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Mapping the bacterial metabolic niche space
Ashkaan K. Fahimipour 1,2✉ & Thilo Gross1,3,4,5

The rise in the availability of bacterial genomes defines a need for synthesis: abstracting from

individual taxa, to see larger patterns of bacterial lifestyles across systems. A key concept for

such synthesis in ecology is the niche, the set of capabilities that enables a population’s

persistence and defines its impact on the environment. The set of possible niches forms the

niche space, a conceptual space delineating ways in which persistence in a system is possible.

Here we use manifold learning to map the space of metabolic networks representing thou-

sands of bacterial genera. The results suggest a metabolic niche space comprising a col-

lection of discrete clusters and branching manifolds, which constitute strategies spanning life

in different habitats and hosts. We further demonstrate that communities from similar

ecosystem types map to characteristic regions of this functional coordinate system, per-

mitting coarse-graining of microbiomes in terms of ecological niches that may be filled.
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It has been pointed out that a key to understanding the rules of
life in ecological communities is to understand the structure of
the niche space, the sets of ecological strategies that enable

populations to grow and reproduce in an ecosystem1–6. Con-
ceptual theories envision the niche space as an n-dimensional
geometrical shape1,7 where each dimension is spanned by variables
representing, often nonlinear combinations of salient traits or
environmental features8–11. Empirical characterizations of the niche
space have so far been conducted with a focus on individual groups
of macrobiotic species, where different data analysis methods have
been used to organize sets of functional traits that associate with
major ecological roles in a system11,12; included are lizards5,
beetles13,14, neotropical fish6, and terrestrial vascular plants10,15.

Bacteria are an attractive target for examining niche-based
theories in ecology16–20 as many of the relevant traits, such as the
ability to metabolize certain substrates or synthesize molecules
that mediate ecological interactions, are biochemical in
nature21,22. Hence they can be inferred from genomes, providing
plentiful data to map the niche space on a grander scale. To
operationalize the bacterial niche space we say that the sets of
biochemical reactions encoded by genomes represent feasible
metabolic strategies of extant microorganisms5,23,24. Together the
strategies span a metabolic niche space1: the space of metabolic
capabilities that populations may deploy to survive.

Ecological niches are thought to comprise complex nonlinear
functions of multiple traits5,10,11,25. A central challenge in mod-
eling the niche is thus to identify composite traits that map to
interpretable ecological roles, or the ‘soft properties’26 that sum-
marize organisms’ functional capabilities. A powerful analysis
method for meeting this challenge is offered by diffusion
maps27,28. This mathematically simple manifold learning method
exploits the relationship between diffusion processes and geo-
metric structures29–31 to define a new coordinate system for a
dataset, where the axes, or variables, are nonlinear composites of
its major features. The mathematical procedure does not provide
an interpretation of these variables; however, our analyses show
that they correspond to meaningful metabolic strategies. This
offers a potential bridge between ecological niche theories and
data that are readily accessible from bacterial genomes.

Here we use the diffusion map to construct and analyze a
functional coordinate system that spans the bacterial metabolic
niche space. As a compact prediction of metabolism, we generate
genome-scale metabolic networks22,32 for representative species
from all unique bacterial genera in the NCBI RefSeq33 release 92
database (N= 2621 genera). We map each representative network
to a point in a 7769-dimensional discrete space, where axes
indicate the presence or absence of predicted metabolic ‘traits’
given by unique chemical substrate–product pairs (i.e., directed
edges) in the collection of networks. Although a complete picture
of bacterial metabolism from genomic data is not yet possible,
this array captures the major biochemical capabilities34 for a
large fraction of known bacterial genera, and serves as input
to the diffusion map algorithm. Our results indicate that
manifold learning methods can delineate the salient geometric
features27,28,35 of an ecological niche space, and that these
structures mark potential strategies for survival under particular
abiotic or biotic conditions. Subsequently, we demonstrate that
bacterial communities from similar ecosystems occupy char-
acteristic regions of the diffusion map, and that this provides a
quantitative framework for defining potentially occupied ecolo-
gical niches across complex microbial systems.

