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Abstract

Thermal erosion is a major mechanism of permafrost degradation, resulting in charac-

teristic landforms. We inventory thermo-erosional valleys in ice-rich coastal lowlands

adjacent to the Siberian Laptev Sea based on remote sensing, Geographic Information

System (GIS), and field investigations for a first regional assessment of their spatial

distribution and characteristics. Three study areas with similar geological (Yedoma Ice

Complex) but diverse geomorphological conditions vary in valley areal extent, incision

depth, and branching geometry. The most extensive valley networks are incised

deeply (up to 35 m) into the broad inclined lowland around Mamontov Klyk. The flat,

low-lying plain forming the Buor Khaya Peninsula is more degraded by thermokarst

and characterized by long valleys of lower depth with short tributaries. Small, isolated

Yedoma Ice Complex remnants in the Lena River Delta predominantly exhibit shorter

but deep valleys. Based on these hydrographical network and topography assess-

ments, we discuss geomorphological and hydrological connections to erosion pro-

cesses. Relative catchment size along with regional slope interact with other

Holocene relief-forming processes such as thermokarst and neotectonics. Our find-

ings suggest that thermo-erosional valleys are prominent, hitherto overlooked perma-

frost degradation landforms that add to impacts on biogeochemical cycling, sediment

transport, and hydrology in the degrading Siberian Yedoma Ice Complex.
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1 | INTRODUCTION

Climate warming in the Arctic is occurring at a much faster rate than

the global average,1 impacting polar permafrost regions. Permafrost

warming and erosion of permafrost deposits have been reported

throughout the northern high latitudes.2–4 Thermokarst and thermal

erosion are two major processes of ice-rich permafrost degradation in

periglacial landscapes. They result in thawing of permafrost-stored

organic carbon, which then can decompose and be released to the

atmosphere and the hydrological system.5–8 Landscapes affected by

thermokarst and thermal erosion are estimated to contain �330 Pg

carbon in the upper 3 m subsurface, constituting �30% of the total

0–3 m permafrost region soil organic carbon storage (1,073 Pg C),

highlighting their importance for the global carbon cycle in a rapidly

warming Arctic.9,10 The two processes may also substantially alter the

water and energy balances of affected regions.11,12

Thermal erosion is defined as the erosion of ice-bearing perma-

frost by the combined thermal and mechanical action of moving

water.13 Whereas thermokarst is an in situ process including melting

of ground ice followed by surface subsidence but without hydraulic

transport of earth materials, thermal erosion is a dynamic process

involving the wearing away by thermal means (i.e., the melting of ice)

and by mechanical means (i.e., hydraulic transport).13 Two types of

thermal erosion can be distinguished: linear or vertical thermal ero-

sion, which acts to depth, and lateral thermal erosion, which acts

sideways.14,15

Thermokarst processes occur mostly in flat lowland terrain with

low hydraulic gradient; the resulting characteristic landforms are

thermokarst lakes, thermokarst depressions (alasses), and thermokarst

mounds. Thermal erosion takes place along river banks16–20 and

coastlines,21,22 at the shores of lakes,23,24 but also in lowlands with

abundant ground ice and sufficient gradients to allow for channelized

surface water flow.25 Here, it can result in the formation of thermo-

erosional gullies26–29 or even large thermo-erosional valleys and valley

systems. Thermal erosion, thermokarst, and the landforms resulting

from these processes interact with each other, as thermo-erosional

gullies and valleys can supply water to thermokarst lakes and

basins30,31 and enlarge thermokarst depressions.32 At the same time,

they may also inhibit thermokarst activity by drainage of flat uplands

and breaching of thermokarst lakes.33–36

In contrast to thermokarst lakes, which have been investigated in

numerous studies, for example as sources of carbon release to the

atmosphere,5,6 with respect to spatial distribution patterns,37 or as

indicators of a changing water balance in permafrost regions,38,39 only

a few studies are available on thermo-erosional gullies and valleys or

discuss the interaction of thermal erosion with thermokarst under dif-

fering regional relief conditions. Thermo-erosional valleys have been

described in the Lena River Delta33 and mapped in two regions of the

East Siberian coastal lowlands in the context of an overall quantifica-

tion of thermokarst-affected terrain types.30,40 Other studies have

reported rapid formation and growth of thermo-erosional gullies due

to thawing permafrost.26–29,41 Gullies and valleys can deeply erode

underlying deposits in a short time and therefore increase sediment

and nutrient delivery to rivers, lakes, and the sea.32,41,42 They also

may reconfigure drainage networks, thereby leading to large changes

in runoff volume and timing.43 Thermo-erosional gullies and valleys

are common in Arctic landscapes, act as important snow accumulation

areas, and alter the water, sediment, and organic matter transport

from inland permafrost to receiving waters at the local scale. Yet,

there are no systematic studies available that classify and quantify

thermo-erosional valleys and their impacts at the Arctic scale or that

analyze differences in valley network characteristics across different

permafrost regions.

As a first step to fill this gap, we provide here an overview of

thermo-erosional valleys and their role in the degradation of ice-rich

permafrost in the eastern Siberian Arctic. The specific objectives of

this study are: (a) to describe the morphometry and spatial distribution

of thermo-erosional valleys across three Laptev Sea coastal lowland

regions based on remote sensing, geoinformation, and field data; and

(b) to relate the identified spatial patterns and morphologies to the

topographical and cryolithological settings of the study areas and their

evolution through the Holocene. In particular, we address the follow-

ing questions: How abundant are thermo-erosional landforms in the

study region? Which drainage patterns and valley types occur? How

do the valleys and their networks differ between the study areas and

why? and we propose a conceptual model for valley evolution in the

study region during the Holocene.

