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Summary 

Along temperate to polar rocky shorelines, marine forests are formed by populations of large brown 

algae known as kelps (sensu lato, several orders in the family Phaeophyceae; sensu stricto, 

Laminariales). Kelps provide a three-dimensional habitat for many associated species, they bind and 

sequester carbon, contribute to coastal protection, extract nutrients from seawater, and are processed 

industrially for valuable compounds. Ocean warming is posing an increasing threat to kelps at their 

warm range edges and first range shifts have been recorded. For these sessile species unable to 

migrate, trait variability due to phenotypic plasticity and genetic variation is an important mechanism 

of response to environmental change. Meanwhile, evidence is accumulating for high trait variability 

among populations and individuals within kelp species, showing potential of marine forests to cope 

with ocean warming. However, these potentially interactive levels of variability have not been 

integrated yet for a single species. The aim of this dissertation was thus to produce a comprehensive 

assessment of the variation and plasticity of thermal traits across populations and life cycle stages of 

a keystone marine forest species, the cold-temperate to Arctic kelp Laminaria digitata.  

To identify differentiation in heat resilience among L. digitata populations across the species’ entire 

Northeast Atlantic to Arctic distribution range, I conducted a common garden heat stress experiment 

applying 15–23°C on sporophyte meristem tissue (Publication I). The upper thermal tolerance of L. 

digitata was nearly identical as material from all populations ceased growth following an exposure 

of 23°C for five days. However, subtle differences in growth and stress responses were revealed for 

three populations from the species’ ecological range margins. Two populations at the species’ warm 

distribution limit showed higher temperature tolerance compared to other populations. At 19–23°C, 

L. digitata from Quiberon (France) was most resilient in growth while material from Helgoland 

(North Sea) showed reduced stress responses in photosynthetic quantum yield and xanthophyll 

pigment accumulation. In L. digitata from the northernmost population of Spitsbergen (Norway), 

quantum yield indicated the highest heat sensitivity. Microsatellite genotyping revealed all sampled 

populations to be genetically distinct, with a strong hierarchical structure between southern and 

northern clades. The divergence of L. digitata into distinct clades may have facilitated phenotypic 

differentiation among populations at large spatial scales. 

On a smaller scale, I investigated how temperature experienced during the life cycle affects 

phenotypic plasticity across haploid gametophyte and diploid sporophyte generations (Publication 

II). Five distinct genetic lines were initiated by separately releasing meiospores from five wild L. 

digitata sporophytes from Helgoland. Genetic lines were cultivated at the contrasting temperatures 

of 5 and 15°C in a full-factorial approach across three steps: (1) from meiospore germination over 

gametogenesis to recruitment of offspring sporophytes, (2) rearing of juvenile sporophytes and (3) a 

12-day experiment assessing thermal plasticity of 3–4 month-old offspring sporophytes. This created 

a total of eight temperature history treatments within each genetic line. Gametogenesis and 
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sporophyte recruitment at 5°C promoted generally increased growth of juvenile sporophytes across 

experimental temperatures and genetic lines. In contrast, growth and biochemical trait performance 

at 5 or 15°C differed among genetic lines, partially even showing opposite response patterns, which 

indicates genetic variation for phenotypic plasticity. Interestingly, genetic variation for plasticity was 

only significant in sporophytes which had been reared at 5°C. A subsequent experiment (Master’s 

thesis, C. Gauci) provided evidence for increased resilience of sporophytes at extreme temperatures 

(0 and 20°C) if they were recruited from gametophytes which had been pre-cultivated for three years 

at 5°C in contrast to pre-cultivation at 15°C. Both experiments provide evidence for non-genetic 

carry-over and cross-generational effects which modulated trait plasticity of L. digitata and provided 

benefits following cold temperature during reproduction and ontogeny.  

Additionally to non-genetic effects, I investigated genetic inheritance of thermal traits by making use 

of the genetic and physiological differentiation among Helgoland and Spitsbergen L. digitata 

(Publication III). Sporophyte lineages produced by in- and outbreeding of gametophyte isolates 

from the two populations were subjected to sublethal and lethal temperatures in two common garden 

experiments. In the first experiment on microscopic sporophytes, the upper survival temperature over 

14 days was lower for the inbred Spitsbergen selfing (21°C) than for the Helgoland selfing and the 

outbred reciprocal crosses (22°C), which indicates mid-parent heterosis in the crosses. In the second 

experiment, I subjected macroscopic sporophytes to a control temperature (10°C), moderate (19°C) 

and critical heat stress (20.5°C) to assess metabolic regulation via whole-transcriptome analysis in 

addition to physiological parameters. The Spitsbergen selfing died within seven days in the heat 

treatments and showed the highest differential gene expression among the lineages at 10°C. 

Considering only the three surviving lineages at 20.5°C, differential gene expression was reduced in 

the reciprocal crosses compared to the Helgoland selfing, despite their similar physiological 

responses in growth and optimum quantum yield. Among the identified transcripts, gene expression 

related to cellular stress responses was reduced in the reciprocal crosses compared to the Helgoland 

selfing at 20.5°C. These results imply that thermal traits are inherited from both female and male 

gametophyte parents. In addition, the intraspecific crosses maintained a similar physiology to the 

inbred Helgoland selfing with reduced metabolic regulation during sublethal heat stress, which may 

be a beneficial effect of outbreeding even with a less heat-tolerant lineage. 

This dissertation therefore presents evidence for four levels of thermal trait variability in a marine 

forest key species. In the publications presented here, I describe (1) genetic and physiological 

differentiation among populations, (2) genetic variation for phenotypic plasticity among genotypes, 

(3) carry-over and cross-generational effects over reproduction and individual ontogeny, and (4) the 

production of new phenotypes by outbreeding among distant lineages. Integrating these responses 

into a framework of seasonal temperature variation and predictions of ocean warming showed that 

L. digitata, as a cold-temperate to Arctic species, is adapted well to the current conditions along its 
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distributional range, but may not be equipped to respond to rapid climate change at its warm range 

edges. The concepts investigated in this dissertation provide further insight into trait variability as a 

mechanism of marine forest resilience, but they also describe intriguing features for mariculture and 

conservation efforts. Continuing research on genetic variation for plasticity, heterosis, and cross-

generational plasticity in kelps may therefore provide powerful tools to produce productive marine 

crops and to restore natural marine forests. 
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Zusammenfassung 

Entlang gemäßigter bis polarer Felsküsten bilden große Braunalgen (Kelp; sensu lato, mehrere 

Ordnungen in der Familie Phaeophyceae; sensu stricto, Laminariales) die Grundlage der Kelpwälder. 

Diese artenreichen Ökosysteme binden Kohlendioxid, tragen zum Küstenschutz bei, entziehen dem 

Seewasser Nährstoffe, und werden industriell zur Produktion hochwertiger Inhaltsstoffe verwendet. 

Durch Ozeanerwärmung sind Kelps zunehmend an ihren warmen Verbreitungsgrenzen bedroht und 

erste Artenverschiebungen wurden bereits beobachtet. Die festsitzenden Kelps sind angewiesen auf 

Merkmalsvariation durch phänotypische Plastizität und genetische Varianz um sich an eine sich 

verändernde Umwelt anzupassen. Mittlerweile häufen sich Beweise für starke Merkmalsvariation 

innerhalb von Kelp-Arten zwischen Populationen und zwischen Individuen, was darauf hinweist, 

dass sich Kelpwälder an die Ozeanerwärmung anpassen könnten. Diese wahrscheinlich interaktiven 

Ebenen der Variation wurden allerdings bisher nicht für eine Art übergreifend untersucht. Das Ziel 

dieser Dissertation war es daher, die Varianz und Plastizität temperaturabhängiger Merkmale einer 

Schlüsselart der Kelpwälder, des kalt-gemäßigten bis Arktischen Fingertangs Laminaria digitata, 

über Populationen und Lebenszyklusstadien hinweg zu untersuchen. 

Um Unterschiede in der Hitzetoleranz zwischen L. digitata Populationen entlang der gesamten 

Verbreitung der Art vom Nordostatlantik bis in die Arktis zu ermitteln, habe ich ein Laborexperiment 

durchgeführt, in dem ich Meristemscheiben denselben Temperaturen von 15–23°C ausgesetzt habe 

(Publikation I). Die obere Temperaturtoleranz war nahezu identisch, da Proben von allen Standorten 

nach fünf Tagen bei 23°C das Wachstum einstellten. Allerdings traten feine Unterschiede in 

Wachstum und Stresssymptomen in drei Populationen an den ökologischen Verbreitungsgrenzen 

hervor. Zwei Populationen an der warmen Verbreitungsgrenze zeigten eine erhöhte Hitzetoleranz 

verglichen mit den anderen Populationen. Bei 19–23°C war das Wachstum von L. digitata aus 

Quiberon (Frankreich) widerstandsfähiger, während Material aus Helgoland (Nordsee) verringerte 

Stressantworten in photosynthetischer Quantenausbeute zeigte und weniger Xanthophyllpigmente 

anreicherte. Die Quantenausbeute von L. digitata aus der nördlichsten Population (Spitzbergen, 

Norwegen) zeigte die höchste Empfindlichkeit für Hitze. Genotypisierung mittels Mikrosatelliten 

zeigte, dass alle Populationen genetisch getrennt waren, während eine hierarchische Struktur je eine 

übergeordnete südliche und nördliche Gruppe eingrenzte. Das legt nahe, dass sich L. digitata über 

Eiszeitalter hinweg in zwei Gruppen gespalten hat, was wiederum die phänotypische Differenzierung 

zwischen Populationen auf einer großen räumlichen Skala begünstigt haben kann. 

Auf einem kleineren Maßstab habe ich untersucht, wie der Temperaturverlauf während des 

Lebenszyklus die phänotypische Plastizität zwischen den Generationen haploider Gametophyten und 

diploider Sporophyten beeinflusst (Publikation II). Basierend auf Meiosporen von fünf wilden L. 

digitata Sporophyten von Helgoland wurden fünf getrennte genetische Linien erzeugt. Die 

genetischen Linien wurde bei den gegensätzlichen Temperaturen 5 und 15°C in einem 
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vollfaktoriellen Ansatz über drei Stufen kultiviert: (1) von der Sporenkeimung über die 

Gametogenese bis zur Rekrutierung junger Sporophyten-Nachkommen, (2) über die Aufzucht junger 

Sporophyten (3) zu einem 12-tägigen Experiment zur Temperatur-Plastizität von 3–4 monatealten 

Sporophyten. Dadurch entstanden acht verschiedene Temperaturhintergründe in jeder genetischen 

Linie. Gametogenese und Rekrutierung bei 5°C führte zu generell besserem Wachstum der 

Sporophyten-Nachkommen im Experiment. Zusätzlich variierte die Plastizität von Wachstum und 

biochemischen Parametern bei 5 und 15°C zwischen den genetischen Linien, teilweise mit 

entgegengesetzten Reaktionsmustern, was auf genetische Variation für Plastizität hinweist. 

Interessanterweise war dieser Effekt nur signifikant bei Sporophyten, die bei 5°C und nicht bei 15°C 

aufgezogen wurden. Ein anschließendes Experiment (Masterarbeit, C. Gauci) lieferte Beweise für 

gesteigerte Widerstandsfähigkeit von Sporophyten bei extremen Temperaturen (0 und 20°C), wenn 

sie von Gametophyten abstammen, die für drei Jahre bei 5°C, im Gegensatz zu 15°C, kultiviert 

wurden. Diese Ergebnisse liefern Beweise für nicht-genetische carry-over und transgenerationelle 

Effekte, die entlang der individuellen Entwicklung und über Generationen hinweg die 

Merkmalsplastizität von L. digitata beeinflussen, und zeigen Vorteile kalter Temperaturen während 

der Reproduktion und Ontogenese von L. digitata auf. 

Zusätzlich zu nicht-genetischen Effekten habe ich die genetische Vererbung temperaturabhängiger 

Merkmale untersucht, indem ich die genetische und physiologische Differenzierung zwischen L. 

digitata von Helgoland und Spitzbergen genutzt habe (Publikation III). Sporophyten verschiedener 

Abstammungslinien wurden durch Inzucht und Kreuzung zwischen Gametophyten-Isolaten aus 

beiden Populationen erzeugt und in zwei Experimenten auf ihre Reaktion auf subletale und letale 

Temperaturen untersucht. Im ersten Experiment an mikroskopischen Sporophyten war die obere 

Überlebenstemperatur über 14 Tage geringer in der Spitzbergen Inzuchtlinie (21°C) als in der 

Helgoland Inzuchtlinie und den reziproken Kreuzungen (22°C), was auf Heterosis in den 

Kreuzungen hinweist. Im zweiten Experiment habe ich makroskopische Sporophyten bei einer 

Kontrolltemperatur (10°C) und unter moderatem (19°C) und kritischem Hitzestress (20.5°C) auf 

physiologische Reaktion und metabolische Regulation mittels Transkriptomanalyse untersucht. 

Sporophyten der Spitzbergen Inzuchtlinie waren in den Hitzebehandlungen innerhalb von sieben 

Tagen abgestorben und zeigten die höchste Genregulation unter den Abstammungslinien bei 10°C. 

In einem Vergleich der drei überlebenden Abstammungslinien bei 20.5°C war die differentielle 

Genregulation in den reziproken Kreuzungen geringer als in der Helgoland Inzuchtlinie, obwohl alle 

Linien in Wachstum und photosynthetischer Quantenausbeute ähnlich reagierten. Verglichen mit der 

Helgoland Inzuchtlinie war die Expression von Genen für zelluläre Stressreaktionen in den 

reziproken Kreuzungen bei 20.5°C reduziert. Diese Ergebnisse zeigen, dass Temperaturmerkmale 

von weiblichen sowie von männlichen Gametophyten vererbt werden. Zusätzlich haben die 

innerartlichen Kreuzungen unter subletalem Hitzestress mit reduzierter Genregulation eine ähnliche 



Zusammenfassung 
 

vi 

Physiologie aufrechterhalten wie die Helgoland Inzuchtlinie, was ein positiver Effekt der Kreuzung 

mit einer anderen, sogar einer weniger hitzetoleranten, Abstammungslinie sein kann. 

Dementsprechend liefert diese Dissertation Beweise für vier Ebenen temperaturabhängiger 

Merkmalsvariation in einer Schlüsselart mariner Kelpwälder. In den Publikationen, die dieser 

Dissertation zugrunde liegen, beschreibe ich (1) genetische und physiologische Differenzierung 

zwischen Populationen, (2) genetische Variation für phänotypische Plastizität zwischen Genotypen, 

(3) nicht-genetische Effekte entlang der individuellen Entwicklung und über Generationen hinweg, 

und (4) die Bildung neuer Phänotypen durch Kreuzung entfernter Abstammungslinien. Die 

Integration dieser Merkmale im Kontext saisonaler Temperaturschwankungen und Vorhersagen der 

Ozeanerwärmung zeigt, dass L. digitata als kalt-gemäßigte bis arktische Art gut an die 

vorherrschenden Bedingungen entlang ihrer Verbreitung angepasst ist. Allerdings ist sie 

möglicherweise nicht ausgerüstet, sich dem schnellen Klimawandel an ihrer warmen 

Verbreitungsgrenze anzupassen. Die Konzepte, die in dieser Dissertation untersucht wurden, liefern 

Erkenntnisse über die Funktion von Merkmalsvariation für die Widerstandsfähigkeit mariner 

Kelpwälder, aber sie sind auch von Bedeutung für Marikultur und Erhaltungsmaßnahmen. 

Weiterführende Untersuchungen zu genetischer Variation für Plastizität, Heterosis und 

transgenerationelle Effekte in Kelp-Arten können daher wirksame Werkzeuge entwickeln, um 

produktive marine Algenkultivare zu züchten und um natürliche Kelpwälder zu erhalten.
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CA   Carbonic anhydrase 

CCM   Carbon concentrating mechanism 

CGP   Cross-generational plasticity 

Chl a   Chlorophyll a 

CO2   Carbon dioxide 

COE   Carry-over effect 

CSR   Cellular stress response 

CTAB   Cetyltrimethylammonium bromide 

DEG   Differentially expressed gene 

DNA   Deoxyribonucleic acid 

DOC   Dissolved organic carbon 

DW   Dry weight 

E50   Saturation irradiance of nonphotochemical quenching 

ETR   Electron transport rate 

Fv/Fm   Optimum quantum yield 

GxE   Genotype x environment interaction 

HCO3
-   Bicarbonate 

HPLC   High-performance liquid chromatography 

HSP   Heat shock protein 

Ik   Saturation irradiance of photosynthesis 

Log2FC   Log2-fold change 

LHC   Light harvesting complex 

MGDG   Monogalactosyldiacylglycerol 

MPH   Mid-parent heterosis 

N   Nitrogen 

n (NPQ)  Sigmoidicity coefficient of nonphotochemical quenching 
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n (Statistics)  Number of replicates per treatment 

NPQ   Nonphotochemical quenching 

NPQmax   Maximum nonphotochemical quenching 

PAM   Pulse-amplitude modulation 

PAR   Photosynthetically active radiation 

PCA   Principal component analysis 

PES   Provasoli enriched seawater 

PFD   Photon flux density 

pH   Negative decimal logarithm of the hydronium ion activity in a solution 

POC   Particulate organic carbon 

PS II   Photosystem II 

PUFA   Polyunsaturated fatty acid 

QTL   Quantitative trait locus 

RCP   Representative concentration pathway of atmospheric greenhouse gases 

rETRmax  Maximum relative electron transport rate 

RLC   Rapid light curve 

RM ANOVA  Repeated measures analysis of variance 

RNA   Ribonucleic acid 

ROS   Reactive oxygen species 

RPKM   Reads per kilobase of transcript per million mapped reads 

RuBisCO  Ribulose-1,5-bisphosphate carboxylase/oxygenase 

SD   Standard deviation 

SE   Standard error 

SNP   Single nucleotide polymorphism 

SST   Sea surface temperature 

SW   Seawater 

UV   Ultraviolet (radiation) 

VAZ   Xanthophyll pigment pool (violaxanthin + antheraxanthin + zeaxanthin) 

VDE   Violaxanthin de-epoxidase 
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Glossary 

Acclimation is the fast and reversible physiological adjustment of an individual to enhance or 

maintain performance in response to an environment and is an expression of phenotypic plasticity 

(Leroi et al., 1994; Reusch, 2014).  

Adaptation occurs over generations of selection on heritable traits of phenotypes (Morgan-Kiss et 

al., 2006; Donelson et al., 2019) and may alter a population’s ecological niche towards a local 

optimum (King et al., 2018). 

Carry-over effect (COE) = Developmental plasticity describes phenotypic changes which occur 

within the development of an individual and may alter trait expression at a later time point; e.g. 

adjusted morphology in adults due to stress during ontogeny (Palmer et al., 2012; Byrne et al., 2020). 

Cross-generational plasticity (CGP) describes the interaction of parental (F0 generation) 

environment and offspring (F1 generation) environment in shaping the offspring’s phenotypic 

plasticity (i.e. the shape of the reaction norm; Byrne et al., 2020).  

Ecotype describes a variant of a species, which is the result of the genotypical response of a species 

to selection by a particular habitat; e.g. locally adapted populations (Turesson, 1922; Gregor, 1944). 

Fitness is a measure of an individual’s ability to survive and produce viable offspring in the 

prevailing environment (Darwin, 1859; Orr, 2009). 

Genetic drift is a change in allele frequencies by chance due to random reproduction (Bolnick et al., 

2011). It is especially strong in small populations following e.g. bottleneck events. 

Genetic variation for plasticity describes differences in phenotypic plasticity among genotypes, in 

which the extent of trait plasticity itself is an adaptive trait on which natural selection can act 

(Newman, 1994). Genetic variation for plasticity can be identified as significant genotype x 

environment interactions. 

Genotype in a population genetic sense describes the entire genomic sequence of an organism, while 

sensu lato, the term can address individuals with nearly identical genomes such as inbred strains or 

clones (Nicotra et al., 2010). 

Genotype x environment interaction (GxE) is a measure of differentiation among individuals’ 

phenotypic plasticity (Via and Lande, 1985; Saltz et al., 2018). It is visualised as differently shaped 

reaction norms among genotypes and can be used to identify genetic variation for plasticity. 

Germline defines the reproductive lineage of cells in an organism starting with the first cell which 

is committed to produce gametes (Grossniklaus, 2011; Schmidt et al., 2015). In kelps, this definition 

encompasses all cells in the life cycle from the meiosporangium mother cell formed by the 

sporophyte in soral tissue to the oogonia and spermatia produced by female and male gametophytes. 
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Heterosis = Hybrid vigour is the superior performance of any trait (e.g. growth, developmental 

speed and/or fertility) in inter- and intraspecific crosses in comparison to their genetically different 

inbred parents (Hochholdinger and Hoecker, 2007; Birchler et al., 2010). In mid-parent heterosis, the 

hybrid performs significantly better than the average performance over both parental lineages, 

whereas in best-parent heterosis, hybrid performance surpasses the better of the two parents 

(Hochholdinger and Hoecker, 2007). 

Inbreeding is the mating of two genetically similar, closely related genotypes (Charlesworth and 

Charlesworth, 1987) and may lead to inbreeding depression in the resulting offspring. The most 

extreme form of inbreeding is selfing. 

Inbreeding depression is reduction of performance in offspring of closely related individuals which 

is attributed to the accumulation of harmful recessive traits or to general disadvantages of 

homozygosity (Charlesworth and Charlesworth, 1987; Schierup and Christiansen, 1996). 

Maladaptation occurs in populations which deviate in performance from an adaptive optimum, e.g. 

due to mutation or a lack of genotypic and phenotypic variation to respond to natural selection 

(Crespi, 2000; Brady et al., 2019). 

Marginal population is a population at the ecological range margin of the species (Soulé, 1973), 

which often, but not necessarily, is the case at the distributional range edges. 

Marine heatwave is defined as an anomalously warm event lasting five or more days with seawater 

temperatures warmer than the 90th percentile based on a 30-year historical baseline period (Hobday 

et al., 2016).  

Outbreeding = outcrossing is the mating of two genetically differentiated (unrelated) genotypes 

within a species (Waser and Price, 1989), which may lead to heterosis or outbreeding depression in 

the resulting offspring.  

Outbreeding depression is a reduction of performance in offspring of genetically differentiated 

lineages which is attributed to a disruption of local adaptation to different environments among the 

parental lineages or to a disruption of allele interactions (McKay et al., 2005). 

Parental effect describes an influence of the parental environment on offspring trait expression 

regardless of offspring environment. Parental effects do therefore not alter offspring phenotypic 

plasticity, i.e. the shape of the reaction norm does not change across parent and offspring generations, 

but offspring trait expression may be generally higher or lower depending on the parental 

environment (Salinas et al., 2013). 

Phenology is the timing of annually recurring life cycle events, often investigated with respect to 

seasonal variations in abiotic conditions (Stucky et al., 2018). 
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Phenotype is the appearance or characteristics of one or several traits in an individual organism 

resulting from both genetic and environmental influences (Nicotra et al., 2010). 

Phenotypic buffering is the maintenance of the same phenotype across a range of environmental 

stressors to maintain function and tolerance (Reusch, 2014). Contrary to phenotypic plasticity, the 

reaction norm of a trait maintained by phenotypic buffering is flat for highly tolerant genotypes. 

Phenotypic plasticity = Within-generation plasticity describes the range of phenotypes a single 

genotype can express as a function of its environment (Nicotra et al., 2010), e.g. highly plastic 

individuals can present a wide range of phenotypic responses in response to an environmental 

gradient. 

Reaction norm describes the expected phenotype of a given genotype as a function of the 

environment (Chevin et al., 2010) and is often visualised as a graph depicting phenotypic trait 

expression over an environmental gradient. In scientific studies, reaction norms are derived from 

experiments with e.g. inbred lineages (Li et al., 2018), siblings (Shama, 2017) or age cohorts (Hurst 

et al., 2012).  

Selfing is the most extreme form of inbreeding and describes the production of offspring from 

gametes of the same organism. For kelps, the term is used to describe kelp sporophytes obtained by 

fertilizing sibling female and male gametophytes (Raimondi et al., 2004). 

“Silver spoon” parental effect is a beneficial parental effect, in which parents in favourable 

environments produce offspring with high levels of fitness-related traits, e.g. by maternal 

provisioning of resources to early life stages (Uller et al., 2013; Baker et al., 2019). 
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Marine forests are ecosystems dominated by large seaweeds, which occur along warm-temperate to 

polar rocky coastlines (Lüning, 1990; Wernberg et al., 2019). Foundation species of these marine 

forests are brown algae of the order Phaeophyceae, which are commonly called kelp. In a functional 

sense, the term kelp can describe macroalgae from several brown algal orders, mainly Laminariales, 

Fucales, Desmarestiales and Tilopteridales (Fraser, 2012; Smale, 2020). In the strict sense, kelps are 

defined as large brown algae exclusively within the order Laminariales (Steneck et al., 2002; Bartsch 

et al., 2008). Common to either group defined as kelp is their function as ecosystem engineers, which 

provide three-dimensional structure above the seafloor (Figure 1.1) and alter the physico-chemical 

features of the environment (Christie et al., 2009; Fraser, 2012; Teagle et al., 2017; Pfister et al., 

2019; Wernberg et al., 2019). This biogenic structure harbours a high diversity of associated 

organisms. For instance, canopy-forming kelp species reduce the irradiance regime and provide a 

habitat for undergrowth algae adapted to low irradiance (Wernberg et al., 2005; Pedersen et al., 

2014), while kelps themselves are substrate for endo- and epiphytic organisms (Bartsch et al., 2008; 

Smale et al., 2015). Invertebrates such as molluscs, crustaceans and echinoderms inhabit and/or feed 

on kelp (Norderhaug et al., 2003; Christie et al., 2007, 2009; Teagle et al., 2017), and also fish may 

use kelp forests as nurseries and shelter (Bodkin, 1988). Dense kelp stands even enhance the diversity 

of the microbial community in the surrounding seawater (Pfister et al., 2019). This structure and 

diversity evokes the comparison to terrestrial forests, which earned marine forests their name 

(Wernberg and Filbee-Dexter, 2019). 

 

Figure 1.1 Marine forest at the coast of Stavanger, Norway. The three-dimensional structure is provided by 
Laminaria hyperborea, whose stipes are colonized by an assemblage of epibionts. Photo by Uli Kunz used 
with permission. 

1.1 Marine forests 
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Marine forests are among the most productive ecosystems in the world (Mann, 1973; Filbee-Dexter, 

2020). Primary production by kelps is estimated to be of comparable range to temperate and tropical 

forests (Lüning, 1990; Filbee-Dexter, 2020). However, standing stock of kelps is low when compared 

to terrestrial and mangrove forests (Pessarrodona et al., 2018; Filbee-Dexter, 2020), as more than 

80% of the assimilated carbon is released as macroscopic detritus, particulate (POC) or dissolved 

(DOC) organic carbon (Krumhansl and Scheibling, 2012; Pessarrodona et al., 2018; Pedersen et al., 

2020). Released organic carbon either enters the food web (Lin et al., 2018; Paar et al., 2019b) or it 

is buried in sediment and sequestered (Krause-Jensen and Duarte, 2016; Filbee-Dexter and 

Wernberg, 2020). Of the estimated global net primary production of 1521 million tons C year-1 by 

macroalgae, more than 10% are estimated to be sequestered (Krause-Jensen and Duarte, 2016). 

Therefore, macroalgae have shifted into focus of blue carbon assessments, which describe carbon 

capture and storage by marine organisms (Nellemann et al., 2009; Krause-Jensen et al., 2018; Filbee-

Dexter and Wernberg, 2020). This sparks incentives to mitigate anthropogenic CO2 accumulation 

via macroalgae (Chung et al., 2011; Duarte et al., 2017; Sondak et al., 2017; Froehlich et al., 2019). 

