point, King Point and Stokes Point). The incidence angle impacts
the spatial resolution. The applied nominal resolution for the
used images therefore ranges from 0.62 to 1.35 m (see Table 1).
The only image pair which allows for time series analyses has
an ascending pass designation and covers only Kay Point. In
addition, the second acquisition is from winter time which may

affect the classification results (accuracy) as well as annual rates
(disproportional representation of thaw period).

The PALSAR/PALSAR-2 L-band and Sentinel-1 C-band data
sets used in this study were recorded in themost likely open water
months, from June to September. This time frame was chosen
to take advantage of the backscatter difference between land and
water, which is greater than the difference between land and
sea ice. The high-resolution TerraSAR-X X-band data sets were
available for June, July, August and October 2018 and January
2019. For calibration, only data from the sea ice free season/areas
were used. Table 1 summarizes the used acquisitions.

The availability of ascending and descending image pairs
by L-band and C-band data allows the comparison of cliff-top
classification based results and land-water boundary based
results for the Herschel site. C-band was found not applicable
for Bykovsky, due to constant high wave action in the
proximity. Therefore only L-band has been investigated at
this site.

Data from all three bands are available at the Kay Point site
only. Continuous stretches of steep cliffs facing the sensor are
not present in acquisitions for this area. Therefore only the land-
water boundary is investigated. A specific feature in this area
is the occurrence of radar shadows in X-band where the bluffs
are steep and face away from the sensor, due to the comparably
high spatial resolution. The land-water boundary only is also
investigated in case of Varandai; here due to the absence of
steep coast.
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2.3. Auxiliary Multi-Spectral Data and
Derived Products
A landcover classification provided by Bartsch et al. (2019b)
was used to define the coastline and to calculate the coastline
orientation with respect to the sensor. This classification is
based on a combined approach of supervised and unsupervised
classification using SAR (Sentinel-1 VV, IW mode) and multi-
spectral data (Sentinel-2). Sentinel-2 is an European mission to
deploy wide-swath, high-resolution, multi-spectral observation
satellites. It deployed two twin satellites, Sentinel-2A and -2B, in
a sun-synchronous orbit 180◦ apart from each other. Sentinel-2A
was launched in June 2015 and Sentinel-2B in March 2017. The
optical sensor samples 13 spectral bands. The spatial resolution
depends on the used band: four bands have a spatial resolution
of 10 m, six bands of 20 m, and three bands of 60 m (ESA,
2015). Bands 3 (green, 10 m resolution), 4 (red, 10 m), 8 (near
infrared, 10 m), 11 (SWIR, 20 m), and 12 (SWIR, 20 m) from
July/August 2015–2018 have been used for the classification
(Bartsch et al., 2019a,b).

Sentinel-2 images are further used for visualization purposes
as well as to aid validation and calibration sample selection. True
color RGB composites (band 4, 3, and 2) with a spatial resolution
of 10 m have been prepared. The images were acquired on Jun 14,
Jul 23, Sep 20 2018 (Beaufort Sea Coast), Aug 28 2018 (Bykovsky
Peninsula), and Aug 8 2019 (Varandai).

A Landsat-derived product was used for the assessment of
the SAR retrievals. Data from this mission are commonly used
for change detection and Arctic landcover classification (Bartsch
et al., 2016). NASA’s Landsat mission deployed a series of land
observation satellites. Landsat 5, 7, and 8 were launched in 1984,
1999, and 2013, respectively. They provide visible-, and infrared–
wavelength images of all land and near-coast areas on Earth
in 30 m spatial resolution. Landsat 7 and 8 have additional
thermal bands in 60 m resolution and a panchromatic band
in 15 m resolution. These datasets formed the basis for trend
analyses described in Nitze et al. (2017, 2018). Trends from
various multi-spectral indices in combination with the random
forest machine-learning algorithm allow the retrieval of land
surface change probabilities. They have been already applied for
land-water change for lakes (Nitze et al., 2017, 2018). Resulting
products are available open access (Nitze, 2018) for selected
Arctic regions at 30 m spatial resolution spanning 1999–2014.
For this study, we expanded the dataset extent along the Beaufort
Sea Coast to Herschel and Kay Point, which were not covered in
previous analyses.

2.4. Pre-processing of SAR Data
The Sentinel-1, PALSAR-2, and TerraSAR-X data were
preprocessed in ESA’s SNAP toolbox (ESA, 2019b). The
PALSAR data was processed in the ASF MapReady software
(ASF, 2019).

Pre-processing included radiometric calibration as well as
multi-looking in case of the PALSAR-2 and TerraSAR-X images
(1:4 and 1:2, respectively, range:azimuth), since the data were
available as single-look complex images. This step was not
necessary for the Sentinel-1 data, because Ground Range

Detected (GRD) products were used. GRD products are detected,
multi-looked, and projected to ground range using an Earth
ellipsoid model (ESA, 2012).

To reduce speckle, a filtering step was added. The Lee Sigma
filter was applied (sigma = 0.9, window = 7×7, and target
window size = 3×3). This filter assumes that 95.5% of the pixels
are distributed within the two-sigma range from its mean. It
replaces the center pixel of a scanning window with the average
of those pixels within the two-sigma range of the center pixel.
Pixels outside the two-sigma range are not included into the
sample mean computing, and a speckle reduction is achieved
(Lee et al., 2009).

The third step was ellipsoid correction of the data (as
suggested in Stettner et al., 2017). For areas of continuous
erosion a terrain correction cannot be applied, when a precise
Digital Elevation Model (DEM) for the constantly changing
coastline area is not available. Therefore only images with the
same orbit constellation are comparable to each other. These
steps were carried out with the SNAP (Sentinel Application
Platform) toolbox provided by the European Space Agency and
the scattering coefficient σ 0 was derived. During the ellipsoid
correction, the local incidence angle (based on ellipsoid) was
extracted. The final step involved converting σ 0 to decibels. The
resulting nominal resolution is provided in Table 1.

In case of PALSAR data, ellipsoid correction was carried out
first in the ASFMapReady software, and afterwards the Lee Sigma
filter was applied in the SNAP toolbox.

2.5. Identification of Steep Coasts Facing
the Sensor
Samples for calibration and validation are required for all three
target classes: water, land and steep coasts facing the sensor.
Water and land reference data are available through the existing
land cover classifications and the Sentinel-2 images. Steep coasts
can be also partially identified with Sentinel-2 (visible thaw
slumps), but they are only of relevance when they are facing
the sensor.

Steep coasts that are facing the sensor have a relatively
high backscatter coefficient. This is mainly caused by the
foreshortening effect and occurs only when the cliff faces the
sensor. Therefore it is important for the threshold determination
proposed by Stettner et al. (2017) to consider the orientation of
the coast relative to the incoming signal.

Calculating the coastline orientation means calculating the
intersection angle between the coastline and the line of sight
(LOS) of the sensor. For threshold determination, the coastline
of the Beaufort Sea coast was extracted from a land cover
classification provided by Bartsch et al. (2019b) and divided into
segments. The raster (20 × 20 m) was vectorized, the land water
boundary vector manually extracted and simplified using the
Douglas-Peucker algorithm (Douglas and Peucker, 1973) with
a smoothing distance of 30 m. The resulting vector was split at
every second vertex to create the segments. The coordinates of
each segment’s midpoint and endpoints were then derived.

The midpoints were moved 40 m toward the satellite to test
whether the coast was facing toward or away from the satellite.
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The moved point lies outside the land area (over the ocean) if the
coastline faces the satellite and inside (over the land surface) if it
faces away.

Finally the angle between the LOS of the sensor and the
coast segment was calculated. The gradient of the LOS, m2, was
derived from the inclination of the satellite’s orbit. The angle α

was calculated

tanα =
m1 −m2

1+m1m2
(1)

where m1 is the gradient of the coast segment. This gradient is
calculated based on the start and end point of the respective line
vector. Results served for choice of analyses segments, including
calibration sites for the classification threshold determination as
well as for erosion rate retrieval.

2.6. Threshold Determination and
Classification
In general, we followed the approach by Stettner et al. (2017)
but extended it in order to consider local incidence angle
dependencies as necessary for transferability of the approach.
Also the case for land-water boundary detection as an alternative
is included. A threshold method which considers three surface
types (water, land and steep cliff) as well as incidence angles
is required. The assumption is that thresholds differ for each
sensor type/ wavelength. Ellipsoid derived incidence angles can
be assumed to be of limited applicability for local incidence
estimation at steep cliffs (are in general smaller at cliffs facing the
sensor), but are nevertheless treated similarly to the other classes
and are discussed.