2 | REGIONAL SETTING

This study focuses on three sites bordering the Siberian Laptev Sea

coast (Figure 1). The stratigraphy in all three study areas is comparable

and consists of late Pleistocene polygenetic Yedoma Ice Complex

deposits underlain by middle to late Pleistocene sandy deposits and

covered by various Holocene deposits.44–52 The Yedoma Ice Complex

is 10–40 m thick and consists of ice-supersaturated silty to sandy sed-

iments and buried cryosols. Large syngenetic ice wedges of up to sev-

eral tens of meters thickness truncate the sediment column and

contribute to a total ground-ice volume of up to 80%. All three sites

are situated in the Arctic tundra zone53 and in the continuous perma-

frost zone with several hundreds of meters permafrost thickness and

mean annual ground temperatures from −9 to < −11�C.15

The western site around Cape Mamontov Klyk belongs to the

Olenyok–Anabar coastal lowland. It is bordered by the Pronchishchev

Ridge to the south and is inclined slightly in the NNE direction

towards the Laptev Sea.30 The central site in the Lena River Delta is

composed of insular Yedoma remnants and, together with a few loca-

tions of bedrock outcrops, they constitute the third geomorphological

main terrace of the delta, which accounts for 5.9% of the total delta

area of 29,000 km2. The second main terrace consists of fluvial sandy

deposits and covers 21% of the Lena Delta area. The third and second

terraces represent late Pleistocene non-deltaic units, whereas the

Holocene deltaic deposits are considered the first geomorphological

main terrace of the Lena Delta.33,34,45,47,54 The eastern site, the Buor

Khaya Peninsula, is the westernmost part of the Yana–Indigirka
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coastal lowland. In contrast to the other sites, the base of the Yedoma

Ice Complex deposits is below modern sea level (b.s.l.) here and is cur-

rently not exposed. Coring about 800 m off the western shore indi-

cates its location at about 4 m b.s.l. followed by Pleistocene sands

that extend down to at least 52 m b.s.l.55,56

Holocene deposits of 1–2 m thickness cover the Yedoma Ice

Complex deposits. Holocene deposits are also found in thermokarst

depressions and in river and thermo-erosional valleys. They consist of

peat, silty to sandy sediments with high organic matter and ice con-

tent, and lacustrine silty sediments.57 The high ice content and large

thickness (10–40 m) of the Yedoma Ice Complex deposits cause

substantial terrain subsidence due to thawing and has provided the

conditions for widespread surface changes from thermokarst and

thermal erosion since the Lateglacial/Holocene transition about

12–10 ka BP.35,58

3 | MATERIAL AND METHODS

The thermo-erosional valleys analyzed in this study were manually

digitized from topographic maps as well as Hexagon, Landsat-7 and

RapidEye satellite imagery as line features in a Geographic Informa-

tion System (GIS) using ESRI ArcGIS (Table 1). The dataset is available

in the PANGAEA open-access archive.59 It includes thermo-erosional

gullies and valleys as well as streams and rivers, as development of all

of these features potentially involved thermo-erosional processes at

some stage given the high ground-ice content of both surface types,

Yedoma Ice Complex and Holocene deposits, upon which they

formed. The main criterion for the mapping of linear features from

satellite imagery as thermo-erosional valleys and gullies was their clear

incision into the surface with visible bank slopes, expressed as con-

trast in reflectance between the slopes and the surrounding surface.

Spatial analyses in GIS included the calculation of spatial statistics

and summary metrics for each study area, including total stream

length, drainage density and valley density, as well as derivation of

exemplary valley profiles from ArcticDEM, a high-resolution Digital

Elevation Model (DEM) of the Arctic. Drainage density is defined as

the total length of streams divided by the area of their drainage

basin.60,61 On Cape Mamontov Klyk and on the Buor Khaya Penin-

sula, some of the streams and valleys and their catchment areas are

truncated by the southern study area boundary. We nevertheless

included them in our calculations, implicitly assuming that the trun-

cated portions had similar drainage network densities to the portions

included in the study area. In this study, drainage density was thus

defined as the total length of all streams and rivers divided by the

total study area. In addition, valley density was calculated, because

large valleys often have well-developed floodplains with strongly

meandering streams, and a meandering stream has a greater length

than its valley. The valley floodplains were delineated as polygonal

features along the valley floor margins, and their center line was digi-

tized to determine valley length in comparison to stream length.

Valley density was then calculated as the sum of rivers, streams, and

intermittent streams outside valley floodplains and the valley flood-

plain centerlines divided by the total area of the study area. Figure S1

provides an illustration of the difference between drainage density

and valley density and their calculation.

We used GIS datasets from previous studies on Cape Mamontov

Klyk30 and in the Lena Delta34 to quantify the area affected by

F IGURE 1 Regional setting of the study areas (Landsat-7 ETM + mosaic; GeoCoverTM 2000). White outlines mark the spatial extent of
individual study areas. 1 – Ebe-Basyn Island, 2 – Khardang Island, 3 – Dzhangylakh Island, 4 – Kurungnakh Island, 5 – Sobo-Sise Island [Colour
figure can be viewed at wileyonlinelibrary.com]
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thermokarst in order to assess the spatial relationship between

thermo-erosional landforms and thermokarst lakes and basins and to

discuss differences in the predominance of the degradation type

between the study areas in light of regional relief development. On

the Buor Khaya Peninsula, only thermokarst lakes could be delineated

(and not basins), because thermokarst was so widespread that individ-

ual basin boundaries intersected and could not be distinguished

unambiguously. Therefore, the lake area represents an underestimate

of the thermokarst-affected area for the Buor Khaya Peninsula, which

excludes larger dry basins.

Field observations and measurements of thermo-erosional and

fluvial landforms were collected during field campaigns to Cape

Mamontov Klyk in 2003,30,62 to the western Lena Delta in 2005 and

2013,63,64 to Kurungnakh Island in 2008 and in 2013–2018,35,65,66

and to the Buor Khaya Pensinsula in 2010.51 In 2013, 2016, and

2017, valley profiles were measured on Khardang, Kurungnakh and

Sobo-Sise islands with a survey-grade global navigation satellite sys-

tem (GNSS Leica Viva GS10/15) operated in real-time kinematic mode

in 2013 and in static phase observation mode in 2016 and 2017.

Terrain analyses and the extraction of valley transverse profiles

were performed using the ArcticDEM, which is based on

stereophotogrammetrically derived elevations from sub-meter-

resolution satellite imagery.67 We used mosaic tiles of Release 6, v2.0

with a 5-m resolution that were averaged from multiple 2-m-

resolution strip DEMs and provide a consistent data source over large

areas. The suitability of the ArcticDEM to extract thermo-erosional

valley profile characteristics has been confirmed by comparing GNSS-

measured valley profiles with those extracted from the ArcticDEM at

the same locations (Figure S2).