Humans have, however, benefitted from marine forests for ages. The kelp highway hypothesis 

proposes that, additionally to the deglaciation of the North Pacific opening a dispersal corridor, rich 

marine coastal habitats may have facilitated the migration of humans from Asia into the Americas 

about 13,500 years ago (Erlandson et al., 2007; Braje et al., 2017). Historical use of seaweeds as food 

is, albeit scarce, documented all over the world (Mac Monagail et al., 2017). In Europe, kelp was 

used from the 17th century predominantly to produce alkali which was necessary in soap and glass 

production (Clow and Clow, 1947; Forsythe, 2006). Current global estimates value goods and 

services provided by kelp forests between 500,000 and 1,000,000 US dollars per kilometre of 

coastline per year (Filbee-Dexter and Wernberg, 2018). Kelps are of direct commercial value mainly 

because of their high concentration in valuable compounds such as pigments, lipids, proteins, 

phenolics and polysaccharides (Stengel et al., 2011). The polysaccharide alginate is industrially 

produced from kelp and fucoid seaweeds (Vásquez, 2008; Blamey and Bolton, 2018; Peteiro, 2018) 

and is used mainly in cosmetics, pharmaceuticals and food industry as a stabilizer and gelling agent 

(Peteiro, 2018). Worldwide, the majority of kelp used for alginate production is harvested from wild 

populations or collected from washed ashore biomass (Bixler and Porse, 2011; Rebours et al., 2014; 

Peteiro, 2018). In contrast, the production of kelp in the Asian food industry is centred around 

mariculture of the kelps Saccharina japonica and Undaria pinnatifida (Buschmann et al., 2017). 

Aside from the direct economic value of kelp, marine forests attract tourism and provide fruitful 

fishing grounds (Paddack and Estes, 2000; Blamey and Bolton, 2018). Further indirect value is 

gained from kelp forests’ ability to remove nutrients from seawater and estuaries (Kim et al., 2015) 

and to mitigate coastal erosion (Blamey and Bolton, 2018; Morris et al., 2019). Therefore, 

conservation of kelp forests is not only of ecological importance but also of utmost economic interest. 
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Marine forests are facing substantial environmental changes. The most conspicuous and well-

investigated factor of global change acting on marine systems is ocean warming (Harley et al., 2006). 

Changes in temperature can drive major ecological shifts, as temperature affects chemical reaction 

rates and physiological processes such as growth, reproduction and survival in individuals, thereby 

ultimately delimiting species’ distribution ranges (Jeffree and Jeffree, 1994; Pörtner and Farrell, 

2008; Stuart-Smith et al., 2017). On a global scale, the biogeographical distribution of seaweeds can 

roughly be explained by their thermal limits of reproduction, growth and survival with respect to 

minimum and maximum mean monthly sea surface isotherms (van den Hoek, 1982a, 1982b; 

Breeman, 1990; Lüning, 1990). As the oceans are warming, these isotherms have been shifting 

poleward for at least 60 years (Burrows et al., 2011) which affects the timing and magnitude of 

seasonal temperature variation (Lima and Wethey, 2012). Accordingly, many marine species have 

responded with distributional and phenological shifts (Poloczanska et al., 2013). Several kelp and 

fucoid seaweeds have already undergone poleward range shifts which were attributed to global 

warming (Lima et al., 2007; Nicastro et al., 2013; Smale et al., 2015) and further shifts are predicted 

for many seaweeds (Bartsch et al., 2012; Raybaud et al., 2013; Assis et al., 2018). In addition to the 

gradual increase of average ocean temperature, short, extreme warming events (marine heatwaves 

sensu Hobday et al., 2016) have been increasing in frequency and duration (Oliver et al., 2018). 

Marine heatwaves act as strong selective events, can alter species composition and reduce the genetic 

diversity of persistent populations (Arafeh-Dalmau et al., 2019; Coleman et al., 2020a; Gurgel et al., 

2020). The occurrence of marine heatwaves especially during summer has recently been correlated 

to systemic ecosystem collapse of marine forests at their warm distributional range edges (Wernberg 

et al., 2016; Thomsen et al., 2019; Filbee-Dexter et al., 2020). 

In contrast, ocean acidification may be buffered for kelps and associated organisms through the 

photosynthetic drawdown of CO2 during the day in marine forests (Roleda and Hurd, 2012; Hurd, 

2015; Ling et al., 2020). For kelps, an increased availability of dissolved inorganic carbon may 

ameliorate negative effects of reduced pH (Roleda et al., 2012; Leal et al., 2017). However, responses 

of kelps to ocean acidification may differ among habitats, species and life cycle stages (Roleda and 

Hurd, 2012; Britton et al., 2016; Gordillo et al., 2016). Other abiotic changes affect marine forests 

especially at high latitudes. For instance, increased UV radiation especially in the polar regions may 

damage kelp and their propagules (Karsten et al., 2009; Roleda et al., 2010; Huovinen and Gómez, 

2013). Glacial melting may provide new rocky substrates for kelps to populate (Krause-Jensen and 

Duarte, 2014; Deregibus et al., 2016; Filbee-Dexter et al., 2019), but the runoff of glacial meltwater 

also drives a reduction in seawater salinity, which may pose a stressor for kelps (Fredersdorf et al., 

2009; Li et al., 2019; Monteiro et al., 2019b). The sediment load in the meltwater runoff increases 

turbidity (i.e. coastal darkening; Aksnes et al., 2009), which may provide protection from UV 

1.2 Current threats to marine forests 
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radiation (Roleda et al., 2008), but in turn narrows the depth distribution of seaweeds due to the 

attenuated light (Bartsch et al., 2016). Increased sedimentation may again reduce the availability of 

rocky substrate (Wiencke and Amsler, 2012; Zacher et al., 2016; Filbee-Dexter et al., 2019).  

Abiotic stressors don’t affect single organisms alone, but also modulate species interactions and can 

have cascading effects throughout the food web (Paar et al., 2019a; Vergés et al., 2019). For instance, 

marine heatwaves, ocean warming and other stressors may drive over-grazing of kelp by sea urchins, 

which creates stable “urchin barrens” (Johnson et al., 2011; Filbee-Dexter and Scheibling, 2014; 

Rogers-Bennett and Catton, 2019). In a reverse effect, an increase in the frequency of kelp-removing 

storms may reduce the diversity of higher trophic levels in the marine forest food web (Byrnes et al., 

2011). Over the last decade, a replacement of marine forests by low-lying mats of turf algae has been 

observed, which drives a drastic reduction in structural complexity and food web diversity (Filbee-

Dexter and Wernberg, 2018; Vergés et al., 2019). Suspected drivers of these shifts are ocean 

warming, heatwaves, eutrophication, and grazing pressure (Wernberg et al., 2016; Filbee-Dexter and 

Wernberg, 2018; Christie et al., 2019a; Straub et al., 2019). Turf ecosystems may be self-stabilizing, 

preventing a shift back to marine forest ecosystems by trapping sediment and attracting associated 

herbivores which prevent macroalgae recruitment (Vergés et al., 2014; Filbee-Dexter and Wernberg, 

2018; Feehan et al., 2019). This mechanism is especially severe at the warm range edges, where the 

occurrence of prolonged cool conditions that would allow a recovery of marine forests is becoming 

increasingly unlikely (Wernberg et al., 2016; Filbee-Dexter and Wernberg, 2018). Shifts to turf 

ecosystems also occur in cooler regions (e.g. Norway; Moy and Christie, 2012), but there, marine 

forests are partially able to recover or the system may even fluctuate between the two states (Ebeling 

et al., 1985; Christie et al., 2019a). 

Mean global land and ocean surface temperature during the year 2019 was among the three warmest 

annual temperatures on record (Blunden and Arndt, 2020). In the current year 2020, air temperatures 

reached an unprecedented 21.7°C on the archipelago of Svalbard (Nikel, 2020) and 38°C in the 

Siberian Arctic (Ciavarella et al., 2020). At the time of writing in September 2020, Arctic sea ice 

extent is the second lowest since records began (Grosfeld et al., 2016). Meanwhile, drought and high 

temperature fuelled extensive fires in Siberia (Stone, 2020), Australia (BBC News, 2020) and North 

America (Voiland, 2020) in 2019 and 2020. This year also saw the third and most extensive coral 

bleaching event in the Great Barrier Reef within five years (ARC Centre of Excellence for Coral 

Reef Studies, 2020). Despite these drastic examples and consequences of global warming, the global 

extent of kelp forests has only slightly declined over the past half-century (Krumhansl et al., 2016). 

However, trends in kelp abundance varied strongly around the world, with regions of increasing 

(27%), decreasing (38%), or stable (35%) kelp forest extent (Krumhansl et al., 2016). This highlights 

the importance of diversified research taking into account local conditions and response variation 

when aiming to characterize the future trajectory of marine forests during climate change. 
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Laminarian kelps (kelps sensu stricto) have diversified between 21–43 million years ago in the North 

Pacific (Rothman et al., 2017; Starko et al., 2019) and are currently distributed worldwide from 

warm-temperate to polar latitudes along ca. 25% of the world’s coastlines (Lüning, 1990; Filbee-

Dexter and Wernberg, 2018; Smale, 2020). The order Laminariales (excluding the Chordales sensu 

Starko et al., 2019) contains 105 species in 30 genera (Bolton, 2010). Only few kelp genera occur in 

the North Atlantic, likely because of the relatively recent and challenging migration from the Pacific 

to the Atlantic via the Bering Strait ca. 5.3 million years ago (Lüning and tom Dieck, 1990; Bolton, 

2010; Rothman et al., 2017). In the Northeast Atlantic – the research area of this study – the three 

kelp genera Alaria, Saccharina and Laminaria contain keystone species of marine forests (Bolton, 

2010). When including the Arctic, the recent reassignment of Laminaria nigripes J.Agardh to 

Hedophyllum nigripes (J.Agardh) Starko, S.C.Lindstrom & Martone (Starko et al., 2019) adds a 

fourth genus to the list (Dankworth et al., 2020). Within the genus Laminaria, five species occur in 

the North Atlantic across marine biogeographical regions (sensu Lüning, 1990): Two deep-water 

kelps are endemic in contrasting regions of the Atlantic – Laminaria solidungula J.Agardh in the 

Arctic (Roleda, 2016) and Laminaria rodriguezii Bornet in the Mediterranean (Boisset et al., 2016). 

The dominating kelp in the Northeast Atlantic is Laminaria hyperborea (Gunnerus) Foslie, which 

forms dense stands in the sublittoral of cold-temperate regions between mid-Portugal and northern 

Norway (Kain, 1979; Araújo et al., 2016). Laminaria ochroleuca Bachelot de la Pylaie is a warm-

temperate species occurring between Morocco and South England, from where it is currently 

extending northward (Smale et al., 2015). Finally, Laminaria digitata (Hudson) J.V.Lamouroux is a 

cold-temperate to Arctic species with an amphi-Atlantic distribution. In the Northeast Atlantic, it 

shares most of its latitudinal distribution range with L. hyperborea in the shallow sublittoral and 

infralittoral fringe. L. digitata occurs from the Arctic archipelago of Spitsbergen, Norway (79°N) to 

Quiberon in South Brittany, France (47°N) and to Long Island Sound (41°N) in the West Atlantic 

(Lüning, 1990; Stewart Van Patten and Yarish, 2009; Oppliger et al., 2014; Bartsch et al., 2016; 

Guiry and Guiry, 2020). On wave-exposed rocky coasts, it mostly extends from the infralittoral fringe 

to a subtidal depth of ~1.5 m (Kain, 1975; Lüning, 1990), below which it is outcompeted by L. 

hyperborea (Kain, 1975; Hawkins and Harkin, 1985). In the Arctic, where presence of L. hyperborea 

has not been confirmed (Bartsch et al., 2016; Hop et al., 2016; Fredriksen et al., 2019), L. digitata 

may occur down to 15 m depth, where it is presumably delimited by low irradiance (Bartsch et al., 

2016). In the upper sublittoral, L. digitata is subject to strong environmental gradients and stressors. 

Therefore, the species has to be tolerant to desiccation stress and warm air temperature (King et al., 

2018; Hereward et al., 2020), high irradiance and UV radiation (Roleda et al., 2006; Gruber et al., 

2011), low salinity due to freshwater input (Karsten, 2007) and mechanical stress from wave action 

1.3 Case species Laminaria digitata 

1.3.1 Kelps of the North Atlantic 
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(Lüning, 1990; Harder et al., 2006). These characteristics, its ecological importance as a marine forest 

key species and not least its relatively easy accessibility during lowest tide make L. digitata a 

compelling study object. 

 

Like all laminarian kelps, L. digitata 

alternates between microscopic, haploid 

gametophytes and macroscopic, diploid 

sporophytes in a haplo-diplontic life 

cycle (Bold and Wynne, 1985; van den 

Hoek et al., 1995). The diploid, perennial 

sporophytes are complex thalli, which are 

structured into three main organs (Figure 

1.2A). A branched holdfast (rhizoid) 

attaches the kelp to a hard substrate. A 

flexible stipe (cauloid) allows resilience 

against wave action (Lüning, 1990) and 

the blade (lamina) provides a large 

surface area for photosynthesis and 

reproduction. At the intersection of stipe 

and blade lies the meristem, the zone of 

active intercalary growth. In contrast, 

gametophytes are microthalli with a 

much simpler structure than sporophytes 

(Figure 1.2B). They grow filamentously on benthic substrate (Robuchon et al., 2014a) or 

endophytically (Bringloe et al., 2018). Other than vegetative and reproductive cells, gametophytes 

do not develop differentiated structures.  

When sporophytes become fertile (Figure 1.3), parts of the somatic blade tissue differentiate into 

clearly segregated sori. In L. digitata, sori are identifiable as dark, slightly elevated areas on distal 

parts of the blade. Sori are composed of sterile paraphyses and sporangia, which produce and release 

haploid, flagellated meiospores (sporogenesis; Bold and Wynne, 1985; Bartsch et al., 2008, 2013). 

Despite their flagella and energy reserves for active swimming (Reed et al., 1999), meiospores are 

likely passively distributed and often settle on a suitable substrate close to their parental sporophyte 

(Schiel and Foster, 2006). Chemotaxis may facilitate the identification of substrate and spore 

settlement (Amsler and Neushul, 1989). Meiospores germinate into an initial gametophyte cell, and 

1.3.2 The kelp life cycle 

Figure 1.2 Life cycle stages of Laminaria digitata. 
(A) L. digitata sporophytes among other seaweeds on the 
island of Helgoland, North Sea. Photo by Andreas Wagner 
used with permission. (B) Female (♀) and male (♂) L. digitata 
gametophytes and a two-celled sporophyte (arrow). Photo by 
Daniel Liesner. 
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grow into free-living, dioecious (independent male and female) gametophytes. These may persist 

vegetatively for months or even years if conditions do not allow fertility (e.g. inhibition by 

temperature or low irradiance; Lüning, 1980; tom Dieck, 1993; Edwards, 2000). Gametophytes 

produce gametes from haploid, somatic cells, whereby any gametophyte cell may develop into a 

gametangium. Male gametophytes produce spermatozoids in antheridia and female gametophytes 

produce eggs in oogonia (gametogenesis; Bold and Wynne, 1985; Martins et al., 2017). Egg release 

from the oogonium is induced by darkness (Lüning, 1981). Upon release, eggs stay loosely attached 

to the oogonium and produce the pheromone lamoxirene, which triggers sperm release from 

antheridia and attracts sperm to fertilize the eggs (Müller et al., 1985; Maier et al., 2001). Following 

fertilization, diploid zygotes develop into next-generation sporophytes.  

 

 

Figure 1.3 Schematic life cycle of Laminaria digitata modified from Lipinska et al. (2015); Visch et al. (2019). 
Source materials are published under license CC-BY 4.0. 

 

In the biphasic kelp life cycle, the definition of a generation is not intuitive, especially when 

discussing generations in terms of parent and offspring. Often, the distinct gametophyte and 

sporophyte life cycle stages are described as “generations” (Coelho et al., 2007). However, these life 

cycle stages serve different functions in the reproductive cycle of kelps. Only the sporophyte 

produces meiospores and only the gametophyte produces gametes. The life cycle is completed once 

both stages have gone through their respective development. Therefore, in the context of this study 

investigating effects within and across gametophyte and sporophyte life cycle stages, I consider the 

gametophyte as an outsourced phase of the kelp germline. A germline is defined as the reproductive 

lineage of cells in an organism starting with the first cell which is committed to produce gametes 
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(Grossniklaus, 2011; Schmidt et al., 2015). In kelps, this definition encompasses all cells in the life 

cycle from the meiosporangium mother cell formed by the sporophyte in soral tissue to the oogonia 

and spermatozoids produced by female and male gametophytes, respectively. Apart from meiosis, 

the majority of the kelp germline is therefore contained in the autonomous gametophyte life cycle 

stage. According to this definition, gametophytes produce the gametes of a parental generation and 

the diploid zygote initiates the offspring generation. 

 

Gametophytes and sporophytes of seaweeds often inhabit different thermal niches in terms of 

survival, growth and reproduction (Wiencke et al., 1994). In Figure 1.4, I integrated the available 

information on the thermal characteristics of L. digitata’s life cycle. To classify the available data on 

thermal responses of growth and reproductive traits (i.e. gametogenesis speed; recruitment; 

reproductive efficiency of sporogenesis sensu Bartsch et al., 2013), I arbitrarily defined temperatures 

eliciting 80–100% of maximum trait expression as the thermal optimum, 50–80% as sub- and 

supraoptimum, and < 50% as the tolerance range. L. digitata gametophytes survive at temperatures 

from -1.5 to 23°C for two weeks 

(Bolton and Lüning, 1982; tom Dieck, 

1993; Wiencke et al., 1994). The upper 

survival temperature of laboratory-

cultivated L. digitata sporophytes was 

determined at 21°C over two weeks, 

2°C lower than that of gametophytes 

(Bolton and Lüning, 1982; tom Dieck, 

1992). The cold survival temperature of 

sporophytes has not been determined 

experimentally to my knowledge, but 

their occurrence in the Arctic suggests 

a cold thermal tolerance limit < 0°C 

(van den Hoek, 1982b). Primary 

gametophyte cells and multicellular 

gametophytes grow optimally at 10–

18°C over one week (Lüning, 1980; 

Martins et al., 2017). Vegetative 

gametophyte growth is retained at 20°C 

but strongly inhibited at 22°C (pers. 

1.3.3 Thermal characteristics of Laminaria digitata 

Figure 1.4 Thermal characteristics of survival (red), growth 
(blue) and reproduction (green) of Laminaria digitata 
gametophytes (dotted lines) and sporophytes (solid lines). 
Limits describe minimum and maximum temperatures at which 
L. digitata survives, grows and reproduces. Classification with 
respect to maximum trait response of growth and reproduction: 
> 80%, optimum; 50–80%, sub-/supraoptimum; < 50% 
tolerance range. For details and references, see main text. 
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obs.; see also Martins et al., 2020). Sporophytes achieve optimum growth at 10–15°C and grow 

suboptimally at temperatures ≥ 5°C over at least two weeks, whereas 0 and 20°C delimit the thermal 

growth range (Perez, 1971; Bolton and Lüning, 1982; tom Dieck, 1992; Wilson et al., 2015). 

Optimum temperatures for gametophyte reproduction range between 5 and 15°C, depending on the 

observed trait (Lüning, 1980; Martins et al., 2017). Gametogenesis is faster at 10–15°C than at 5°C 

(Martins et al., 2017), but the number of recruited juvenile sporophytes was twice as high at 5°C 

compared to 15°C under laboratory conditions (Martins et al., 2017). Prolonged vegetative growth 

at 5°C may produce more female gametophyte cells (pers. obs.) which all have potential to develop 

into oogonia. Alternatively, the slower development at 5°C presumably allows for several events of 

gamete release which may optimize fertilization success (Martins et al., 2017). Therefore, reduced 

gametogenesis speed may be interpreted as an adaptive response increasing recruitment at 

temperatures which are suboptimal for the process of gametogenesis (Bolton and Levitt, 1985). 

Gametogenesis is strongly inhibited at 0°C (Sjøtun and Schoschina, 2002) and 18°C (Martins et al., 

2017). Reproductive efficiency of L. digitata sporophytes is optimal at 10°C, as was shown by 

Bartsch et al. (2013), who integrated parameters of sorus occurrence, sorus area and reaction time of 

sporogenesis. Sporogenesis is delayed but not inhibited at 1 and 5°C, whereas at 15–19°C occurrence 

and size of sori progressively decrease. Therefore, sporogenesis is more efficient at 1°C than at ≥ 

16°C (Bartsch et al., 2013). Like gametogenesis, sporogenesis occurs at up to 17°C, but is severely 

inhibited at temperatures ≥ 18°C (tom Dieck, 1992; Bartsch et al., 2013; Martins et al., 2017).  

In the wild, phenology of L. digitata is controlled by several abiotic and biotic factors in addition to 

temperature. First, the pattern of high growth from February to July and low growth from August to 

January (Perez, 1971; Kain, 1979) is in part controlled by an endogenous rhythm, which is 

synchronized by seasonal day length cues (Schaffelke and Lüning, 1994; Gomez and Lüning, 2001). 

L. digitata sporophytes can potentially carry sori year-round (Cosson, 1976; Chapman, 1984), but 

the main fruiting period occurs during summer to late autumn when growth is reduced (Bartsch et 

al., 2008). The meristem is hypothesized to export a substance inhibiting sorus formation during 

phases of active growth (Lüning et al., 2000). A candidate substance is the auxin hormone indole-

acetic acid which was shown to inhibit sorus formation in Saccharina japonica (Kai et al., 2006). 

Therefore, the onset of fertility of L. digitata sporophytes is probably controlled by the seasonal 

growth rhythm, which itself is controlled by the photoperiod (Bartsch et al., 2013). Temperature, 

among other factors (e.g. nutrients; Nimura et al., 2002), may then modulate the speed and efficiency 

of sporogenesis. Following settlement and germination of the released meiospores, the majority of 

gametophytes is believed to reproduce in late autumn when temperatures decrease and before low 

irradiance becomes limiting (Lüning, 1980; Sjøtun and Schoschina, 2002; Martins et al., 2017). Kelp 

gametogenesis is modulated by photoperiod, intensity of irradiance, the irradiance spectrum, nutrient 

availability and temperature. For instance, gametogenesis is inhibited under red light (Lüning and 
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Dring, 1975) and lack of bioavailable iron (Iwai et al., 2015). For L. digitata, gametogenesis was 

maximal under low irradiance of white light in a long photoperiod at high nutrient concentrations 

(Martins et al., 2017). Due to their potential for perennial vegetative growth (tom Dieck, 1993; 

Edwards, 2000), gametophytes may recruit juvenile sporophytes year-round when conditions 

become favourable. 

L. digitata occurs between the 0°C winter and 18–19°C summer mean sea-surface isotherms, beyond 

which it is most likely limited by insufficient growth or reproduction (van den Hoek, 1982a, 1982b; 

Müller et al., 2009; Oppliger et al., 2014). The distribution of L. digitata in the Northeast Atlantic is 

predicted to shift northward during ocean warming (Raybaud et al., 2013; Assis et al., 2018). This 

implies an extinction of the southernmost populations from Brittany, France, to the North Sea, and 

an expansion along Arctic coasts. Such predictions are often based on niche models which assume 

that all individuals within a species perform uniformly (Müller et al., 2009; Reed et al., 2011; King 

et al., 2018). However, intraspecific trait variability is an important aspect of a species’ 

environmental niche and can, if implemented, improve and change predictions (Cacciapaglia and 

van Woesik, 2018; Bennett et al., 2019; Chardon et al., 2020). Especially local adaptation and 

phenotypic plasticity have been shown to affect species’ responses to climate change (Atkins and 

Travis, 2010; Valladares et al., 2014; Bennett et al., 2019), and are part of a framework of trait 

variability which potentially affects responses of species from levels of populations to individuals. 

 

Within the thermal niche of a species, different levels of intraspecific trait variability can be classified 

along scales of space and time. Here, I introduce relevant concepts which have been described to 

modulate trait expression within species, in part including kelp. I illustrate theoretical concepts of 

thermal trait variability in schematic diagrams of thermal performance (Figure 1.5–Figure 1.8) 

which are loosely based on thermal growth curves of L. digitata sporophytes (Bolton and Lüning, 

1982; tom Dieck, 1992). On these concepts, I based my research questions and hypotheses (Chapter 

1.5) for the comprehensive investigation of central response mechanisms of kelp using the example 

of L. digitata. All relevant definitions are compiled in the Glossary (core concepts are marked bold). 

Along environmental gradients on a large spatial scale, populations of the same species may 

experience local adaptation to their prevailing environment due to natural selection (Figure 1.5; 

Kawecki and Ebert, 2004; Sanford and Kelly, 2011). Changes in allele frequencies alter a 

population’s ecological niche towards a local optimum, which optimizes its physiology in the local 

habitat only (Kawecki and Ebert, 2004). Locally adapted varieties of a species are called ecotypes 

(Gregor, 1944; King et al., 2018). In theory, local adaptation is favoured in populations with high 

genetic diversity for natural selection to target, and low gene flow which does not counteract selective 

1.4 Thermal trait variability within a species 
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forces (Antonovics, 1976; Kirkpatrick and Barton, 1997). Populations at a species’ ecological (and 

often geographical) range edges are of special interest, because they experience the most extreme 

conditions tolerable by the species (marginal populations sensu Soulé, 1973). If these unfavourable 

environments reduce population size and genetic diversity (Kawecki, 2000; Eckert et al., 2008), 

genetic drift may lead to maladaptation (Crespi, 2000; Eckert et al., 2008; Pearson et al., 2009). In 

contrast, extant L. digitata populations close to their southern distribution limit in Brittany, France, 

harbour high and unique genetic diversity (Oppliger et al., 2014; Robuchon et al., 2014b; Neiva et 

al., 2020), likely due to the persistence of refugial populations in the Armorican/Celtic Sea during 

the Last Glacial Maximum (Assis et al., 2018; Neiva et al., 2020). Strong selective forces acting on 

these unique populations might, in contrast, have facilitated local adaptation (Hardie and Hutchings, 

2010). A recent meta-analysis found evidence for intraspecific local thermal adaptation in 90% of 

the investigated studies on macroalgae and seagrass (King et al., 2018). Local adaptation might be 

favoured in these macrophytes due to their low dispersal capacity and low gene flow among 

populations (Breeman and Pakker, 1994; King et al., 2018; Miller et al., 2019). Recent evidence for 

local adaptation among L. digitata populations shows maximum production of heat shock proteins 

at higher temperature in Southern English populations at the distributional trailing edge, compared 

to Scottish populations in the species’ range centre (King et al., 2019). Additionally, L. digitata 

gametophytes from the Arctic and the North Sea showed slight thermal differentiation in terms of 

growth and fertility in accordance with their local thermal regimes (Martins et al., 2020). In the sugar 

kelp Saccharina latissima, ecotypic differentiation of thermal tolerance has been described among 

Northwest Atlantic populations decades ago (Gerard and Du Bois, 1988), and current transcriptomic 

analysis of responses to heat and hyposalinity corroborated differentiation among Brittany and Arctic 

populations (Monteiro et al., 2019b). However, studies on thermal traits within and among kelp 

populations on broad geographical scales are not yet sufficient to assess the role of local adaptation 

in shaping species’ responses to ocean warming (Nepper-Davidsen et al., 2019).  

 

Figure 1.5 Concept of hypothetical intraspecific trait variability of a kelp species over a temperature gradient. 
I. Along a latitudinal gradient, populations may differ in their average thermal performance (i.e. reaction norms 
differing in shape and/or thermal limits, e.g. of growth) due to local adaptation to the prevailing conditions. 
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On a smaller spatial scale, individual trait variability plays an important role in shaping the average 

response of populations in general (Figure 1.6; Sultan, 1995; Reusch, 2014). Phenotypic plasticity 

describes the ability of one genotype (i.e. the entirety of genes within an individual) to produce 

several phenotypes in response to its environment (Nicotra et al., 2010), which can be displayed as a 

reaction norm of a trait over an environmental gradient. This is the basis of acclimation, by which 

organisms can quickly adjust their metabolism to enhance or maintain performance in response to an 

environmental change (Reusch, 2014). L. digitata displays a wide thermal performance range of 

more than 15°C, in which plastic responses are capable of maintaining all essential life cycle 

functions (see Chapter 1.3.3 and Figure 1.4). The shape of reaction norms may also differ among 

genotypes, in that they differ in their capacity to express plastic traits. This concept is termed genetic 

variation for plasticity (Newman, 1994) and can be quantified by assessing significant differences 

among genotypes in their phenotypic response to an environmental gradient (genotype x environment 

interaction; Saltz et al., 2018). Genetic variation for plasticity implies that plasticity of fitness-related 

traits itself can be a trait that natural selection targets, thereby allowing reaction norms to evolve 

(Newman, 1994). For instance, a variable environment may select for high trait plasticity if some 

resulting phenotypes are of higher fitness than the consistent phenotype produced by a non-plastic 

genotype (Newman, 1994). Gametophytes of the giant kelp Macrocystis pyrifera responded 

differently among lineages to irradiance and temperature in growth and fertility characteristics 

(Mabin et al., 2019), which is a first indication of genetic variation for plasticity in a kelp. However, 

the prevalence and magnitude of genetic variation for plasticity in kelps is yet unclear.  