Results
The diffusion map finds new variables that reflect nonlinear
combinations of metabolic capabilities and returns them in the

order of their importance (see Methods)27,28,35. Each variable
assigns coordinate entries to the genomes that can then be used to
order genera, from the most negative to the most positive entries,
along curves that span the niche space. Dimensions in diffusion
space can then be interpreted by analyzing the strategies of taxa
near the extrema of the orderings26,36, corresponding to large
positive or negative (i.e., far from zero) variable entries.

Sharp differences delineate some metabolic strategies. The
most important variable identified by the diffusion map, variable
1, separates the metabolic strategies of photosynthetic Cyano-
bacteria from those of all other taxa: the 108 cyanobacterial
genomes in the dataset are assigned low values (i.e., negative
numbers with large magnitudes) in variable 1, while all others
have values that are close to zero (Fig. 1; Supplementary Fig. 1A).
To confirm that this variable detects cyanobacterial photo-
synthetic activity, we identified metabolites that were over-
represented in the metabolic networks of genera receiving far-
from-zero entries in variable 1 (see Methods). This revealed an
enrichment of 2-Phosphoglycolate, which is involved in essential
photorespiratory pathways in photosynthetic organisms37; ribu-
lose-1,5-bisphosphate (RuBP), used for carbon fixation from
RuBisCO during photosynthesis; cyanophycin, a unique nitrogen
reserve polymer38; and sucrose 6-phosphate, which catalyzes the
final step in sucrose biosynthesis in Cyanobacteria39, confirming
that the variable indicates the extent to which Cyanobacteria fix
carbon through photosynthesis (Fig. 1; Supplementary Table 1).

The sharp differences in variable 1 show that this photosyn-
thetic lifestyle is a discrete yes-or-no metabolic strategy where
little middle ground exists. The diffusion map defines further
variables that indicate such discrete clusters of unique capabilities
(Fig. 1)—so-called ‘localized’ variables40—including capabilities
associated with acetic acid production41 (variable 18), carnitine
use for stress tolerance among anaerobic animal associates42

(variable 21), and chemolithoautotrophic or sulfur-oxidization
strategies deployed by Epsilonproteobacteria near marine sedi-
ments and sea vents (variable 22).

Contrasting the major strategies of host associates to life in
soils and oceans. Some variables identified by the diffusion map
analysis span a continuous spectrum of strategies, which align
with major taxonomic classes. The most important of these are
variables 2, 3, and 4, which contrast different putative metabolic
strategies encoded by relatively large proportions of the analyzed
genomes (Fig. 2; Supplementary Fig. S1B). For instance, variable 2
identifies major differences in predicted strategies among host-
associated Gammaproteobacteria and soilborne Actinobacteria.
Close relatives of pathogenic Enterobacter, Franconibacter, and
Buttiauxella species43 score the lowest (i.e., most negative) values
(Fig. 2a, b). Metabolic capabilities associated with these taxa
include the synthesis of membrane phospholipid precursors
common in Gammaproteobacteria like CDP-diacylglycerol44 and
phosphatidylethanolamine, which may be involved in bacterial
adhesion to host cells45; and the ability to metabolize uncommon
sugars like L-lyxose46 (Supplementary Table 2). At the opposite
end, we find primarily Gram-positive soil organisms from the
Microbacteriaceae, Beutenbergiaceae, and Micrococcaceae47

(Fig. 2a, b). Among the most correlated capabilities for species
near this extremum are the synthesis of decaprenyl diphosphate, a
key component of cell wall biosynthesis in some taxa48; and
compounds related to the synthesis of thiol and bimane deriva-
tives, which can function as defenses against alkylating agents,
oxygen stress, and antibiotics49 (Supplementary Table 3).