4 | RESULTS

The summary characteristics of the three study sites are given in

Table 2. Cape Mamontov Klyk is extensively covered with valleys and

streams (Figure 2) and therefore has the highest drainage density

(2.0). The drainage densities for the Lena Delta and Buor Khaya

Peninsula are lower (0.9 and 1.0, respectively). Valley densities are

similar or equal to the drainage densities, implying that meandering

streams in wide floodplains represent only a small proportion of the

drainage system in each study area, which is also indicated by their

low percentages of floodplain area.

4.1 | Drainage patterns of thermo-erosional valley
networks

Cape Mamontov Klyk is characterized by extensive valley networks

(Figure 2a). They start on and route across the Yedoma uplands and

end at the coast. Some of them cross the whole study area from the

Pronchishchev Ridge in the south to the Laptev Sea coast in the north.

Smaller networks also start or end in thermokarst lakes and alasses.

The network patterns vary from dendritic to pinnate and trellis-like

drainage (Figure 3a, b). In the pinnate and trellis-like drainage form,

short, straight, almost parallel headwater channels join the long, low-

gradient valley channels at acute and right angles, respectively.

In the Lena River Delta, extensive dendritic and pinnate to trellis-

like valley networks occur only on Khardang Island (Figure 2b), which

is the largest and highest part of the delta's third terrace, exhibiting

the greatest distance between its interior and the margins. Most com-

mon in the Lena Delta are short thermo-erosional valleys (up to 2 km

long, sometimes with short tributary valleys) that run roughly perpen-

dicular to the edges of the islands, where steep cliffs form an abrupt

transition between the Yedoma uplands and the delta channels and

their floodplains (Figure 3c). Longer valleys often interconnect alasses

and discharge into the delta channels. They can be several kilometers

long and have several tributary valleys or streams (Figure 3d).

All these valley types also occur on the Buor Khaya Peninsula.

However, the predominant type here are long valleys and streams

that extend from the interior to the coast. They have an irregular

course following the ice-wedge polygonal pattern of the deposits, in

which they formed (Figures 2c, 3e). They do bifurcate, but at intervals

of several kilometers. In between they feature frequent, very short

(a few hundred meters long), parallel-sided valleys almost perpendicu-

lar to the main valley. In some areas this pattern resembles a trellis-

like form; in areas where the tributaries bend along the polygonal

TABLE 1 Overview of the spatial properties of the data sources used for the compilation of the dataset of thermo-erosional landforms
analyzed in this study59

Location Source data for digitization of thermo-erosional landforms Year

Map scale; ground

resolution

Cape Mamontov

Klyk

Rivers, streams, intermittent streams Topographic maps 1970s 1:100,000

Smaller gullies and valleys not captured in the

topographic maps

Landsat-7 ETM+, pan 2000 15 m

Hexagon 1975 10 m

Lena River Delta Thermo-erosional landforms Landsat-7

ETM + mosaic

2000,

2001

30 m

Hexagon mosaic 1975 10 m

Buor Khaya

Peninsula

Thermo-erosional landforms Rapid eye 2010 6.5 m
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network at almost right angles further upstream, it shows rectangular-

like forms. These valley systems occur on the few remaining Yedoma

uplands as well as in the extensive flat and lower elevation areas that

have resulted from thermokarst subsidence. Sometimes they even

start in low areas and then cut throughYedoma remnants that are ele-

vated up to 20 m above these low areas.

In all three study areas, straight, short gullies are often radially

located around alasses and thermokarst lakes (Figure 3f). They start

on the Yedoma uplands, cut into the slopes, and end abruptly at the

foot of the alas slope or at the lake level.

4.2 | Valley and stream channel morphology

The valley profiles are similar in all three study areas. Short tribu-

tary valleys typically have a straight longitudinal course (low sinu-

osity) (Figure 3) with a moderate gradient and V-shaped transverse

profiles (Figure 4d). Higher order and main valleys have a higher

sinuosity (Figure 3a, b, e) and low gradient. Narrow valleys with a

V- or U-shaped transverse profile meander at sharp angles, obvi-

ously following the ice-wedge polygonal network (Figure 3a, e).

Broader valleys with a U-shaped transverse profile (Figure 4f) tend

to straighten in their longitudinal course (lower sinuosity), but the

streams on their floors are meandering with high sinuosity. The

broad valleys with large floodplains (Figure 4g) have a smoothly

meandering river and oxbow and small thermokarst lakes. The

maximum widths of these valley floodplains are 4.5, 1.0, and

1.5 km in the Cape Mamontov Klyk, Lena Delta, and Buor Khaya

Peninsula study areas, respectively. Streams in alasses and some of

the rivers in the large, flat, low-elevation areas of the Buor Khaya

Peninsula meander and are often only up to a few meters indented

into the surface. The maximum valley depth measured in any

transverse ArcticDEM profile is about 35, 35, and 25 m in the

Cape Mamontov Klyk, Lena Delta, and Buor Khaya Peninsula study

area, respectively (Table 2).

4.3 | Categorization of thermo-erosional valleys

Based on the results of spatial analyses and field observations

(Figure 5) we categorize the thermo-erosional landforms in the study

area into the following types (Table 3):

1. Short, straight gullies around thermokarst lakes and alasses cut

down to 10 m deep into the slopes of the thermokarst features and

mostly follow the same gradient as the slope, as indicated by the uni-

form width of the bank slopes along the gullies (Table 3a, Figure 4a).

They are densely covered with more vital and higher growing wet

sedge tundra vegetation than the surrounding slope sections.

2. In alasses, small streams often occur as drainage pathways and

connect residual and secondary thermokarst lakes on the alas floor

with the hydrological system outside the alasses. In cases of cata-

strophic drainage of large thermokarst lakes, the draining water cuts

outflow channels into the unfrozen soft sediments at the lake bottom

that persist as valleys on the floor of the newly formed alas and that

can reach 20 m depth (Table 3b, Figure 4b).

3. Deep V-shaped ravines (Table 3c, Figure 4c) were observed

along the cliffs of Cape Mamontov Klyk and the Lena Delta Yedoma

Ice Complex islands (Figure 5f) and along the coasts of the Buor Khaya

Peninsula (Figure 5g). They have a steep gradient, because they

descend from the Yedoma uplands with elevations of up to 50 m to

river or sea level over a short distance of only a few tens to hundreds

of meters. Their lower bank slopes and floors are characterized by

strong soil disturbance and active erosion and often are free of vege-

tation. Some of these ravines have formed due to the drainage of

thermokarst lakes.