 

 

Figure 1.6 Concept of hypothetical intraspecific trait variability of a kelp species over a temperature gradient. 
II. Within a population, genotypes (G1–G9) express phenotypic plasticity as the capacity to produce a range 
of different phenotypes over the temperature gradient. Genetic variation for plasticity describes differential 
phenotypic plasticity among genotypes and is visualized as different reaction norm shapes and thermal ranges. 
Together, these reaction norms form the average population response (Figure 1.5). 
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Even within a genotype, reaction norms may not be static. The expression of different phenotypes 

by a genotype depending on the environment may affect its traits at a later time in carry-over effects 

(COE, also developmental plasticity; Figure 1.7; Palmer et al., 2012; Byrne et al., 2020). For 

instance, blade length of Ecklonia radiata sporophytes was correlated to the amount of reproductive 

tissue produced (Mabin et al., 2013). This indicates that the environment shaping sporophyte growth 

also affected their reproductive capacity at a later time. Additionally, trait expression may be shaped 

across life cycle stages and/or generations. Parental effects describe an influence of the parental 

environment on offspring traits regardless of the offspring environment (sensu Salinas et al., 2013; 

Figure 1.7). Parental effects produce parallel reaction norms among offspring of parents from 

different environments, which only differ in their magnitude of trait expression. In cross-

generational plasticity (CGP; Figure 1.7; Byrne et al., 2020), an interaction of parent and offspring 

environments changes the shape of the offspring reaction norm (i.e. its plasticity). Evidence for an 

effect of the parental environment on offspring traits exists for the fucoid seaweed Fucus vesiculosus, 

in which cultivation of receptacles during gametogenesis at 14°C compared to 4°C increased survival 

of subsequently recruited embryos at 33°C for 3 h from 36% to 64% (Li and Brawley, 2004). This 

indicates that ontogenetic temperature history may potentially have important effects on thermal 

plasticity and resilience to warming also in kelp forest key species. Suspected drivers of these effects 

are non-genetic mechanisms such as gene methylation, chromatin modification, energy transfer or 

hormone signalling (e.g. reviews by Jablonka and Raz, 2009; Ho and Burggren, 2010). Experiments 

addressing effects across generations are often designed as full-factorial approaches, in which 

offspring from two parental treatments are tested in contrasting environments either matching or 

mismatching their parental environment (Engqvist and Reinhold, 2016; Donelson et al., 2018). 

 

Figure 1.7 Concept of hypothetical intraspecific trait variability of a kelp species over a temperature gradient. 
III. Carry-over effects occur within a generation. Early development of a genotype (G) in a specific 
environment (blue and red dot; T0) affects trait expression (i.e. shape and/or elevation of the reaction norm) of 
the same genotype later in time (T1) due to development of different phenotypes. Across generations, 
parental effects of a temperature experienced by the parent (F0; blue and red dot) evoke a general benefit or 
disadvantage in the offspring (F1) regardless of offspring environment (i.e. parallel reaction norms with similar 
shape). Cross-generational plasticity alters offspring plasticity (i.e. shape of the reaction norm) across 
generations in an interaction of environments experienced by parents (F0; blue and red dot) and offspring (F1). 
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Lastly, outbreeding among differentiated genotypes may produce new phenotypes (Figure 1.8; 

Birchler et al., 2010; Westermeier et al., 2010). Results from a heat experiment on interspecific 

hybrids among L. digitata and L. pallida (Martins et al., 2019) allow the assumption that thermal 

tolerance limits may be inherited from the female parent, but this is not a consistent pattern in 

interspecific kelp crosses (tom Dieck and de Oliveira, 1993). Additionally, hybrid offspring 

sporophytes of L. digitata and L. pallida had a higher thermal tolerance compared to either of their 

single-species parental lineages (Martins et al., 2019). This effect of increased performance of hybrid 

offspring is known as heterosis or hybrid vigour (Birchler et al., 2010). In mid-parent heterosis, the 

hybrid performs intermediate to its parental lineages, but significantly better than the average 

performance over both parental lineages (Hochholdinger and Hoecker, 2007). In best-parent 

heterosis, hybrid performance surpasses the better of the two parents (Hochholdinger and Hoecker, 

2007). Within a species, genetic and phenotypic variation among populations may produce new 

phenotypes if ecotypes of the same species are outbred. Generally, outbreeding among populations 

may alleviate negative effects of genetic drift and inbreeding depression by introducing new alleles 

to a genetically impoverished population’s gene pool (Charlesworth and Charlesworth, 1987). In 

contrast, outbreeding depression may occur as a disruption of local adaptation among crosses of 

differentiated populations which may reduce their performance and fitness (Waser and Price, 1989; 

McKay et al., 2005; Aitken and Whitlock, 2013). Heterosis has been shown in improved growth and 

fertility of outbred compared to inbred Macrocystis pyrifera sporophytes (Raimondi et al., 2004; 

Westermeier et al., 2010) and in seaweed cultivars in mariculture (Li et al., 2007, 2008). However, 

the mechanisms of thermal inheritance and heterosis are still poorly understood for kelps 

(Westermeier et al., 2010; Martins et al., 2019). 

 

 

Figure 1.8 Concept of hypothetical intraspecific trait variability of a kelp species over a temperature gradient. 
IV. New phenotypes may be produced by outbreeding among genotypes with differentiated traits (G1, G2). 
The exemplary reaction norm for the reciprocal crosses indicates best-parent heterosis for maximum trait 
performance and heat tolerance (indicated by red arrows). 
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Trait variability via phenotypic plasticity and genetic variation is an important means of reacting to 

environmental change, the principles of which have been researched for decades (Bradshaw, 1965; 

Via and Lande, 1985). General research on phenotypic plasticity is still of utmost actuality today 

(Nicotra et al., 2010; Saltz et al., 2018; Fox et al., 2019). Trait variability is especially important for 

sessile species to acclimate and/or adapt to a changing environment and to avoid range shifts. 

Distribution ranges of marine forests are predicted to shift poleward along with rising ocean 

temperatures (Raybaud et al., 2013; Assis et al., 2018), and first losses of trailing-edge seaweed and 

kelp populations are already documented worldwide (e.g. Nicastro et al., 2013; Wernberg et al., 

2016; Assis et al., 2017). However, this recent focus of ecological kelp research on trailing-edge 

populations contrasts the lack of knowledge on species responses to ocean warming on a broad scale 

along environmental gradients (Nepper-Davidsen et al., 2019; King et al., 2020b). Understanding the 

processes driving differential responses of kelps to ocean warming will allow us to estimate the 

resilience, flexibility and adaptability of marine forest key species, and to improve predictions and 

mitigation guidelines. Further, identification of mechanisms mitigating ocean warming through 

either natural or artificial measures will provide a strong tool for bioconservation (Filbee-Dexter and 

Smajdor, 2019; Coleman et al., 2020b). It is still mostly unknown if and to what extent thermal 

performance and tolerance differ among populations of kelp species (but see e.g. Martinez, 1999; 

King et al., 2019), or if thermal ecotypes are capable of buffering predicted losses at the warm range 

edge due to warming. Further, it is unknown if temperature experienced during ontogeny may induce 

acclimative responses later in the life cycle (as in F. vesiculosus; Li and Brawley, 2004), providing 

a potential non-genetic mechanism to quickly respond to environmental change. Lastly, potential 

differentiation among kelp populations may provide a useful model to investigate thermal inheritance 

and effects of outbreeding among differentiated lineages on the thermal resilience within a kelp 

species (as in M. pyrifera; Westermeier et al., 2010). If these concepts are integrated into a theoretical 

framework, this will produce a comprehensive overview of the thermal responses and trait variability 

within one species which complements fundamental thermal optimum curves (e.g. Bolton and 

Lüning, 1982). 

The overarching objective of this dissertation was thus to produce an assessment of thermal trait 

variability of a marine forest key species across populations and life cycle stages for the first time in 

such detail. I investigated thermal characteristics of the kelp Laminaria digitata among populations 

covering the entire Northeast Atlantic distribution range (Publication I), along ontogeny over life 

cycle stages of gametophyte and sporophyte (Publication II), and among inbred and outbred 

sporophytes from contrasting temperature environments (Publication III). Specifically, I designed 

three studies to answer the following major research questions: 

1.5 Objectives and research questions 
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Research question of Publication I  

Have populations of Laminaria digitata differentiated in their heat resilience along the species’ 

entire Northeast Atlantic latitudinal distribution? 

Meristematic samples of L. digitata sporophytes were collected in Spitsbergen, Norway (79°N); 

Tromsø, Norway (70°N); Bodø, Norway (67°N); Helgoland, Germany (54°N); Roscoff, France 

(49°N); and Quiberon, France (47°N). Samples were subjected to a mechanistic common garden 

experiment applying 15–23°C over eight days to identify differences in response to sublethal heat in 

growth, chlorophyll fluorescence, carbon and nitrogen storage, and pigment contents. To investigate 

mechanisms facilitating potential ecotypic differentiation, neutral microsatellite markers were used 

for population genetic analyses of connectivity and genetic diversity.  

I hypothesized that L. digitata populations at the northern distribution limit are less heat-tolerant 

than populations at the southern distribution limit (i.e. thermal ecotypes have differentiated).  

I hypothesized that differentiation occurred in populations experiencing low amounts of gene flow, 

and that low genetic diversity was associated with reduced heat resilience due to genetic drift and 

possible maladaptation.  

 

Research question of Publication II  

Does ontogenetic temperature history across life cycle stages alter thermal plasticity of juvenile 

Laminaria digitata sporophytes? 

Five distinct genetic lines were initiated by separately releasing meiospores from five wild L. digitata 

sporophytes from Helgoland. Genetic lines were cultivated at the contrasting temperatures of 5 and 

15°C in a full-factorial approach across three steps (1) from meiospore germination over 

gametogenesis to recruitment of offspring sporophytes, (2) rearing of juvenile sporophytes and (3) a 

12-day experiment assessing thermal plasticity of 3–4 month-old offspring sporophytes. By splitting 

each genetic line into treatments of 5 and 15°C for each step, this created a total of eight temperature 

history treatments, in which I assessed the response parameters growth, chlorophyll fluorescence, 

and carbon and nitrogen storage. To relate results of thermal plasticity to seasonality in the wild, I 

conducted a separate growth experiment at 5 and 15°C with meristematic material from wild 

sporophytes across seasons.  

I hypothesized that the temperature experienced during gametogenesis and recruitment increases 

performance of juvenile sporophytes at matching temperatures (i.e. carry-over or cross-generational 

effects). 

I hypothesized that thermal plasticity is not uniform, but differs among genetic lines (i.e. genetic 

variation for plasticity).  
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Research question of Publication III  

How are thermal traits inherited among cold-temperate and Arctic Laminaria digitata? 

Unialgal female and male gametophyte isolates from Helgoland, North Sea, and Spitsbergen, 

Norway were used to rear lineages of inbred, within-population selfings and outbred reciprocal 

crosses of L. digitata sporophytes. In a first experiment, I assessed the upper temperature tolerance 

of inbred and outbred microscopic sporophytes over two weeks. In a second experiment, I subjected 

macroscopic sporophytes to 10°C (control) 19°C (moderate heat) and 20.5°C (sublethal heat) for 18 

days, during which I measured growth and chlorophyll fluorescence. At the end of the experiment, 

transcriptomic samples were analysed for differential gene expression among lineages to identify 

metabolic pathways involved in heat responses, and to estimate cellular stress responses expressed 

to maintain physiological performance.  

I hypothesized that sporophytes produced by inbreeding (selfing) Helgoland L. digitata are more 

tolerant to sublethal high temperature than inbred Spitsbergen sporophytes due to ecotypic 

differentiation of the respective populations. 

I hypothesized that outbred hybrids (crosses) among populations perform intermediate to or better 

than the selfings (i.e. mid-parent or best-parent heterosis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



General introduction 
 

19 

Publication I 

Daniel Liesner, Louise Fouqueau, Myriam Valero, Michael Y. Roleda, Gareth A. Pearson, Kai 

Bischof, Klaus Valentin, Inka Bartsch (2020). Heat stress responses and population genetics of 

the kelp Laminaria digitata (Phaeophyceae) across latitudes reveal differentiation among North 

Atlantic populations. Ecology and Evolution, 10: 9144–9177. doi:10.1002/ece3.6569. 

The experimental design of this study was developed as a common protocol in the EU-BiodivERsA 

project MARFOR under the lead of I. Bartsch, supported by M. Valero, G. A. Pearson, M. Y. Roleda 

and D. Liesner. Sampling of field material was conducted by D. Liesner, L. Fouqueau, M. Y. Roleda 

and I. Bartsch. Experiments and data acquisition were conducted by D. Liesner with support from I. 

Bartsch (experiment with Spitsbergen material) and K. Bischof (pigment analysis). Analysis and 

presentation of physiological data was conducted by D. Liesner; analysis and presentation of 

population genetic data was conducted by L. Fouqueau and M. Valero. D. Liesner wrote the 

manuscript draft with support from L. Fouqueau and M. Valero, who provided drafts for the material 

and methods and results chapters for population genetic analyses. All co-authors discussed and 

revised the manuscript under the lead of Daniel Liesner.  

Contribution of the candidate in % of the total workload (up to 100% for each category): 

Experimental concept and design:  ca. 50% 

Experimental work / data acquisition: ca. 80% 

Data analysis and interpretation: ca. 80% 

Preparation of Figures and Tables:  ca. 80% 

Drafting of the manuscript:   ca. 85% 

 

Publication II 

Daniel Liesner, Lisa N. S. Shama, Nora Diehl, Klaus Valentin, Inka Bartsch (2020). Thermal 

plasticity of the kelp Laminaria digitata (Phaeophyceae) across life cycle stages reveals the 

importance of cold seasons for marine forests. Frontiers in Marine Science, 7: 456. 

doi:10.3389/fmars.2020.00456. 

D. Liesner developed the concept of this manuscript with L. N. S. Shama and I. Bartsch. Sampling 

was conducted by D. Liesner and I. Bartsch. Experiments and data acquisition were conducted by D. 

Liesner with support in chlorophyll fluorescence analysis by N. Diehl. Analysis and presentation of 

physiological data was conducted by D. Liesner with support from L. N. S. Shama and N. Diehl. D. 

Liesner wrote the manuscript draft. All co-authors discussed and revised the manuscript under the 

lead of D. Liesner.  

1.6 List of publications and declaration of own contribution 



General introduction 
 

20 

Contribution of the candidate in % of the total workload (up to 100% for each category): 

Experimental concept and design: ca. 80% 

Experimental work / data acquisition:  ca. 80% 

Data analysis and interpretation:  ca. 90% 

Preparation of Figures and Tables:      100% 

Drafting of the manuscript:   ca. 99% 

 

Publication III 

Daniel Liesner, Shivani Rana, Lars Harms, Inka Bartsch, Gernot Glöckner, Klaus Valentin (in 

preparation). Evidence for increased heat resilience of intraspecific hybrids compared to inbred 

lineages of the kelp Laminaria digitata (Phaeophyceae) in physiology and transcriptomics. 

Authors to be included before manuscript submission: Gareth Pearson, Sandra Heinrich, Kai Bischof. 

Journal to be decided. 

D. Liesner developed the concept of this manuscript with I. Bartsch, K. Valentin and G. Glöckner. 

Experiments and data acquisition were conducted by D. Liesner. Physiological data analysis and 

presentation was conducted by D. Liesner. G. Glöckner provided the reference transcriptome and D. 

Liesner performed analyses of differential gene expression with support from L. Harms. D. Liesner 

wrote the manuscript draft with support from G. Glöckner and S. Rana, who provided information 

for the bioinformatic materials and methods chapter. The manuscript was discussed and revised with 

G. Glöckner, K. Valentin and I. Bartsch, and will be finalized with all co-authors before submission. 

Contribution of the candidate in % of the total workload (up to 100% for each category): 

Experimental concept and design: ca. 60% 

Experimental work / data acquisition:  ca. 80% 

Data analysis and interpretation:  ca. 80% 

Preparation of Figures and Tables:      100% 

Drafting of the manuscript:   ca. 95%
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To investigate intraspecific trait variability, kelps provide an intriguing experimental system. The 

structuring of sporophytes into a complex thallus allows to, within limits, infer whole-organisms 

responses from experiments on isolated tissue. For instance, samples of kelp and fucoid tissue can 

be used to examine growth responses of meristematic material (Graiff et al., 2015), chlorophyll 

fluorescence (Hargrave et al., 2017), fertility (Bartsch et al., 2013), transcriptomic stress responses 

(King et al., 2019), and even allow investigation of traits along the basal-distal gradient of kelp blades 

(Buchholz and Lüning, 1999; Scheschonk et al., 2019). However, results have to be interpreted with 

caution, as the isolation of tissue samples intercepts any basal-distal relationships in the thallus. 

Examples for such relationships are the hypothesized control of sporogenesis in the distal blade via 

auxin hormones produced by the meristem (Buchholz and Lüning, 1999; Lüning et al., 2000; Kai et 

al., 2006), or the reversible transformation and translocation of the storage carbohydrates mannitol 

and laminarin (Yamaguchi et al., 1966; Gómez and Huovinen, 2012; Scheschonk et al., 2019). In the 

context of this study, the experimental use of meristematic tissue samples allowed to compare 

responses of wild sporophytes along the latitudinal distribution of L. digitata in replicated, common 

garden experiments (Publication I). Tissue discs were cut from the sporophyte meristem and stored 

within wet paper towels in ziplock bags. At cool temperature (< 15°C), these samples can be stored 

and transported within 30 hours without evident damage, to be used in a laboratory experiment. 

Gametophytes, on the other hand, provide benefits because of their small size and separate sexes. 

Unialgal clonal gametophyte cultures can be prepared and maintained with relatively low effort and 

can be fertilized at will to produce sporophytes (Bartsch, 2018). This quality may, for instance, be 

applied in producing gametophytes as seeding material for restoration efforts (Fredriksen et al., 2020; 

Vanderklift et al., 2020). As discussed above, gametophytes may be viewed as constituting the 

majority of the kelp germline as they produce gametes, and are therefore part of the parental 

generation producing the next generation of offspring sporophytes (see Chapter 1.3.2). This allows 

to experimentally alter the environment during gametogenesis uncoupled from the parental somatic 

cells, of which I made use in investigating the effects of temperature across kelp generations and 

ontogeny (Publication II). However, when investigating cross-generational effects, it is important 

to separate experimental treatments between both generations to clearly attribute effects to the 

treatment of one generation (Donelson et al., 2018; Byrne et al., 2020). In laminarian kelps, a 

separation of treatments during gametogenesis, but excluding next-generation sporophytes is 

difficult. The timing of female and male gamete release is co-dependent (Maier et al., 2001) and 

occurs over several days (Lüning, 1981) and as yet there are no feasible methods to fully inhibit and 

induce gamete release, or to isolate gametes for controlled fertilization. A revised method to 

circumvent an overlap of generational treatments is to treat only vegetative gametophytes 

experimentally and induce gametogenesis and fertilization in a common environment (Chapter 

2.1 The kelp experimental system – benefits and disadvantages 



Synopsis of methodology 
 

23 

6.1.3; Gauci, 2020). I conceptualized this experimental design as part of a Master’s thesis which I 

co-supervised (Gauci, 2020) following Publication II (see Chapter 6.1.3). In this approach, only 

primordial germ cells, but not gametes and zygotes are exposed to the experimental treatment, and 

any treatment effects can be attributed solely to the parental gametophyte environment. If taken one 

step further, the kelp experimental system also allows to treat only parental diploid sporophyte 

material (e.g. distal sporophyte discs; Bartsch et al., 2013), and investigate cross-generational effects 

on next-generation sporophytes across meiosis and gametogenesis. This approach circumvents an 

issue common in animal models, that germ cells and embryos cannot easily be separated from their 

parents (Torda et al., 2017; Donelson et al., 2018; Byrne et al., 2020).  

Gametophytes originating from meiospores of one sporophyte can further be used to produce selfings 

as biological replicates (Publication II). Clonal gametophyte cultures can even be used to produce 

multiple genetically identical offspring sporophytes (Publication III; Westermeier et al., 2010), 

which allows investigations of phenotypic plasticity by differentially treating multiple individuals of 

one genotype. However, true homozygous kelp lines are difficult to produce as they have to be 

repeatedly inbred over multiple generations. This is a standard procedure to obtain stable cultivars in 

kelp mariculture (e.g. Li et al., 2008), but poses an issue in controlled laboratory settings. Between 

fertilizing gametophyte material and having reared macroscopic sporophytes suited for experiments, 

at least three months of cultivation are necessary (Bartsch, 2018), while the natural life cycle is 

completed within ~1 year. For long-term cultivation or to complete the kelp life cycle under 

laboratory conditions, either seawater tank systems are necessary (e.g. Schaffelke and Lüning, 1994) 

or sporophytes may be kept in large beakers with frequent seawater exchanges for several months 

(Bartsch et al., 2013), which poses an immense logistic effort. In comparison, the small, filamentous 

brown alga Ectocarpus siliculosus has meanwhile become a model organism to study evolution and 

developmental processes at the molecular level (Coelho et al., 2007; Cock et al., 2010, 2014), partly 

because of its small size and quick generational turnover (Peters et al., 2004). Still, kelps offer a 

valuable experimental system with unique characteristics and potential for fundamental research, 

ecosystem conservation and applied mariculture.  

 

In Publication I, I conducted a common garden experiment designed around the upper thermal 

tolerance limit of L. digitata sporophytes to test for differentiation in heat tolerance among 

populations. For this, meristematic samples from five locations were tested in a laboratory 

experiment under identical conditions. To identify true local adaptation to the entirety of a local 

environment, individuals from different locations should be transplanted reciprocally to compare 

fitness parameters at each location (Kawecki and Ebert, 2004). Ecotypes will perform comparatively 

2.2 Experimental designs 
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better in their respective environment, but worse in others. However, to investigate phenotypic 

differentiation in response to exclusive parameters (and not the integrative local environment), 

common garden experiments provide an ideal experimental design, while preventing any ethical 

conflicts due to genetic contamination among locations (King et al., 2018). Results obtained from 

wild material have to be interpreted with caution due to potential interaction of genetic effects (e.g. 

adaptation) with within- and cross-generational plasticity due to the samples’ environmental history 

(King et al., 2018). These effects can only be ruled out by investigating laboratory-reared individuals 

over multiple generations, which was not feasible in the scope of this dissertation. 

In Publication II, I investigated temperature effects across life cycle stages and ontogeny on thermal 

plasticity of juvenile sporophytes. I applied a full-factorial design tracking ontogeny of L. digitata at 

5 and 15°C in three steps from meiospores to sporophytes. In the first step, I applied 5 and 15°C 

during meiospore germination, gametogenesis and sporophyte recruitment. Each treatment was then 

split into treatments of 5 and 15°C to be reared during early sporophyte growth. In a final step, 

treatments were again split between 5 and 15°C for an experiment assessing thermal plasticity of 

juvenile sporophytes among the, in total, eight temperature history treatments. Therefore, the 

experiment lacked a common control treatment, but comparisons among treatments allowed to assess 

the effect of matching or mismatching environments across ontogeny and development (match-

mismatch approach; Engqvist and Reinhold, 2016). Further, the experiment was replicated in five 

distinct genetic lines each initiated from meiospores of one wild sporophyte individual. This allowed 

to disentangle genetic effects from environmental treatment effects, and made assessments of genetic 

variation for plasticity possible (Herman and Sultan, 2016; Donelson et al., 2018). 

In Publication III, I used female and male gametophyte isolates, each obtained from one sporophyte 

individual from the Arctic archipelago of Spitsbergen and one from the North Sea island of 

Helgoland, to produce sporophytes of inbred selfings and outbred reciprocal crosses among the two 

populations. These sporophytes were then assessed in terms of their thermal resilience and 

transcriptomic profiles to identify effects of inbreeding and outbreeding, and to assess patterns of 

thermal inheritance among inbred and outbred lineages. 

 

In all three publications, I investigated physiological characteristics of L. digitata sporophytes in 

thermal experiments based on established methods. This provided an integrative overview of key 

traits in kelp ecophysiology. 

Growth is an integrative parameter over all metabolic processes and can therefore be interpreted as 

a proxy for organismal stress. In algae, growth is often described based on one of three 

characteristics: development of thallus length, area or mass over time (e.g. Lüning, 1990; Graiff et 

2.3 Physiological measurements 
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al., 2015; Martins et al., 2019). Measurements are simple in that samples are removed from 

experimental beakers, photographed with a defined reference area, and patted dry and weighed on a 

laboratory scale. Images can then be analysed for thallus length and area with image analysis 

software. Length, as a one-dimensional characteristic, mostly increases linearly over time and can 

therefore often be described with absolute growth rates (e.g. as an increase in cm d-1). In contrast, 

area and mass of sporophytes mostly increase exponentially over time due to their expansion in 

multiple dimensions. Therefore, area and mass growth over time is better expressed as relative 

growth rates (e.g. as an increase in g g-1 d-1 or % d-1; Lüning, 1990). In Publication II, I compared 

temperature effects on length growth of sporophytes with differing initial sizes, which did have an 

effect on growth rates. To visualize solely the effect of temperature on sporophyte length reported 

by the statistical analysis, and not effects of initial size, I normalized the data to sample size. I first 

produced a simple regression to model the average effect of initial sporophyte length on final length 

(for an example, see Figure 2.1). I then interpreted deviations from the fitted mean response (i.e. the 

model residuals) as effects of the applied temperature treatments (Shama, 2017). 

 

Figure 2.1 Example for producing model residuals to compare growth in experimental treatments among 
differentially sized samples. (A) Simple linear model (regression) of length at the end of the experiment as a 
function of initial length before the experimental treatments. Points are measurements of individual samples, 
the red line shows the modelled mean response, the blue line marks the residual (vertical distance) of one point 
to the mean response. (B) Deviation (residuals) of individual measurements (exemplified by blue line as in 
(A)) from the modelled mean response (red line) over the range of fitted values for final length (x-axis). As the 
fitted length is only based on the initial size, residuals can be interpreted as experimental treatment effects. 

 

Growth is closely interlinked with the assimilation and storage of carbon (Gómez and Huovinen, 

2012), and with the availability of nutrients, whereas nitrogen is most often the limiting nutrient for 

seaweed growth in natural systems (Roleda and Hurd, 2019). To assess the biochemical composition 

of experimental kelp samples in Publication I and Publication II, two main methods were applied 

in this study. For the analysis of elemental carbon (C) and nitrogen (N) contents, 2–3 mg ground, 
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lyophilized tissue per sample was packed into tin cartridges, compressed, and combusted at 1000°C 

in an elemental analyzer (EURO EA, HEKAtech GmbH, Wegberg, Germany) with acetanilide as 

standard (Verardo et al., 1990). The ratio of C : N can then be calculated to infer nutrient sufficiency 

or limitation (Atkinson and Smith, 1983; Duarte, 1992). In addition, the sugar alcohol mannitol is of 

interest as it is a major photosynthetic product (Gómez and Huovinen, 2012), but also functions as a 

compatible solute in response to osmotic stress (Karsten, 2012). Following Karsten et al. (1991), I 

extracted mannitol from ground, lyophilized samples in 70% ethanol for 4 h. The supernatant was 

collected and evaporated, and the remaining pellet was resuspended in water and analysed via high-

performance liquid chromatography (HPLC; 1200 Series, Agilent Technologies).  

Carbon assimilation depends on photosynthesis, which is influenced by temperature in mediating 

pigment, enzyme or photosystem contents (Gerard and Du Bois, 1988; Davison et al., 1991; 

Machalek et al., 1996; Li et al., 2019). Fluorescence of chlorophyll a can be used to assess the 

optimum quantum yield Fv/Fm (i.e. the photosynthetic efficiency) of photosystem II (PS II). 