The Gammaproteobacteria genera that received the lowest
entries in variable 2 also constituted the negative extremum of
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Variable 01: Photosynthesis in Cyanobacteria

Variable 18: Acetic acid production

Variable 21: Carnitine use by anaerobes

Variable 22: Sulfur chemoautotrophs

Fig. 1 The diffusion map identifies variables describing discrete strategies. Variable entries for each genome are visualized as rings of colored tiles near
the tips of a phylogenetic tree. Large negative or positive values (saturated reds and blues) indicate strong overlap with the focal strategy, whereas white
indicates an absence of these capabilities. Circles are collapsed clades with near-zero entries in each of the four example variables. Clades receiving large
negative or positive entries in any of the four example variables are expanded and annotated. The near-absence of semi-saturated tones indicates the
strategies represented by these variables are approximately yes-or-no properties encoded by taxa.
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Fig. 2 A spectrum of class-level capabilities indicated by variables 2, 3, and 4. a Variable entries for each genome are shown as rings of tiles near the tips
of a phylogenetic tree. Darker red and blue tiles mark genomes receiving larger (in magnitude) negative and positive variable entries; white tiles mark near-
zero entries. b The ordering of taxa defined by variable two entries, from negative to positive (left to right). The taxonomic compositions corresponding to
variable entries are shown for each of 100 equally spaced bins. c The ordering of taxa defined by variable three entries. d The ordering of taxa defined by
variable four entries. The variety of different values of these variables indicates a gradual shift in metabolic capabilities.
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variable 3, and the positive extremum of variable 4 (compare
Fig. 2a–d), suggesting that the bacterial metabolic niche space
features a collection of low-dimensional manifolds that cross each
other at branching points36. This branching point in particular
illustrates a multiway contrast between a subset of the
Gammaproteobacteria and at least 3 other taxonomic classes.
At the positive end of variable 3, we find taxa representing
mammal- and bird-associated Clostridia, Tissierellia, Erysipelo-
trichia, and Bacilli47. Characteristic metabolites of these genera
include components of the Wood–Ljungdahl pathway50, enabling
the use of hydrogen as an electron donor; and indole, a signaling
molecule that has been shown to modulate host inflammation
and interspecific competition in human gastrointestinal tracts51

(Supplementary Table 4). Our interpretation is that variable 3
identifies different potential strategies for colonizing and weath-
ering stress or interspecific competition in animal hosts.

The species that score the lowest (i.e., most negative) values in
variable 4 are epipelagic and marine Rhodobacterales, Rhizo-
biales, and Rhodospirillales that are capable of utilizing a broad
spectrum of carbon sources52. Here the most significant
metabolic reactions are all involved in the L-2-aminoadipate
pathway of lysine synthesis53 and the production of L-pipecolic
acid (Supplementary Table 5), pointing to a strategy for growth
under high-salt conditions54. Our interpretation is that this
variable traces a range of strategies spanning a generalist lifestyle
in oceans to associations with terrestrial hosts.

Host-microbe interactions also feature in variables 8 and 10,
which highlight endosymbionts and endoparasites with the
smallest genomes in the dataset. The lowest values of variable 8
coincided with animal- and plant-associated Tenericutes47, as
well as candidate genera like Tremblaya and Sulcia, that associate
with insect bacteriocytes55,56. Among the top 10 markers of taxa
scoring low values in variable 8 include the predicted uptake22 of
key amino acids such as L-histidine, L-arginine, L-isoleucine, L-
valine, L-lysine, and L-leucine (Supplementary Table 6). The
negative extremum of variable 10 features obligate endoparastites
and close relatives of opportunistic pathogens, including putative
animal- and arthropod-associates of the Pasteurellaceae, Erwi-
niaceae, Morganellaceae, and Rickettsiaceae47. Similarly to vari-
able 8, metabolic network features that distinguished this group
include the predicted uptake of L-histidine, L-arginine, L-
threonine, L-isoleucine, L-glutamine, and L-lysine (Supplemen-
tary Table 7). Together, these variables indicate that one
widespread strategy for life in close association with animal or
plant cells is the use of essential and non-essential host-derived
amino acids57.

Phylogenetic relatedness is a rough indicator of ecological
similarity. The first several diffusion variables identify char-
acteristic capabilities that discriminate between major taxonomic
classes with many representative genera. To assess the overall
relationship between metabolic similarity and phylogenetic
relatedness we computed the correlation between pairwise inter-
genome metabolic distances in diffusion space, and cophenetic
distances on the phylogenetic tree (see ref. 30 for a detailed dis-
cussion of diffusion distances). Here a positive correlation sug-
gests that closely related taxa deploy similar metabolic strategies
on average.