TABLE 2 Summary characteristics of the three study sites and
their thermo-erosional and thermokarst landforms

Cape

Mamontov
Klyk

Lena
Delta

Buor

Khaya
Peninsula

Study area (km2) 2,109 1,690 2,001

Max. relief height (m a.s.l.) 75.5 66 65

Min. relief height (m a.s.l.) 0 0 0

Min. distance between

highest and lowest relief

parts (km)

22 7 7

Total stream length (km)a 4,153 1,541 2,047

Drainage density (km/km2) 2.0 0.9 1.0

Valley floodplains (km2) 203.8 8.2 25.6

Floodplain area percentage

of study site (%)

9.7 0.5 1.3

Maximum floodplain width

(km)

4.5 1 1.5

Total length of valley

floodplain centerlines

(km)

199 25 38

Max. valley depth (m) 35 35 25

Total valley length (km)b 3,877 1,541 1,954

Valley density (km/km2) 1.8 0.9 1.0

Alasses (km2) 418.2d 337.7e n.d.

Thermokarst lakes (km2) 158.2d 88.3e 192.9

Thermokarst lakes on

Yedoma uplands (km2)

23.0d 37.4e n.d.

Total area affected by

thermokarst lakes and

alasses (km2)c

441.2d 375.1e n.d.

Thermokarst areal

percentage of study site

(%)

20.9d 22.2e n.d.

aCalculated as the sum of all rivers, streams, and intermittent streams.
bCalculated as the sum of rivers, streams, and intermittent streams outside

valley floodplains and the valley floodplain centerlines.
cCalculated as the sum of thermokarst lakes onYedoma uplands and

thermokarst basins.
dData based on Grosse et al. (2006).30

eData from Morgenstern et al. (2011).34

n.d. – not determined due to lack of data for alas extent.
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4. Another type of V-shaped valley is the small tributary type

described in section 4.2 (Table 3d, Figure 4d). They are much wider (up to

hundreds of meters) than the V-shaped ravines (tens of meters wide)

and longer (hundreds of meters) and therefore have more gentle slopes

in cross-section and a moderate to low gradient in longitudinal profile.

5. U-shaped valleys are widely distributed in the study areas

(Table 3e, Figure 4e). Their cross profiles are characterized by steep

slopes that transition abruptly to a flat valley floor, which can be sev-

eral tens of meters wide (Figure 5d). These valleys often follow the

polygonal network and can bend at 90� angles.

6. The larger type of U-shaped valley (Table 3f, Figure 4f) is much

wider with more gentle slopes in cross profile and occupied by perma-

nent streams.

7. Broad valleys with fluvial floodplains are found in the lower eleva-

tion regions of the Cape Mamontov Klyk and Buor Khaya Peninsula

study areas close to the coast. The streams and rivers in these valleys

meander with high sinuosity (Table 3g, Figure 4g).Transitions between

these valley categories downstream are common, but they are not exclu-

sively unidirectional and smooth. In the Cape Mamontov Klyk area we

observed, for example, a meandering valley with a U-shaped profile and

a small stream in the upper valley section that abruptly transitioned into

a V-shaped ravine with disturbed soil and vegetation cover at the loca-

tion of a rapid drop in elevation (Figure 5b).

In addition to these different valley landforms, we also observed

parallel water tracks on slightly inclined Yedoma uplands and alas

floors (Table 3h). These water tracks are not included in our analyses,

because they are not or are only slightly incised into the surface. Simi-

lar features have been described for hill slopes in other regions and

are sometimes referred to as dells.31,68–72

5 | DISCUSSION

5.1 | Data accuracy

The geo-dataset of thermo-erosional landforms analyzed in this study

was compiled using existing datasets that had been mapped based on

topographical maps and satellite imagery with differences in spatial

F IGURE 2 Overview of all digitized thermo-erosional and thermokarst landforms in the study areas. (a) Cape Mamontov Klyk; (b) Lena River
Delta area: 1 – Ebe-Basyn Island, 2 – Khardang Island, 3 – Dzhangylakh Island, 4 – Kurungnakh Island, 5 – Sobo-Sise Island; (c) Buor Khaya
Peninsula [Colour figure can be viewed at wileyonlinelibrary.com]
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resolution and acquisition times between the study areas (Table 1).

Due to this heterogeneity of the dataset, we cannot entirely exclude

differences in the degree of mapping completeness and hence the

representation of the lateral extent of thermo-erosional landforms

between the three study areas. In this case, these differences would

have propagated into the results of the analyses of spatial metrics for

a particular area, such as total stream length or drainage density

(Table 2). Regarding the subsequent comparison between the study

areas, in an unfavorable case this could have added up to

inconsistencies with the potential to decrease the validity of this

cross-area comparison. However, we consider these effects to be

minimal for the following reasons.

The best ground resolution of the satellite data used as a basis for

the mapping of thermo-erosional landforms was 10 m for the Cape

Mamontov Klyk and Lena Delta areas and 6.5 m for the Buor Khaya

Peninsula. This ground resolution sufficiently allowed for the detec-

tion of all major thermo-erosional landforms analyzed in this study.

Even though landforms of the smaller categories can be <10 m wide

F IGURE 3 Examples of different drainage patterns in the study area: (a) extensive dendritic valleys, Cape Mamontov Klyk; (b) extensive valley
networks with irregular drainage patterns including dendritic, pinnate, and trellis-like forms, Cape Mamontov Klyk; (c) short parallel valleys along
the ice complex margin, Lena River Delta; (d) drainage pathways in alasses, Lena River Delta; (e) extensive valleys with sharp meanders and short
contributing valleys, Buor Khaya Peninsula; (f) straight, short radial gullies around thermokarst lakes and on alas slopes, Lena River Delta. For

legend see Figure 2 [Colour figure can be viewed at wileyonlinelibrary.com]

F IGURE 4 Examples of transverse profiles of different valley types extracted from the ArcticDEM (letters correspond to the categories in
Table 3; category (h) is not shown because of their shallow depth): (a) short, straight gully on alas slope; (b) drainage pathway in alas; (c) V-shaped
ravine; (d) V-shaped valley with a straight thalweg of an intermittent stream; (e) U-shaped valley with a straight thalweg of an intermittent or
small permanent stream; (f) U-shaped valley with a meandering thalweg of a permanent stream; (g) broad valley floodplain with a large
meandering river and small oxbow and thermokarst lakes
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(Table 3), they are in most cases still recognizable in satellite imagery

of 10-m ground resolution due to mixed-pixel effects caused by the

differing spectral reflectance between the two opposite slopes of the

landforms and between the slopes and the surrounding surface. This

effect was the reason for the main mapping criterion being the clear

incision of the landform into the surface, which we introduced in the

Methods section.