Chlorophyll fluorescence of dark-acclimated samples was measured with pulse amplitude modulated 

(PAM) fluorometres. In this thesis, two devices were used. In Publication I and Publication II, I 

used a conventional PAM-2100 (Walz, Effeltrich, Germany) which can detect fluorescence in a small 

thallus area determined by the size of an optical fibre which is placed on the sample (here, the 

meristematic region of sporophytes). In Publication III, I used an Imaging PAM (Walz, Effeltrich, 

Germany) which can detect fluorescence of larger areas by use of a camera instead of an optical fibre. 

This allowed to record responses of entire juvenile sporophytes, whereas the area of interest was still 

the meristematic region. As both devices apply different technology to investigate the same 

parameters, results are not comparable among devices. For instance, Fv/Fm is generally reported lower 

in the Imaging PAM than in a conventional PAM-2100 even in photosynthetic tissue of single-cell 

thickness (Nielsen and Nielsen, 2008). With the PAM-2100, I additionally recorded effective 

quantum yield of light-acclimated samples over a range of 0–511 µmol photons m-2 s-1 in rapid light 

curves (RLC). Based on effective quantum yield over the irradiance gradient, relative electron 

transport rates (rETR) in photosystem II were calculated (Maxwell and Johnson, 2000; Hanelt, 2018). 

rETR vs. irradiance curves were then fit following the model of Jassby and Platt (1976) to calculate 

maximum relative electron transport rate rETRmax, saturation irradiance Ik, and photosynthetic 

efficiency α of each curve. The lack of steady-state responses due to the short illumination periods 

in the PAM approach used here results in approximations of rETRmax, Ik and α. These approximations 

may be used to describe relative changes between treatments (Enríquez and Borowitzka, 2010), but 

are not equivalent to measures of photosynthesis via photosynthetic gas exchange (Maxwell and 

Johnson, 2000). I further used the data obtained via RLC to investigate non-photochemical energy 

dissipation from PS II. Maximum nonphotochemical quenching NPQmax, the saturation irradiance 

E50, and the sigmoidicity coefficient n were calculated following Serôdio and Lavaud (2011). 
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Finally, I investigated chlorophyll and xanthophyll pigment contents of meristematic material in 

Publication I. Increased xanthophyll contents may indicate a photoprotective acclimation reaction 

(Pfündel and Bilger, 1994; Uhrmacher et al., 1995; Latowski et al., 2011), while the de-epoxididation 

ratio of the xanthophyll cycle pigments violaxanthin, antheraxanthin and zeaxanthin (in rising order 

of de-epoxidation) represents the current capacity to quench excessive energy from the photosystem 

(Pfündel and Bilger, 1994). Lyophilized samples were ground under dim light conditions, weighed 

to 50–80 mg, and extracted in 90% aqueous acetone in darkness for 24 h at 7°C. HPLC analysis 

followed the protocol and equipment described by Scheschonk et al. (2019). 

 

I conducted statistical analyses of all physiological parameters in the R statistical environment (R 

Core Team, 2019). Linear mixed effects models are a powerful tool to incorporate data structure and 

variance within the dataset into the statistical analysis (Zuur et al., 2009). For data collected for this 

thesis, I modelled response variables as a function of fixed effects (experimentally modulated 

factors), random effects (varying responses within the tested groups, e.g. among genotypes) and 

covariates (e.g. differences in response before the experimental treatment). I then investigated model 

fit by assessing the distribution of normalized model residuals over the fitted values, and by testing 

if normalized model residuals are homoscedastic and represent samples from a normal distribution. 

Non-normality and heteroscedasticity among normalized model residuals was accounted for by 

including a term describing the variance structure in the model (Zuur et al., 2009). If a good model 

fit is confirmed, the significance of correlation among fixed effects and response variables can be 

investigated with an F-test (i.e. analysis of variance, ANOVA). Additionally, testing for significance 

of random effects allows an assessment of differences in magnitude (random intercept) or direction 

(random slope) of within-group variance (e.g. among genotypes) over the fixed effects. I used this to 

determine genetic variation for plasticity among genotypes in Publication II. In repeated measures 

designs (Publication I), the correlation structure among observations of repeatedly measured 

subjects can be implemented in the model to allow comparisons among dependent observations 

(Pekár and Brabec, 2016).  

 

In Publication I, I related physiological heat responses to population genetics based on neutral 

microsatellite markers. Neutral microsatellites are tandem repeats of few nucleotides in the DNA 

sequence, which occur throughout the genome, are highly polymorphic, and are believed to be under 

no selection pressure (Ellegren, 2004; Vieira et al., 2016). Based on similarities or differences of 

2.4 Statistical analysis of physiological data 

2.5 Population genetics analysis  
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these sequences mainly in repeat numbers, genetic distance and diversity among populations can be 

inferred without confounding effects of selective processes (Ellegren, 2004; Vieira et al., 2016). 

Microsatellite analysis was performed in collaboration with Myriam Valero and Louise Fouqueau 

from the Station Biologique de Roscoff, France. DNA was extracted from 8–12 mg of dried tissue 

using the NucleoSpin 96 Plant II kit (Macherey-Nagel GmbH & Co. KG, Düren, Germany). Lysis, 

microsatellite amplification and scoring was performed for 12 polymorphic loci following Robuchon 

et al. (2014b). We used twelve microsatellite markers, of which six were developed for Laminaria 

digitata by Billot et al. (1998) and six were developed for Laminaria ochroleuca by Coelho et al. 

(2014). Genetic diversity was characterized for each population as the mean number of alleles per 

locus (Na), unbiased expected heterozygosity (He), observed heterozygosity (Ho), number of private 

alleles (Pa), allelic richness (AR) and the inbreeding coefficient (FIS). The existence of differentiated 

genetic groups among L. digitata populations was analysed with a Bayesian clustering method 

(Pritchard et al., 2000) by testing a range of 1 ≤ K ≤ 6 clusters (Gilbert et al., 2012). The most likely 

value of K was determined using Evanno ΔK in the software Structure Harvester (Evanno et al., 

2005; Earl and vonHoldt, 2012). 

 

In Publication III, I analysed transcriptomic responses to heat stress of L. digitata sporophytes to 

investigate thermal resilience and metabolic regulation. Due to the high levels of polysaccharides 

and phenolic compounds present in kelps, obtaining pure RNA for downstream analysis is difficult 

(Wang et al., 2005; Pearson et al., 2006; Heinrich, 2018). For extraction of high-quality RNA, I 

followed the extraction protocol originally published by Heinrich et al. (2012) and explained in detail 

by Heinrich (2018). The protocol combines a cetyltrimethylammonium bromide (CTAB) extraction 

and chloroform purification with the subsequent use of a commercial RNA extraction kit (RNeasy 

Plant Mini Kit, Qiagen, Hildesheim, Germany). Sporophytes were frozen in liquid nitrogen, stored 

at -80°C and processed within four weeks. RNA concentration and purity was inspected with a 

NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies LLC, Wilmington, USA) and 

RNA integrity was confirmed by capillary electrophoresis (Agilent 2100 Bioanalyzer, Agilent 

Technologies, Santa Clara, USA). At Cologne Center for Genomics (CCG), RNA was polyA+ 

enriched and converted to a cDNA sequencing library using a TruSeq RNA Library Prep Kit 

(Illumina, San Diego, USA). The cDNA was sequenced as 150 bp paired end libraries on an Illumina 

HiSeq 2500. Reads were quality trimmed with Trimmomatic (Bolger et al., 2014). 

The L. digitata transcriptome was assembled de novo in collaboration with Gernot Glöckner and 

Shivani Rana from the University of Cologne. We used the algorithm ASplice, which returns 

assembled contigs and normalized expression data (Sze et al., 2017). Based on these expression data, 

2.6 RNA isolation and transcriptomic data analysis 
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I analysed all contigs which were at least 500 bp long for differential expression among treatments 

using the R package “DESeq2” (Love et al., 2014). For functional annotation of all differentially 

expressed genes, I used the “Trinotate” pipeline (Bryant et al., 2017). As L. digitata is not a model 

organism, the annotation of genes relies on the identification of orthologues in other, closely related 

species. Therefore, I used various databases to identify the highest coverage of functional annotation 

with reference to other brown algae (mainly the model brown alga Ectocarpus siliculosus; Peters et 

al., 2004; Cock et al., 2010) or diatoms. Uniref90 provided the fastest and most complete annotation, 

while still more than 80% of the investigated contigs remained unidentified. That the majority of 

differentially expressed genes cannot be identified is a common problem in transcriptomic studies of 

kelps (Heinrich et al., 2012; Monteiro et al., 2019b), and warrants careful interpretation of the data. 

Following functional annotation, I manually inspected gene functions of 151 identified and 

differentially expressed genes and related them to relevant pathways of heat stress responses.  
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SUPPLEMENTARY MATERIAL 

 

 

Supplementary Figure S1 Temperature reaction norms of length growth rates of single genetic lines (A – E) 

and averaged over all genetic lines (F) of Laminaria digitata during experiment 2. Primary x-axis: experimental 

temperature, secondary x-axis: rearing temperature, symbol colours: gametogenesis temperature. Mean values 

± SE, n = 4 for five genetic lines, n = 20 for all genetic lines. 
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Supplementary Figure S2 Temperature reaction norms of biochemical parameters averaged over all five 

genetic lines of juvenile Laminaria digitata sporophytes in experiment 2. Primary x-axis: experimental 

temperature, secondary x-axis: rearing temperature, symbol colours: gametogenesis temperature. All plots 

show values obtained at the end of the 12-day experiment. (A) Mannitol contents in dry mass. (B) Total carbon 

contents in dry mass. (C) Total nitrogen contents in dry mass. (D) Carbon to nitrogen mass ratio. Mean values 

± SE over all genetic lines, except for (A) means of mean values due to extraction in triplicates, n = 20. 

Statistical significance of the fixed factors gametogenesis temperature (Gam), experimental temperature (Exp) 

and their interaction (Gam x Exp) is summarized in the Figure; ***, p < 0.001; **, p < 0.01; *, p < 0.05; n.s., 

not significant. For full statistical report see Table 4. 
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Supplementary Figure S3 Temperature reaction norms of fluorometric parameters for each genetic line of 

Laminaria digitata in experiment 2 to visualize genetic variation for plasticity. Primary x-axis: experimental 

temperature, secondary x-axis: rearing temperature, slope colours: gametogenesis temperature. All plots show 

values obtained at the end of the 12-day experiment. (A) Optimum quantum yield Fv/Fm. (B) Maximum relative 

electron transport rate rETRmax. (C) Saturation irradiance Ik (µmol photons m-2 s-1). (D) Photosynthetic 

efficiency α (rETR / µmol photons m-2 s-1). Means over single genetic lines, n = 4. Statistical significance of 

the random factors for genetic line x experimental temperature interaction (GxE; random slope) and genetic 

line (G; random intercept) is summarized in the Figure; *, p < 0.05; n.s., not significant; NA, not available. For 

full statistical report see Table 3. 
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Supplementary Figure S4 Sporophyte recruitment of individual genetic lines of Laminaria digitata following 

gametogenesis after 26 days at 5°C and 15°C (microscopic counts, n = 4, mean ± SE). Recruitment was 

saturated after 19 days at 15°C and after 26 days at 5°C. Only genetic lines A and B were present throughout 

experiment 2 (indicated in bold); genetic lines C–E were not assessed during gametogenesis and recruitment. 

Spore densities differed between genetic lines at time of inoculation. Between genetic lines A, B, 3 and 4, 

gametophyte densities did not differ significantly after meiospore germination on day 4 (marked by dashed 

line). Note the majority of sporophyte recruitment at 15°C only in genetic line A. See Supplementary Table 

S3 for statistical analysis. 
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Supplementary Table S1 Absolute growth rates of individual meristematic Laminaria digitata discs over 14 

days at 5°C and 15°C in experiment 1. 

 February May July 

 5°C 15°C 5°C 15°C 5°C 15°C 

In
di

vi
du

al
s 

0.378 1.303 0.316 0.327 0.173 0.272 

0.285 0.513 0.176 0.113 0.232 0.412 

0.362 0.994 0.165 0.138 0.336 0.377 

0.729 0.807 0.124 0.357 0.342 0.364 

0.707 1.143 0.365 0.332 0.277 0.577 

0.557 1.269 0.114 0.113 0.164 0.391 

0.188 0.381 0.261 0.572 0.248 0.476 

0.285 0.382 0.272 0.236 0.291 0.427 

0.274 0.727 0.106 0.169 0.153 0.152 

0.439 1.241 0.221 0.457 0.165 0.237 

0.227 0.461 0.204 0.253 0.081 0.106 

0.480 1.412 0.333 0.226 0.149 0.176 

0.212 0.364 0.199 0.116 0.167 0.210 

0.711 0.982 0.183 0.172 0.133 0.223 

0.312 0.660 0.322 0.539 0.189 0.370 

0.257 1.097 0.184 0.223 0.168 0.406 

0.202 0.364 0.317 0.515 0.203 0.286 

0.544 0.758 0.278 0.108 0.211 0.321 

0.233 0.579 0.338 0.386 0.228 0.406 

0.411 0.796 0.335 0.382 0.212 0.334 

For each month, growth rates (cm² d-1) at 5°C and 15°C each correspond to one meristem disc of the same wild 

sporophyte individual. N = 60. All discs had the same initial size (Ø 24 mm). Individuals growing faster at 5°C 

than at 15°C are highlighted in bold text. 
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Supplementary Table S2 Initial values for growth, biochemical and fluorometric parameters of juvenile 

Laminaria digitata sporophytes before experiment 2. 

Initial values R5 R15 

 G5 G15 G5 G15 

Length per sporophyte (cm) 11.1 ± 1.0  11.1 ± 0.9 7.1 ± 1.5 6.9 ± 1.2 

Mannitol (mg g-1 dm) 92.7 ± 16.0 73.6 ± 17.6 52.7 ± 4.9 52.1 ± 7.6 

Carbon (mg g-1 dm) 268.9 ± 8.8 255.9 ± 9.0 272.5 ± 3.2 271.8 ± 1.7 

Nitrogen (mg g-1 dm) 25.1 ± 1.2 21.8 ± 0.6 24.7 ± 1.2 24.1 ± 2.8 

C : N ratio 10.7 ± 0.3 11.7 ± 0.4 11.0 ± 0.6 11.4 ± 1.3 

Fv/Fm 0.72 ± 0.03 0.74 ± 0.04 0.76 ± 0.01 0.76 ± 0.01 

rETRmax 32.8 ± 3.5 31.7 ± 5.0 82.5 ± 13.5 82.4 ± 12.5 

Ik (µmol photons m-² s-1) 41.2 ± 5.5 38.6 ± 9.6 104.2 ± 20.3 104.4 ± 18.6 

α 0.80 ± 0.05 0.84 ± 0.09 0.80 ± 0.03 0.79 ± 0.03 

Initial values obtained before acclimation to experiment 2, except length which was obtained after acclimation. 

Fv/Fm, Optimum quantum yield; rETRmax, maximum relative electron transport rate; Ik, saturation irradiance; 

α, photosynthetic efficiency. Mean values ± SD, except mannitol: mean of mean values due to extraction in 

triplicates, n = 20. 
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Supplementary Table S3 Results of two-way ANCOVA to examine variability of Laminaria digitata 

sporophyte recruitment following gametogenesis. 

Parameter numDF denDF F-value p-value 

Initial density 1 59 72.68 <0.0001 

Genetic line 9 59 6.92 <0.0001 

Gametogenesis temp. 1 59 7.38 0.0086 

Genetic line x gameto temp. 9 59 4.09 0.0004 

Number of sporophytes per cm² after recruitment was saturated (26 days of gametogenesis treatment) was 

tested against initial spore density as covariate and interactive effects of genetic line and gametogenesis 

temperature. numDF, numerator degrees of freedom; denDF, denominator degrees of freedom. Statistically 

significant values (p < 0.05) are indicated in bold text. See also Supplementary Figure S4. 
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Evidence for increased heat resilience of intraspecific hybrids compared to inbred lineages of 

the kelp Laminaria digitata (Phaeophyceae) in physiology and transcriptomics 

Daniel Liesner, Shivani Rana, Lars Harms, Inka Bartsch, Gernot Glöckner, Klaus Valentin 

 

ABSTRACT 

Marine forests are threatened by ocean warming at the warm distributional edges. Kelps, as the 

marine forest foundation species, are highly plastic in their thermal responses and may consist of 

various thermal ecotypes along their latitudinal distribution. To investigate inheritance of thermal 

traits, we assessed thermal tolerance of inbred (selfings) and outbred (crosses) sporophytes of the 

kelp Laminaria digitata among isolates from the contrasting populations of Helgoland (North Sea) 

and Spitsbergen (Arctic). First, we investigated the upper thermal tolerance of microscopic 

sporophytes in a 14-day experiment applying 20–23°C. The upper survival temperature was lower 

for the inbred Spitsbergen selfing (21°C) than for the Helgoland selfing and the reciprocal crosses 

(22°C), which indicates mid-parent heterosis in the crosses. We then subjected 4–7 cm long 

sporophytes to a control temperature (10°C), moderate (19°C) and critical heat stress (20.5°C) to 

assess metabolic regulation via whole-transcriptome analysis in addition to physiological parameters. 

Growth and optimum quantum yield decreased in a similar manner in the reciprocal crosses and the 

Helgoland selfing at 19 and 20.5°C, while inbred Spitsbergen sporophytes died within seven days at 

these temperatures. Transcriptomic profiles revealed that gene regulation differed among lineages. 

At 10°C, the Spitsbergen selfing showed the highest gene expression. Considering only the three 

surviving lineages at 20.5°C, differential gene expression was reduced in the reciprocal crosses 

compared to the Helgoland selfing, despite their similar physiological responses. Among the 

identified transcripts, cellular stress responses were reduced in the reciprocal crosses compared to 

the Helgoland selfing at 20.5°C. These results imply that thermal traits are inherited from both female 

and male gametophyte parents. In addition, the intraspecific crosses maintained a similar physiology 

to the inbred Helgoland selfing with reduced metabolic regulation during sublethal heat stress, which 

may be a beneficial effect of outbreeding. Intraspecific hybrids show potential to provide stable and 

resilient crops in mariculture. Further, outbreeding may be used in the future to maintain natural 

populations threatened by ocean warming, but a careful discussion of ethical concerns will become 

necessary. 
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INTRODUCTION 

Kelps in the brown algal order Laminariales are the foundation of diverse coastal rocky ecosystems 

known as kelp forests (Teagle et al., 2017). In addition to their immediate ecosystem functions as 

shelter and food, they sequester significant amounts of carbon (Krause-Jensen and Duarte, 2016), 

remove anthropogenic nutrients from coastal waters (Kim et al., 2015) and can be of high direct and 

indirect economic value (Vásquez et al., 2014; Buschmann et al., 2017). These kelp forests are 

currently threatened by ocean warming especially at their warm range edges (Voerman et al., 2013; 

Wernberg et al., 2016; Smale et al., 2019), which is a manifestation of the predicted poleward shift 

of kelp forest distributions under climate change (Raybaud et al., 2013; Assis et al., 2018).  

In this study, we investigated the kelp Laminaria digitata Hudson J.V. Lamouroux, which grows in 

the upper sublittoral and infralittoral fringe of cold-temperate and Arctic coasts in the North Atlantic 

(Lüning, 1990). Like all laminarian kelps, L. digitata alternates between microscopic haploid 

gametophytes and macroscopic diploid sporophytes in a dioecious, anisogamous life cycle. Sex 

determination occurs in the haploid gametophyte stage (UV sexual system; Coelho et al., 2018) 

whereas the diploid sporophyte is asexual. Life cycle stages differ in their thermal limits, as 

gametophytes can tolerate higher temperature (23°C over two weeks; Bolton and Lüning, 1982) than 

sporophytes (21°C over two weeks; Lüning, 1984; tom Dieck, 1992).  

Building on this general knowledge, recent evidence suggests that kelp forest key species are not 

uniform in their temperature responses, but show signs of adaptation to their local thermal regime 

(King et al., 2018; Liesner et al., 2020a). Compared to populations from the species’ range centre, L. 

digitata populations close to the warm distribution limit show higher heat resilience. The 

southernmost European population in Quiberon, France, and the population on the North Sea island 

of Helgoland show higher heat resilience of growth and photoprotective responses, respectively, 

compared to other populations along the latitudinal distribution of L. digitata (Liesner et al., 2020a). 

This is contrasted by reduced thermal tolerance of the Arctic population of Spitsbergen in 

photosynthetic quantum yield (Liesner et al., 2020a) and reproductive traits (Martins et al., 2020). 

This is in accordance with local sea surface temperature (SST) reaching  

> 18°C in Quiberon (Oppliger et al., 2014) and Helgoland (Bartsch et al., 2013), whereas 

Kongsfjorden, Spitsbergen reaches maximum SST of 6–7°C (Hanelt et al., 2001; Liesner et al., 

2020a). Further, the genetic distance between these populations may have facilitated phenotypic 

divergence (Liesner et al., 2020a). First evidence on the molecular level shows that heat shock protein 

expression in South English L. digitata populations peaks at higher temperatures than in more 

northern, Scottish populations (King et al., 2019). Still, it is mostly unclear which mechanisms are 

driving differences in intraspecific phenotypic responses. Therefore, to improve predictions and 

mitigation guidelines, temperature responses of kelps and their underlying molecular mechanisms 

are an important field of study (Heinrich et al., 2015; Li et al., 2019; Monteiro et al., 2019b). 



Publication III 
 

94 

Especially distant and phenotypically diverged populations may provide a useful test system to 

investigate phenotypic thermal plasticity and inheritance, and the underlying molecular mechanisms. 

The underlying process of thermal trait inheritance is still largely unknown in kelps and macroalgae 

(Martins et al., 2019). Recent research has shown that brown algal gametophytes express different 

transcriptomic regulatory patterns among sexes generally (Lipinska et al., 2015; Pearson et al., 2019) 

and in response to temperature (Monteiro et al., 2019a). In the sporophyte stage, there is evidence 

for beneficial heterosis effects (“hybrid vigour”; Hochholdinger and Hoecker, 2007) in growth and 

thermal tolerance of hybrid offspring of closely related species (Lüning et al., 1978; tom Dieck and 

de Oliveira, 1993; Martins et al., 2019). Within species, outbreeding among populations might 

alleviate effects of inbreeding depression (Raimondi et al., 2004) and may even produce more 

productive offspring (Westermeier et al., 2010). Heterosis is a known concept to produce stable and 

viable cultivars in agriculture and mariculture (Li et al., 2007; Westermeier et al., 2010; Fu et al., 

2014), but research on the underlying principles of trait inheritance and heterosis is still scarce 

(Fujimoto et al., 2018). Therefore, producing reciprocal crosses among cultivars may help in 

understanding mechanisms of thermal trait inheritance in kelps.  

In this study, we investigated thermal tolerance of inbred and outbred juvenile Laminaria digitata 

sporophytes among the distant populations of Helgoland and Spitsbergen, which evidently differ in 

their thermal characteristics (Liesner et al., 2020a; Martins et al., 2020). We hypothesized that inbred 

lineages (selfings) of Helgoland sporophytes are more tolerant to sublethal high temperature than 

inbred Spitsbergen sporophytes. Further, we expected outbred hybrids (crosses) among populations 

to perform intermediate to or better than the inbred lineages (i.e. heterosis). To investigate 

differentiation and underlying mechanisms of thermal regulation among kelp individuals from 

different populations in sublethal heat stress, we applied physiological measurements and whole-

transcriptome analysis to identify major regulatory processes. 

 

MATERIALS AND METHODS 

Experimental design 

We designed an experiment using gametophyte isolates from the L. digitata populations of Helgoland 

(North Sea) and Spitsbergen (Arctic), because they represent genetically distant populations thriving 

at contrasting thermal conditions along the latitudinal gradient (Liesner et al., 2020a). We induced 

fertilization of gametophytes and performed a first experiment on recruited microscopic sporophytes 

to define their upper thermal tolerance and differential survival capacity over time of inbred selfings 

and outbred reciprocal crosses. We then performed a second experiment on 4–7 cm long sporophytes 

in which we applied control (10°C) and sublethal temperature (19 and 20.5°C) for 18 days. We 
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measured the physiological traits of growth and photosynthetic optimum quantum yield, and 

compared transcriptomic responses to critical heat stress at 20.5°C among selfings and crosses. 

 

Culture material, preparation and fertilization 

We used unialgal gametophyte cultures isolated in 2015 from spores of one Laminaria digitata 

sporophyte from Kongsfjorden, Spitsbergen, Norway (AWI seaweed culture collection: ♀ 3472, ♂ 

3471) and one sporophyte from Helgoland, Germany (AWI seaweed culture collection: ♀ 3436, ♂ 

3435). Spitsbergen material had been verified as L. digitata morphologically and by DNA barcoding 

of the sporophyte (ID 78 in Dankworth et al., 2020) to avoid confusion with the morphologically 

similar Arctic kelp Hedophyllum nigripes. Prior to the start of the experiment, cultures were 

maintained vegetatively under red light (approx. 3 µmol photons m-2 s-1; ProfiLux 3 with LED Mitras 

daylight 150, GHL Advanced Technology, Kaiserslautern, Germany) in a 16:8 h L:D cycle at 15°C 

in a temperature-controlled cooling chamber (error ± 1°C) in sterile Provasoli-enriched seawater 

(PES; Provasoli, 1968; modifications: HEPES-buffer instead of TRIS, double concentration of 

Na2glycerophosphate; iodine enrichment following Tatewaki, 1966). 

To perform fertilization of selfings and crosses, stock suspensions of each gametophyte culture were 

prepared by gently fragmenting gametophyte material using mortar and pestle. Suspensions were 

sieved to obtain a fraction of filaments measuring 50–100 µm length. Gametophytes were added to 

petri dishes (Ø 5 cm) containing four glass cover slips and filled with 12 mL half-strength PES to a 

desired density of each 250 male and female gametophyte filaments cm-2 in all combinations (total 

500 gametophytes cm-2). This created the “lineage” treatments of H x H, Helgoland female x 

Helgoland male; H x S, Helgoland female x Spitsbergen male; S x H, Spitsbergen female x Helgoland 

male; S x S, Spitsbergen female x Spitsbergen male (n = 4). For all lineages, females are reported 

first. Additionally, we included female-only samples to control for parthenogenetic development of 

Helgoland and Spitsbergen females with 500 female gametophyte fragments cm-2. Gametogenesis 

was induced at 10°C and 15–18 µmol photons m-2 s-1 white light, which is optimal for both 

populations (tom Dieck, 1992; Martins et al., 2020). Gametogenesis and sporophyte recruitment were 

quantified via inverted microscopy (CKX41, Olympus Co., Tokyo, Japan) 14, 21 and 28 days after 

sowing, when recruitment was saturated. Gametogenesis was quantified based on ontogenetic 

development of females (vegetative, oogonia, egg release, sporophyte-bearing; Martins et al., 2017). 

Despite efforts to sow gametophytes at identical densities, Spitsbergen gametophytes (f: 227 ± 22 

gametophytes cm-2 14 days after sowing, mean ± SD, n = 8; m: 195 ± 10 gam. cm-2) were about twice 

as dense as Helgoland gametophytes (f: 120 ± 11 gam. cm-2; m: 95 ± 15 gam. cm-2). Therefore, 

density was taken into account in the statistical analysis for experiment 1. 
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Following recruitment, the four cover slips per replicate were divided into four plastic dishes (Coria, 

Ø 6 cm, polystyrol, VKF Renzel, Germany) to conduct the first experiment on the upper thermal 

limit of microscopic sporophytes (experiment 1). The remaining sporophytes in the petri dishes were 

pooled by lineage and were reared for 73 more days first in glass dishes (Ø 9 cm) at the same 

conditions. Macroscopic sporophytes were subsequently cultivated in 1 L glass beakers and 5 L 

bottles with gentle aeration at 10°C under increased irradiance of 30–35 µmol photons m-2 s-1 with 

weekly changes of half-strength PES medium. 