The Pearson correlation between distance matrices was positive
but exhibited a small coefficient (Fig. 3a; Mantel test, r= 0.273, P
< 0.001), marking a weak association between predicted metabolic
capabilities and phylogenetic relatedness. While it is not
surprising that phylogenies contain information on the ecological
roles of microorganisms58–60, a visualization of this relationship
highlights a caveat: a large range of diffusion distances are

observed for most given cophenetic distances between genome
pairs (Fig. 3a). This high degree of variance can be explained by
the presence of diffusion variables that deviate from basic
contrasts among major taxonomic groups (e.g., Fig. 2), including
some that differentiate closely related taxa (Fig. 3b, Supplemen-
tary Fig. 1C), and those that show similar strategies among
distantly-related taxa (Fig. 3b), potentially reflecting metabolic
niche convergence6 or horizontal gene transfer.

These examples demonstrate that diffusion variables provide
dozens or possibly hundreds of meaningful coordinates that trace
the space of bacterial metabolic strategies. Using a procedure
proposed by Moon et al.36 we combined diffusion variables in a
low-dimensional visualization of the strategy space (Fig. 3c;
Supplementary Fig. 1). This embedding recapitulates the result
that phylogenetic relatedness offers only a coarse marker of
predicted functional similarity, corresponding to the appearance
of representatives from multiple classes in close proximity to one
another in the niche space.

It is important to interpret lower-dimensional embeddings of
high-dimensional data with caution61. However, multiple
observations point to some consistent geometric structures in
the bacterial metabolic niche space. Included are the results of a
2-dimensional embedding of diffusion variables (Fig. 3c;
Supplementary Fig. 1), the presence of localized variables (e.g.,
Fig. 1) and crossing points (e.g., Fig. 2) in the diffusion map,
and the results of enrichment analyses (Supplementary
Tables 1–7). Namely, they point to a metabolic niche space
consisting of multiple quasi one-dimensional branches rising
from a common core, punctuated by discrete clusters of taxa
with unique capabilities. This geometry may represent a
conceptual hybrid between Hutchinson’s original idea of the
niche space as a continuous hypervolume1, and modern ideas
which postulate that sets of functional traits separate into
discrete ecological clusters5,6,12. We conjecture that the putative
filamentous structure has implications for our understanding of
bacterial evolution and ecological functioning. For instance, the
underlying branching geometry naturally leads to a large
amount of unoccupied metabolic niche space (Fig. 3c). Similar
gaps in niche space have been observed in macrobiotic
communities12, and could correspond to bacteria that have
yet to be sampled, isolated, or sequenced. Alternatively, they
could be a result of ‘forbidden’ metabolisms, i.e., combinations
of capabilities that may be suboptimal or even pointless for life
in Earth’s ecosystems.

Microbiomes map to characteristic regions of the metabolic
niche space. Understanding the mapping from genomes to larger
scale ecological strategies may prove useful for a variety of ana-
lyses16–18, such as quantifying the roles of organisms or designing
substrates for culturing. Perhaps more importantly it provides
an ecological frame of reference for coarse-graining complex bac-
terial communities. For a small scale demonstration of this point
we created a simple mapping between a subset of community
censuses from the Earth Microbiome Project (EMP)62 and our
diffusion space.

First, for each selected bacterial community census in the EMP
we matched all taxa (16S rRNA gene amplicon sequence variants)
to the most closely related genome considered by our diffusion
map analysis, and retained matches that exhibited at least a 97%
sequence similarity (see Methods). We then determined whether
EMP communities contained at least one taxon that mapped to
any of the 10 extremal genomes along any of the first 50 diffusion
variables. As a result, each microbiome sample was characterized
by the presence or absence of each of the first 100 extremal
metabolic strategies. These presence-absence data represent
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ecological characterizations for individual EMP communities. To
summarize further we computed the proportions of communities
from different ecosystem types that displayed the different
extremal strategies, resulting in a bacterial metabolic fingerprint
for each ecosystem type (Fig. 4). These fingerprints can be used to
study systematic differences in the functional capabilities of

typical community members across habitats. For instance, a
simple hierarchical clustering analysis of metabolic fingerprints
groups different ecosystem types meaningfully together based on
the metabolic strategies of their constituents (Fig. 4). Visible are
clear strategy sets that differentiate functional diversity in
freshwater, soil, marine, and host-associated systems.