Topographic maps were the coarsest-resolution dataset and were

expected to have some degree of generalization. They were the initial

mapping basis for the hydrological features in the Cape Mamontov

Klyk area. Subsequently, satellite data were used for mapping smaller

gullies and valleys not captured in the topographic maps. A small por-

tion of the western study area was not covered by the Hexagon imag-

ery (10-m resolution), only by the Landsat imagery (15-m resolution).

However, because the highest drainage density was observed around

Cape Mamontov Klyk, any higher resolution datasets here would have

increased not only the drainage density metric for the site, but even

more would have pronounced the differences to the other sites. On

the Buor Khaya Peninsula, a low drainage density was observed based

on consistent high-resolution RapidEye imagery (6.5 m), resulting in a

high degree of mapping completeness. If we had applied similar

coarser resolution datasets as in the other study areas also here, it

F IGURE 5 Examples of gullies,
valleys, and streams on Cape Mamontov
Klyk (a–d), Kurungnakh Island, Lena Delta
(e, f), and Buor Khaya Peninsula (g, h).
(a) Gully initiation due to melting
polygonal ice wedges. (b) Erosion and
disturbed vegetation cover due to strong
discharge in an intermittent stream.
(c) Strongly meandering permanent

stream that is eroding the ice-rich
permafrost along the outer banks. (d) U-
shaped valley with a broad, flat, densely
vegetated floor and little surface water
flow. (e) V-shaped valley on the floor of a
large alas that formed when the primary
thermokarst lake was tapped by the
neighboring delta channel. The lake
drained catastrophically and washed
away the unfrozen, predominantly sandy
sediments from the lake bottom into the
delta channel, whose water level was
several meters below the lake floor. (f)
Deep, V-shaped valley that retrogressed
into the permafrost and drained a small
thermokarst lake between 1975 and
2000. Slopes in the lower stratigraphic
sand unit are much steeper and less
vegetated than in the upper Yedoma Ice
Complex unit, where baydzharakhs are
present. See log on valley floor for scale.
(g) V-shaped valley with small side valleys
along polygonal ice wedges and disturbed
vegetation cover on the floor and lower
parts of the slopes. Position is about
150 m from the coast. (h) Smoothly
meandering valley with gentle slopes
[Colour figure can be viewed at
wileyonlinelibrary.com]
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would have decreased the drainage density for the Buor Khaya site,

thus further emphasizing differences between the study sites.

Our field observations indicate that the only thermo-erosional

landforms not readily detected with these datasets are fresh gullies

that were developing along the polygonal network by melting of ice

wedges but had not yet eroded the adjacent sediments and therefore

had not developed slopes. Such gullies are constrained to actively

eroding source zones of currently developing and/or expanding

thermo-erosional valleys and usually extend less than a few tens of

meters in length. We estimate that these thermo-erosional landforms

below the detection limit of this study account for less than 1% of

thermo-erosional landforms in the study region. This estimation is

supported by a change detection study, which analyzed the lateral

expansion of thermo-erosional valleys for parts of the Lena Delta

study site based on Hexagon data from 1975 and RapidEye data from

2010/2011.73 This study found lateral changes of about 1.3%. In addi-

tion, this change detection study supports the assumption that the

proportion of thermo-erosional landforms that developed after the

Hexagon acquisition date, but could not be detected in the more

recent Landsat imagery because of its coarser ground resolution, is

negligible. A change in total stream length by +1% would change the

drainage densities only in the second decimal place for all three study

areas. However, increased activation of thermo-erosional processes

can be expected under Arctic warming, and future investigations

should take advantage of satellite imagery of higher ground resolution

that are recently becoming increasingly available for the Arctic region.

5.2 | Conceptual models of valley formation and
evolution

In the following, we propose conceptual models of the formation and

evolution of thermo-erosional landforms in the study region. In the

first part, we focus on the individual valley categories that we distin-

guished in section 4.3 and which occur in all three study areas. In the

second part, we discuss the factors and conditions that led to regional

differences in the evolution of the study areas and their valley

networks.

5.2.1 | Valley categories

The short, straight gullies on the slopes of thermokarst lakes and

alasses (Figure 3f, Table 3a) form due to concentrated surface runoff

from the Yedoma uplands into the lakes and alasses. Sediments are

transported down slope and can form small alluvial fans on alas

floors.35 Snow accumulating in gullies, niches, and valleys promotes

further erosion, because it insulates the permafrost from low temper-

atures during winter and supplies more runoff during snowmelt in

spring. This nivation feedback is also important for all other valley

types described in this study.

The drainage pathways in alasses (Figure 3d, Table 3b) as well as

a large percentage of the streams on the degraded surface of the Buor

Khaya Peninsula (Figure 3e) are either primary pathways created dur-

ing the drainage of thermokarst lakes or secondary pathways that

formed after permafrost aggradation in alasses. Figure 5e shows a

very large and deep example of the first drainage pathway type. It

formed by eroding as deep as 10 m into the unfrozen sediments of a

suddenly drained large lake. The second type often forms along Holo-

cene polygonal ice-wedge networks on alas floors when precipitation

and snowmelt water collects in polygon troughs and discharges to

lower elevation areas and into larger drainage streams and valleys.

Similar polygon-assisted stream incisions were also observed because

of the changing hydraulic conductivity of polygon wedges

vs. interiors, in addition to the topographic driver.74 The polygon tro-

ughs widen, and in cases where small ponds form at polygon junc-

tions, beaded drainage occurs.3,35 Larger streams further erode the

alas floor so that they are no longer confined to the ice-wedge poly-

gon network, creating smoothly meandering valleys with gentle slopes

and without back-wasting by polygon block failure (Figure 5h), but

evolving similarly to the other permanent streams in the study areas

as described below.

V-shaped ravines at steep Yedoma cliffs (Figure 3c, Table 3c) are

shaped by rapid headward erosion. They initiate at small incisions in

cliff edges often where large ice wedges melt, and erosion is

reinforced due to accumulating snow and melt water runoff until they

stabilize and transform to other morphological valley types when

approaching equilibrium between erosion and sedimentation.