 

Experiment 1: upper survival temperature of microscopic sporophytes 

The four cover slips of one gametogenesis replicate were assigned to one experimental replicate in 

each temperature treatment of the first experiment to define the upper thermal limit of microscopic 

sporophytes (20, 21, 22, 23°C). Replicate dishes each containing one coverslip and 100 mL half-

strength PES were acclimated at 14°C for 11 days, followed by 18°C for two days before reaching 

the experimental temperatures in water baths controlled by thermostats (Huber Variostat CC + Pilot 

ONE, Peter Huber Kältemaschinen GmbH, Offenburg, Germany). Amounts of healthy (fully 

pigmented), unhealthy (partial bleaching) and dead (fully bleached) sporophytes were counted at the 

start of the experiment (day 0), after seven and 14 days at the temperature treatments, and after a 

recovery period of 14 days at 20°C. In each replicate, ~300 sporophytes were randomly counted. 

Medium was changed at the start of the experiment and at the end of the 14-day temperature 

treatment. Mid-parent heterosis (MPH; hybrid vigour) of survival in the reciprocal crosses was 

calculated as the difference between the hybrid response and the average selfing response over both 

inbred lineages following Hochholdinger and Hoecker (2007): 

𝑀𝑃𝐻 = 𝐹1 −  
𝑃1 + 𝑃2

2
 

where F1 is the trait of a hybrid, and P1 and P2 are traits of the parental inbred lineages. 

 

Experiment 2: critical heat stress on macroscopic sporophytes 

In the second experiment, 4–7 cm long sporophytes were subjected to temperatures of 10°C (control), 

19 and 20.5°C to assess heat stress responses among lineages. These temperatures were chosen based 

on the results of experiment 1, where the majority of sporophytes survived for 14 days at 20°C and 

only the Spitsbergen selfing showed reduced resilience at 21°C (Figure 2), which corresponds to the 

published upper thermal limit of L. digitata (Bolton and Lüning, 1982; tom Dieck, 1992). Seven 

sporophytes were assigned to one replicate plastic container (Wide neck containers series 310 PETG, 

2000 mL, Kautex GmbH & Co. KG, Bonn-Holzlar, Germany) filled with 1.8 L of half-strength PES 

(n = 4). Samples were acclimated for one day at 13.5°C and one day at 17°C before reaching the 
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experimental temperatures of 19 and 20.5°C on day 0 of the experiment, while the control treatments 

remained at 10°C. Two sporophytes per replicate were marked to be used for growth and fluorometry 

measurements throughout the experiment by punching small holes in the distal thallus with a Pasteur 

pipette. Of the unmarked five sporophytes per replicate, three were frozen in liquid nitrogen 

throughout the experiment (before acclimation, day 1 of temperature treatment, day 18 of 

temperature treatment). Samples frozen before acclimation and after 18 days of temperature 

treatment were used for transcriptomic analysis, stored at -80°C and processed within three weeks. 

The remaining two sporophytes served as backup. 

Measurements were conducted on days -2 (before acclimation), 0 (beginning of experiment), 3, 7, 

10, 14 and 17. Fluorometric measurements were conducted with an Imaging-PAM (M-Series, MAXI 

version, Heinz Walz GmbH, Effeltrich, Germany) following 10 minutes dark acclimation. Maximum 

quantum yield (Fv/Fm) was measured in the meristematic region of two sporophytes per replicate. 

Fresh weight was quantified after patting dry sporophytes with paper wipes. Relative growth rates 

were calculated as 

 𝑅𝐺𝑅 (𝑔 𝑔−1𝑑−1) =
ln 𝑥2 − ln 𝑥1

𝑡2 − 𝑡1
 

where x1 and x2 are fresh weights at the successive time points t1 and t2, respectively. 

 

Physiological data analysis 

For statistical analysis of gametophytic developmental stages, we analysed proportions of 

ontogenetic stages across lineages and parthenogenesis controls with a chi-square test. We further 

modelled percentages of gametophytes bearing sporophytes against covariates of female and male 

gametophyte densities, and lineage as fixed factor. Because the assumption of homogeneity of 

variances of standardized model residuals was violated, variance structure was included in the 

models with the weights argument (Zuur et al., 2009) in a generalized least squares model (function 

“gls”) from the R package “nlme” (Pinheiro et al., 2019). To analyse survival of microscopic 

sporophytes in experiment 1, we calculated fractions of unbleached (“healthy”) sporophytes in each 

replicate to produce survival curves. We then modelled percentages of healthy sporophytes after 14 

days of exposure against a density covariate and the fixed factor lineage for each experimental 

temperature using simple linear models (function “lm”). Relative growth rates and Fv/Fm in 

experiment 2 were modelled as a function of the fixed factor lineage for each temperature separately 

at time points 3 (all lineages) and 17 (S x S only included at 10°C because of mortality at 19 and 

20.5°C) using simple linear models. All analyses were conducted in R 3.6.0 (R Core Team, 2019). 
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Sporophyte RNA extraction, sequencing and quality control 

For RNA extraction from frozen sporophyte material, we applied the protocol of Heinrich et al. 

(2012) with modifications described by Heinrich (2018). RNA purity was inspected by NanoDrop 

ND-1000 Spectrophotometer (NanoDrop Technologies LLC, Wilmington, USA) and RNA integrity 

was confirmed by capillary electrophoresis (Agilent 2100 Bioanalyzer, Agilent Technologies, Santa 

Clara, USA). The RNA was enriched for polyA+ species and then converted to a cDNA sequencing 

library using a TruSeq RNA Library Prep Kit (Illumina, San Diego, USA) according to the 

manufacturer’s protocol. The cDNA was sequenced as 150 bp paired end libraries on an Illumina 

HiSeq 2500. Reads were quality trimmed with Trimmomatic (Bolger et al., 2014). 

 

Bioinformatic analysis 

The L. digitata transcriptome was assembled de novo from 32 libraries (n = 3; n = 2 for H x H at 

20.5°C) sampled on day 0 and day 18 of experiment 2 using the algorithm ASplice, which returns 

splicing graphs as a collection of nodes (Sze et al., 2017). Transcript expression was normalized as 

number of reads per kilobase of node per million reads (RPKM; Sze and Tarone, 2014). Contigs 

were searched for contamination with bacteria or other eukaryotes using Kraken (Wood and 

Salzberg, 2014). Contigs ≥ 500 bp were analysed for differential expression using the R package 

“DESeq2” version 1.28.1 (Love et al., 2014). We used the “ashr” method for shrunken log2-fold 

changes (log2FC) with the requirements of p < 0.001 and log2FC > 2 to extract differentially regulated 

genes (DEGs). Comparisons were made only for samples taken on day 18. In total, 16 comparisons 

were made to investigate different levels of regulation: Temperature effects within the lineages were 

investigated by comparing each lineage at 20.5°C with their respective 10°C control. Baseline 

differences in regulation among the lineages were investigated by comparing all lineages at 10°C. 

Lineage-specific heat responses were investigated by comparing the reciprocal crosses at 20.5°C 

with the Helgoland selfing at 20.5°C. Due to mortality of the Spitsbergen selfing at 19 and 20.5°C, 

we further included a cross-comparison of the reciprocal crosses at 20.5°C with the selfings at 10°C 

to include the Spitsbergen control. All differentially expressed genes were then annotated using the 

“Trinotate” pipeline (Bryant et al., 2017) and Uniprot Swissprot, Uniref90, RefSeq and NR 

databases. We used Uniref90 as the primary reference in the functional analysis because it provided 

the most annotated contigs. When different contigs were annotated as the same gene, potential 

sequence overlap in the graphical blast output and differing patterns in expression height among 

samples were used as indicators that contigs belonged to a gene family rather than being fragments 

of the same gene. 
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RESULTS 

Gametogenesis and recruitment 

After 14 days of fertilizing conditions, there were significant differences in the relative proportions 

of ontogenetic stages among the lineages and the parthenogenesis controls (Figure 1; Chi-squared 

test, Χ² = 240.31; df = 15; p < 0.0001).  

 

 

Figure 1 Relative proportions of ontogenetic development of female Laminaria digitata gametophytes from 
Helgoland (H) and Spitsbergen (S) after 14 days at 10°C (mean values, n = 4). Parthenogenesis controls (H 
fem., S fem.) and fertilizing cultures (selfings and crosses) are separated by a dashed line. 

 

Among the four fertilizing lineages (excluding the parthenogenesis controls) there were significant 

differences in the relative proportion of gametophytes bearing sporophytes (p < 0.0001, Table 1). 

The Helgoland selfings contained a mean of 34% sporophyte-stage gametophytes, compared to 5% 

in the H x S cross, 0.7% in S x H and 0.6% in the Spitsbergen selfing (Tukey tests, H x H > (H x S 

= S x S = S x H); p < 0.01). Gametophytes which had developed to at least the stage of egg release 

made up 68% of the Helgoland selfing, 31% of H x S, 8% of S x H and 2% of the Spitsbergen selfing. 

2–9% of gametophytes remained vegetative across lineages. The significant covariate for female 

gametophyte density (p = 0.0001, Table 1) described a higher proportion of gametophytes bearing 

sporophytes at lower female densities. The faster development of Helgoland females was also visible 

in the parthenogenesis controls. After 28 days, recruitment was saturated as means of 75–80% (S x 

S, S x H, H x S) and 90% (H x H) of females had developed to the sporophyte stage (ANCOVA, 

F(3,11) = 8.13, p = 0.0039).  
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Table 1 Results of generalized least squares model to examine ontogenetic development of Laminaria digitata 
among lineages. 

Fixed effect DFn DFd F-value p-value 
Female density (covariate) 1 10 43.44 0.0001 
Male density (covariate) 1 10 2.50 0.1448 
Lineage 3 10 43.24 <0.0001 

Percentage of gametophytes bearing sporophytes after 14 days of fertilizing culture was tested against 
covariates of female and male gametophyte densities, and against lineage as fixed factor. DFn and DFd denote 
numerator and denominator degrees of freedom, respectively. Statistically significant values (p < 0.05) are 
indicated in bold. 

 

Upper survival temperature of microscopic sporophytes (experiment 1) 

In Figure 2, we show the percentage of fully pigmented (“healthy”) microscopic sporophytes for 

each lineage over 14 days of heat treatment and subsequently 14 days of recovery at 20°C in four 

temperature treatment panels. While almost all sporophytes survived at 20°C for 14 days, 23°C was 

lethal for most sporophytes across lineages. At 20°C, lineage did not have a significant effect as 99–

100% of sporophytes were healthy in all lineages after 14 days (p = 0.4164, Table 2), but in the 

Spitsbergen selfing the fraction of healthy sporophytes decreased to 83% during the subsequent 14 

days of recovery at 20°C. Major temperature effects were visible in S x S at 21°C, which significantly 

decreased the fraction of healthy sporophytes to 68% after 14 days compared to all other lineages, 

which remained 93–99% healthy (p < 0.0001, Table 2; Tukey tests, p < 0.0001). Again, health of S 

x S sporophytes further decreased to 28% during recovery. At 22°C, health of S x S sporophytes 

decreased drastically to 6%, while the other crosses remained at 70–80%, and the Helgoland selfing 

retained 90% healthy sporophytes (p < 0.0001, Table 2; Tukey tests, H x H > (S x H = H x S) > S x 

S, p < 0.05). At 23°C, percentages of healthy sporophytes among lineages ranged between 0% and 

3% and were not significantly different (p = 0.0600, Table 2). Only in the Helgoland selfing, 4.5% 

of healthy sporophytes persisted during recovery. These results led to the decision to perform 

experiment 2 with a control temperature of 10°C, 19°C as a moderate heat treatment and 20.5°C as 

a critical but sublethal heat treatment. 
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Figure 2 Relative proportion of fully pigmented (healthy) Laminaria digitata sporophytes of different lineages 
in experiment 1 over 14 days in treatments of 20°C (A), 21°C (B), 22°C (C) and 23°C (D) followed by 14 days 
of recovery at 20°C (separated by dashed line; mean values ± SD, n = 4). Significance of the fixed effect 
lineage on sporophyte health after 14 days of temperature exposure is indicated in the Figure; ***, p < 0.001; 
n.s., not significant. For pairwise comparisons, see main text. 

 

The comparably high survival of the reciprocal crosses at 21 and 22°C can be quantified as mid-

parent heterosis (MPH), in which fitness of hybrid offspring is significantly better than the average 

value of the two parental inbred lines (Hochholdinger and Hoecker, 2007). Over 14 days at 21°C, H 

x S showed MPH of 10% ± 3% (mean ± SD) higher survival than the average selfing response over 

both populations, and a 23% ± 3% higher survival at 22°C. S x H showed MPH of 14% ± 6% higher 

survival than the average selfing response at 21°C and a 31% ± 6% higher survival at 22°C. 
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Table 2 Results of linear models to examine fractions of unbleached Laminaria digitata sporophytes in the 
upper survival temperature experiment on microscopic sporophytes (experiment 1). 

Temp. (°C) Fixed effect DFn DFd F-value p-value 
20 Sporophyte density (covariate) 1 11 8.41 0.0144 

Lineage 3 11 1.04 0.4146 
21 Sporophyte density (covariate) 1 11 119.45 <0.0001 

Lineage 3 11 32.44 <0.0001 
22 Sporophyte density (covariate) 1 11 632.90 <0.0001 

Lineage 3 11 111.75 <0.0001 
23 Sporophyte density (covariate) 1 11 5.06 0.0460 

Lineage 3 11 3.33 0.0600 
Percentages of healthy sporophytes per sample after 14 days of exposure were tested against a density covariate 
and against the fixed factor lineage in separate models for each temperature treatment. DFn and DFd denote 
numerator and denominator degrees of freedom, respectively. Statistically significant values (p < 0.05) are 
indicated in bold. 

 

Heat stress experiment on macroscopic sporophytes (experiment 2) 

In experiment 2, we aimed to identify differences among lineages in response to each temperature 

treatment. Due to the unbalanced design following the loss of the Spitsbergen selfing at 19 and 

20.5°C, we analysed differences among lineages within each temperature treatment on day 3 

(including the Spitsbergen selfing), and on day 17 (excluding the Spitsbergen selfing at 19 and 

20.5°C). Relative growth rates of fresh weight (RGR) decreased over time for all lineages at 19 and 

20.5°C (Figure 3). We show RGR over the acclimation period (days -2–0) and over 17 days of heat 

treatment. Each point refers to growth rates over the time period starting from the previous sampling 

date. Over the first three days at 10°C, growth rates among lineages were not significantly different 

(p = 0.9521, Table 3) and all ranged > 0.12 g g-1 d-1. At 19°C, growth of the Spitsbergen selfing was 

significantly reduced to 0.06 g g-1 d-1 compared to all other lineages at 19°C, which ranged around 

0.1 g g-1 d-1 (p < 0.0001, Table 3; Tukey tests, p < 0.001). At 20.5°C, growth of the Spitsbergen 

selfing was again significantly reduced at < 0.05 g g-1 d-1 compared to all other lineages (p = 0.0008, 

Table 3; Tukey tests, p < 0.01), which retained similar growth around 0.07 g g-1 d-1. Following day 

3, all sporophytes of the Spitsbergen selfing bleached at 19 and 20.5°C and were therefore removed 

from the analysis. Between days 14 and 17, growth rates differed significantly among lineages at 

10°C (p = 0.0154, Table 3). H x S sporophytes grew significantly faster at 0.09 g g-1 d-1 than S x S 

at 0.07 g g-1 d-1 (Tukey tests, (H x S = S x H = H x H) > (S x H = H x H = S x S), p < 0.01). At 19°C, 

growth rates among the three remaining lineages did not differ significantly (p = 0.3885, Table 3). 

At 20.5°C, growth rates differed significantly among lineages (p = 0.0296, Table 3), in that H x S 

retained slightly higher growth at 0.02 g g-1 d-1 compared to the Helgoland selfing at 0.01 g g-1 d-1 

(Tukey tests, (H x S = S x H) > (S x H = H x H), p < 0.05). 
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Figure 3 Relative growth rates of Laminaria digitata sporophytes from different lineages over time at 10°C 
(A), 19°C (B) and 20.5°C (C) in experiment 2 (mean ± SD, n = 4). Significance of the fixed effect lineage on 
sporophyte growth after 3 and 17 days of temperature exposure is indicated in the Figure; ***, p < 0.001; **, 
p < 0.01; *, p < 0.05; n.s., not significant. For pairwise comparisons, see main text. 

 

 

Table 3 Results of linear models to examine relative growth rates among lineages for two time points in the 
critical heat stress experiment on macroscopic Laminaria digitata sporophytes (experiment 2). 

Temp. Fixed Day 3 Day 17 
(°C) effect DFn DFd F-value p-value DFn DFd F-value p-value 
10 Lineage 3 12 0.11 0.9521 3 12 6.42 0.0154 
19 Lineage 3 12 22.59 <0.0001 2 9 1.05 0.3885 
20.5 Lineage 3 12 13.12 0.0008 2 9 5.34 0.0296 

Relative growth rates of fresh weight between day 0 and day 3, and between day 14 and day 17 were tested 
against the fixed factor lineage in separate models for each temperature treatment. DFn and DFd denote 
numerator and denominator degrees of freedom, respectively. p-values were adjusted for multiple comparisons 
with FDR corrections. Statistically significant values (p < 0.05) are indicated in bold. 
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Optimum quantum yield Fv/Fm was relatively stable across lineages and temperatures and was mostly 

in a healthy range of 0.6–0.7 (Figure 4). On day 3, Fv/Fm differed significantly among lineages at all 

temperatures. At 10°C, Fv/Fm was significantly lower in the Spitsbergen selfing at 0.64 than in the 

other lineages, which ranged from 0.66–0.67 (p = 0.0006, Table 4; Tukey tests, p ≤ 0.01). At 19°C, 

Fv/Fm was significantly highest in the Helgoland selfing at 0.70 and lowest in the Spitsbergen selfing 

at 0.67, while the reciprocal crosses were intermediate at 0.68 (p = 0.0004, Table 4; Tukey tests, H 

x H > (S x H = H x S) > (H x S = S x S), p < 0.05). At 20.5°C, Fv/Fm was significantly lower in the 

Spitsbergen selfing at 0.65 than in the Helgoland selfing for which Fv/Fm was 0.70 (p = 0.0414, Table 

4; Tukey tests, (H x H = S x H = H x S) > (S x H = H x S = S x S), p < 0.05). On day 17, Fv/Fm did 

not differ significantly among lineages at 10°C (p = 0.0629, Table 4) and ranged between 0.67–0.69. 

At 19°C, Fv/Fm differed significantly among lineages (p = 0.0218, Table 4), in that Fv/Fm was higher 

in S x H at 0.72 than in H x S and the Helgoland selfing at 0.70 (Tukey tests, S x H > (H x S = H x 

H), p < 0.05). At 20.5°C, Fv/Fm ranged between 0.68–0.71 and again did not differ significantly 

among lineages (p = 0.4549, Table 4). 

 

 

Figure 4 Optimum quantum yield Fv/Fm of Laminaria digitata sporophytes from different lineages over time 
at 10°C (A), 19°C (B) and 20.5°C (C) in experiment 2 (mean ± SD, n = 4). Significance of the fixed effect 
lineage on Fv/Fm after 3 and 17 days of temperature exposure is indicated in the Figure; ***, p < 0.001; *, p < 
0.05; n.s., not significant. For pairwise comparisons, see main text. 
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Table 4 Results of generalized least squares model to examine optimum quantum yield (Fv/Fm) among lineages 
for two time points in the critical heat stress experiment on macroscopic Laminaria digitata sporophytes 
(experiment 2). 

Temp. Fixed Day 3 Day 17 
(°C) effect DFn DFd F-value p-value DFn DFd F-value p-value 
10 Lineage 3 12 14.72 0.0006 3 12 3.19 0.0629 
19 Lineage 3 12 15.81 0.0004 2 9 6.03 0.0218 
20.5 Lineage 3 12 4.76 0.0414 2 9 0.86 0.4549 

Fv/Fm on day 3 and day 17 was tested against the fixed factor lineage in separate models for each temperature 
treatment. DFn and DFd denote numerator and denominator degrees of freedom, respectively. p-values were 
adjusted for multiple comparisons with FDR corrections. Statistically significant values (p < 0.05) are indicated 
in bold. 

 

Transcriptome Quality 

The number of reads per library ranged between 28 million and 44 million with an average of 33.5 

million reads per library. The raw assembled transcriptome contained 598,395 contigs (NODEs). 

Following a cutoff at ≥ 500 bp, 23,288 contigs remained and were used for the differential expression 

analyses. Principal component analysis revealed that all replicates of the same lineage and 

temperature treatment clustered well (Figure 5). Distribution of data along the x-axis (PC1) 

explained 40% of the variance among gene expression in the samples, and mainly separated the two 

temperature treatments. Distribution along the y-axis (PC2) explained 27% of the variance and 

divided samples based on origin of the parental gametophytes. While the Helgoland and Spitsbergen 

selfings each formed clearly separated clusters within the temperature treatments, the reciprocal 

crosses grouped together at 10°C, but were slightly separated at 20.5°C. The placement of the 

reciprocal crosses between both selfings verifies that outbreeding was successful for the tested 

sporophytes. 
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Figure 5 Principal component analysis of normalized read counts in all combinations of lineage and 
temperature treatment of Laminaria digitata sporophytes (n = 3; for H x H at 20.5°C, n = 2). 

 

Differential gene expression in experiment 2 

Out of the 23,288 contigs, we extracted 871 (3.74%) differentially expressed contigs (differentially 

expressed genes, DEGs) among all comparisons in the differential expression analysis. The number 

of differentially expressed genes differed among comparisons and a pattern of reduced gene 

regulation in the reciprocal crosses became evident. We assessed general heat responses by analysing 

differential gene expression between 20.5 and 10°C within each lineage (Figure 6A). Gene 

regulation in response to 20.5°C was lowest in H x S, where 76 genes were up-regulated and 120 

genes were down-regulated compared to the 10°C control. In S x H at 20.5°C, 152 genes were up-

regulated and 83 genes were down-regulated, which is in a comparable range to the 162 up-regulated 

and 86 down-regulated genes in the Helgoland selfing at 20.5°C. To identify general patterns among 

cultivars of the different locations, we conducted comparisons of the Spitsbergen selfing and of both 

reciprocal crosses against the Helgoland selfing at 10°C, and comparisons of both crosses against the 

Spitsbergen selfing at 10°C (Figure 6B). In the Spitsbergen selfing, regulation was strongest at 10°C 

as 138 genes were up-regulated and 53 genes were down-regulated compared to the Helgoland 

selfing. In contrast, both reciprocal crosses showed reduced gene regulation compared to either 

selfing. H x S up-regulated 35 genes and down-regulated 29 genes at 10°C, whereas S x H up-

regulated 37 genes and down-regulated 10 genes at 10°C compared to the Helgoland selfing at 10°C. 

When compared to the Spitsbergen selfing at 10°C as control, H x S up-regulated 15 genes and down-

regulated 34 genes, whereas S x H up-regulated 18 genes and down-regulated 20 genes. 
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To investigate potential population-specific regulatory heat responses among the reciprocal crosses, 

we first compared both crosses to the Helgoland selfing at 20.5°C (Figure 6C). Compared to H x H 

at 20.5°C, both crosses up-regulated fewer genes than were down-regulated at 20.5°C. In H x S, 36 

genes were up-regulated while 161 genes were down-regulated. Similarly, in S x H, 38 genes were 

up-regulated while 98 genes were down-regulated. We then compared both reciprocal crosses to both 

Helgoland and Spitsbergen selfings at 10°C in a cross-comparison of lineage and temperature effects 

(Figure 6C) to compensate for the loss of the Spitsbergen selfing control at 20.5°C. Compared to H 

x H at 10°C, S x H at 20.5°C showed the highest regulation with 267 up-regulated and 119 down-

regulated genes, whereas in H x S at 20.5°C, 134 genes were up-regulated and 162 genes were down-

regulated. Against the S x S control at 10°C, H x S up-regulated 81 genes and down-regulated 239 

genes at 20.5°C, whereas S x H up-regulated 94 genes and down-regulated 116 genes.  

Finally, we performed direct comparisons between the reciprocal crosses at 10°C and at 20.5°C (data 

not shown), which revealed minimal differential regulation among the crosses. In a direct comparison 

of H x S at 10°C against S x H at 10°C, only one gene was significantly up-regulated, while another 

gene was significantly down-regulated. In a direct comparison of H x S at 20.5°C against S x H at 

20.5°C, only two genes were significantly up-regulated and nine genes were significantly down-

regulated. Of the DEGs reported in these comparisons, none were functionally annotated. 
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Figure 6 Number of significantly up-regulated (orange) and down-regulated (blue) differentially expressed 
genes (DEGs; p < 0.001, log2FC ≥ 2) in Laminaria digitata sporophytes among comparisons of treatments (x-
axis, upper row) and controls (x-axis, lower row) in experiment 2. Treatment abbreviations are composed as 
female x male from Helgoland (H) and Spitsbergen (S) at 10°C (10) and 20.5°C (20). (A) Comparisons within 
lineages across temperature treatments of 20.5 and 10°C to visualize temperature effects within lineages. (B) 
Comparisons of the Spitsbergen selfing and both reciprocal crosses at 10°C against the Helgoland selfing at 
10°C, and of both reciprocal crosses against the Spitsbergen selfing at 10°C to visualize baseline differences 
in regulation. (C) Comparisons of the reciprocal crosses at 20.5°C against the Helgoland selfing at 20.5°C, and 
against both Helgoland and Spitsbergen selfings at 10°C as controls (cross-comparisons, separated by a vertical 
line) to visualize lineage-specific heat responses. Two comparisons were omitted for clarity due to low 
regulation (HxS 10 vs. SxH 10; HxS 20 vs. SxH 20). 
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Functional analysis of differentially expressed genes 

Among the 871 differentially regulated genes, 355 were annotated with the UniRef90 database, of 

which 154 transcripts were assigned a putative gene product (collected in Supplementary Table 1). 

Due to the low number of annotated DEGs, we manually classified and examined the DEGs in the 

different comparisons and focused our analysis on key genes and main metabolic processes. To 

investigate regulatory responses among within-population selfings and reciprocal crosses, we 

compiled annotated DEGs into Tables distinguished by the major functional groups of lipid 

metabolism (Table 5), carbon assimilation, carbohydrate and cell wall metabolism (Table 6), 

photosynthesis and pigment metabolism (Table 7), and cellular stress responses (Table 8).  

Lipid metabolism was regulated by all lineages in response to heat (Table 5). All lineages responded 

to the 20.5°C treatment by up-regulating lipase genes compared to their 10°C controls. One lipase 

gene was additionally up-regulated in all lineages involving Spitsbergen at 10°C compared to the 

Helgoland selfing at 10°C. At 20.5°C, expression of lipase was reduced in the reciprocal crosses 

compared to the Helgoland selfing. Genes for Acyl-CoA synthetases, which are involved in lipid 

catabolism, were up-regulated in the Spitsbergen selfing at 10°C and in the S x H cross at 20.5°C 

compared to the Helgoland selfing at 10 and 20.5°C. A decrease in polyunsaturated fatty acids 

(PUFAs) in response to heat is indicated by the down-regulation of a fatty acid desaturase gene within 

all lineages at 20.5°C compared to 10°C. Further, two lipoxygenase genes were down-regulated in 

response to 20.5°C in H x H and in H x S compared to both selfings at 10°C, as well as in both 

reciprocal crosses compared to the Helgoland selfing at 20.5°C. 

Genes associated cell wall metabolism were down-regulated at 20.5°C (Table 6). Within each 

lineage, three to four genes for mannuronan C-5 epimerase were down-regulated at 20.5°C compared 

to 10°C. Further, two cellulose synthase genes were down-regulated only in the Helgoland selfing at 

20.5°C compared to 10°C. A glycosyltransferase gene was down-regulated in all comparisons of 

20.5°C treatments against 10°C controls. Related to the assimilation of inorganic carbon, a gene 

coding for alpha-carbonic anhydrase was up-regulated in all lineages involving Spitsbergen at 10°C 

and in the S x H cross at 20.5°C compared to the Helgoland selfing at 10°C. In general carbohydrate 

metabolism, two genes for endo-1,3-beta-glucanase were up-regulated in the H x S cross at 20.5°C 

compared to the Helgoland selfing at 20.5°C, and in both reciprocal crosses at 20.5°C compared to 

the Helgoland selfing at 10°C, which indicates an increased degradation of laminarin. Further, the 

expression of pyruvate kinase, a key enzyme of glycolysis, was up-regulated in both reciprocal 

crosses at 20.5°C compared to the Spitsbergen selfing at 10°C.  