Radar shadow needs to be taken into consideration as a fourth
class in case of the TerraSAR-X staring spotlight mode images,
due to their high spatial resolution (less than 1 m). Radar shadow
occurs at cliffs facing away from the sensor resulting in an about
five meter wide affected area at Kay Point. This effect is always
present at this viewing geometry which allows utilization of
data from winter acquisitions. Figure 4A shows an example of
a summer and a winter image. The determined backscatter for
radar shadow is in the same order as for smooth water surfaces
(appr. −20 dB, Figure 4B). The backscatter characteristics for
open water (threshold function separating open water from land)
are therefore also used for application during winter in case of the
selected coastal stretch at Kay Point. The example also includes
typical values for cliffs collected from theW and NW facing parts
of the Babbage Estuary, which is located SW from Kay Point
within the TerraSAR-X scene extent. They demonstrate that
thresholds separating cliffs from the “land” class determined from
summer images are not applicable for the category cliffs facing to
the sensor in winter (exposed soils are wet and therefore exhibit
a strong frozen-unfrozen difference), but all cliffs at the selected
coastal segment at Kay Point are facing away from the sensor.

Samples were taken to analyze the dependence of σ 0 on
incidence angle for each of the three surface classes. The
samples were manually selected using the auxiliary datasets. The
landcover classification from Bartsch et al. (2019b) was used
to identify sample locations for land and water areas. Potential
areas with steep cliffs facing the sensor have been identified

supported by the coast orientation dataset which was created in
the preceding step. The incidence angle range was different for
each satellite. The PALSAR/PALSAR-2 range varied from 33◦ to
43◦, Sentinel-1 from 34◦ to 42.5◦, and TerraSAR-X from 19◦ to
51◦. Nearly all images were used (except January acquisition from
TerraSAR-X), and samples that cover the maximum possible
incidence angle range were selected. This required the use of
data from two additional sites with differing viewing geometry
(King Point, 20 km south of Kay Point and Stokes Point, 20
km to the North) in case of TerraSAR-X. Regions with sea-
ice were excluded from the water class sampling. The sample
sets were grouped by satellite, surface class, and polarization.
Each group was divided into a training set (to calculate the
threshold function) and a testing set (to test the quality of the
classification results). The separation was made based on the
rasterized training polygons. Every second pixel in the sequence
(row by row) was excluded from the training and used for
validation later on. The sample sizes of the three classes reflect
approximately the occurrence in the images. The sample size
(area covered) of steep cliff features is therefore much smaller
than for the other classes (less than 1% of the complete sample
dataset). Approximately 15–17% for land and 83–84% for water
are contained in the sample datasets for each of the wavelengths.
The sample dataset covers in total about 617 km2.

In order to classify the images, a functional relationship
between σ 0 and the incidence angle θ was calculated following
a similar approach as suggested by Bartsch et al. (2017) but
applying a linear function as only a limited range is used (see also
Widhalm et al., 2018; Bartsch et al., 2020; with a being the slope
and b the intercept).

σ 0
= aθ + b (2)

In general, the water samples show the lowest backscatter values,
and the coast samples the highest (example for X-band, see
Figure 4). For this reason threshold functions were calculated
to differentiate the water from land and land from steep cliffs
(but not water from steep cliffs). The parameters a and b have
been derived for each wavelength and polarization combination
separately. The standard deviation for the different landcover
types are also expected to differ. To derive more precise threshold
functions, the standard deviation of the absolute residuals was
therefore considered (Table 2). The threshold between water and
land was calculated as:

σ 0
w/l(θ) =

(σ 0
water + stdwater)+ (σ 0

land
− stdland)

2
(3)

where σ 0
water and σ 0

land
are the function fitted to the water and land

samples and their standard deviations are stdwater and stdland.
Similarly, the threshold function between the land and steep cliff
classes was calculated as:

σ 0
l/c(θ) =

(σ 0
land

+ stdland)+ (σ 0
cliff

− stdcliff )

2
(4)

where σ 0
cliff

is the function fitted to the land samples and its

standard deviation is stdcliff .
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FIGURE 4 | Backscatter characteristics (σ 0 in dB) of TerraSAR-X at Kay Point: (A) Example of a summer and a winter acquisition including the Landsat derived

coastline for demarcation of the analysed coast segment (using) trend data based on probability of land to water change between 1999 and 2014 (Nitze et al., 2018);

visualization based on vectorized 30 × 30 m pixels), (B) boxplots of backscatter samples for all relevant classes (cliffs facing toward the sensor, land, ocean, and radar

shadow) at 40 degree incidence angle for summer and winter.

TABLE 2 | Standard deviation of absolute residuals for water, land and cliff for

each satellite and polarization (σ 0 in dB) for use in equation 3 and 4.

Sensor Polarization Water Land Cliff

PALSAR
HH 0.69 0.76 0.96

HV 0.56 0.45 0.75

PALSAR-2
HH 0.64 0.87 1.36

HV 0.59 1.31 0.83

Sentinel 1
VH 0.92 0.81 0.69

VV 1.88 0.77 0.78

TerraSAR-X HH 1.44 0.78 1.36

These threshold functions were used to classify the image
pixels. During the classification process it was calculated whether
the σ 0 pixel values lie below or above the threshold functions.
If the σ 0 pixel value was below the σw/l threshold it was
classified as water. Otherwise, it was tested whether the σ 0

values lie below or above the σl/c threshold. Every pixel above
the threshold was classified as steep cliff, every value below
as land.

The error evaluation was carried out separately for the
different polarizations. The “producer’s accuracy” and the “user’s
accuracy” have been derived.

The classification results were then used to derive vectors
representing the land-water boundaries and cliff-land
boundaries, respectively. The classification raster was vectorized
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and then all vectors, which represent such boundaries within
the areas of interest manually extracted. These vectors were then
split perpendicular to the relevant baseline (at their end and start
point, see Figures 2, 3 for baseline locations) for the erosion
rate calculation.

2.7. Post-processing of the Landsat
Landsurface Trend Products
Probabilities of erosion and accretion (change of land to water
and visa versa) as well as no change are available for the time
period 1999–2014. Samples of probabilities have been taken for
published coastline positions at Kay Point for 1950, 1990, and
2011 [Irrgang et al. (2017), see Figure 5]. The extracted values
(mean and median) indicate that a probability threshold between
0.4 and 0.6 could be applicable for retrieval of land to water

FIGURE 5 | Probabilities for stable water and land to water conversion derived

from Landsat (1999–2014) for shore line positions 1950, 1990, and 2011 at

Kay Point (source Irrgang et al., 2017, see also Figure 2B).

conversion. Probabilities drop sharply in front of the NE oriented
coastal erosion area at Kay Point (Figure 6, left). Differences
between thresholds of 0.45, 0.5, and 0.55 are small (Figure 6,
right). A probability threshold of 0.5 has been therefore selected
based on these samples in order to derive potential areas of
erosion at the Beaufort Sea Coast sites and at the Bykovsky
peninsula. The resulting raster has been vectorized along the
selected coastal segments and segments selected as for the SAR
classification results (see section 2.6).

2.8. Erosion Rate Estimation
In line with Stettner et al. (2017) the Digital Shoreline
Analysis System (DSAS), an ArcGIS extension provided by the
United States Geological Survey (Himmelstoss et al., 2018), was
used to derive the coastline erosion rates. DSAS calculates rate-
of-change statistics for a chronological series of shoreline vectors.
For the erosion rate calculation, baselines and transects were
defined. Considering the spatial resolution, a transect distance
of 10 m was used for the PALSAR/PALSAR-2 and Sentinel-1
shorelines, and a distance of 1 m was used for the TerraSAR-X
shorelines. The shoreline uncertainty values (unc) were chosen to
be equal to the spatial resolution of the image (PALSAR 12.5 m,
Sentinel-1 10 m, PALSAR-2 6.8–8.2 m, and TerraSAR-X 0.69m).

Three statistics and their uncertainty were calculated: the net
shoreline movement (NSM), the end point rate (EPR), and the
weighted linear regression (WLR). For the WLR calculation,
shorelines from three or more dates are necessary.

The NSM is the distance in meters between the oldest and the
most recent shoreline positions for each transect. This NSM value
was used to determine the EPR and the associated uncertainty as
documented in Himmelstoss et al. (2018).