Headward erosion occurs along the ice-wedge network at rates of up

to several tens of meters per year.14 Such ravines propagate inland

and may tap thermokarst lakes, leading to abrupt drainage and

resulting in strong deepening and widening by thermal erosion during

the drainage event (Figure 5f). When erosion slows down they

become completely vegetated.

The V-shaped valleys (Table 3d), U-shaped valleys (Table 3e),

and valleys of permanent streams (Table 3f) are usually part of

extensive valley networks and evolve as an interdependent hydro-

logic system. Their development on the slightly inclined surface of

the Yedoma uplands starts from slight depressions that concentrate

the intermittent surface runoff, such as water tracks or dells

(Table 3f). Due to active layer deepening and sediment outwash by

the running water, which can be considerable even with the vegeta-

tion cover remaining intact, the water tracks and depressions

deepen further, thereby creating V-shaped valleys with long, slightly

inclined slopes (Figure 4d). In areas of higher relief, valley initiation

can also occur by gullying along polygonal ice-wedge systems. Due

to the confluence of several valleys, more water accumulates down-

stream, so that further valley development is characterized by an

intensification of the erosion laterally as well as to depth, but

nivation and solifluction may even play a more effective role in the

lateral erosion and widening of the valleys. As a result, the valley

shapes transform from V to U.

Finally, when large permanent streams become meandering riv-

ers, broad floodplains develop. One scenario is when the erosional

base rises in the course of sea transgression or tectonic downward

movements, decreasing flow velocities and incision intensity while

10 MORGENSTERN ET AL.



enhancing valley widening through bank cutting. In addition, larger

rivers in the Mamontov Klyk area (Urasalakh River) have their

source in a mountain ridge with exposed bedrock and may therefore

have a braided stream origin. Once coarse sediment supply ceases,

braiding intensity decreases, and distinct channels form.75 In the

case of abrupt elevation changes, for example at the junctions of

streams or valleys of different orders, valley transverse profiles can

change from one type to another. Figure 5b shows such an example,

where a steep V-shaped ravine is retrograding into a small and shal-

low U-shaped valley.

5.2.2 | Evolution of the valley networks

The study areas differ greatly in terms of drainage patterns and densi-

ties as well as in the distribution of the different valley categories and

thermokarst landforms, even though they all represent Yedoma Ice

Complex settings. This implies that factors and conditions governing

valley evolution and Yedoma Ice Complex degradation must have

affected the study areas differently. Here we propose a conceptual

model including regional landscape evolution and site-specific devel-

opment that led to the present-day valley network characteristics

(Figure 6).

In the study region, development of the modern hydrological sys-

tem began with the Lateglacial/early Holocene transition period,

when accumulation of the Yedoma Ice Complex deposits ceased and

the regional climate shifted to warmer and wetter conditions, promot-

ing the activation of rivers and widespread permafrost

degradation.31,34,46–48,58 The coastline of the Laptev Sea was located

several hundred kilometers further north during that period,76 and

extensive ice-rich permafrost lowlands with low gradients provided

favorable conditions for thermokarst (Figure 6a).

Thermokarst processes slowed down substantially with mid- to

late Holocene cooling35,58,77 and the transgressing Laptev Sea

reached its modern position about 5 cal. ka BP (Figure 6b).76 While

the transgressing shoreline caused lower gradients for the study area

regionally, higher gradients developed locally along the coasts due to

wave abrasion and coastal erosion. Steep slopes around thermokarst

lakes and basins developed during subsidence tens of meters deep

into the Yedoma Ice Complex surface. Both processes provided

steeper gradients over shorter distances, fueling more extensive valley

formation.22,78,79 This is most clearly expressed at Cape Mamontov

Klyk, where a steep cliff up to 30 m high was formed by coastal ero-

sion (Figure 6c). In the Lena Delta, the Yedoma surface was cut off

from the mountain ranges to the south as well as from the accumula-

tion plains to the north by large deltaic channels and has been eroded

into small disconnected remnants. They are now elevated up to 66 m

above deltaic streams and floodplains, with higher relief in the

western than in the eastern delta (Figure 6d).44,47 The Buor Khaya

Peninsula was strongly affected by thermokarst processes, which

degraded a large proportion of the Yedoma Ice Complex deposits

(85–90% of total area),80 leaving only remnants of undisturbed

Yedoma uplands on a low-elevation plain (Figure 6e). We argue that

this marked difference between the western and eastern region

reflects neotectonic activity (Figure 6b).

The study region is seismotectonically very active, because it is

located at the zone of intense deformation between the North

American and Eurasian plates,81,82 which transforms from extension

in the Laptev Sea to transgression further south.83–85 Modern seis-

micity records86 show particularly high concentrations of earthquake

epicenters with magnitudes of up to 5 along the Olenyokskaya and

Bykovsky channels bordering the Lena Delta to the south. In the Lena

Delta, a dichotomy between uplift in the western and subsidence in

the eastern part has been inferred from stratigraphic investiga-

tions.33,45 Tectonic movements of high amplitudes (30 m and more)

are reported for the Holocene.87 Khardang Island, which is the largest

island of the third Lena Delta terrace, has an elevated central part in

the east originating from block uplift.33 The differing land surface

inclinations of other islands of the third terrace also indicate

neotectonic movements since at least the late Pleistocene. We

assume a consistent inclination from the mountain ranges to the sea

for the original late Pleistocene accumulation plain, i.e. from SSW

(high) to NNE (low). The erosional remnants of this accumulation plain,

which today form the third Lena Delta terrace, should in general show

the same inclination. However, the planar surface of the Yedoma

upland of Kurungnakh Island is inclined from SE to NW and the sur-

face of Dzhangylakh Island from NNE to SSW. Khardang Island shows

an even more complex situation with its central block uplift in the

eastern part and an inclination from N to S in the western part of the

island. The Buor Khaya Pensinsula is situated in an area of subsidence,

the Omoloi Graben, and therefore provides conditions similar to the

eastern subsiding Lena Delta sector, whereas the Cape Mamontov

Klyk area is situated in the Lena–Taimyr Uplift and is comparable to

the third terrace islands in the western Lena Delta section.81

Previous studies reported that in regions of tectonic uplift, per-

mafrost degradation creates distinct landforms that are deeply incised

into the ice-rich deposits, and thermal erosion dominates over

thermokarst, whereas the surface in lowered regions degrades almost

completely and predominantly by thermokarst.58,88 We can confirm

this statement for our study region in which the characteristics of the

degradational landforms and the present-day elevation represent an

uplift situation in the western part of the study region and a subsi-

dence situation in the eastern part. At Mamontov Klyk, degradational

landforms are deeply incised into the Yedoma surface, and thermo-

erosional valleys dominate the area, even though very large

thermokarst lakes and alasses also exist (Figure 2). On the Buor Khaya

Peninsula, only a few isolated Yedoma uplands remain and current

thermo-erosional valleys mainly occur on the flat lowland surfaces

that resulted from extensive degradation by thermokarst. In the Lena

Delta, the situation on Khardang Island resembles that in the Cape

Mamontov Klyk area, while the characteristics of the eastern delta are

similar to those on the Buor Khaya Peninsula. Our results thus corrob-

orate the role of neotectonics for setting the context for valley net-

work expression in ice-rich permafrost regions (Figure 6).