Expression of genes related to chlorophyll synthesis was reduced in response to heat (Table 7). A 

magnesium chelatase subunit H gene was significantly down-regulated at 20.5°C compared to 10°C 

within all lineages. Further, a protochlorophyllide reductase gene was down-regulated in response to 
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20.5°C across all lineages involving Helgoland in comparison to various 10°C controls. In 

comparison, genes involved in production of thylakoid membranes were up-regulated in response to 

20.5°C, as shown by the up-regulation of a monogalactosyldiacylglycerol synthase gene in the 

reciprocal crosses at 20.5°C. Further, the expression of a thylakoid lumenal 15 kDa protein was up-

regulated in the S x H cross at 20.5°C compared to the Helgoland selfing at 10°C. A gene coding for 

a light harvesting complex (LHC) protein was up-regulated in both reciprocal crosses at 20.5°C 

compared to the Helgoland selfing at 10°C, while a gene for photosystem I reaction center subunit 

XI was down-regulated in the crosses at 20.5°C compared to the Spitsbergen selfing at 10°C. A gene 

coding for a violaxanthin-de-epoxidase (VDE) domain-containing protein was down-regulated in the 

Helgoland selfing and the H x S cross in response to 20.5°C. The expression of a Rieske (2Fe-2S) 

region protein was significantly up-regulated in all lineages involving Spitsbergen compared to the 

Helgoland selfing at 10 and 20.5°C. 

Genes related to cellular stress responses did not show clear regulation patterns among lineages and 

temperatures (Table 8). For instance, a gene coding for heat shock protein 70 was only significantly 

up-regulated in the H x S cross at 20.5°C compared to the Spitsbergen selfing at 10°C. A putative 

dehydroascorbate reductase gene was up-regulated in the S x H cross at 20.5°C compared to the 

Helgoland selfing and S x H at 10°C. The expression of superoxide dismutase was down-regulated 

in both reciprocal crosses at 20.5°C compared to the Helgoland selfing at 20.5°C. Further, superoxide 

dismutase was down-regulated in both crosses at 10°C compared to the Spitsbergen selfing at 10°C 

and was only up-regulated within the Helgoland selfing at 20.5°C compared to 10°C. A gene coding 

for alternative oxidase isoform A was up-regulated within the Helgoland selfing at 20.5°C compared 

to 10°C, but was down-regulated in the H x S cross at 20.5°C compared to the Helgoland selfing at 

20.5°C. A glutaredoxin gene was down-regulated in the reciprocal crosses at 20.5°C compared to the 

Spitsbergen selfing at 10°C, while a peroxidase gene was down-regulated in the Helgoland selfing 

at 20.5°C compared to 10°C. Three genes coding for putative respiratory burst oxidase homolog 

proteins were down-regulated in both reciprocal crosses at 20.5°C compared to the Helgoland selfing 

at 10 and 20.5°C. 
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Table 5 Log2-fold changes for differentially expressed genes with annotated function in regulating lipid metabolism across lineages and temperature treatments of Laminaria 
digitata sporophytes in experiment 2. 

  20°C within lineages 10°C among lineages 20°C crosses 20°C crosses vs. 10°C controls 
 sample 

→ 
H x H 
20 

H x S 
20 

S x H 
20 

S x S 
10 

H x S 
10 

S x H 
10 

H x S 
10 

S x H 
10 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

 
Putative gene product 

control 
→ 

H x H 
10 

H x S 
10 

S x H 
10 

H x H 
10 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

H x H 
20 

H x H 
20 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

Acyl-CoA synthetase *  . . . . . . . . . . . 2.1 . . 
Acyl-CoA synthetase *  . . . . . . . . . . . 2.0 . . 
Acyl-CoA synthetase *  . . . 2.0 . . . . . . . 2.2 . . 
Elongation of fatty acids protein  . . . . . . . . . . . . -2.2 -2.1 
Fatty acid desaturase  -2.2 -2.0 -2.1 . . . . . . . . -2.1 . . 
Lipase *  2.3 3.0 3.5 . . . . . . . . . 5.4 5.3 
Lipase *  4.5 . . . . . . . -5.0 -3.5 . . . . 
Lipase   2.7 . . 4.5 3.3 3.8 . . . . 4.2 3.8 . . 
Lipoxygenase  -3.4 . . . . . . . -5.4 -3.8 -3.4 . -3.1 . 
Lipoxygenase  -3.4 . . . . . . . -5.2 -3.6 -3.4 . -2.4 . 
Long-chain acyl-CoA synthetase  . . 2.0 . . . . . . 4.6 . 6.0 . . 

Numbers indicate log2-fold changes and colours indicate significant up- (orange) or down-regulation (blue) of genes (log2FC ≥ 2; p < 0.001). Treatment abbreviations are composed 
as female x male from Helgoland (H) and Spitsbergen (S) at 10°C (10) and 20.5°C (20). Two comparisons were omitted for clarity due to low regulation (HxS 10 vs. SxH 10; HxS 
20 vs. SxH 20). * denotes contigs which were annotated with the same Uniref ID and could not be confirmed as separate genes. 
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Table 6 Log2-fold changes for differentially expressed genes with annotated function in regulating carbon assimilation, carbohydrate and cell wall metabolism across lineages and 
temperature treatments of Laminaria digitata sporophytes in experiment 2. 

  20°C within lineages 10°C among lineages 20°C crosses 20°C crosses vs. 10°C controls 
 sample 

→ 
H x H 
20 

H x S 
20 

S x H 
20 

S x S 
10 

H x S 
10 

S x H 
10 

H x S 
10 

S x H 
10 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

 
Putative gene product 

control 
→ 

H x H 
10 

H x S 
10 

S x H 
10 

H x H 
10 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

H x H 
20 

H x H 
20 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

Carbonic anhydrase . . . 3.4 2.4 2.6 . . . . . 2.0 . . 
Cellulose synthase (UDP-forming), family GT2 -2.5 . . . . . . . . . . . . . 
Cellulose synthase (UDP-forming), family GT2 -2.3 . . . . . . . . . . . . . 
Endo-1,3-beta-glucanase, family GH81 . 4.1 . . . . . . 6.0 . 6.3 4.8 . . 
Endo-1,3-beta-glucanase, family GH81 . 3.5 . . . . . . 5.7 . 6.1 4.6 . . 
Glycosyltransferase, family GT4 -2.8 -3.1 -2.4 . . . . . . . -2.7 -2.7 -2.5 -2.5 
Mannuronan C-5 epimerase -3.7 -3.7 -4.3 . . . . . . . -2.7 -3.2 -3.1 -3.7 
Mannuronan C-5 epimerase -2.7 . . . . . . . . . . . -2.1 -2.1 
Mannuronan C-5 epimerase -3.5 -2.4 -2.6 . . . . . . . -2.3 -2.9 . -2.4 
Mannuronan C-5 epimerase N-terminal . -4.2 -3.3 . . . . . . . -5.1 -4.7 -4.5 -4.0 
Pyruvate kinase  . . . . . . . . . . . . 2.5 2.6 
Unsaturated glucuronyl hydrolase, family GH88 . . . . . . . . -3.1 . -2.5 . -2.3 . 

Numbers indicate log2-fold changes and colours indicate significant up- (orange) or down-regulation (blue) of genes (log2FC ≥ 2; p < 0.001). Treatment abbreviations are composed 
as female x male from Helgoland (H) and Spitsbergen (S) at 10°C (10) and 20.5°C (20). Two comparisons were omitted for clarity due to low regulation (HxS 10 vs. SxH 10; HxS 
20 vs. SxH 20). * denotes contigs which were annotated with the same Uniref ID and could not be confirmed as separate genes. 
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Table 7 Log2-fold changes for differentially expressed genes with annotated function in regulating photosynthesis and pigment metabolism across lineages and temperature 
treatments of Laminaria digitata sporophytes in experiment 2. 

  20°C within lineages 10°C among lineages 20°C crosses 20°C crosses vs. 10°C controls 
 sample 

→ 
H x H 
20 

H x S 
20 

S x H 
20 

S x S 
10 

H x S 
10 

S x H 
10 

H x S 
10 

S x H 
10 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

 
Putative gene product 

control 
→ 

H x H 
10 

H x S 
10 

S x H 
10 

H x H 
10 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

H x H 
20 

H x H 
20 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

High-chlorophyll fluorescence 101 HCF101; ATP binding . . 2.3 . . . . . . . . 2.1 . . 
Light harvesting complex protein . . . . . . . . . . 2.0 2.2 . . 
Magnesium chelatase subunit H, putative chloroplast * -2.8 -2.3 -2.2 . . . . . . . . -2.2 . . 
Magnesium chelatase subunit H, putative chloroplast * -3.3 -2.1 -2.3 . . . . . . . . -2.6 . -2.1 
Monogalactosyldiacylglycerol synthase, family GT28 . 3.7 3.8 . . . . . 4.8 5.1 5.3 5.9 2.5 3.1 
Photosystem I reaction center subunit XI . . . . . . . . . . . . -4.2 -3.6 
Protochlorophyllide reductase, putative chloroplast * -2.8 -2.5 . . . . . . . . -2.3 . -2.3 . 
Protochlorophyllide reductase, putative chloroplast * -3.0 . . . . . . . . . . -2.0 . . 
Rieske (2Fe-2S) region . . . 6.8 6.0 5.7 . . 6.4 4.9 5.7 4.8 . . 
Thylakoid lumenal 15 kDa protein, chloroplast (P15) . . . . . . . . . . . 2.1 . . 
VDE domain-containing protein * -2.2 -2.0 . . . . . . . . -2.1 . . . 
VDE domain-containing protein * -2.4 -2.2 . . . . . . . . -2.4 . -2.3 . 
VDE domain-containing protein * -2.4 -2.4 . . . . . . . . -2.4 . -2.4 . 

Numbers indicate log2-fold changes and colours indicate significant up- (orange) or down-regulation (blue) of genes (Log2FC ≥ 2; p < 0.001). Treatment abbreviations are composed 
as female x male from Helgoland (H) and Spitsbergen (S) at 10°C (10) and 20.5°C (20). Two comparisons were omitted for clarity due to low regulation (HxS 10 vs. SxH 10; HxS 
20 vs. SxH 20). * denotes contigs which were annotated with the same Uniref ID and could not be confirmed as separate genes. 
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Table 8 Log2-fold changes for differentially expressed genes with annotated function in regulating cellular stress responses across lineages and temperature treatments of Laminaria 
digitata sporophytes in experiment 2. 

  20°C within lineages 10°C among lineages 20°C crosses 20°C crosses vs. 10°C controls 
 sample 

→ 
H x H 
20 

H x S 
20 

S x H 
20 

S x S 
10 

H x S 
10 

S x H 
10 

H x S 
10 

S x H 
10 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

 
Putative gene product 

control 
→ 

H x H 
10 

H x S 
10 

S x H 
10 

H x H 
10 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

H x H 
20 

H x H 
20 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

Alternative oxidase isoform A  2.4 . . . . . . . -3.2 . . . . . 
Glutaredoxin  . . . . . . . . . . . . -2.0 -2.1 
Heat shock protein 70 * . . . . . . . . . . . . 2.3 . 
Heat shock protein 70 * . . . . . . . . . . . . 2.4 . 
Heat shock protein 70 * . . . . . . . . . . . . 2.3 . 
Heat shock protein 70 * . . . . . . . . . . . . 2.5 . 
Peroxidase  -2.1 . . . . . . . . . . . . . 
Putative dehydroascorbate reductase  . . 2.1 . . . . . . . . 2.3 . . 
Putative respiratory burst oxidase homolog protein  . . . . . . . . -5.0 -4.2 . . . . 
Putative respiratory burst oxidase homolog protein  . . . . -2.2 . . . . . -4.9 -3.5 . . 
Putative respiratory burst oxidase homolog  . . . . . . . . -6.0 -4.2 -3.8 . . . 
Superoxide dismutase  2.3 . . . . . -2.6 -2.2 -4.5 -2.6 . . -3.1 . 

Numbers indicate log2-fold changes and colours indicate significant up- (orange) or down-regulation (blue) of genes (log2FC ≥ 2; p < 0.001). Treatment abbreviations are composed 
as female x male from Helgoland (H) and Spitsbergen (S) at 10°C (10) and 20.5°C (20). Two comparisons were omitted for clarity due to low regulation (HxS 10 vs. SxH 10; HxS 
20 vs. SxH 20). * denotes contigs which were annotated with the same Uniref ID and could not be confirmed as separate genes. 
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DISCUSSION 

In this study, we demonstrated potential beneficial effects of outbreeding among populations within 

a marine forest key species. Microscopic sporophytes of the inbred Spitsbergen lineage presented 

the lowest thermal tolerance with substantial decreases in viability at 21 and 22°C. Meanwhile, health 

of the reciprocal crosses among Helgoland and Spitsbergen L. digitata at these temperatures was 

intermediate to both selfings, but higher than the average selfing response (mid-parent heterosis; 

Hochholdinger and Hoecker, 2007). In growth and optimum quantum yield of macroscopic 

sporophytes, both crosses behaved similarly to the inbred Helgoland lineage, while inbred 

Spitsbergen sporophytes died within seven days at 19 and 20.5°C. Transcriptomic responses revealed 

that, despite the phenotypic similarity, underlying gene regulation differed among lineages. Gene 

regulation was often lower in the reciprocal crosses than in the selfings. Among the identified 

transcripts, some cellular stress responses were reduced. This implies that the reciprocal crosses 

maintained similar physiology during heat stress with reduced metabolic regulation. 

 

Differentiation in physiological responses among microscopic stages 

Gametogenesis and recruitment of juvenile sporophytes at 10°C was significantly faster in the 

Helgoland selfing than in all other lineages, whereas development was slowest in the Spitsbergen 

selfing (Figure 1). The parthenogenesis controls show that the Helgoland female strain used in this 

experiment became fertile faster than the Spitsbergen female. Therefore, a potential mismatch in 

fertilizing speed between males and females of the different locations might have reduced 

gametogenesis speed in the reciprocal crosses. Gametophytes from both locations readily become 

fertile between 5 and 15°C (Franke, 2019; Martins et al., 2020), so the experimental temperature of 

10°C was likely not stressful for the Spitsbergen material. Müller et al. (2008) interpreted differing 

capacities for sporophyte formation in a crossing experiment of Arctic and Helgoland Saccharina 

latissima gametophyte strains as a demonstration of ecotypic differentiation. Their experiment, 

however, showed results reverse to ours, as the Spitsbergen selfing yielded the highest amount of 

recruited sporophytes at 10°C, while Helgoland females produced the fewest sporophytes. As our 

experiment (and that of Müller et al., 2008) was conducted only based on four unialgal gametophyte 

cultures, assumptions on the ecotypic differentiation of the source populations have to be made with 

caution. However, a recent study has shown differentiation in heat response of L. digitata populations 

across its entire latitudinal distribution range, in which wild sporophytes from Spitsbergen were 

slightly more sensitive to heat than L. digitata from more southern populations (Liesner et al., 2020a), 

which is supported by our results. 
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In experiment 1, we identified an upper survival temperature of 21–22°C for microscopic L. digitata 

sporophytes over 14 days (Figure 2). This is concordant with the published limits for macroscopic, 

cultivated L. digitata sporophytes (Bolton and Lüning, 1982; tom Dieck, 1992; Franke, 2019; 

Martins et al., 2019). The Spitsbergen selfing was more sensitive to temperatures ≥ 19°C than the 

reciprocal crosses and the Helgoland selfing, which is further evidence for differentiation among the 

Helgoland and Spitsbergen strains of L. digitata used in this experiment. However, juvenile 

macroscopic L. digitata sporophytes obtained by fertilizing several different gametophyte isolates 

from Spitsbergen survived 22°C over two weeks (Franke, 2019). This indicates that the Spitsbergen 

lineage used in this experiment showed signs of inbreeding depression (Raimondi et al., 2004). 

Alternatively, this may be an expression high intraspecific plasticity and variation among individuals 

of the same populations, as was shown for Helgoland L. digitata (Liesner et al., 2020b). 

Mid-parent heterosis became evident in survival of the reciprocal crosses in experiment 1. Heterosis 

has been shown to occur in offspring of closely related kelp species (tom Dieck and de Oliveira, 

1993; Martins et al., 2019) and may manifest in different ways. Kelp hybrids of L. digitata and L. 

pallida showed mid-parent heterosis in optimal growth at 12°C, but had a 2–3°C higher thermal 

tolerance than either inbred parent (best-parent heterosis; Hochholdinger and Hoecker, 2007). Within 

a species, outbreeding across populations may alleviate negative effects of genetic drift and 

inbreeding depression (Charlesworth and Charlesworth, 1987; Raimondi et al., 2004). For L. digitata, 

this may affect especially populations at the species’ southern range limit in Brittany, France (Valero 

et al., 2011). Beneficial effects of outbreeding on growth and fertility have been shown for the giant 

kelp Macrocystis pyrifera (Raimondi et al., 2004; Westermeier et al., 2010) and may be used to 

produce stable and productive cultivars for mariculture (Westermeier et al., 2010). In contrast, the 

potential for outbreeding among natural populations is likely limited in seaweeds due to their low 

dispersal capacity (Norton, 1992; Billot et al., 2003; King et al., 2018).  

 

Gene regulation among lineages of macroscopic sporophytes 

In experiment 2, the Helgoland selfing and both reciprocal crosses behaved very similarly apart from 

small, but significant differences in growth rates and optimum quantum yield Fv/Fm. Only the 

Spitsbergen selfing was affected by major bleaching after 3 days in all sporophytes at 19 and 20.5°C. 

This was an extreme reaction and was not expected due to other recent studies showing a conserved 

upper thermal limit along L. digitata’s distribution (Franke, 2019; Liesner et al., 2020a). Therefore, 

we may suspect that the susceptibility of the Spitsbergen selfing was a result of inbreeding rather 

than strong local adaptation to the Arctic climate. Compared to the Spitsbergen selfing, outbreeding 

among populations evidently increased stress resilience as is visible in performance of the reciprocal 

crosses.  
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The similar physiology among the surviving lineages in experiment 2 deviates from the different 

reaction of microscopic stages among lineages in experiment 1. Due to the evidence for 

differentiation among populations in experiment 1, this evokes the question how the lineages 

regulated their metabolism to maintain a similar physiological response during heat stress. The 

differential expression of 3.74% of the 23,288 contigs across lineages in response to temperature is 

comparable to the regulation of 2.96% of all contigs in Saccharina latissima in response to 

hyposalinity and temperature (Li et al., 2019). However, regulation may be much higher under 

multiple stressors, as shown by the differential expression of transcripts in S. latissima reaching 13% 

(Heinrich et al., 2015) and even 32% (Heinrich et al., 2016) in response to differing intensities of 

photosynthetically active radiation (PAR), UV radiation and temperature. In our study, Arctic L. 

digitata shows higher regulation than the cold-temperate Helgoland material at control conditions of 

10°C (Figure 6B). In contrast, gene regulation in S. latissima from the cold-temperate population of 

Roscoff was double that of Arctic Spitsbergen samples at 8°C (Monteiro et al., 2019b), indicating 

different regulation patterns across species. 

If we interpret the magnitude of gene expression itself as a stress response associated with metabolic 

costs (Clarke, 2003; Dekel and Alon, 2005; de Nadal et al., 2011), the pattern of reduced gene 

regulation in the reciprocal crosses compared to the selfings shows a general benefit of outbreeding 

among individuals from Spitsbergen and Helgoland (Figure 6B,C). The contribution of either female 

or male parents of Helgoland L. digitata was sufficient to reduce gene regulation compared to either 

selfing at 10°C (Figure 6B) and compared to the Helgoland selfing at 20°C (Figure 6C). A bias 

towards the female parent response, such as shown for thermal tolerance of interspecific kelp crosses 

(Martins et al., 2019), could not clearly be identified in the physiological response of intraspecific 

crosses in our study. However, gene regulation was slightly weaker (i.e. fewer up-regulated and more 

down-regulated genes) in the outbred lineage with the contribution of a Helgoland female (H x S) 

compared to the Spitsbergen female (S x H), which is also visible in the divergence of the reciprocal 

crosses at 20°C in the PCA (Figure 5). 

 

Regulated pathways 

The functionally annotated genes reflect mostly known pathways in kelp stress responses (see e.g. 

Heinrich et al., 2012b; Salavarría et al., 2018; Li et al., 2019; Monteiro et al., 2019b). The regulation 

of genes involved in lipid metabolism indicates that cell and plastid membrane properties were 

altered in response to heat (Table 5). Lipases may have many functions in maintaining lipid 

homeostasis and structural integrity of membranes (Padham et al., 2007; Zhang et al., 2016). Lipase 

genes were up-regulated in all lineages in response to heat, but most strongly in the Helgoland 

selfing. A gene for fatty acid desaturase was down-regulated in response to 20.5°C in all lineages, 
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mirroring the seasonal decrease of polyunsaturated fatty acids (PUFAs) of several macroalgae in 

summer (Nelson et al., 2002). As PUFAs and high temperature increase cell membrane fluidity, an 

increased fraction of unsaturated fatty acids might maintain cell membrane rigidity in response to 

stress (Neidleman, 1987; Tatsuzawa et al., 1996; Maulucci et al., 2016). Lipoxygenases, on the other 

hand, oxidize PUFAs and produce oxylipins which act as signaling molecules in development, but 

also in stress responses (Ritter et al., 2008, 2017; Hou et al., 2015; Maynard et al., 2018). 

Lipoxygenase genes were down-regulated in response to heat across lineages in this experiment. The 

up-regulation of acyl-CoA synthetase expression in lineages involving the Spitsbergen female (S x 

S, S x H) indicates increased catabolism and β-oxidation of stored fatty acids (Blanco and Blanco, 

2017). Neutral lipid contents (i.e. storage lipids) in kelp sporophytes are generally low, but may still 

be mobilized for metabolic processes in the meristem (Haug and Jensen, 1954; Velimirov, 1979). 

Seasonal patterns show a decrease of lipids from winter to spring in Norwegian L. digitata (Haug 

and Jensen, 1954), which implies a seasonal use as energy storage, which may be induced by 

increasing temperature.  

In addition to cell membrane modification, regulation of genes involved in carbohydrate metabolism 

revealed structural changes to the cell wall (Table 6). The down-regulation of mannuronan C-5 

epimerase genes in response to heat in all lineages indicates an increase of cell wall rigidity by 

structural modification of the major brown algal cell wall component alginate (Nyvall et al., 2003; 

Dittami et al., 2012; Fischl et al., 2016). Genes related to synthesis of the main cell wall component 

cellulose (cellulose synthase; Yin et al., 2009) were only down-regulated in the Helgoland selfing at 

20.5°C which indicates further structural changes to the cell wall. The down-regulation of a 

glycosyltransferase gene in response to heat in all lineages may indicate a further reduction in 

biosynthesis of cell wall polysaccharides (Scheible and Pauly, 2004; Welner et al., 2017; Amos and 

Mohnen, 2019). However, glycosyltransferases may have various specific functions in glycolipid, 

glycoprotein and polysaccharide synthesis (Keegstra and Raikhel, 2001), so the actual function 

remains hypothetical. Related to the assimilation of inorganic carbon, expression of carbonic 

anhydrase (CA) was up-regulated in all lineages involving Spitsbergen at 10°C compared to the 

Helgoland selfing. Carbonic anhydrase converts HCO3
- to CO2, thereby making it available for 

carbon assimilation by RuBisCO in a carbon concentrating mechanism (CCM; Raven, 1991; Badger 

and Price, 1994). Paradoxically, high CA activity was shown for macroalgae from polar 

environments, where low temperature and salinity allow high concentrations of dissolved CO2 in the 

seawater (Wiencke and Fischer, 1990; Gordillo et al., 2006). However, cold temperature may require 

an increase in cellular enzyme levels, including CA (the “Arctic paradox” of the Ci uptake system; 

Gordillo et al., 2006). If high CA expression is an adaptive trait of Spitsbergen L. digitata, this might 

have been transferred to both reciprocal crosses. In general carbohydrate metabolism, the up-

regulation of endo-1,3-beta-glucanase genes in the reciprocal crosses at 20.5°C compared to the 
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Helgoland selfing might have increased mobilization of the long-term storage compound laminarin 

(Chesters and Bull, 1963; Martín-Cuadrado et al., 2008), or is indicative of a pathogen defense to 

digest fungal or oomycete cell walls (Damasceno et al., 2008; Zhou et al., 2013). The up-regulation 

of pyruvate kinase expression in the cross-comparison of the reciprocal crosses at 20°C compared to 

the Spitsbergen selfing at 10°C further indicates increased glycolysis of storage carbohydrates in the 

crosses (Davison, 1987; Gómez and Huovinen, 2012). These results support a regulation of 

carbohydrate metabolism in favour of cell maintenance rather than growth, as is visible in the reduced 

growth rates in experiment 2 (Figure 3). 

A reduction of chlorophyll biosynthesis (Table 7) was indicated in all lineages in response to heat 

by the down-regulation of genes coding for the key enzymes magnesium chelatase (Pontier et al., 

2007; Stenbaek and Jensen, 2010) and protochlorophyllide reductase (Begley and Young, 1989). 

Regulation of chlorophyll biosynthesis is a known response to several stressors such as hyposalinity, 

temperature, PAR and UV radiation in the seaweeds Saccharina latissima (Heinrich et al., 2015; 

Monteiro et al., 2019b) and Desmarestia anceps (Iñiguez et al., 2017). Whereas growth at sublethal 

temperature may increase chlorophyll biosynthesis in kelps (Li et al., 2019), the reduction in our 

study may be interpreted as a heat stress response (Tewari and Tripathy, 1998). 

Monogalactosyldiacylglycerol (MGDG) synthase expression was generally up-regulated in the 

reciprocal crosses, indicating maintenance of photosynthetic function as MGDG is a dominant 

glycolipid in thylakoid membranes (Kobayashi et al., 2004). Further, genes involved in synthesis of 

photosystem components (HCF101; thylakoid lumenal 15kDa protein; photosystem I reaction center 

subunit XI; light harvesting complex protein; Lezhneva et al., 2004; Liu et al., 2012) were regulated 

in unclear patterns. Only a gene coding for a Rieske (2Fe-2S) domain containing protein was up-

regulated in all lineages involving Spitsbergen in comparison to the Helgoland selfing, indicating 

higher investment in electron transport (Malkin and Posner, 1978; De Vitry et al., 2004). In S. 

latissima, genes facilitating production of photosystems, thylakoid membranes and LHC proteins 

were uniformly up-regulated at 2°C as an acclimation reaction to cold temperature (Heinrich et al., 

2012b). Reduced expression of a violaxanthin de-epoxidase (VDE) gene may either indicate a 

reduction of nonphotochemical quenching of excessive energy via the xanthophyll cycle in response 

to heat (Goss and Jakob, 2010; Latowski et al., 2011) or reduced synthesis of light-harvesting 

carotenoids (Dautermann et al., 2020). De-epoxidation of xanthophyll cycle pigments has recently 

been shown as a heat response in several L. digitata populations, among which Helgoland showed 

the weakest response, indicating that VDE activity may be population specific (Liesner et al., 2020a). 