FIGURE 6 | Probabilities for land to water conversion derived from Landsat (1999–2014) at Kay Point (see also Figure 2B). (A) overlay of probabilities for each pixel,

(B) vectorized classifications for >0.5 (white), >0.45 (blue), and >0.55 (red). Background: Band 2 (blue) of Sentinel-2 Sep 20 2018.
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The WLR was calculated by using least-squares regression
to fit a line through the transect points. Data points with a
small spatial uncertainty, were given more weight (Himmelstoss
et al., 2018). Like the EPR, the WLR expresses a shoreline
change rate for each transect. The EPR is the change
between pairs of sequential observations, and the WLR is the
overall trend.

The WLR could only be calculated for the PALSAR/PALSAR-
2 shoreline time series because the other datasets only
have two timepoints. The NSM and EPR were calculated
for the Sentinel-1 and TerraSAR-X data sets. The 2017–
2018 EPR for the PALSAR/PALSAR-2 coastlines that
overlap with the Sentinel-1 data set were calculated
for comparison.

TABLE 3 | Threshold parameters for each satellite and polarization.

Sensor Polarization Threshold a b

PALSAR-2

HH
Cliff–Land -0.203 4.353

Land–Water -0.382 -0.620

HV
Cliff–Land -0.245 -4.467

Land–Water -0.203 -18.753

Sentinel-1

VH
Cliff–Land -0.055 -9.898

Land–Water -0.220 -13.224

VV
Cliff–Land 0.059 -7.266

Land–Water -0.303 -3.070

TerraSAR-X HH
Cliff–Land -0.023 -2.029

Land–Water -1.041 10−4 -15.73

The parameters a and b refer to Equation (2). PALSAR is omitted because its images were

classified based on the PALSAR-2 threshold.

3. RESULTS

3.1. Threshold Functions for Classification
The standard deviation of backscatter for water is highest for
C- and X-band, which reflects wave action and the comparably
short radar wavelength with respect to wave height. Deviations
are in general high for all steep sensor facing cliffs as affected
areas are comparably small (mixed pixels) and topography varies
locally. The standard deviation is below 1 dB in most cases
with exceptions not exceeding 2dB. Table 3 summarizes the
parameters of the threshold functions grouped by satellite and
polarization. A slope (a) close to zero indicates low incidence
angle dependence. This is the case for the cliff-land threshold
in case of C- and X-band for all tested polarizations due to low
dependence of the land and cliff class. The same applies to the
land-water boundary for X-band. In all other cases, including
all L-band polarizations (Figure 7), the incidence angle needs
to be considered for the threshold determination, which is in
general driven by the properties of water surfaces in case of C-
and X-band.

The Sentinel-1 VV polarized samples show higher backscatter
values than the VH polarized samples, which is reflected in
the threshold functions in Figure 7. The same applies to L-HH
compared to L-HV. The PALSAR-2 samples were eventually
used to calculate the threshold functions for both PALSAR and
PALSAR-2, because of the wider incidence angle range available
from the PALSAR-2 data.

3.2. Classification Accuracy
The threshold based classification results show the highest
classification accuracy for co-polarized acquisition (Table 4).
This can be shown for L-band as well as C-band.

The producer’s accuracy of the cliff classification is 100% for
every polarization. In other words, all cliff samples were correctly

FIGURE 7 | Threshold functions derived for (A) C-band (Sentinel-1, Interferometric Wide Swath mode) and (B) L-band (PALSAR-2, Fine Beam mode). Local incidence

angles (x-axis) are derived with respect to the ellipsoid. For equation parameters see Table 3.
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TABLE 4 | User’s and producers accuracy of landcover classifications.

Classified data
Reference data Users accuracy

Cliff Land Water

PALSAR/PALSAR 2 HH

Cliff 100 0 0 100.00

Land 0 71.51 0.3 93.70

Water 0 28.49 99.7 97.43

PALSAR/PALSAR 2 HV

Cliff 100 0.03 0 88.34

Land 0 77.14 14.14 52.76

Water 0 22.83 85.86 94.84

Sentinel-1 VV

Cliff 100 0.13 0 18.39

Land 0 97.56 4.13 78.47

Water 0 2.31 95.87 99.63

Sentinel-1 VH

Cliff 100 0.43 0 7.32

Land 0 66.34 0 100

Water 0 33.23 100 95.13

TerraSAR-X HH

Cliff 100 0 0 100

Land 0 99.87 0.6 97.41

Water 0 0.13 99.4 99.97

“Cliff” refers to steep coasts facing the sensor. Producer’s accuracy values are highlighted in bold. All values are in %.

classified as cliff, regardless of sensor. This is especially important
for assessing coastal erosion based on cliff-top lines derived from
steep sensor-facing coast classifications.

The Sentinel 1 user’s accuracy values in case of the cliff
class (areas with foreshortening), ranging from 7 to 18%, are
relatively low. Independent from the polarization, only land
samples were misclassified as cliffs. TerraSAR-X user’s accuracy
is also 100%. The area covered by the acquisitions is comparably
small and does not include any mountain ranges. Water–
land misclassification occurs for all sensors and polarizations
due to wave action. The magnitude can be expected to vary
with meteorological conditions and therefore results cannot
be generalized.

3.3. Coastal Change Rates
All of the results show erosion, which indicates that the selected
areas were predominately eroding as expected (Table 5). The
calculated rates for the same regions based on images from
different sensors are mostly in the same order of magnitude.
Values range mostly between 3 and 9 m/year. Uncertainty values
reflect the impact of spatial resolution and time interval. Values
are small (less than one meter) for TerraSAR-X and comparably
low for PALSAR/PALSAR-2 retrievals for 2007–2018 (0.4–4.3m)
compared to annual changes (mostly more than 10m).

Short term (year to year) rates are often higher than the long-
term rates but have much higher uncertainties. Deviations from
Landsat derived rates and values published in the literature are in
general higher for the land-water boundary estimates compared
to the cliff-top derived rates. In case of the Bykovsky peninsula,
all satellite derived rates (radar as well as optical) are higher than
reported before. Kay Point estimates agree with the maximum

recorded for this area for 1990–2011 (Irrgang et al., 2018). The
differences suggest also higher rates in recent years for this site.
Cliff-top retreat rates are lower than the corresponding land-
water boundary changes at the Herschel site. They are largely
similar in case of Bykovsky.

4. DISCUSSION

4.1. SAR Capabilities for Separation of
Relevant Landcover Types
Our results indicate the utility of SAR data for the identification
of the land-water boundary in addition to cliff-top identification
as suggested by Stettner et al. (2017). The latter approach
is limited to sensor facing coasts, what means that only
coastal segments with orientation toward West or East can be
investigated as SAR satellites are acquiring data from polar orbits.
The extension of SAR application to the land-water boundary
identification enables broader use. Various further issues need to
be, however, considered.

In addition to the general spatial resolution issue of satellite
images (pixel size usually exceeding annual retreat), implications
for using SAR include the specific viewing geometry and weather
conditions (specifically wind and subsequent wave action). The
use of acquisitions from several sites allowed for the assessment
of the maximum possible incidence angle range of the used
satellites. The impact of wave action on the separability between
water and land is reflected in the classification accuracy. In one
case, acquisitions could not be used for erosion rate retrievals
(Sentinel-1 for Bykovsky). A constraint with respect to the
extent of the used Sentinel-1 acquisitions is inland steep terrain
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TABLE 5 | Summary of the shoreline movement results grouped by region.