In addition to relief, rainfall, infiltration capacity, and other factors

that influence drainage densities and valley morphometry in non-
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arctic regions,60 ground ice plays an important role in ice-rich perma-

frost lowland regions. Besides providing the preconditions for

thermokarst and thermal erosion, its distribution influences stream

and valley formation and evolution.89 Thermal erosion along polygonal

ice-wedge systems, for example, results in the formation of zigzag-

shaped streams.3,14 Linear thermal erosion also plays an important

role in the sediment transport down slope, including intermittent

streams that are only active during the short summers. The large

inflow of talus deposits and solifluction material from the slopes sup-

ports the dominance of lateral over downcutting erosion in the forma-

tion of larger river valleys in permafrost regions, which leads to

strongly meandering rivers in wide valleys and fluvial planation

through channel migration.15,90

Whereas drainage density reflects the contemporary extent of

active streams, valley density is a morphometrical indicator integrating

valley-forming and valley-filling processes in a study region over long

millennial time scales. It therefore accounts for environmental condi-

tions during the formation and persistence of the valleys.91,92 The

modern activity of streams is reflected in the drainage density. Runoff

is generated by rainfall and by melting snow and ground ice. The high

number of intermittent streams contributes substantially to the drain-

age densities, which would be much lower if just permanent streams

were considered. Because rivers and streams with large meanders

only represent a small fraction of all streams mapped, the valley densi-

ties do not or only slightly differ from the drainage densities of the

study areas.

The high valley density in the Cape Mamontov Klyk area (1.8)

compared to the other two study areas (0.9 and 1.0 in the Lena Delta

and on the Buor Khaya Pensinsula, respectively) indicates that fluvial

and thermal erosion found more favorable preconditions for incision

into the Yedoma Ice Complex deposits here. At the same time, sub-

stantial valley formation limited lake formation and enhanced drainage

F IGURE 6 Schematic
overview of processes and
conditions that governed the
evolution of the study areas and
their valley networks (a, b;
background image Landsat-7
ETM + mosaic, GeoCoverTM

2000) and resulting present-day
relief situation (c–e; DEM shaded

reliefs). (a) Lateglacial–Holocene
transition: ceasing Yedoma Ice
Complex accumulation in the
foreland of mountain ranges,
activation of rivers and
widespread thermokarst. (b) Mid-
to late Holocene: coastal erosion
due to transgressing Laptev Sea,
differentiation in prevailing type
of permafrost degradation
between western and eastern
study region due to neotectonic
movements, and formation of the
modern Lena River Delta.
(c) Cape Mamontov Klyk. (d) Lena
River Delta. (e) Buor Khaya
Peninsula. Note that the symbols
for rivers, thermokarst, Yedoma
ice complex, and exposed Laptev
Sea shelf in (a) and (b) are
schematic and do not represent
actual locations of landforms and
boundaries [Colour figure can be
viewed at wileyonlinelibrary.com]
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of existing thermokarst lakes before they may have occupied larger

fractions of the region (Table 2). This implies that dense valley forma-

tion may support protection of Yedoma Ice Complex degradation

from deep thermokarst activity, a finding supporting previous results

from landscape-scale thermokarst lake modeling.36 Minimum dis-

tances between the highest and lowest elevation point in each study

area are longest on Cape Mamontov Klyk (22 km compared to 7 km in

the Lena Delta and on the Buor Khaya Pensinsula); it is the largest

study area, and represents a homogenously inclined surface from the

mountain ranges to the coast. Runoff here takes place over distances

of tens of kilometers. In addition, valley heads and their watersheds

are not exclusively situated inside the study area, but start in the

Pronchishchev Ridge, whose runoff is added to the water supplied by

precipitation and melt water from thawing permafrost within the

study area. This water source continues to affect the area, as evident

from the much larger areal extent of valley floodplains with mostly

meandering permanent streams and rivers on Cape Mamontov Klyk

and from the higher values of drainage density compared to valley

density (Table 2).

In the Lena River Delta study area, valleys are predominantly

short (up to 2 km long) and rarely form extensive networks. They are

aligned along the steep cliffs of the small islands and cut deep into the

Yedoma Ice Complex and underlying sands along large ice-wedge sys-

tems perpendicular to the islands' margins. This pattern confirms that

valley formation on the Lena Delta Yedoma uplands must have

occurred after they were cut off from the hinterland by delta channels

and do not represent residual fractions of previously existent valleys.

Due to the short distances between the interior of theYedoma islands

and their margins (<10 km), the valleys follow a high gradient, which

favors erosion. On the other hand, the watersheds are small and thus

the supply of running surface water as an eroding agent on the

Yedoma uplands is very limited. For the same reason, larger streams

are rare, which is also reflected by the smallest valley floodplain area

of all three study areas (8.2 km2) and by the smallest maximum flood-

plain width (1 km) (Table 2). Modern changes in the thermo-erosional

valleys are stimulated by erosion from actively shifting deltaic chan-

nels, where the channels either erode the islands' margins93 or accu-

mulate new sediment in front of islands.