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4
Cophenetic distance

D
iff

us
io

n 
di

st
an

ce

1e+01

1e+02

1e+03

1e+04

1e+05

F
re

qu
en

cy

b

a c

Variable 19

Variable 31 C
la

ss

Actinobacteria
Alphaproteobacteria
Bacilli
Bacteroidia
Betaproteobacteria
Clostridia
Cyanobacteria
Cytophagia
Deltaproteobacteria
Flavobacteriia
Gammaproteobacteria
Negativicutes
Other (<1%)

Fig. 3 Metabolic and phylogenetic similarities are roughly correlated. a The correlation between distances in diffusion space and cophenetic distances
between genome pairs (Mantel test, r= 0.273, P < 0.001). b Some variables such as 19 show similar functional capabilities shared by remotely related taxa
(similar colors in distal parts of the tree). Others such as variable 31 highlight differences in closely related taxa, corresponding to the appearance of large
positive and negative values (dark blue and red shades) in close proximity on the tree. c A 2-dimensional embedding of diffusion variables36, where
individual genomes (points) are colored by taxonomic class. Axes mark (0, 0) in the coordinate system.
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Discussion
Here we showed that the shape of a trait space can be system-
atized through manifold learning27. The diffusion map of bac-
terial capabilities reveals a wealth of ecologically salient variables
that span a functional coordinate system. Some show evidence of
discrete capabilities such as photosynthesis (Fig. 1). Other stra-
tegies span a continuous space representing degrees of speciali-
zation or reliance on hosts (Fig. 2). Yet others highlight strategies
for energy production or stress response, some of which differ-
entiate closely related species (Fig. 3b, Supplementary Fig. 1C) or
emerged, potentially through convergent evolution or gene
transfer, in different branches of the tree of life (Fig. 3b).

The diffusion variables provide a physical method for orga-
nizing the genomic information that continues to emerge, in a
way that reveals both larger scale geometries and finer details
compared to alternative embedding methods27,36 (Supplementary
Discussion; Supplementary Figs. 1–6). From the perspective of
microbial systems, diffusion distances in trait space (e.g., Fig. 3a)
provide a powerful proxy for ecological similarities that can
complement insights from current phylogenetic methods60,63.
Traits used to calculate diffusion distances need not be derived
from metabolic reconstructions of whole genomes as in the
present analysis, but could comprise functional information
identified, for instance, through species-level profiling64 of
metagenomic or metatranscriptomic shotgun sequencing data.
From an ecological point of view the present analysis constitutes
the most extensive mapping of a niche space geometry so far, and
facilitates the application of quantitative ecological theories to
data describing bacterial communities.

Our analysis focused largely on the bacteria’s capabilities to
catalyze steps in primary metabolism. Even within the realm of
primary metabolism the genes reveal only the set of theoretical
capabilities encoded by genomes, conceptually analogous to the
fundamental niche concept1 in ecology. Hence our analysis
ignores uncharacterized parts of secondary metabolism, behavior,
regulation, and trophic interactions. For any other group of
organisms such a limited analysis would be mostly meaningless;
however, due to the diversity of metabolic capabilities in bacteria
it reveals a rich and complex functional coordinate system
(Fig. 3c). As our understanding of genomic data advances, deeper
insights into secondary metabolism are bound to become avail-
able, providing an even more detailed picture of the metabolic
niche space. Moreover, we envision that with future tran-
scriptomic data, manifold learning methods could also map the
realized niche1 (the metabolic strategies that are deployed under a
given set of conditions) bringing our understanding of ecology in
complex microbial communities closer to the biochemical level.