Region Sensor Coastline Years Mean Ref. Ref. Refernces

Type Change Change Years

Rate Rate

m/year m/year

Herschel

Island,

Avadlek

P., P.-2 Cliff-Top 07–08 -9.68 ± 17.53

P., P.-2 Land–Water 07–08 -45.06± 17.53

P., P.-2 Cliff-Top 07–18 -3.42 ± 4.32
-6.8±8.6

2012-

2013
Obu et al., 2016

P., P.-2 Land–Water 07–18 -7.02±2.65

P.-2 Cliff–Top 17–18 -2.61± 14.83

P.-2 Land–Water 17–18 -9.52 ± 11.2

S.-1 Cliff–Top 17–18 -0.9 ± 8.01

S.-1 Asc. Land–Water 17–18 -3.26 ± 13.88

S.-1 Desc. Land–Water 17–18 -27.63 ± 14.34

Landsat Land–Water 99–14 -4.19 ± 2.8

Kay

Point

East

Coast

P. Land–Water 07–08 -14.51 ± 8.77

P., P.-2 Land–Water 07–18 -5.90 ± 0.41 -1.7

(-0.8 –

-4.1)

1990-

2011

Irrgang et al., 2018

P.-2 Land–Water 17–18 -3.93 ± 5.61

S.-1 Land–Water 17–18 -4.44 ± 6.94

TSX Land–Shadow 18–19a -2.58 ± 0.90

Landsat Land–Water 99–14 -3.94 ± 1.4

Bykovsky

Peninsula

West Coast

P. Cliff-Top 07–08 -9.42 ± 6.06

P. Land–Water 07–08 -9.84 ± 17.53 -1 – -2 1951-

2006

Lantuit et al., 2011

P., P.-2 Cliff-Top 07–18 -4.81 ± 1.37

P., P.-2 Land–Water 07–18 -2.69 ± 0.58

P.-2 Cliff–Top 17–18 -10.53 ± 10.45

P.-2 Land–Water 17–18 -11.75 ± 10.6

Landsat Land–Water 99–14 -5.83 ± 2.8

Varandai

P., P.-2 Land–Water 07–08 -2.9 ± 17.53
-3 – -5

-1.8

2003-

2013

1951-

2013

Leont’yev, 2003

Sinitsyn et al., 2020

P., P.-2 Land–Water 07–18 -5.41 ± 2.64

P.-2 Land–Water 17–18 -2.51 ± 14.39

S.-1 Land–Water 17–18 -3.00 ± 14.34

The shoreline movements were calculated based on PALSAR (P.), PALSAR-2 (P.-2), Sentinel-1 (S.-1), and TerraSAR-X (TSX) image classifications (HH Polarization). A mean change rate

<0 indicates erosion.
aClassified data spanned July 2018 to January 2019.

(Buckland Hills at the Beaufort Sea Coast site), for which the
foreshortening effect is also characteristic. The extraction of cliff
areas should be applied in proximity to the coast only. Sentinel-1
VH polarization is also affected by an intrinsic processing artifact
called scalloping effect. This effect causes wavelike modulation
of the image intensity in near-azimuth direction, and could
potentially be reduced with another filtering routine (Romeiser
et al., 2013), which may improve VH performance.

The rate estimates seem to have failed in two cases for
the Herschel site. Both occurred for estimates from the land–
water boundary. This includes PALSAR estimates for 2007–2008
and Sentinel-1 retrievals for 2017–2018. Figure 8 demonstrates
this for the case of the acquisitions of Sentinel-1. PALSAR-2
images from 2017 and 2018 are shown for comparison. The
most impacted scene was acquired on the 24th of July 2018
(Figure 8B). Ice floes were present (visible in Sentinel-1 as well
as PALSAR-2) and an area of low backscatter can be observed

in the Sentinel-1 image on the base of the thaw slump affected
slopes. This might be the result of late lying snow or high
water level (tides or storm surge). This effect is not visible in a
PALSAR-2 acquisition on the following day. In case of PALSAR-
2, the coast is facing toward the sensor (ascending orbit) and
that may have an impact on the backscatter level due to the
foreshortening effect.

Misclassifications can be also caused by infrastructure.
Buildings show high backscatter values due to foreshortening
and the double-bounce effect. Smooth streets scatter almost no
signal back toward the sensor (Balz and Liao, 2010). This causes
misclassifications of buildings and metallic objects as steep coast
and misclassifications of streets as water. The Beaufort Sea Coast
and Bykovsky study areas are, however, not affected as they do
not include settlements. In the Varandai region, the infrastructure
misclassifications did not affect the erosion analysis because the
coast is not a steep cliff. There, the land–water border was used
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FIGURE 8 | Backscatter of Sentinel-1 (top panels (A) and (B), acquired on descending orbit, VV polarization) and PALSAR-2 (bottom panels, (C) and (D), acquired on

ascending orbit, HH polarization) acquisitions at Avadlek (Herschel Island) for 2017 and 2018. Dates represent closest acquisitions between the two sensors for each

year. Images are ellipsoid corrected only. Sensor viewing direction is indicated by arrows. Derived shorelines represent the land-water boundary. The baseline for

retreat rate calculations corresponds to Figure 2A.

as the coastline for the erosion analysis. This issue needs to be
considered for applications over larger regions.

Wide, smooth sand beaches are in general difficult to classify,
especially for longer wavelengths. The roughness of the material
in comparison to the wavelength is the main factor whether a
specular reflection or a scattering of the wave takes place (Jones
and Vaughan, 2010). Like calm water, sand is a relatively smooth
surface in comparison to the C- and L-band wavelengths, and
the microwave signal is reflected in a single beam that is not
directed toward the sensor. Furthermore, the radar backscatter
depends on the geometric and dielectric properties of the
surface. Sand has in general a very low dielectric constant, so
the microwaves penetrate deep into the material. This effect
further reduces the backscatter signal (Stephen and Long, 2005).
This makes SAR classification of sandy areas, like parts of the
Barents Sea coast, challenging. The temporal stability of the low
surface roughness of these areas may, however, be of benefit for
separation of sandy areas from water affected by wave action
(rough surface).

Banks et al. (2014) found that for C-band the best separability
of sandy areas from water was given with images in HH

polarization with shallow (45.3◦–49.5◦) and medium (39.3◦)
incidence angles. However, images with steep (20.9◦–24.2◦)
incidence angles tend to bring better separability results in VV
and HV polarizations. This incidence angle range is however not
available from Sentinel-1.

Wet snow can impact the classification result as shown in
Figure 9 for TerraSAR-X near King Point. Snow has been still
present at the June acquisition date in 2018. A comparison with
the Sentinel-2 optical images demonstrates that some pixels,
which were classified as water, correspond to the location of
late lying snow patches. The mean temperature around 2018-
06-15 in that area hovered slightly above 0◦C (Government
Canada, 2019), indicating that the snow was melting. Like
open water, wet snow is characterized by low backscatter. Wet
snow typically absorbs the microwave signal and reduces the
backscatter intensity significantly (further TerraSAR-X examples
in similar settings: Antonova et al., 2016; Mora et al., 2017;
Stettner et al., 2018), which caused the false classification result.

Results indicate that also radar shadow areas can be used to
quantify erosion rates in case that the spatial resolution allows
clear separation. This enables identification of the cliff tops in
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FIGURE 9 | The influence of snow and ice on the classification result of TerraSAR-X at King Point (20 km south of Kay Point). Left (A) and (C): RGB (band 4, 3, and 2)

composites of Sentinel-2; right (B) and (D): TerraSAR-X derived classes. Snow on land is classified as water (wet snow - low backscatter) and sea ice is partially

classified as land (higher backscatter than open water). Sentinel-2 acquisitions represent closest available to TerraSAR-X acquisition.

case of bluffs facing away from the sensor in summer as well
as winter. Retrievals for X-band indicate that identification of
cliff-tops facing the sensor (separation from land) might be
more reliable with acquisitions from the unfrozen and snow-
free period as not only the foreshortening effect plays a role
for the higher backscatter. Exposed wet soils contribute as well,
leading to a drop in backscatter in winter (see Figure 5). The
winter- summer difference at Kay Point is larger than reported
in Stettner et al. (2017).

The limitation of the analysis to the ellipsoid correction allows
to account for the lack of accurate digital elevation model time
series. Direct comparisons between results from different viewing
geometries, however, can not be made. Only the quantification
of relative change is feasible, which impacts combinations with
other data sources and an exact assignment to coastlines. A
characterization of coastal segments (as in Lantuit et al., 2012)
should be nevertheless feasible.

The high uncertainty values of the PALSAR-2 and Sentinel-
1 results might be caused by the spatial resolution, which also
affects which erosion processes can be monitored. Choosing a
transect distance much lower than the spatial resolution will not
improve the calculation results. Therefore, only erosion features
larger or equal to the spatial resolution of the image can be
captured. The differences in derived rates between the sensors
may be also explained by the fact that the calculations assess

slightly different areas due to their comparably coarse spatial
resolution (mixed pixel effects) and differences in classification
accuracy. The different acquisition timing also adds to that.