On the Buor Khaya Peninsula, the surface of the study area is

slightly inclined from the water divide in the center to the Buor Khaya

Bay coast in the east and the Yana Bay coast in the west; steep gradi-

ents are only found around the Yedoma remnants. Therefore, the

majority of the streams do not occupy deep valleys in thick Yedoma

Ice Complex deposits, but cut a few meters deep into the lower sur-

faces previously degraded by thermokarst. Most of them probably do

not indicate the location of former valleys that had formed on the

Yedoma uplands during the Lateglacial/early Holocene transition,

because they are either drainage channels of thermokarst lakes or

formed on refrozen extensive and nested alasses as drainage path-

ways through flat, low-elevation areas. This is also supported by the

trellis or rectangular-like drainage pattern that predominantly follows

the polygonal pattern of Holocene permafrost deposits. In contrast to

the Cape Mamontov Klyk area, where additional water is supplied

from the Pronchishchev Ridge, discharge on the Buor Khaya Peninsula

originates from local precipitation and melting ground ice only. Water

supply is therefore limited in a similar fashion to that in the Lena Delta

area. However, on the Buor Khaya Peninsula longer permanent

streams and even rivers and larger floodplains exist, which can be

explained by the lower overall gradient of this study area compared to

the Lena Delta.

We conclude that the characteristics of the present-day valley

networks in the study region reflect the climate and relief conditions,

including neotectonics, during the middle and late Holocene. This is

supported by late Holocene radiocarbon ages of valley fillings on Cape

Mamontov Klyk.46 The present-day cryolithology of the study areas is

also a result of the described relief situations. The widespread

thermokarst development in the lowered regions led to the thawing

and compaction of the Yedoma Ice Complex deposits over extended

areas, with a lower ice volume at the landscape scale. Even though

aggrading Holocene permafrost on these degraded surfaces can also

be ice-rich, the large ice volume of the late Pleistocene deposits as

well as their initial surface level is not reached. In the uplifted areas,

thermal erosion has been the dominant type of permafrost degrada-

tion. In the valleys, the Yedoma Ice Complex has thawed and much of

the sediment eroded, and in alasses, the Yedoma Ice Complex

deposits have been transformed similarly to those in the lowered

regions. Largely undegraded Yedoma uplands remained in some areas

that still feature the original late Pleistocene deposits with high ice

contents.

The altered cryolithological conditions in degraded parts of the

landscape considerably influence the morphometric characteristics of

subsequently evolving degradational landforms. Newly developing

thermokarst and thermo-erosional processes are generally restricted

in depth because of the lower total ice volume.34,35 Lakes in alasses

have maximum depths of about 4 m, while alasses themselves are up

to 35 m deep.34 Similarly, thermo-erosional valleys in degraded areas

are up to about 10 m deep, while those that have incised intoYedoma

surfaces reach maximum depths of 35 m. Thermo-erosional valleys

that form on Yedoma uplands mostly follow a steeper gradient and

develop dendritic networks, whereas streams that drain flat degraded

surfaces follow a more longitudinal course over small gradients.

In a warming Arctic with active-layer deepening94 and precipita-

tion regime shifts,95 permafrost degradation is expected to increase.

The consequences of this increase include more thermal erosion and

thermokarst, intensified organic matter cycling, and release as well as

shifts in the seasonality and intensity of the hydrological regime.10,96

In the landscapes analyzed in this study, this will lead to an expansion

of the stream and valley networks and enhanced thermokarst dynam-

ics, including lake formation and drainage with subsequent permafrost

aggradation. Re-activation of degradation processes on previously

degraded surfaces will potentially have a greater share than those on

Yedoma uplands. Further lateral expansion of thermo-erosional land-

forms on undisturbed Yedoma surfaces requires a change in the base

level of erosion, wherever the existing hydrological network has

reached a stable state with respect to the local and regional relief con-

ditions. Future changes of the baseline of erosion are possible as a
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result of thermokarst lake drainage and thaw subsidence, changes in

the course of the river channels in the Lena Delta affecting the bor-

ders of the Yedoma remnants, coastal erosion, sea-level rise, and

neotectonic activity.

6 | CONCLUSION

Valley and stream networks in East Siberia reflect the late Holocene

development of the regional hydrological system in extensive coastal

lowlands. They developed in more pronounced relief that formed due

to the eroding effects of the transgressed Laptev Sea, delta channels,

and thermokarst subsidence. The morphology and spatial distribution

of the valley systems vary greatly from west to east and depend on

the (a) regional slope, (b) size of the catchments, and (c) previous deg-

radation of the initial Yedoma Ice Complex surface by thermokarst.

In the Cape Mamontov Klyk area, extensive valley networks of

dendritic, pinnate, and trellis-like patterns have formed on a broad

Yedoma Ice Complex plain between the Pronchishchev mountain

range and the Laptev Sea. Large catchments and runoff from this

mountain range led to the formation of permanent rivers and deeply

incised valleys, which also prevented formation of widespread

thermokarst lakes. In the Lena River Delta, predominantly short, but

deep valleys have steeply incised into the small Yedoma Ice Complex

remnants, and extensive networks occur only on the largest island

Khardang. Streams and valleys on the Buor Khaya Peninsula mainly

evolved on low surfaces that had been degraded by extensive

thermokarst. The valley networks display an irregular pattern with

long main valleys and short tributaries, which often follow the ice-

wedge polygonal pattern of the degraded surfaces.

Differences in topography and the predominance of one type of

permafrost degradation, thermokarst or thermal erosion, over the

other can partly be attributed to neotectonic activity. In the elevated

areas of the western part of the study region thermo-erosional land-

forms dominate the landscape and the original Yedoma Ice Complex

surface between the degradational landforms has mostly been pre-

served, while in the lowered eastern parts it has been almost

completely eroded, mainly by thermokarst.

The valley formation processes in all three study areas were

strongly influenced by the thermal erosion of juvenile ice-rich, fine-

grained permafrost deposits, on the original Yedoma Ice Complex

land surface as well as in the secondary polygonal tundra of ther-

mally degraded and mechanically reworked surfaces. The abundance

of valleys and streams shows that thermal erosion played a key role

in past degradation. Most of the valleys that developed during the

late Holocene appear largely stabilized, but thermal erosion con-

tinues to be active today. Under continued Arctic warming with

increasing permafrost temperatures, active layer depths, and chang-

ing precipitation patterns, thermal erosion might substantially con-

tribute to further degradation of ground ice-rich permafrost

landscapes. On the other hand, the existing valley network also has

stabilizing effects on the tundra landscape, such as leveling of gradi-

ents and inhibition of thermokarst processes by enhancing lake

drainage. Therefore, in addition to better-known thermokarst land-

forms such as lakes and basins, existing thermo-erosional valley

landforms and their further development have the capacity to affect

biogeochemical and hydrological cycling of large Arctic regions by

triggering events, controlling their magnitude, and moderating their

timing.
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