Methods
Metabolic networks. Genomes were obtained from the National Center for Bio-
technology Information (NCBI) RefSeq33 release 92 database (accessed on 2019
March 20). We first obtained the ‘representative’, ‘reference’, ‘complete’, ‘contig’, and
‘scaffold’ sets and reduced these to a set of genus-level representatives using the
following sampling procedure. We first selected a random representative genome for
all unique genera in the combined ‘representative’ and ‘reference’ sets. Novel genera in
the remaining RefSeq categories, that were not already represented in the ‘reference’
and ‘representative’ sets, were then appended to the set in the same way, for a total N
= 2621 genomes. Metabolic models were constructed for the selected genome
assemblies using the CarveMe reconstruction algorithm32, that starts with a universal
bacterial metabolic model comprising known biochemical reactions in the BiGG
Models65 database and generates genome-specific reaction sets by paring those
without genomic support. Finally, metabolic models’ cytoplasmic compartments were
retained and summarized as metabolic networks—directed graphs in which nodes are
chemical metabolite compounds and directed edges link substrates to products22.

Phylogenetic tree generation. Phylogenetic trees were used to visualize metabolic
differences between taxa, and were constructed using the GToTree pipeline66 with
the “universal” protein set defined by Hug et al.67. GToTree identifies target genes
with HMMER368, aligns them with MUSCLE69, and trims alignments with

trimAl70. Trees were generated from the aligned and concatenated gene sets using
FastTree71, and visualized using iToL72.

Diffusion map procedure. Diffusion mapping27,28 was performed using the
algorithm described by Barter & Gross26. Briefly, the method involves (i) calcu-
lating a matrix describing euclidean similarities among the k-nearest neighbors for
samples in a dataset, (ii) interpreting this as a weighted adjacency matrix, and (iii)
computing the corresponding row-normalized Laplacian matrix. The eigenvectors
of the Laplacian represent new diffusion variables describing important variation in
the dataset26. The importance of each eigenvector is indicated by the corresponding
Laplacian eigenvalue27,30, which captures the characteristic time scale of diffusive
modes over the data in that dimension35. The first (i.e., most important) variable is
given by the eigenvector corresponding to the smallest non-zero eigenvalue, then
the second smallest eigenvalue, and so on. This variant is nearly parameter-free,
with only a single choice for the value of k. Here, we consider k= 10, although the
results presented above were insensitive to the choice of k.

Identifying associated metabolites. We sought to identify metabolites that were
over-represented in the metabolic networks of taxa, that were themselves assigned
extreme entries along diffusion map variables. This was accomplished using a
permutational variant of the gene set enrichment analysis, GSEA73. Genome
rankings were defined by the orderings specified by each diffusion variable.
Enrichment analyses were accomplished for the ranked sets using the fgsea library
in R74, with a Benjamini–Hochberg–adjusted75 P value < 0.05 used as the threshold
for retaining metabolites associated with taxa that map to variable extrema.

Mapping environmental samples to diffusion space. We obtained the ‘emp_-
deblur_150bp.subset_2k.rare_5000’ dataset, describing a subset of the environ-
mental 16S rRNA gene sequences from the Earth Microbiome Project62, EMP,
accessed via ftp://ftp.microbio.me/emp/. Communities from the EMP were mapped
to diffusion space using the following procedure: First, we generated a BLAST76

reference database of predicted 16S rRNA gene sequences for our set of RefSeq
genomes using barrnap (https://github.com/tseemann/barrnap) to identify and
retain the first instance of this ribosomal gene. The DECIPHER library77 in R was
used to align sequences. We then conducted a BLAST sequence similarity search to
match denoised sequence variants present in each EMP sample to the custom
BLAST database and retained the top hits. Niches—operationally defined as the
strategies describing the 10 taxa with the highest (positive) and lowest
(negative) entries along each diffusion variable—were said to be occupied by taxa
in an EMP community census if at least one detected sequence variant exhibited a
97% or greater rRNA gene sequence similarity to any of the extremal genomes. The
results of this procedure were summarized as plots of the proportion of samples
within each EMP ‘env_feature’ category satisfying this criterion. Hierarchical
clustering of similar ecosystem types was accomplished using the Ward78 linkage
method.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Genome accession numbers are available at https://doi.org/10.6084/m9.
figshare.12864011.v4.

Code availability
R scripts and sample data are available at https://doi.org/10.6084/m9.figshare.12864011.v4.
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