It would be interesting to compare change rates based on
2007–2018 C-band data with the calculated rates based on
2007–2018 PALSAR/PALSAR-2 L-band data. Unfortunately, only
coarse resolution (30 m) data for the areas of interest are
available for ENVISAT and ERS-1/2 (the predecessor satellites of
Sentinel-1) (ESA, 2019a). Both of these SAR missions acquired
data in VV polarization, which we could show to be suitable
for the identification of the land-water boundary. Such data
could be therefore used to derive long-term trends similar
to Landsat, going back as far as 1991. Coverage across the
Arctic is, however, limited due to the acquisition strategies
of these missions. Future studies could include data from the
operationally focused Canadian RADARSAT-2 satellite. Images
with a higher resolution than 30 m were acquired for some study
areas (e.g., Herschel Island) between 2008–2019 (MDA, 2019).

4.2. Erosion Rates
The only available study to date using SAR data for Arctic erosion
rates was carried out for a river bank with TerraSAR-X. Stettner
et al. (2017) calculated 22-day cliff-top movements based on a
threshold classification for an ice-rich riverbank situated in the
Lena Delta. The statistically determined threshold (cliff vs. land)
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FIGURE 10 | Mean annual ground temperature (MAGT) at 2 m depth for 2003–2017 (source: Obu et al., 2019a). Vertical dashed lines indicate years with

PALSAR acquisitions.

for this study (approximately −2.5 dB for 31◦) is higher than in
Stettner et al. (2017) which determined −7.8 dB for HH (31◦)
based on visual evaluation. This difference may relate to mode
characteristics (staring spot light in this study vs. stripmap mode
in Stettner et al., 2017), strength of the foreshortening effect,
and surface wetness apart from the consideration of surface type
specific noise. The −7.8 dB threshold is still well above the land
(tundra) average (∼−11 dB), but within one standard deviation.

Results for the Beaufort Sea Coast (Kay Point) are similar
to results published by Irrgang et al. (2018) (Table 5). They
calculated shoreline movements of the Yukon Coast based on
aerial and satellite images between the years 1951 and 2011.
Average rates for the entire coast segment are in the order of
the maximum in case of all sensors, specifically PALSAR-1/2 and
Landsat which provide long-term rates with lower uncertainties
than the annual retrievals. The differences suggest higher rates
in recent years for this site, but the uncertainties (±−0.4 m and
±−1.4 m, respectively) are still high compared to the observed
range in Irrgang et al. (2018,−0.8 to−4.1 m).

Obu et al. (2016) used aerial lidar elevation data from 2012
and 2013 with a horizontal resolution of 1 m to study short-term
coastal erosion at the Yukon Coast including Herschel Island.
Rates are reported for the land-water boundary. The results
are also consistent with this study. Their calculated coastline
movement for this area is −6.8 m/year (Obu et al., 2016),
which is similar to the long-term results (2007–2018) of this
study (−7.02 m/year). Landsat estimates are, however, lower with
−4.19 m/year for the period 1999–2014. Mean annual ground
temperature has been increasing by 3◦C from 2003 to 2017
(Figure 10). This may suggest higher rates in recent years, but
differences in spatial resolution may reduce the comparability of

results. Larger fluctuations from year to year within the different
analyses periods could also contribute to this difference.

Coastal erosion dynamics on Bykovsky Peninsula were
calculated between 1951 and 2006 by Lantuit et al. (2011). They
analyzed airborne and spaceborne optical images and calculated
the annual erosion rates. Rates of up to 2 m/year (Lantuit et al.,
2011) were determined at the coastal stretch selected in our study.
The agreement among the sensors for the recent development
(up to about 10 m/year) suggests an increase of erosion activity
at this site as well, but uncertainties are also very high (Table 5).
However, this agrees with findings by Günther et al. (2015) at the
nearby Muostakh island for 2010–2013. The time series of mean
annual ground temperature indicates an increase of 2◦C in this
region between 2003 and 2017 (Figure 10).

While cliff-top retreat (thermo-denudation) was faster than
the land-water boundary change (thermo-abrasion) at Muostakh
(10.2 m vs. 3.4 m/year), it appears rather similar at the Bykovsky
site (Table 5). The analyzed Muostakh sections face mostly
North-East, whereas the Bykovsky site exposition is West. As
thermo-abrasion conditions thermo-denudation (Günther et al.,
2015), the differences among the sites (also compared to Herschel
where the land-water boundary change exceeds cliff top retreat)
may represent different stages of interaction. The analyses of
longer time series with annual resolution might provide more
insight into the related mechanisms and dependencies.

Leont’yev (2003) predicted that the open coast of Varandai
would retreat 300 to 500m over the next century, or 3 to 5m/year.
This study’s calculated 2007–2018 erosion rate of 5.41 m/year
is slightly faster than Leont’yev’s rate, but matches within the
uncertainty. Surprisingly, the two year-to-year rates calculated in
this study were very close to Leont’yev’s rate, even though their
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uncertainties are still extremely large. As mentioned before, it is
challenging to distinguish between tidal and wave motion and
erosion processes in sand areas without vegetation or cliffs. The
tidal motion can cause calculation errors as the position of the
land-water boundary is affected. Rates for 1951–2013 as reported
by Sinitsyn et al. (2020) are lower with 1.8 m/years. Rates seem
to have increased at Varandai as well. The rates in 2007/8 and
2017/18 are similar (about 3m) as was also mean annual ground
temperature (Figure 10).

5. CONCLUSIONS

In general, the calculation of long-term shoreline movements
of sensor facing steep coasts in the Arctic based on a threshold
classification seems to be a promising approach. The calculated
rates based on PALSAR/PALSAR-2 L-band images between 2007
and 2018 seem to bring reasonable results. The uncertainties
are, however, high for the prediction of short-term trends based
on Sentinel-1 and PALSAR-2 images, which have comparably
low-resolution (10 and 12.5 m nominal resolution, respectively)
with respect to actual erosion rates. This may be improved by
using more than one image per year. Another limitation of such
resolution is that only erosion features equal to or greater than
the resolution of the image can be detected.

In addition to Stettner et al. (2017), who focused on cliffs
facing the sensor, we demonstrated the utility of SAR data for
separation of the land-water boundary at Arctic coasts. This
expands the potential of SAR application, as sensor facing cliffs
are only relevant in case of (1) presence of cliffs and (2) coast
orientation toward the West or the East. The identification of
such coastal segments can be based on using existing landcover
datasets in conjunction with orbit inclination information as
presented in this paper.

The comparison of the classification results with optical
data revealed several issues: snow, wide sand beaches, and
infrastructure. In the classification results, wet snow was
misclassified as water, which made classifications during snow
melt difficult. Late lying snow patches can also occur at North-
facing slopes. In future work, including a threshold function to
determine snow melt may help avoid possible misclassifications.

Classification is also complicated by smooth sand beaches.
The sand backscatter values of long-wave C-band and L-
band microwaves are relatively low, which makes the
distinction between water and sand challenging. Future
studies may overcome this by introducing an additional
class for land, by distinguishing between sandy areas and
undisturbed tundra.

A comparison of the PALSAR/PALSAR-2 L-band long-term
results of this study with RADARSAT-2 C-band long-term results
would be an interesting approach for future studies. Also, the
calculation of seasonal trends with TerraSAR-X data in a region
with more active erosion would be a promising application,
which should be investigated. The threshold based method
can help to better understand the seasonal, annual, and inter-
annual Arctic coastline dynamics, and it provides additional
information that complements the optical and in situ methods.

In a further step machine-learning methods can be introduced
to analyze coastlines with a higher degree of automation
and reliability.

The consideration of incidence angles to distinguish relevant
surface types is required for cliff-land as well as land-water
discrimination in case of L-band. In case of C-band it is
only required for land-water discrimination. The variation of
backscatter in X-band data is specifically high for water. But
our results suggest that incidence angle dependencies are not
required to be considered for this type of application of X-band
data at HH polarization. High incidence angles might be of
benefit due to the impact of incidence angle on spatial resolution
in staring spot light mode.

Specifically L-band data could be shown of benefit due to their
lower sensitivity to wave action. C-band, specifically Sentinel-
1, can be, however, also utilized and provides similar estimates
like other sensors in case of calm sea. Several future L-band
SAR missions are currently in planning [NISAR, ROSE-L NASA
(2019), Pierdicca et al. (2019)] which could be of interest for
coastal erosion studies over larger areas in the future. The
post processed Landsat derived trends provide an additional
source for longterm monitoring, specifically for automatic
retrieval across the entire Arctic. This could be complemented
by ENVISAT and ERS-1/2 C-band SAR data for the period
1991 to 2012. Superior regarding spatial resolution and at
the same time also illumination independence is TerraSAR-X.
The nominal resolution of 1 m or better may not only allow
determination of sub-seasonal retreat rates at some of the sites,
but also the separation of radar shadow at high bluffs enables the
identification of the cliff-top position.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

AB contributed conception and design of the study. SL organized
the database. SL, AB, and GP performed the SAR data and
statistical analysis. IN performed the Landsat data trend analysis,
AB the post-processing. AB and SL wrote the first draft of
the manuscript. GV supported procurement and selection of
TerraSAR-X sites and acquisitions. All authors contributed to
manuscript revision, read and approved the submitted version.