The stability of optimum quantum yield at 20.5°C in this study suggests that regulation of the above 

genes is a means of maintaining photosynthetic efficiency even under high thermal stress (Figure 

4). 
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Oxidative stress occurs when the homeostasis among pathways is disturbed by stressors (e.g. high 

temperature disturbing the photosynthetic electron transport chain), leading to the release of reactive 

oxygen species (ROS; Suzuki and Mittler, 2006). Some typical genes in response to oxidative stress 

(Peroxidase; dehydroascorbate reductase; Tang et al., 2006; Do et al., 2016) were differentially 

expressed only in single comparisons (Table 8). The expression of superoxide dismutase is a known 

heat stress response in kelps (Heinrich et al., 2012b; Yotsukura et al., 2012), which, according to our 

results, is reduced in outbred lineages of L. digitata. The down-regulation of genes coding for 

respiratory burst oxidase homolog proteins in the reciprocal crosses at 20.5°C compared to the 

Helgoland selfing further indicate a reduced stress response in the crosses. Oxidative burst (i.e. the 

active production of ROS; Bhattacharjee, 2005) may be a defense reaction to pathogens or grazing 

triggered by degradation products of cell wall alginates (Cosse et al., 2007; Bischof and 

Rautenberger, 2012; Ritter et al., 2017). However, ROS may also be used in stress-related or 

developmental signalling cascades (Miller et al., 2008; Pearson et al., 2019). Reduced oxidative 

stress response is also visible in the reduced expression of genes for alternative oxidase 

(Vanlerberghe, 2013) and glutaredoxin (Laporte et al., 2012) in the reciprocal crosses. The chaperone 

heat shock protein 70 (HSP70; Wang et al., 2004) was differentially expressed only in the H x S 

cross at 20.5°C compared to the Spitsbergen selfing at 10°C. The temperature eliciting maximum 

HSP70 expression differed among British L. digitata populations, and may be a distinct, population-

specific temperature between 16–24°C (King et al., 2019). This indicates that the lineages tested in 

this study might have differed in the temperature evoking the maximum HSP70 response. Further, 

HSPs are part of a short-term reaction (e.g. 1 h heat shock in King et al., 2019), whereas they are 

reduced in longer term acclimation (Heinrich et al., 2015; Monteiro et al., 2019b). Surprisingly and 

in contrast to other abiotic stress studies on kelps, we could not identify vanadium-dependent 

haloperoxidases (Roeder et al., 2005; Salavarría et al., 2018; Li et al., 2019; Monteiro et al., 2019b), 

which are essential enzymes in the response to oxidative stress (Bischof and Rautenberger, 2012). 

 

Implications of outbreeding for mariculture and marine forest conservation 

Our results imply that outbreeding among distant kelp populations may mitigate effects of genetic 

drift and may increase stress tolerance in comparison to inbred lineages. As shown by the reduced 

gene regulation in the reciprocal crosses at thermal stress, performance during heat stress may even 

improve by outbreeding with an Arctic population. This adds to the extensive knowledge from 

terrestrial agriculture and recently also kelp mariculture, that inter-cultivar crosses may produce 

stable, healthy descendants with superior characteristics compared to their inbred parental lineages 

(Li et al., 2007; Westermeier et al., 2010; Fu et al., 2014). In kelps, the relatively simple production 

and maintenance of stable gametophyte stock cultures provides a solid foundation to explore kelp 

cultivation and breeding programs (Westermeier et al., 2010; Bartsch, 2018). However, differences 
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in phenotypic plasticity among kelp individuals (Mabin et al., 2019; Liesner et al., 2020b) may result 

in substantial response variation regardless of whether cultivars were in- or outbred (Camus et al., 

2018). Therefore, to produce stable phenotypes and maximize heterosis, homozygous lines should 

be inbred over several generations before application in mariculture (Robinson et al., 2013). 

Meanwhile, natural kelp populations are threatened by ocean warming especially at the warm range 

edges (Voerman et al., 2013; Wernberg et al., 2016; Smale et al., 2019). The southernmost L. digitata 

populations in France are predicted to collapse until the end of the century under the worst-case 

climate change scenario (Raybaud et al., 2013; Assis et al., 2018). Currently, these populations 

harbour high and potentially unique genetic diversity due to their potential persistence across glacial 

cycles (Assis et al., 2018; Liesner et al., 2020a; Neiva et al., 2020). In addition to gradual ocean 

warming, increasingly intense and frequent marine heatwaves (Hobday et al., 2016; Oliver et al., 

2018) may reduce genetic diversity of persistent populations (Coleman et al., 2020a; Gurgel et al., 

2020). A cautious method for conservation of threatened natural populations may therefore be an 

introduction of intraspecific cultivars from distant populations in an attempt of “assisted evolution” 

(Filbee-Dexter and Smajdor, 2019; Coleman et al., 2020b).  

An important caveat in this tentative proposal is the potential for outbreeding depression in crosses 

of locally adapted populations, which reduces performance of crossed lineages (McKay et al., 2005; 

Aitken and Whitlock, 2013). As yet, outbreeding depression could not be identified among distant 

populations of the fucoid seaweed Hormosira banksii (McKenzie and Bellgrove, 2006), and was also 

not obvious in performance of the reciprocal crosses here. This suggests that genetic divergence 

among L. digitata populations is low, despite the strong spatial structuring and thermal gradient along 

the species’ distribution (Liesner et al., 2020a). Alternatively, outbreeding depression my manifest 

later in the life cycle especially with respect to reproduction (Schierup and Christiansen, 1996; 

McKenzie and Bellgrove, 2006). Therefore, careful assessments of the performance and viability of 

numerous outbred lineages are necessary on large time scales before considering an application in 

natural populations. Ultimately, we have to face the ethics of interfering with natural systems (Filbee-

Dexter and Smajdor, 2019). Anthropogenic climate change alters natural environments, but what we 

categorize as “natural” (e.g. pre-industrial conditions) cannot be restored by assisted evolution. We 

can only deliberately modify ecosystems to persist in a changing environment (Filbee-Dexter and 

Smajdor, 2019; Coleman et al., 2020b). Therefore, we have to carefully assess why and to what 

extent we should interfere with the natural reaction of ecosystems to “unnatural” anthropogenic 

climate change. 
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SUPPLEMENTARY MATERIAL 

Supplementary Table 1 Log2-fold changes for differentially expressed genes with annotated function across lineages and temperature treatments of Laminaria digitata sporophytes. 

  20°C within lineages 10°C among lineages 20°C crosses 20°C crosses vs. 10°C controls 
 sample 

→ 
H x H 
20 

H x S 
20 

S x H 
20 

S x S 
10 

H x S 
10 

S x H 
10 

H x S 
10 

S x H 
10 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

 
Putative gene product 

control 
→ 

H x H 
10 

H x S 
10 

S x H 
10 

H x H 
10 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

H x H 
20 

H x H 
20 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

26S proteasome regulatory subunit . . 2.0 . . . . . . . . 2.0 . . 
5-hydroxyisourate hydrolase . . . . . . . . . . . 2.2 . . 
Acetyl-CoA acetyltransferase . . . . . . . . . . . 2.2 . . 
Acyl-CoA synthetase . . . . . . . . . . . 2.1 . . 
Acyl-CoA synthetase . . . . . . . . . . . 2.0 . . 
Acyl-CoA synthetase . . . 2.0 . . . . . . . 2.2 . . 
Agmatinase . . . . . . . . -2.3 . . . . . 
Alpha-(1,6)-fucosyltransferase, family GT23 . . . 5.4 . . . . . . . . . . 
Alternative oxidase isoform A 2.4 . . . . . . . -3.2 . . . . . 
Ankyrin (Fragment) -2.1 . . . . . . . . . . . . . 
Asn/thr-rich large protein family protein . . . . . . . . . . . -2.5 . . 
ATP-binding cassette superfamily . . . . . . . . -3.1 . . . . . 
ATP-dependent Clp protease proteolytic subunit . . . . . . . . . . -2.1 -2.0 -2.1 -2.0 
Beta-lactamase domain protein 5.8 . . . . . . . -3.1 -3.1 . . . . 
Beta-lactamase domain protein . . . 5.4 . . . . . . . . . . 
Beta-lactamase domain protein 6.3 . 3.7 . . . . . -3.7 -2.9 . . . . 
Binding . . -2.2 . . . . . . . -2.7 -2.8 . . 
Carbonic anhydrase . . . 3.4 2.4 2.6 . . . . . 2.0 . . 
Cellulose synthase (UDP-forming), family GT2 -2.5 . . . . . . . . . . . . . 
Cellulose synthase (UDP-forming), family GT2 -2.3 . . . . . . . . . . . . . 
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Supplementary Table 1 (continued)               

  20°C within lineages 10°C among lineages 20°C crosses 20°C crosses vs. 10°C controls 

 sample 
→ 

H x H 
20 

H x S 
20 

S x H 
20 

S x S 
10 

H x S 
10 

S x H 
10 

H x S 
10 

S x H 
10 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

 
Putative gene product 

control 
→ 

H x H 
10 

H x S 
10 

S x H 
10 

H x H 
10 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

H x H 
20 

H x H 
20 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

Chp-1 / RAR1 homologue 2.4 . . . . . . . . . . 2.2 . . 
COX10 homolog, cytochrome c oxidase assembly protein . . . . . . . . . . . 2.2 . . 
Cyclin A-like protein . . . . . . . . -2.5 . . . . . 
Cyclin B2 . -2.2 -2.2 . . . . . . . . . -2.7 -2.7 
Cysteine desulfuration protein . . . . . . . . . . . 2.1 . . 
Cytochrome P450 . -2.3 . . . . . . . . . . . . 
D-tyrosyl-tRNA(Tyr) deacylase 2.6 2.6 3.1 . . . . . . . 2.7 3.3 . 2.4 
Elongation of fatty acids protein . . . . . . . . . . . . -2.2 -2.1 
Endo/excinuclease amino terminal domain-containing pr. . . . . . . . . . . . 2.1 . . 
Endo-1,3-beta-glucanase, family GH81 . 4.1 . . . . . . 6.0 . 6.3 4.8 . . 
Endo-1,3-beta-glucanase, family GH81 . 3.5 . . . . . . 5.7 . 6.1 4.6 . . 
EsV-1-12 . . . 5.1 . . . . . . 4.7 . . . 
EsV-1-163 . . 2.1 -5.8 . . . . . . . . 6.3 6.5 
EsV-1-166 . . . . . . . . . . 4.1 . . . 
FAD linked oxidase domain-containing protein 5.2 . . . . . . . -5.1 -3.8 . . . . 
Fatty acid desaturase -2.2 -2.0 -2.1 . . . . . . . . -2.1 . . 
Ferredoxin nitrite reductase -2.5 . . . . . . . . . . . . . 
Fibronectin type III domain protein . . . . . . . . . . -2.2 . -2.1 . 
FirrV-1-B30 . . . . . . . . . . . . . -2.3 
FirrV-1-B30 -3.1 . -3.6 . . . . . . . . -2.1 . -2.8 
Flagellar associated protein, quinone reductase-like protein . . . . . . . . . . . 2.3 . . 
Flagellar outer arm dynein 14 kDa light chain LC5 -2.3 . . . . . . . . . . . . . 
FRIGIDA-like protein 3 -3.7 -2.2 -2.1 . . . . . . . . -2.1 . . 
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Supplementary Table 1 (continued)               

  20°C within lineages 10°C among lineages 20°C crosses 20°C crosses vs. 10°C controls 

 sample 
→ 

H x H 
20 

H x S 
20 

S x H 
20 

S x S 
10 

H x S 
10 

S x H 
10 

H x S 
10 

S x H 
10 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

 
Putative gene product 

control 
→ 

H x H 
10 

H x S 
10 

S x H 
10 

H x H 
10 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

H x H 
20 

H x H 
20 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

Gal-2,6-Sulfurylases I . 2.1 . . . . . . . . 2.0 . . . 
Genome assembly . . 2.1 . . . . . . . . . . . 
Genomic scaffold, scaffold_80 . . . 3.9 . . -5.1 -3.3 . . . . . -3.8 
Genomic scaffold, scaffold_80 . . . 4.0 . . -4.2 -2.8 . . . . . -3.2 
Glutaredoxin . . . . . . . . . . . . -2.0 -2.1 
Glycin-rich protein . 4.0 2.8 . . . . . . . 5.3 5.8 4.9 5.6 
Glycin-rich protein 4.7 3.7 3.2 . . . . . . . 6.0 6.6 6.8 7.3 
Glycosyltransferase, family GT4 -2.8 -3.1 -2.4 . . . . . . . -2.7 -2.7 -2.5 -2.5 
Haloacid dehalogenase-like hydrolase family protein . . 2.0 . . . . . . . . 2.4 . . 
HCF 101; ATP binding . . 2.3 . . . . . . . . 2.1 . . 
Heat shock protein 70 . . . . . . . . . . . . 2.3 . 
Heat shock protein 70 . . . . . . . . . . . . 2.4 . 
Heat shock protein 70 . . . . . . . . . . . . 2.3 . 
Heat shock protein 70 . . . . . . . . . . . . 2.5 . 
Hemolysin-type calcium-binding region . . . . . . . . . . 3.8 . 3.8 . 
Hemolysin-type calcium-binding region . . . -2.4 . . . . . . -2.3 . -2.7 . 
Hypothetical leucine rich repeat kinase . . . -7.8 . . 7.3 7.4 . . . . 9.0 8.7 
Hypothetical leucine rich repeat protein -2.9 . . . . . . . . . . . . . 
Hypothetical leucine rich repeat protein . -5.3 . 7.2 6.1 5.5 . . . . . 3.3 -7.1 -2.3 
Ig-like protein, group 2 . . . . . . . . -3.1 . -3.1 . -2.2 . 
Imm upregulated 13 . 3.2 . . . . . . . . 5.5 . . . 
Imm upregulated 3 . 3.5 . . . . . . . . 5.6 . . . 
Imm upregulated 3 3.1 . . . . . . . . . . . . . 
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Supplementary Table 1 (continued)               

  20°C within lineages 10°C among lineages 20°C crosses 20°C crosses vs. 10°C controls 

 sample 
→ 

H x H 
20 

H x S 
20 

S x H 
20 

S x S 
10 

H x S 
10 

S x H 
10 

H x S 
10 

S x H 
10 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

 
Putative gene product 

control 
→ 

H x H 
10 

H x S 
10 

S x H 
10 

H x H 
10 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

H x H 
20 

H x H 
20 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

Imm upregulated 3 . . . . . . . . . . . 4.2 . . 
Imm upregulated 3 . . . -7.2 . . 6.1 6.0 . . . . 6.8 6.7 
Immunophilin . -2.0 . . . . . . . . -2.5 -2.0 . . 
Light harvesting complex protein . . . . . . . . . . 2.0 2.2 . . 
Lipase 4.5 . . . . . . . -5.0 -3.5 . . . . 
Lipase 2.7 . . 4.5 3.3 3.8 . . . . 4.2 3.8 . . 
Lipase 2.3 3.0 3.5 . . . . . . . . . 5.4 5.3 
Lipoxygenase -3.4 . . . . . . . -5.4 -3.8 -3.4 . -3.1 . 
Lipoxygenase -3.4 . . . . . . . -5.2 -3.6 -3.4 . -2.4 . 
Long-chain acyl-CoA synthetase . . 2.0 . . . . . . 4.6 . 6.0 . . 
LRR-GTPase of the ROCO family . . . 6.1 . . . . . . 5.2 4.7 . . 
LRR-GTPase of the ROCO family . . . -3.9 . . . . . . . . . . 
Magnesium chelatase subunit H, putative chloroplast -2.8 -2.3 -2.2 . . . . . . . . -2.2 . . 
Magnesium chelatase subunit H, putative chloroplast -3.3 -2.1 -2.3 . . . . . . . . -2.6 . -2.1 
Magnesium-protoporphyrin IX methyltransferase, putative 
chloroplast 

-2.3 . . . . . . . . . . . . . 

Mannuronan C-5 epimerase -3.7 -3.7 -4.3 . . . . . . . -2.7 -3.2 -3.1 -3.7 
Mannuronan C-5-epimerase -2.7 . . . . . . . . . . . -2.1 -2.1 
Mannuronan C-5-epimerase -3.5 -2.4 -2.6 . . . . . . . -2.3 -2.9 . -2.4 
Mannuronan C-5-epimerase N-terminal . -4.2 -3.3 . . . . . . . -5.1 -4.7 -4.5 -4.0 
Mar14 transposase . . . 6.2 . . . . 6.0 5.8 6.2 6.7 . . 
Metallophosphoesterase . . . . -2.3 . . . . . -2.1 -2.3 . . 
Monogalactosyldiacylglycerol synthase, family GT28 . 3.7 3.8 . . . . . 4.8 5.1 5.3 5.9 2.5 3.1 
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Supplementary Table 1 (continued)               

  20°C within lineages 10°C among lineages 20°C crosses 20°C crosses vs. 10°C controls 

 sample 
→ 

H x H 
20 

H x S 
20 

S x H 
20 

S x S 
10 

H x S 
10 

S x H 
10 

H x S 
10 

S x H 
10 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

 
Putative gene product 

control 
→ 

H x H 
10 

H x S 
10 

S x H 
10 

H x H 
10 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

H x H 
20 

H x H 
20 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

NADPH:adrenodoxin oxidoreductase, mitochondrial . . 2.4 . . . . . . . . 2.5 . . 
Nitrite reductase (NAD(P)H) large subunit . . -2.3 . . . . . . . . . . -2.0 
Nitrite reductase (NAD(P)H) large subunit . . -2.2 . . . . . . . . . . . 
Nitrite reductase (NAD(P)H) large subunit . . -2.3 . . . . . . . . . . . 
Nonribosomal peptide synthetase 10 . . . . . . . . . . . . 2.4 . 
Nonribosomal peptide synthetase 10 . . . . . . . . . . . . 2.2 . 
Oxidoreductase domain protein . . 2.5 . . . . . . . 2.3 2.9 . . 
PArp-RdRp (Fragment) . . . . . . . . . . . 4.3 . . 
Peptidyl-Asp metallopeptidase. MEROPS family M72 2.0 . . . . . . . -3.8 . . . . . 
Peptidyl-prolyl cis-trans isomerase . . 2.5 . . . . . . . . 2.4 . . 
Peroxidase -2.1 . . . . . . . . . . . . . 
Photosystem I reaction center subunit XI . . . . . . . . . . . . -4.2 -3.6 
Plasma membrane iron permease -3.4 . . . . . . . . 2.0 . . . . 
Polymorphic outer membrane protein . . . -2.4 . . . . . . . . . . 
Polymorphic outer membrane protein . . . -2.9 -2.2 . . . . . -4.5 -2.6 . . 
Polymorphic outer membrane protein . . . . . . . . . . -6.0 . . . 
Polymorphic outer membrane protein . . . . . . . . . . -6.0 -2.8 . . 
PREDICTED: RNA-binding protein Nova-2, partial . . . . . . . . -5.4 -3.7 . . . . 
Probable fusion protein . . . . . . . . . . . . -2.1 . 
Probable high CO2 inducible periplasmic protein -2.1 . . . . . . . . . . . . . 
Protein C10orf22, putative . . . . . . . . . . . . -2.9 -2.4 
Protein yippee-like 2.3 . . . . . . . -2.9 . . . . . 
Proteinase inhibitor I35 domain containing protein 5.4 . 3.9 5.7 . . -5.6 -4.5 . . . 5.4 . . 



 
Publication III 

 

136 

Supplementary Table 1 (continued)               

  20°C within lineages 10°C among lineages 20°C crosses 20°C crosses vs. 10°C controls 

 sample 
→ 

H x H 
20 

H x S 
20 

S x H 
20 

S x S 
10 

H x S 
10 

S x H 
10 

H x S 
10 

S x H 
10 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

 
Putative gene product 

control 
→ 

H x H 
10 

H x S 
10 

S x H 
10 

H x H 
10 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

H x H 
20 

H x H 
20 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

Protochlorophyllide reductase, putative chloroplast -2.8 -2.5 . . . . . . . . -2.3 . -2.3 . 
Protochlorophyllide reductase, putative chloroplast -3.0 . . . . . . . . . . -2.0 . . 
Putative dehydroascorbate reductase . . 2.1 . . . . . . . . 2.3 . . 
Putative growth-on protein GRO10 . . . 3.5 . . . . . . . . . . 
Putative respiratory burst oxidase homolog . . . . . . . . -6.0 -4.2 -3.8 . . . 
Putative respiratory burst oxidase homolog protein . . . . . . . . -5.0 -4.2 . . . . 
Putative respiratory burst oxidase homolog protein . . . . -2.2 . . . . . -4.9 -3.5 . . 
Putative sodium calcium exchanger -2.1 . . . . . . . . . . . . . 
Putative nosD copper-binding protein . . -2.3 . . . . . . . . . . . 
Pyruvate kinase . . . . . . . . . . . . 2.5 2.6 
Rab11B, RAB family GTPase . . . . . . . . . . . 2.0 . . 
Regulator of G-protein signaling 2 -2.1 . . -3.0 . . . 2.1 . . -2.0 . . . 
Rieske (2Fe-2S) region . . . 6.8 6.0 5.7 . . 6.4 4.9 5.7 4.8 . . 
RxLR effector candidate protein . 4.5 . . . . . . . . . 4.2 . . 
Serine O-acetyltransferase . . . . . . . . -2.7 . . . . . 
Serine/threonine protein kinase, possibly NIMA-like 2.0 . . . . . . . . . . . . . 
Serine/threonine-protein phosphatase 2A activator . . 2.2 . . . . . . . . 2.0 . . 
Similar to collagen, partial . 4.8 5.1 . . . . . 3.0 3.3 4.7 5.0 5.5 5.8 
Similar to collagen, partial . 4.7 4.9 . . . . . 3.0 3.2 4.5 4.8 5.8 6.0 
Similar to DEK oncogene (DNA binding) . . . . . . . . . . . . -2.8 -2.1 
Similar to Patched domain-containing protein 3, partial 2.0 . . . . . . . -4.3 -3.2 . . . . 
Similar to Patched domain-containing protein 3, partial . . . . -2.1 . . . . . -2.3 -2.5 . . 
Similar to Werner syndrome protein . . . -4.9 . . . . . . . . . . 
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Supplementary Table 1 (continued)               

  20°C within lineages 10°C among lineages 20°C crosses 20°C crosses vs. 10°C controls 

 sample 
→ 

H x H 
20 

H x S 
20 

S x H 
20 

S x S 
10 

H x S 
10 

S x H 
10 

H x S 
10 

S x H 
10 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

H x S 
20 

S x H 
20 

 
Putative gene product 

control 
→ 

H x H 
10 

H x S 
10 

S x H 
10 

H x H 
10 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

H x H 
20 

H x H 
20 

H x H 
10 

H x H 
10 

S x S 
10 

S x S 
10 

Singapore isolate B (sub-type 7), scaffold_1 . . . . . . . . . . . 2.1 . . 
Stackhouse genomic scaffold, scaffold_1 . . . 2.3 2.5 3.8 . . 2.8 . 3.5 2.0 . . 
Superoxide dismutase 2.3 . . . . . -2.6 -2.2 -4.5 -2.6 . . -3.1 . 
Thioesterase . . . . . . . . . . . . 2.3 . 
Thioredoxin-like protein . . . . . . . . . . . . -2.6 . 
Thylakoid lumenal 15 kDa protein, chloroplast (P15) . . . . . . . . . . . 2.1 . . 
TKL family protein kinase/ putative CTR1-like  . . . . . . . . . . -3.2 -2.6 . . 
TKL family protein kinase/ putative CTR1-like . . . . . . . . -2.2 . -2.1 . . . 
Transmembrane receptor kinase . . . . . . . . . . -2.5 -2.7 . . 
transposase mariner transposase undefined product (IC) . . . . . . . . . . . -2.3 . . 
tRNA pseudouridine synthase . . 2.0 . . . . . . . . 2.3 . . 
tRNA pseudouridine synthase . . . . . . . . . . . 2.6 . . 
TTK-like . . . -5.2 . . . . . . . . . . 
TTK-like . . . -4.8 . . . . . . . . . . 
Unsaturated glucuronyl hydrolase, family GH88 . . . . . . . . -3.1 . -2.5 . -2.3 . 
Urea/Na+ high-affinity symporter . -3.0 -4.6 . . . . . . . . -3.0 -3.3 -5.2 
VDE domain-containing protein -2.2 -2 . . . . . . . . -2.1 . . . 
VDE domain-containing protein -2.4 -2.2 . . . . . . . . -2.4 . -2.3 . 
VDE domain-containing protein -2.4 -2.4 . . . . . . . . -2.4 . -2.4 . 
YeeE/YedE family protein . . . . . . . . . . . -2.3 . . 

Numbers indicate log2-fold changes and colours indicate significant up- (orange) or down-regulation (blue) of genes (log2FC ≥ 2; p < 0.001). Treatment abbreviations are composed 
as female x male from Helgoland (H) and Spitsbergen (S) at 10°C (10) and 20.5°C (20). Two comparisons were omitted for clarity due to low regulation (HxS 10 vs. SxH 10; HxS 
20 vs. SxH 20). 
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Decades ago, general thermal response curves of polar, temperate and tropical seaweed species (e.g. 

Bolton and Lüning, 1982; Yarish et al., 1986; Orfanidis, 1993; Wiencke et al., 1994; Pakker et al., 

1995) and first evidence for thermal ecotypes were published (e.g. Novaczek et al., 1990; Breeman 

and Pakker, 1994; Martinez, 1999). These studies were primarily conducted to relate the species’ 

thermal characteristics to their biogeographical distribution patterns. Meanwhile, recent research on 

thermal responses of seaweeds, which builds on this fundamental knowledge, is often motivated by 

assessing and predicting the effects of climate change (e.g. Hargrave et al., 2017; Nepper-Davidsen 

et al., 2019; Zacher et al., 2019; Graba-Landry et al., 2020). Such recent studies have uncovered parts 

of a complex framework of genetic and non-genetic processes driving trait variability within seaweed 

species (e.g. Mabin et al., 2013, 2019; King et al., 2018; Clark et al., 2020; Supratya et al., 2020). 

Within this framework, the overarching objective of this dissertation was to produce a detailed 

assessment of the thermal trait variability of a kelp across populations and life cycle stages using the 

example of Laminaria digitata.  

The studies presented in this dissertation contribute to the growing knowledge of trait variation and 

plasticity in seaweeds. I demonstrated that thermal responses within the kelp Laminaria digitata 

differ among populations, among individuals, across ontogeny and development within individuals, 

and among inbred and outbred lineages of distant populations. However, my results also underline 

the adaptation of L. digitata as a eurythermal, cold-temperate to Arctic species, whose performance, 

albeit variable and plastic, is confined within the thermal limits described almost 40 years ago (Bolton 

and Lüning, 1982). In the style of the theoretical concepts of thermal trait variability within a species 

which I introduced earlier (Figure 1.5 – Figure 1.8), the main findings of this dissertation are 

conceptualized in the comprehensive Figure 6.1. This figure illustrates the four interactive levels of 

thermal trait variability for L. digitata derived from the three publications and a Master’s thesis 

(Gauci, 2020; see Chapter 6.1.3) which were produced within the scope of this dissertation. In this 

chapter, I lead through the main results summarized in Figure 6.1 and provide an integrative 

discussion of the mechanisms shaping thermal trait variability in kelp. 

 

6.1 Major findings 
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Figure 6.1 Thermal trait variability of Laminaria digitata identified in this thesis. Grey reaction norms 
represent the average species response across a temperature gradient (e.g. thermal growth curves by Bolton 
and Lüning, 1982; tom Dieck, 1992), coloured lines simplify data generated for this dissertation. I. Ecotypic 
differentiation: Growth and optimum quantum yield (Fv/Fm) showed higher heat sensitivity in the population 
of Spitzbergen (blue) and higher heat resilience in the populations of Helgoland and Quiberon (red), while heat 
tolerance was intermediate for Tromsø and Roscoff samples (green; Publication I). II. Genetic variation for 
phenotypic plasticity: Reaction norm slopes of growth and biochemical traits differed among genotypes (G) 
of juvenile sporophytes reared at 5°C (Publication II). III. Parental / carry-over effect: Juvenile sporophytes 
(F1; coloured lines) grew faster following treatments of gametogenesis and rearing (F0/F1; grey font, coloured 
dots) at 5°C (blue) compared to 15°C (red; Publication II). Cross-generational plasticity: Juvenile 
sporophytes (F1; coloured lines) grew better only at 0 and 20°C when they were recruited from gametophytes 
(F0; grey font, coloured dots) pre-cultivated for three years at 5°C (blue) compared to 15°C (red), while growth 
at 5–15°C was similar among pre-treatments (grey line; Gauci, 2020; Chapter 6.1.3). IV. Inbreeding: Thermal 
tolerance differed among sporophytes obtained by inbreeding genotypes from Spitsbergen (S; < 19°C) and 
Helgoland (H, > 20.5°C). Heterosis: Reciprocal crosses among populations were physiologically similar to 
the Helgoland selfing, but presented lower differential gene expression during heat stress (Publication III). 
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Publication I and Publication III demonstrate again the high thermal acclimation capacity of L. 

digitata to short-term exposure of up to 21°C, whereas 23°C posed a general growth limit (Bolton 

and Lüning, 1982; tom Dieck, 1992). However, subtle differences among populations (simplified in 

Figure 6.1-I) contribute to the growing evidence for local adaptation among kelp populations 

(reviewed by King et al., 2018). In Publication I, the southernmost L. digitata population of 

Quiberon, France, showed a slightly higher thermal tolerance compared to the more northern 

populations in growth at 19°C and recovery from 21°C. The L. digitata population of Helgoland, 

which persists at the species’ upper thermal limit in summer (Bartsch et al., 2013), showed reduced 

photoprotective responses and only slight reduction of optimum quantum yield even at 23°C, 

indicating high heat resilience. In contrast, L. digitata sporophytes from the distributional leading 

edge on the Arctic archipelago of Spitsbergen had the strongest negative response to 21 and 23°C 

visible in strong reduction of Fv/Fm (Publication I) and in reduced survival at presumed sublethal 

temperatures of 19–21°C (inbred sporophytes in Publication III; one meristem sample in 

Publication I). Potentially, a lack of selection pressure for heat tolerance might have led to a 

reduction of function at high temperature for Arctic L. digitata (Wiencke et al., 1994; Lahti et al., 

2009). Differences in overall transcriptomic profiles suggested substantial differentiation in gene 

regulation among individuals from the populations of Helgoland and Spitsbergen as became visible 

in the principal component analysis (Figure 5 in Publication III). The number of differentially 

expressed genes suggests that metabolic costs at the species’ presumed optimum temperature of 10°C 

(Bolton and Lüning, 1982; tom Dieck, 1992) were higher for inbred Spitsbergen sporophytes than 

for Helgoland sporophytes despite their similar physiological response (Publication III). Neutral 

microsatellite markers revealed strong hierarchical structuring among populations, which is 

confirmed by other recent publications (Publication I; King et al., 2020a; Neiva et al., 2020). 