FUNDING

The authors acknowledge financial support by the
HORIZON2020 (BG-2017-1) project Nunataryuk, ESA’s DUE
GlobPermafrost project (Contract Number 4000116196/15/I-
NB), ESA’s CCI+ Permafrost (4000123681/18/I-NB),
the FFG FemTech projects CoastSAR (874213) and
CoastAIMap (880182).

Frontiers in Environmental Science | www.frontiersin.org 18 September 2020 | Volume 8 | Article 143

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Bartsch et al. SAR for Arctic Coastal Erosion

ACKNOWLEDGMENTS

We acknowledge the coordination of TerraSAR-X acquisitions

through the WMO Polar Space Task Group, specifically

Achim Roth. All TerraSAR-X data were made available by
the German Aerospace Center (DLR) through PI agreement

COA3645. All ALOS PALSAR and PALSAR-2 data were made
available by the Japanese Space Agency (JAXA) through PI
agreement 3068002. Results are partially based on modified
Copernicus data from 2017 to 2018. We further thank
Aleksandra Efimova (b.geos) for supporting part of the
GIS tasks.

REFERENCES

Antonova, S., Duguay, C., Kaab, A., Heim, B., Langer, M., Westermann, S., and

Boike, J. (2016). Monitoring bedfast ice and ice phenology in lakes of the Lena

River delta using TerraSAR-X backscatter and coherent time series. Remote

Sens. 8:903. doi: 10.3390/rs8110903

Arp, C. D., Jones, B. M., Schmutz, J. A., Urban, F. E., and Jorgenson, M. T. (2010).

Two mechanisms of aquatic and terrestial habitat change along an Alaskan

Arctic coastline. Polar Biol. 33, 1629–1640. doi: 10.1007/s00300-010-0800-5

ASF (2019).MapReady. Version 3.1.24. Available online at: https://www.asf.alaska.

edu/data-tools/mapready

Balz, T., and Liao, M. (2010). Building-damage detection using post-seismic

high-resolution SAR satellite data. Int. J. Remote Sens. 31, 3369–3391.

doi: 10.1080/01431161003727671

Banks, S. N., King, D. J., Merzouki, A., and Duff, J. (2014). Assessing

RADARSAT-2 for mapping shoreline cleanup and assessment technique

(SCAT) classes in the Canadian Arctic. Can. J. Remote Sens. 40, 243–267.

doi: 10.1080/07038992.2014.968276

Bartsch, A., Höfler, A., Kroisleitner, C., and Trofaier, A. M. (2016). Land

cover mapping in northern high latitude permafrost regions with satellite

data: achievements and remaining challenges. Remote Sens. 8:979.

doi: 10.3390/rs8120979

Bartsch, A., Leibman, M., Strozzi, T., Khomutov, A., Widhalm, B., Babkina, E.,

et al. (2019a). Seasonal progression of ground displacement identified with

satellite radar interferometry and the impact of unusually warm conditions

on permafrost at the Yamal Peninsula in 2016. Remote Sens. 11:1865.

doi: 10.3390/rs11161865

Bartsch, A., Pointner, G., Leibman, M. O., Dvornikov, Y. A., Khomutov, A. V., and

Trofaier, A. M. (2017). Circumpolar mapping of ground-fast lake ice. Front.

Earth Sci. 5:12. doi: 10.3389/feart.2017.00012

Bartsch, A., Widhalm, B., Leibman, M., Ermokhina, K., Kumpula, T.,

Skarin, A., et al. (2020). Feasibility of tundra vegetation height retrieval

from Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 237:111515.

doi: 10.1016/j.rse.2019.111515

Bartsch, A., Widhalm, B., Pointner, G., Ermokhina, K., Leibman, M., and

Heim, B. (2019b). Landcover Derived From Sentinel-1 and Sentinel-2

Satellite Data (2015-2018) for Subarctic and Arctic Environments. PANGAEA.

doi: 10.1594/PANGAEA.897916

Couture, N. J., Irrgang, A., Pollard, W., Lantuit, H., and Fritz, M. (2018). Coastal

erosion of permafrost soils along the yukon coastal plain and fluxes of organic

carbon to the Canadian Beaufort Sea. J. Geophys. Res. Biogeosci. 123, 406–422.

doi: 10.1002/2017JG004166

Cunliffe, A. C., Tanksi, G., Radosavljevic, B., Palmer, W. F., Sachs, T., Lanuit,

H., et al. (2019). Rapid retreat of permafrost coastline observed with aerial

drone photogrammetry. Cryosphere 13, 1513–1528. doi: 10.5194/tc-13-1513-

2019

Douglas, D. H., and Peucker, T. K. (1973). Algorithms for the reduction of

the number of points required to represent a digitized line or its caricature.

Cartographica 10, 112–122. doi: 10.3138/FM57-6770-U75U-7727

ESA (2012). Sentinel-1. ESA’s Radar Observatory Mission for GMES Operational

Services. Technical report.

ESA (2015). Sentinel-2 User Handbook. Technical report.

ESA (2019a). ESA Online Catalogue. Available online at: http://esar-ds.eo.esa.int/

socat/ASA_IMP_1P (accessed September 1, 2019).

ESA (2019b). Sentinel Application Platform (SNAP). Available online at: http://step.

esa.int/main/toolboxes/snap

Forbes, D. L., Solomon, S. M., and Frobel, D. (1995). Report of 1992 Coastal Surveys

in the Beaufort Sea. Technical report. doi: 10.4095/203482

Frederick, J. M., Thomas, M. A., Bull, D. L., Jones, C. A., and Roberts, J. D.

(2016). The Arctic Coastal Erosion Problem. Technical report, Sandia National

Laboratories. doi: 10.2172/1431492

Government Canada (2019). Historical Climate Data. Available online at: http://

climate.weather.gc.ca/historical_data/search_historic_data_e.html (accessed

July 15, 2019).

Grosse, G., Schirrmeister, L., Kunitsky, V. W., and Hubberten, H.-W. (2005).

The use of CORONA images in remote sensing of periglacial geomorphology:

an illustration from the NE Sibirian Coast. Permafrost Periglacial Process. 16,

163–172. doi: 10.1002/ppp.509

Guégan, E. B. M., and Christiansen, H. H. (2016). Seasonal arctic coastal bluff

dynamics in Adventfjorden, Svalbard. Permafrost Periglacial Process. 28, 18–31.

doi: 10.1002/ppp.1891

Günther, F., Overduin, P. P., Sandakov, A. V., Grosse, G., and Grigoriev,

M. N. (2013). Short- and long-term thermo-erosion of ice-rich

permafrost coasts in the Laptev Sea region. Biogeosciences 10, 4297–4318.

doi: 10.5194/bg-10-4297-2013

Günther, F., Overduin, P. P., Yakshina, L. A., Opel, T., Baranskaya, A. V.,

and Grigoriev, M. N. (2015). Observing Muostakh disappear: permafrost

thaw subsidence and erosion of a ground-ice-rich island in response to

arctic summer warming and sea ice reduction. Cryosphere 9, 151–178.

doi: 10.5194/tc-9-151-2015

Hequette, A., Ruz, M.-H., and Hill, P. R. (1995). The effects of the Holocene sea-

level rise on the evolution of the southeastern coast of the Canadian Beaufort

Sea. J. Coast. Res. 11, 494–507.

Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., and Farris, A. S. (2018).

Digital Shoreline Analysis System (DSAS). Version 5.0 User Guide. USGS.

doi: 10.3133/ofr20181179

Hoque, M. A., and Pollard, W. H. (2004). “Modeling block failures of vertical cliffs

in the Arctic Coast. Arctic Coastal Dynamic,” in Report of the 5th International

Workshop (Montreal, QC: McGill University), 60–64.

Hoque, M. A., and Pollard, W. H. (2009). Arctic coastal retreat through block

failure. Can. Geotech. J. 46, 1103–1115. doi: 10.1139/T09-058

Irrgang, A. M., Lantuit, H., Gordon, R. R., Piskor, A., and Manson, G. K.

(2019). Impacts of past and future coastal changes on the Yukon coast-threats

for cultural sites, infrastructure, and travel routes. Arctic Sci. 5, 107–126.

doi: 10.1139/as-2017-0041

Irrgang, A. M., Lantuit, H., Manson, G. K., Günther, F., Grosse, G., and

Overduin, P. P. (2017). Quantification of shoreline movements along the

Yukon territory mainland coast between 1951 and 2011, supplement to:

Irrgang, anna maria; lantuit, hugues; manson, gavin k; guenther, frank; grosse,

guido; overduin, pier paul (2018): Variability in rates of coastal change along

the yukon coast, 1951 to 2015. J. Geophys. Res. Earth Surface 123, 779–800.

doi: 10.1594/PANGAEA.874343

Irrgang, A. M., Lantuit, H., Manson, G. K., Günther, F., Grosse, G., and Overduin,

P. P. (2018). Variability in Rates of Coastal Change Along the Yukon coast, 1951

to 2015. J. Geophys. Res. Earth Surface 123, 779–800. doi: 10.1002/2017JF004326

JAXA (2008). ALOS Data Users Handbook. Revision C. Tokyo.

JAXA (2018). ALOS-2 Solution Book. Proposals for ’DAICHI 2’ SAR Data

Utilization, 3rd Edn. Tokyo.

Jones, B., Hinkel, K. M., Arp, C. D., and Eisner, W. R. (2008). Modern erosion rates

and loss of coastal features and sites, Beaufort Sea Coastline, Alaska. Arctic 61,

361–372. doi: 10.14430/arctic44

Jones, G. H., and Vaughan, R. A. (2010). Remote Sensing of Vegetation. Principles,

Techniques and Applications. New York, NY: Oxford University Press.

Kroon, A. (2014). “Chapter 14: High-Latitude Coasts,” in Coastal Environments

and Global Change, eds G. Masselink and R. Gehrels (Chichester: John Wily &

Sons), 338–353. doi: 10.1002/9781119117261.ch14

Frontiers in Environmental Science | www.frontiersin.org 19 September 2020 | Volume 8 | Article 143

https://doi.org/10.3390/rs8110903
https://doi.org/10.1007/s00300-010-0800-5
https://www.asf.alaska.edu/data-tools/mapready
https://www.asf.alaska.edu/data-tools/mapready
https://doi.org/10.1080/01431161003727671
https://doi.org/10.1080/07038992.2014.968276
https://doi.org/10.3390/rs8120979
https://doi.org/10.3390/rs11161865
https://doi.org/10.3389/feart.2017.00012
https://doi.org/10.1016/j.rse.2019.111515
https://doi.org/10.1594/PANGAEA.897916
https://doi.org/10.1002/2017JG004166
https://doi.org/10.5194/tc-13-1513-2019
https://doi.org/10.3138/FM57-6770-U75U-7727
http://esar-ds.eo.esa.int/socat/ASA_IMP_1P
http://esar-ds.eo.esa.int/socat/ASA_IMP_1P
http://step.esa.int/main/toolboxes/snap
http://step.esa.int/main/toolboxes/snap
https://doi.org/10.4095/203482
https://doi.org/10.2172/1431492
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
http://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://doi.org/10.1002/ppp.509
https://doi.org/10.1002/ppp.1891
https://doi.org/10.5194/bg-10-4297-2013
https://doi.org/10.5194/tc-9-151-2015
https://doi.org/10.3133/ofr20181179
https://doi.org/10.1139/T09-058
https://doi.org/10.1139/as-2017-0041
https://doi.org/10.1594/PANGAEA.874343
https://doi.org/10.1002/2017JF004326
https://doi.org/10.14430/arctic44
https://doi.org/10.1002/9781119117261.ch14
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Bartsch et al. SAR for Arctic Coastal Erosion

Lantuit, H. (2008). The modification of arctic permafrost coastlines (Ph.D. thesis).

Universität Potsdam, Potsdam, Germany.

Lantuit, H., Atkinson, D., Overduin, P. P., Grigoriew, M., Rachold, V., Grosse, G.,

and Hubberten, H.-W. (2011). Coastal erosion dynamics on the permafrost-

dominated Bykovsky Peninsula, north Siberia, 1951-2006. Polar Res. 30:7341.

doi: 10.3402/polar.v30i0.7341

Lantuit, H., Overduin, P. P., Couture, N., Wetterich, S., Aré, F., Atkinson, D., et al.

(2012). The Arctic Coastal Dynamics Database: A New Classification Scheme

and Statistics on Arctic Permafrost Coastlines. Estuar. Coasts 35, 383–400.

doi: 10.1007/s12237-010-9362-6

Le, T. M. H., Depina, I., Guegan, E., and Sinitsyn, A. (2018). Thermal regime of

permafrost at Varandey Settlement along the Barents Sea Coast, North West

Arctic Russia. Eng. Geol. 246, 69–81. doi: 10.1016/j.enggeo.2018.09.026

Lee, J.-S.,Wen, J.-W., Ainsworth, T. L., Chen, K.-S., and Chen, A. (2009). Improved

sigma filter for speckle filtering of SAR imagery. IEEE Trans. Geosci. Remote

Sens. 47, 202–213. doi: 10.1109/TGRS.2008.2002881

Leont’yev, I. O. (2003). Modeling erosion of sedimentary coasts in the western

Russian Arctic. Coast. Eng. 47, 413–429. doi: 10.1016/S0378-3839(02)00145-X

Liu, L., Schaefer, K., Zhang, T., and Wahr, J. (2012). Estimating 1992-2000

average active layer thickness on the Alaskan north slope from remotely

sensed surface subsidence. J. Geophys. Res. Earth Surface 117:F01005.

doi: 10.1029/2011JF002041

MDA (2019). MDA’s RADARSAT-2 Portal. Available online at: https://

mdacorporation.com/geospatial/international/radarsat-portal (accessed

September 1, 2019).

Mentaschi, L., Vousdoukas, M. I., Pekel, J.-F., Voukouvalas, E., and Feyen, L.

(2018). Global long-term observations of coastal erosion and accretion. Sci. Rep.

8:12876. doi: 10.1038/s41598-018-30904-w

Mora, C., Jiménez, J. J., Pina, P., Catalão, J., and Vieira, G. (2017). Evaluation

of single-band snow-patch mapping using high-resolution microwave remote

sensing: an application in the maritime Antarctic. Cryosphere 11, 139–155.

doi: 10.5194/tc-11-139-2017

NASA (2019).NASA-ISRO SAR (NISAR)Mission Science Users’ Handbook. CL# 18-

1893, JPL 400-1707 08/19. California, CA: Jet Propulsion Laboratory; California

Institute of Technology Pasadena.

Nielsen, D. M., Dobrynin, M., Baehr, J., Razumov, S., and

Grigoriev, M. (2020). Coastal erosion variability at the southern

Laptev Sea linked to winter sea ice and the Arctic oscillation.

Geophys. Res. Lett. 47:e2019GL086876. doi: 10.1029/2019

GL086876

Nitze, I. (2018). Trends of Land Surface Change Fromlandsat Time-Series 1999-

2014. PANGAEA - Data Publisher for Earth & Environmental Science.

doi: 10.1594/PANGAEA.884137

Nitze, I., Grosse, G., Jones, B., Arp, C., Ulrich, M., Fedorov, A., et al. (2017).

Landsat-based trend analysis of lake dynamics across northern permafrost

regions. Remote Sens. 9:640. doi: 10.3390/rs9070640

Nitze, I., Grosse, G., Jones, B. M., Romanovsky, V. E., and Boike, J.

(2018). Remote sensing quantifies widespread abundance of permafrost

region disturbances across the Arctic and Subarctic. Nat. Commun. 9:5423.

doi: 10.1038/s41467-018-07663-3

Obu, J., Lantuit, H., Grosse, G., Günther, F., Sachs, T., Helm, V., et al. (2016).

Coast erosion and mass wasting along the Canadian Beaufort Seas based

on annual airborne LiDAR elevation data. Geomorphology 293, 331–346.

doi: 10.1016/j.geomorph.2016.02.014

Obu, J., Westermann, S., Barboux, C., Bartsch, A., Delaloye, R., Grosse, G., et al.

(2019a). ESA Permafrost Climate Change Initiative (Permafrost_cci): Permafrost

Ground Temperature for the Northern Hemisphere, Centre for Environmental

Data Analysis (CEDA). doi: 10.5285/9A333481E9A34C7A8F78902F77AD3FE7

Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen, H. H.,

Dashtseren, A., et al. (2019b). Northern hemisphere permafrost map based on

TTOP modelling for 2000-2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316.

doi: 10.1016/j.earscirev.2019.04.023

Overland, J., Dunlea, E., Box, J. E., Corell, R., Forsius, M., Kattsov,

V., et al. (2019). The urgency of Arctic change. Polar Sci. 21, 6–13.

doi: 10.1016/j.polar.2018.11.008

Pierdicca, N., Davidson, M., Chini, M., Dierking, W., Djavidnia, S., Haarpaintner,

J., et al. (2019). “The Copernicus L-band SAR mission ROSE-L (Radar

Observing System for Europe) (Conference Presentation),” in Proc. SPIE 11154,

Active and PassiveMicrowave Remote Sensing for EnvironmentalMonitoring III.

doi: 10.1117/12.2534743

Radosavljevic, B., Lantuit, H., Pollard, W., Overduin, P., Couture, N., Sachs, T.,

et al. (2016). Erosion and flooding–threats to coastal infrastructure in the

Arctic: a case study from Herschel Island, Yukon Territory, Canada. Estuar.

Coasts 39, 900–915. doi: 10.1007/s12237-015-0046-0

Romeiser, R., Horstmann, J., Caruso, M. J., and Graber, H. C. (2013). A

descalloping postprocessor for ScanSAR images of ocean scenes. IEEE

Trans. Geosci. Remote Sens. 51, 3259–3272. doi: 10.1109/TGRS.2012.

2222648

Schubert, A., Miranda, N., Geudtner, D., and Small, D. (2017). Sentinel-

1A/B combined product geolocation accuracy. Remote Sens. 9:607.

doi: 10.3390/rs9060607

Schuster, P. F., Schaefer, K. M., Aiken, G. R., Antweiler, R. C., Dewild, J. F., Gryziec,

J. D., et al. (2018). Permafrost stores a globally significant amount of mercury.

Geophys. Res. Lett. 45, 1463–1471. doi: 10.1002/2017GL075571

Shimada, M. (2009). “Advance land-observation satellite (ALOS) and its follow-

on satellite, ALOS-2,” in Proceedings of the 4th International POLinSAR 2009

Workshop, ESA/ESRIN (Frascati).

Short, N., Brisco, B., Couture, N., Pollard, W., Murnaghan, K., and Budkewitsch,

P. (2011). A comparison of TerraSAR-X, RASARSAT-2 and ALOS-

PALSAR interferometry for monitoring permafrost environments, case study

from Herschel Island, Canada. Remote Sens. Environ. 115, 3491–3506.

doi: 10.1016/j.rse.2011.08.012

Sinitsyn, A. O., Guegan, E., Shabanova, N., Kokin, O., and Ogorodov,

S. (2020). Fifty four years of coastal erosion and hydrometeorological

parameters in the Varandey region, Barents Sea. Coast. Eng. 157:103610.

doi: 10.1016/j.coastaleng.2019.103610

Solomon, S. M. (2005). Spatial and temporal variability of shoreline change in the

Beaufort-Mackenzie region, northwest territories, Canada. Geomar. Lett. 25,

127–137. doi: 10.1007/s00367-004-0194-x

Steele, M., Ermold, W., and Zhang, J. (2008). Arctic Ocean surface

warming trends over the past 100 years. Geophys. Res. Lett. 35:L02614.

doi: 10.1029/2007GL031651

Stephen, H., and Long, D. G. (2005). Microwave backscatter modeling of erg

surfaces in the Sahara Desert. IEEE Trans. Geosci. Remote Sens. 43, 238–247.

doi: 10.1109/TGRS.2004.840646

Stettner, S., Beamish, A., Bartsch, A., Heim, B., Grosse, G., Roth, A., et al. (2017).

Monitoring inter- and intra-seasonal dynamics of rapidly degrading ice-rich

permafrost riverbanks in the Lena Delta with TerraSAR-x time series. Remote

Sens. 10:51. doi: 10.3390/rs10010051

Stettner, S., Lantuit, H., Heim, B., Eppler, J., Roth, A., Bartsch, A., et al. (2018).

TerraSAR-X time series fill a gap in spaceborne snowmelt monitoring of

small arctic catchments–a case study on Qikiqtaruk (Herschel Island), Canada.

Remote Sens. 10:1155. doi: 10.3390/rs10071155

Strozzi, T., Antonova, S., Günther, F., Mätzler, E., Vieira, G., Wegmüller, U., et al.

(2018). Sentinel-1 SAR interferometry for surface deformation monitoring in

low-land permafrost areas. Remote Sens. 10:1360. doi: 10.3390/rs10091360

Widhalm, B., Bartsch, A., and Goler, R. (2018). Simplified normalization of C-

band synthetic aperture radar data for terrestrial applications in high latitude

environments. Remote Sens. 10:551. doi: 10.3390/rs10040551

Zwieback, S., Kokelj, S. V., Günther, F., Boike, J., Grosse, G., and Hajnsek, I. (2018).

Sub-seasonal thaw slump mass wasting is not consistently energy limited at the

landscape scale. Cryosphere 12, 549–564. doi: 10.5194/tc-12-549-2018

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Bartsch, Ley, Nitze, Pointner and Vieira. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Environmental Science | www.frontiersin.org 20 September 2020 | Volume 8 | Article 143

https://doi.org/10.3402/polar.v30i0.7341
https://doi.org/10.1007/s12237-010-9362-6
https://doi.org/10.1016/j.enggeo.2018.09.026
https://doi.org/10.1109/TGRS.2008.2002881
https://doi.org/10.1016/S0378-3839(02)00145-X
https://doi.org/10.1029/2011JF002041
https://mdacorporation.com/geospatial/international/radarsat-portal
https://mdacorporation.com/geospatial/international/radarsat-portal
https://doi.org/10.1038/s41598-018-30904-w
https://doi.org/10.5194/tc-11-139-2017
https://doi.org/10.1029/2019GL086876
https://doi.org/10.1594/PANGAEA.884137
https://doi.org/10.3390/rs9070640
https://doi.org/10.1038/s41467-018-07663-3
https://doi.org/10.1016/j.geomorph.2016.02.014
https://doi.org/10.5285/9A333481E9A34C7A8F78902F77AD3FE7
https://doi.org/10.1016/j.earscirev.2019.04.023
https://doi.org/10.1016/j.polar.2018.11.008
https://doi.org/10.1117/12.2534743
https://doi.org/10.1007/s12237-015-0046-0
https://doi.org/10.1109/TGRS.2012.2222648
https://doi.org/10.3390/rs9060607
https://doi.org/10.1002/2017GL075571
https://doi.org/10.1016/j.rse.2011.08.012
https://doi.org/10.1016/j.coastaleng.2019.103610
https://doi.org/10.1007/s00367-004-0194-x
https://doi.org/10.1029/2007GL031651
https://doi.org/10.1109/TGRS.2004.840646
https://doi.org/10.3390/rs10010051
https://doi.org/10.3390/rs10071155
https://doi.org/10.3390/rs10091360
https://doi.org/10.3390/rs10040551
https://doi.org/10.5194/tc-12-549-2018
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles

	Feasibility Study for the Application of Synthetic Aperture Radar for Coastal Erosion Rate Quantification Across the Arctic
	1. Introduction
	2. Materials and Methods
	2.1. Study Areas and Reference Data for Coastal Erosion Rates
	2.1.1. Canadian Beaufort (Yukon) Sea Coast
	2.1.2. Bykovsky Peninsula, Laptev Sea Coast
	2.1.3. Varandai, Barents Sea Coast

	2.2. Synthetic Aperture Radar Data
	2.3. Auxiliary Multi-Spectral Data and Derived Products
	2.4. Pre-processing of SAR Data
	2.5. Identification of Steep Coasts Facing the Sensor
	2.6. Threshold Determination and Classification
	2.7. Post-processing of the Landsat Landsurface Trend Products
	2.8. Erosion Rate Estimation

	3. Results
	3.1. Threshold Functions for Classification
	3.2. Classification Accuracy
	3.3. Coastal Change Rates

	4. Discussion
	4.1. SAR Capabilities for Separation of Relevant Landcover Types
	4.2. Erosion Rates

	5. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