Hierarchical structuring of extant L. digitata populations is assumed to be the result of persistence in 

distinct glacial refugia during the Last Glacial Maximum (LGM; Clark et al., 2009), after which 

genetically distinct populations expanded and recolonized the North Atlantic (Neiva et al., 2020). 

The phylogeographic separation into a northern and a southern Northeast Atlantic clade might have 

facilitated the divergence of L. digitata populations across glacial cycles.  

However, physiological differentiation was evident only at the species’ ecological range edges. In 

contrast, the two populations of Roscoff, France, and Tromsø, Norway, among which average yearly 

temperatures differ by several degrees (6.2°C in 2018; Publication I), did not differ significantly in 

their responses of Fv/Fm and xanthophyll pigments, which had revealed the differentiation among the 

populations of Spitsbergen and Helgoland. Therefore, local adaptation may not be explained by the 

thermal regime alone. Greater population connectivity and reduced selective pressure might hinder 

local adaptation towards a species’ range centre (Eckert et al., 2008; Hardie and Hutchings, 2010). 

6.1.1 Thermal ecotypes along the latitudinal distribution 
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Alternatively, local adaptation may become evident in different traits affecting fitness which I did 

not assess (e.g. traits related to reproduction). 

My results contribute to the recently growing evidence of ecotypic differentiation among kelp 

populations (e.g. Olischläger et al., 2017; King et al., 2018; Monteiro et al., 2019b), and conform 

with evidence for higher thermal resilience at L. digitata’s warm distribution limit (King et al., 2019). 

Differentiation among Helgoland and Spitsbergen L. digitata was recently also shown by Martins et 

al. (2020), who experimented on a mixture of five gametophyte lineages, including the ones used in 

Publication III. There, Arctic gametophytes grew significantly slower than those from Helgoland at 

temperatures ranging from 15–25°C, and recruitment of sporophytes at 5 and 15°C was comparably 

reduced following a treatment >20°C for eight days (Martins et al., 2020). An increased performance 

of Arctic material at cold temperature became evident in the higher gametophyte fertility at 5°C 

following an eight-day treatment of 15°C (Martins et al., 2020). An increase in cold tolerance and 

reproduction at cold temperature are among the first steps towards adaptation to a cold climate, 

followed by reduced resilience to high temperature (Wiencke et al., 1994). These patterns are visible 

in the slight differentiation among the contrasting warm and cold range edge populations of L. 

digitata investigated here. Müller et al. (2008) were the first to describe differentiation among Arctic 

and cold-temperate L. digitata, as meiospore germination of Spitsbergen material was inhibited at 

18°C, while ~90% of Helgoland meiospores germinated successfully. However, it cannot be ruled 

out that the Arctic L. digitata described by Müller et al. (2008) was actually Hedophyllum nigripes. 

H. nigripes co-occurs alongside L. digitata in the Arctic and is morphologically very similar 

(Dankworth et al., 2020), but presents a 4–5°C colder thermal profile (Franke, 2019). Olischläger 

and Wiencke (2013) reported meiospore release of Spitsbergen L. digitata sporophytes not before 

July, whereas Müller et al. (2008) collected meiospores in May, which indicates a potential confusion 

of the species. Therefore, sporophytes used in Publication I were confirmed as L. digitata by means 

of microsatellite amplification in addition to morphology, and material used in Publication III had 

been verified by DNA barcoding of sporophytes (Dankworth et al., 2020). 

Answering research question I (Chapter 1.5), I provide evidence that populations of L. digitata 

have differentiated in their heat resilience along the species’ Northeast Atlantic latitudinal 

distribution (Figure 6.1-I). As hypothesized, the population of Spitsbergen at the species’ leading 

edge was less heat tolerant than the warm range-edge populations of Helgoland and Quiberon. 

Contrary to my hypothesis, genetic diversity and gene flow among populations were not evidently 

related to heat resilience, but the hierarchical genetic structure separating a northern and a southern 

genetic clade may have facilitated differentiation across glacial cycles. Although phenotypic 

differentiation corresponded to the prevailing thermal environment, differentiation was weak among 

the presumed ecotypes and was confined within the known thermal limits (Bolton and Lüning, 1982). 

Whether differentiation occurred also in response to cold temperature remains to be investigated. 
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In Publication II, I identified significant differences in phenotypic plasticity of growth and 

biochemical traits among five inbred genetic lines of L. digitata sporophytes within the population 

of Helgoland. Reaction norm slopes over the experimental temperatures of 5 and 15°C differed in 

height and direction (simplified in Figure 6.1-II), indicating genetic variation for plasticity which 

may allow kelp reaction norms to evolve during climate change (Newman, 1994). Genetic variation 

for plasticity was significant mostly in the group of sporophytes reared at 5°C, but due to the 

significant size differences among sporophytes reared at 5 and 15°C in Publication II, I cannot 

attribute this effect unambiguously to temperature.  

Climate change increases the variability of environments (Thornton et al., 2014; Oliver et al., 2018) 

and therefore poses new demands for trait plasticity. High plasticity of a trait allows a genotype to 

respond to environmental gradients with a range of phenotypes, which may drive acclimative 

responses. In contrast, stability of e.g. reproductive traits may be favourable to ensure a functional 

phenotype which maintains fitness over environmental gradients. In the latter case, acclimation 

ensures a constant phenotype (i.e. phenotypic buffering; Reusch, 2014). Therefore differential trait 

expression may be adaptive or maladaptive depending on the trait and the variability of the 

environment, ultimately making trait plasticity itself a trait on which natural selection can act 

(Newman, 1994; Reed et al., 2011). Additionally, developmental temperature acclimation may 

modulate trait plasticity. This has recently been shown in the reduced morphological plasticity of 

Macrocystis pyrifera grown at sublethal temperature of 20°C (Supratya et al., 2020) and the reduced 

temperature sensitivity of photosynthesis and respiration of Ecklonia radiata when grown at a warm 

location (Staehr and Wernberg, 2009). This indicates that ocean warming may inhibit the expression 

of phenotypic plasticity in kelps, which decreases directional selection pressure and thereby lowers 

the adaptive capacity of populations. Genetic diversity was recently correlated to high phenotypic 

variation and resilience of kelp populations (Wernberg et al., 2018). Interestingly, I identified 

significant variation for plasticity in the L. digitata population of Helgoland, which contained 

comparably low genetic diversity (Publication I; King et al., 2020a; Neiva et al., 2020), but 

comparable studies to put these results into perspective are yet lacking for other populations. 

These results confirm my hypothesis under research question II (Chapter 1.5) that thermal 

plasticity differs among L. digitata genotypes (Figure 6.1-II). Presumably similar genotypes, 

which were sampled only several metres apart within the same population, differed significantly in 

their expression of trait plasticity. Temperature and/or sporophyte age may further modulate trait 

plasticity, with indications for a stimulating effect of cold temperature on the range of plastic 

responses. These results indicate a potential of L. digitata populations to adapt to a range of sub- and 

supraoptimal temperatures if natural selection acts on genotypes differing in phenotypic plasticity. 

6.1.2 Genetic variation for plasticity 
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Publication II revealed the importance of environmental history in shaping thermal plasticity of 

juvenile kelp sporophytes (simplified in Figure 6.1-III; parental / carry-over effect). 

Gametogenesis and recruitment at 5°C (blue dot in Figure 6.1-III), as opposed to 15°C (red dot in 

Figure 6.1-III), promoted higher growth of 3–4 month old offspring sporophytes at both 

experimental temperatures of 5 and 15°C, which is simplified as a higher blue reaction norm in 

Figure 6.1-III. This indicated either persistent parental effects across generations (from parental 

gametophyte F0 to offspring sporophyte F1) or carry-over effects across development within the 

sporophyte generation. Biochemical responses and chlorophyll fluorescence were highly plastic in 

response to the immediate temperature environment in the 12-day experiment and were not 

modulated by ontogenetic temperature history in clear patterns (Publication II).  

The original experimental design of Publication II may be criticized for the overlap among 

generational treatments of gametophytes and newly recruited sporophytes. Newly recruited, few-

celled sporophytes were exposed to the parental gametogenesis environment potentially for several 

days before being transferred to the sporophyte rearing treatment. As such a short environmental 

influence during the earliest developmental stages may theoretically affect phenotypic plasticity 

(Palmer et al., 2012; Donelson et al., 2018), I was unable to tease apart temperature effects across 

generations and within-generational effects. Building upon the results of Publication II, I therefore 

designed a study to explicitly investigate the hypothesis that kelps express cross-generational 

plasticity. This study was conducted in the frame of a Master’s thesis (Gauci, 2020), which I co-

supervised and which is now in preparation for publication. In the adapted experimental design, we 

circumvented the issue of overlapping generational treatments by testing thermal plasticity of 

offspring sporophytes obtained from parental gametophyte isolate strains which had been cultivated 

at 5 and 15°C for over three years. Gametogenesis and fertilization of both temperature cohorts were 

induced at a common temperature of 10°C. Subsequently, growth of microscopic juvenile 

sporophytes was assessed over 14 days in a temperature gradient ranging from 0 to 20°C (Figure 

6.2). Thereby, we investigated if temperature treatments of the parental germ line would modulate 

thermal plasticity of recruited sporophyte offspring (i.e. cross-generational plasticity; Byrne et al., 

2020). In a central result from his thesis, Gauci (2020) identified a beneficial effect of cold 

temperature applied during vegetative gametophyte growth on thermal resilience of microscopic 

sporophyte offspring at extreme temperatures. Microscopic sporophytes recruited from 

gametophytes grown at 5°C (pre-treatment 5°C; Figure 6.2A) significantly increased growth over 

time at 0°C, whereas sporophytes recruited from the gametophyte 15°C pre-treatment grew at an 

unchanged rate over time at 0°C (pre-treatment 15°C; Figure 6.2B). At 20°C, growth significantly 

decreased over time in sporophytes from both pre-treatments. However, sporophytes from the 15°C 

gametophyte pre-treatment completely ceased growth in the second week, while slow growth was 

6.1.3 Ontogenetic temperature history modulates thermal plasticity 
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retained by sporophytes from the 5°C gametophyte pre-treatment. Mean sporophyte growth over two 

weeks at experimental temperatures of 0 and 20°C was therefore significantly higher in pre-treatment 

5°C than in pre-treatment 15°C (Gauci, 2020), while growth did not differ significantly among pre-

treatments at 5–15°C. These results therefore provide evidence for cross-generational plasticity in L. 

digitata (Gauci, 2020). In Figure 6.1-III, cross-generational plasticity is simplified as a change in 

reaction norm shape only at the thermal extremes. Following a gametophyte pre-treatment of 5°C 

(blue dot), growth of microscopic sporophytes was higher at the extreme temperatures of 0 and 20°C 

(blue lines) than in sporophytes from the pre-treatment of 15°C (red dot, red lines). Growth did not 

significantly differ among pre-treatments at temperatures from 5 to 15°C (grey line). This complies 

with the benefits of gametogenesis and recruitment at cold temperature described in Publication II.  

 

Figure 6.2 Length growth rates of microscopic Laminaria digitata sporophytes over two weeks in a 
temperature gradient (mean ± SE, n = 5). Sporophytes were obtained from gametophytes pre-cultivated for 
three years at 5°C (A) and 15°C (B). Full bars represent growth during the first week of temperature treatment, 
striped bars represent growth during the second week of temperature treatment. Three-way repeated measures 
ANOVA returned a significant interaction of pre-treatment x temperature x time (F(4,12) = 3.85; p = 0.031). 
Significance of Tukey’s pairwise comparisons among time points for 0 and 20°C is indicated in the Figures 
(***, p < 0.001; n.s., not significant). Figure adapted from Gauci (2020) and used with permission. 

 

Answering research question II (Chapter 1.5), I provide evidence that ontogenetic temperature 

history across life cycle stages may alter thermal plasticity of juvenile offspring sporophytes in 

carry-over and/or cross-generational effects (Figure 6.1-III). Contrary to my initial hypothesis, 

performance of juvenile sporophytes did not increase at matching temperatures across ontogeny. 

Instead, a warm influence on microscopic L. digitata life cycle stages was correlated with reduced 

sporophyte growth across temperatures and with reduced resilience at extreme temperatures. This 

implies that cold seasons may be necessary for the persistence of L. digitata populations especially 

at the warm range edge. Despite the small magnitude of these effects in comparison to the range of 

plastic acclimation responses to the immediate thermal environment in the experiments, this raises 

the question if warming winters will reduce productivity and resilience of kelp populations in the 

long term. However, it remains unclear as yet if these effects persist also in older sporophytes. 
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Publication III demonstrates that outbreeding among populations may mitigate effects of genetic 

drift in small L. digitata populations and may lead to subtle heterosis effects (simplified in Figure 

6.1-IV). Sporophytes of the Spitsbergen selfing showed an unexpectedly low heat tolerance as 19–

20.5°C was lethal for macroscopic sporophytes, and the control temperature of 10°C elicited 

increased gene regulation compared to the Helgoland selfing. This was presumably an effect of 

inbreeding within the lineage rather than of local (mal)adaptation of the population, because thermal 

limits appeared uniform among individuals from the entire distribution range in Publication I. 

Resilience of Spitsbergen L. digitata at up to 22°C was recently also confirmed with laboratory-

reared juvenile sporophytes, which were produced by crossing four gametophyte lineages in a 

Master’s thesis (Franke, 2019). Still, the bleaching of one meristematic disc from Spitsbergen at 

23°C during the heat stress experiment in Publication I indicates potential differences in heat 

resilience also among adult sporophyte individuals. In contrast, microscopic sporophytes of the 

Helgoland selfing had an upper survival temperature of 22°C over 14 days and macroscopic 

sporophytes persisted at 19 and 20.5°C over 17 days in Publication III. The differences in gene 

regulation at 10°C indicated genetically fixed differences among the inbred lineages of Helgoland 

and Spitsbergen. The reciprocal crosses showed heat resilience intermediate to their inbred parental 

lineages at 21 and 22°C, but percentages of unbleached microscopic sporophytes in the crosses were 

higher than the average value taken over both the Helgoland and Spitsbergen selfings (mid-parent 

heterosis; Hochholdinger and Hoecker, 2007). In experiment 2 on macroscopic sporophytes 

(Publication III), both reciprocal crosses responded similarly to the Helgoland selfing in growth and 

optimum quantum yield at sublethal heat of 19–20.5°C, whereas sporophytes from the Spitsbergen 

selfing bleached at these temperatures. Additionally, both crosses showed reduced differential gene 

expression at 20.5°C in comparison to the Helgoland selfing. This indicated lower metabolic costs 

for the crosses to persist during heat stress compared to the selfing (Clarke, 2003; Dekel and Alon, 

2005). Transcriptomic responses were almost identical in a direct comparison among the reciprocal 

crosses, with only 11 differentially regulated genes (DEGs) at 20.5°C and only two DEGs at 10°C. 

This indicates that thermal traits were inherited mostly from both female and male gametophyte 

parents. Annotated differentially expressed genes indicated that cellular stress responses were 

reduced in the reciprocal crosses compared to the selfings. Potentially, increased heterozygosity may 

have benefitted the reciprocal crosses either by preventing the expression of deleterious recessive 

alleles or due to a general beneficial effect of heterozygosity across loci (Charlesworth and 

Charlesworth, 1987; Schierup and Christiansen, 1996). 

The low dispersal capacity of kelps potentially prevents outbreeding across distant populations in the 

wild (Coyer et al., 1997; Billot et al., 2003). Rare events of dispersal (e.g. by drifting fronds; Schiel, 

2004; Macaya et al., 2016) may already be sufficient to maintain gene flow among nearby 

6.1.4 Outbreeding may increase population resilience  
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populations, preventing inbreeding depression and maintaining genetic homogeneity (Charlesworth 

and Charlesworth, 1987; Valero et al., 2011). However, the genetic structuring identified in 

Publication I refutes the hypothesis of natural outbreeding among L. digitata populations at a large 

geographical scale. The subtle effects of mid-parent heterosis demonstrated by the reciprocal crosses 

in Publication III were weak in comparison to the best-parent heterosis described for the 

interspecific crosses among the kelps L. digitata and L. pallida, which tolerated 2–3°C higher 

temperatures than either intraspecific selfing (Martins et al., 2019). Interspecific breeding of kelps is 

an established method to produce highly productive and resilient cultivars in mariculture (e.g. Li et 

al., 2007; Zhang et al., 2011). However, also intraspecific outbreeding among Macrocystis pyrifera 

lineages has been shown to increase fertility (Raimondi et al., 2004) and growth (Westermeier et al., 

2010) compared to inbred cultivars which adds to the evidence for intraspecific heterosis in kelps. 

Potential detrimental effects indicating outbreeding depression were not obvious in performance of 

the reciprocal crosses among the contrasting L. digitata populations in Publication III. This suggests 

that genetic divergence among L. digitata populations is low (Schierup and Christiansen, 1996), 

despite the strong spatial structuring and thermal gradient along the species’ latitudinal distribution 

(Publication I). Alternatively, outbreeding depression may manifest only in older sporophytes 

especially with respect to reproduction (Schierup and Christiansen, 1996; McKenzie and Bellgrove, 

2006). Thus, it remains to be investigated whether outbreeding among L. digitata populations 

produces viable and fit offspring. In addition, genetic variation for plasticity (Publication II) may 

result in significant differences among cultivars regardless of whether they were in- or outbred 

(Camus et al., 2018). Therefore, careful assessments of cultivar productivity and fitness are necessary 

if outbreeding is considered for mariculture and/or restoration of natural kelp forests threatened by 

extinction. 

Answering research question III (Chapter 1.5), I provide evidence that cross-breeding among 

differentiated lineages of L. digitata produced viable sporophytes which inherited thermal 

traits from both female and male parent gametophytes, and which expressed subtle heterosis 

(Figure 6.1-IV). As hypothesized, inbred Spitsbergen sporophytes were more sensitive to high 

temperature than inbred Helgoland sporophytes. However, this was likely not an expression of local 

adaptation, but potentially of inbreeding depression. Cross-breeding the Spitsbergen lineage with 

either female or male gametophyte parent from the more resilient Helgoland lineage produced viable, 

heat-tolerant sporophytes, which confirms my second hypothesis. Subtle heterosis was indicated for 

the reciprocal crosses, in that phenotypic heat responses were similar to the Helgoland selfing, while 

gene expression (e.g. of cellular stress response genes) was reduced in the reciprocal crosses at 

sublethal temperature.  
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Thermal growth curves of L. digitata and other seaweeds (e.g. Fortes and Lüning, 1980; Bolton and 

Lüning, 1982; tom Dieck, 1992), on which I based the conceptual diagrams in this dissertation 

(Figure 1.5–Figure 1.8; Figure 6.1), roughly follow the shape of thermal performance curves 

described for ectothermic marine animals (Pörtner and Farrell, 2008; Pörtner, 2010). Over a 

temperature gradient, these curves often show a steady performance increase towards an optimum 

temperature, beyond which performance more steeply decreases (Fortes and Lüning, 1980; tom 

Dieck, 1992; Pörtner and Farrell, 2008). In ectothermic animals such as fish, thermal performance 

curves were described as integrating interactive temperature effects on the oxygen supply to tissue 

and on the kinetic speed of metabolic processes (concept of oxygen- and capacity-limited thermal 

tolerance; Pörtner, 2010). Optimum oxygenation of tissue occurs in a temperature range delimited 

by “pejus” (i.e. “turning worse”) temperatures (Pörtner and Farrell, 2008; Pörtner, 2010). The kinetic 

stimulation of metabolic processes by warming, however, sets the integrative aerobic performance 

optimum of the animal close to the upper pejus temperature, resulting in a slightly negatively skewed 

bell curve (Pörtner, 2010). In photoautotrophic seaweeds, tissue oxygenation may not be the right 

process to explain thermal performance. Rather, the integrative trait of the thermal growth optimum 

may for seaweeds be shaped by the thermal optimum of the central process of photosynthesis, which 

is often higher than the optimum growth temperature (Eggert and Wiencke, 2000; Graiff et al., 2015; 

Fernández et al., 2020). Beyond optimum growth temperatures, performance is reduced by the 

metabolic investment in maintenance and repair mechanisms, and disruption of enzyme function and 

membrane structure (disruptive stress sensu Davison and Pearson, 1996; see also review by Eggert, 

2012). 

Considering the novel insights provided in this dissertation, it becomes clear that central thermal 

response mechanisms are not static within a species, but that variability of thermal traits in kelp is 

modulated by an interactive framework of genetic, non-genetic and environmental factors from 

scales of populations to individuals (Figure 6.1). On a large geographical scale, natural selection 

may drive genetic and phenotypic differentiation of populations (Kawecki and Ebert, 2004; Figure 

1.5; Figure 6.1-I). Phenotypic differentiation at the ecological range edges (Publication I) is a 

pattern observed in several seaweeds (Gerard and Du Bois, 1988; Jueterbock et al., 2014; Saada et 

al., 2016; Mota et al., 2018) and is thought to be related to habitat isolation and unique genetic 

characteristics of range-edge populations (Kawecki and Ebert, 2004; Hampe and Petit, 2005; Sanford 

and Kelly, 2011). Local adaptation depends on interactions of genetic and environmental parameters 

(Kawecki and Ebert, 2004) which may be unique for every population of a species. One of the genetic 

mechanisms which facilitate local adaptation by shaping trait variability within a population is 

genetic variation for plasticity (Newman, 1994; Figure 1.6; Figure 6.1-II). If genotypes differ in 

their expression of plastic responses (Publication II), directional selection on genetically and 

6.1.5 Conceptual synopsis of thermal trait variability in a kelp  
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phenotypically diverse populations may allow reaction norms to evolve (Via and Lande, 1985; 

Newman, 1994), potentially also in kelp populations (Coleman and Wernberg, 2020; Coleman et al., 

2020a). However, this dissertation also provides evidence that increasing temperature during 

ontogeny may reduce the expression of thermal response plasticity (Publication II; Figure 6.1-II), 

growth (Publication II; Figure 6.1-III) and thermal resilience of juvenile kelp sporophytes (Gauci, 

2020; Chapter 6.1.3; Figure 6.1-III) in non-genetic carry-over and/or cross-generational effects 

(Figure 1.7). These mechanisms are often investigated for their potential to mitigate effects of 

climate change (reviews by Donelson et al., 2018; Fox et al., 2019), but evidence is accumulating 

that they may not be a panacea in the face of climate change (Byrne et al., 2020). For kelp, I show 

evidence that carry-over and cross-generational effects may even drive detrimental responses during 

ocean warming. In contrast, outbreeding among differentiated populations may provide short-term 

rescue to genetically impoverished or maladapted populations (Publication III; Figure 1.8; Figure 

6.1-IV). However, gene flow across large spatial scales is unlikely to occur naturally among distant 

populations of kelp and other macrophytes (Norton, 1992; Billot et al., 2003; King et al., 2018). 

While the other concepts presented here provide naturally occurring means of thermal trait 

variability, outbreeding among distant populations may provide an artificial means of increasing 

resilience of kelp populations to ocean warming.  

For Laminaria digitata, the manifestation of these interactive levels of trait plasticity can be 

summarized as follows: 

I. L. digitata populations differed slightly in their physiological responses to heat, indicating 

the existence of ecotypes (Publication I, Chapter 6.1.1, Figure 6.1-I). However, 

differentiation was weak and did not expand the thermal tolerance range beyond the known 

upper thermal limit. Especially the northernmost population showed reduced function during 

heat exposure, which may be due to a lack of selection pressure for heat tolerance in the 

Arctic. Whether ecotypic differentiation has taken place with respect to cold temperature is 

still unknown. 

II. The expression of thermal plasticity differed among genotypes (Publication II, Chapter 

6.1.2, Figure 6.1-II). This was evident even among individuals sampled from the same 

population which were presumably not strongly differentiated genotypes. Differences in 

plasticity may be weak, but cold temperature and/or sporophyte age may stimulate the 

expression of plastic responses. These results imply that, despite the mostly uniform upper 

thermal limit, differentiation in trait responses to a range of sub- and supraoptimal 

temperatures is possible among individuals and populations of L. digitata. 

III. Carry-over effects and/or cross-generational plasticity may modulate thermal plasticity of L. 

digitata (Publication II, Chapter 6.1.3, Figure 6.1-III). Effects in juvenile sporophytes 

were only beneficial following cold temperature treatments of reproduction and ontogeny 
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compared to warm treatments, indicating the importance of cold seasons for population 

persistence. These effects were of smaller magnitude than rapid acclimation responses to the 

immediate thermal environment in the experiments, and it remains unclear whether they 

persist also in older sporophytes. 

IV. Intra-specific outbreeding among differentiated lineages produced viable sporophytes with 

subtle expression of heterosis (Publication III, Chapter 6.1.4, Figure 6.1-IV). 

Contributions from both female and male parent gametophytes shaped the thermal response 

of offspring sporophytes. Whereas inbreeding may reduce the thermal resilience and 

performance of L. digitata sporophytes, increased heterozygosity in the crossed sporophytes 

potentially increased their performance during heat exposure. However, the known thermal 

growth limits were not surpassed by the crossed lineages. 

In summary, L. digitata is a species with a clear cold-temperate to Arctic adaptation, which 

expresses thermal trait variability on different levels, but is generally restricted by a nearly 

uniform upper thermal limit. Response variation among individuals within the thermal limits may 

be more important for the adaptive capacity of the species than the current differentiation of ecotypes 

at the extremes of the thermal tolerance range. The small magnitude of the above phenomena and 

the potential negative effects of warming winters indicate that these mechanisms may not allow the 

species to persist during climate change at its current warm range edge, which I will discuss in detail 

in the following chapter. 

 

In this chapter, I will explore potential consequences and applications based on the above findings 

which contribute to the understanding of thermal plasticity in kelp and Laminaria digitata in 

particular. I discuss the role of trait variability and genetic differentiation in the light of ocean 

warming and marine heatwaves in particular, and I explore potential directions for research on and 

with kelp regarding fundamental research, applied mariculture and restoration efforts for threatened 

natural populations.  

 

The differing thermal optima and limits for ontogenetic traits of gametophytes and sporophytes 

(Figure 1.4) imply that phenology of L. digitata is coupled to seasonal temperature variation, 

especially at the warm range margins. In northern to Arctic populations, where sea surface 

temperatures (SST) oscillate between non-inhibiting temperatures of 0 and 15°C (e.g. Barents Sea, 

Makarov et al., 1999; mid-northern Norway and Spitsbergen, Publication I), phenology is mainly 

6.2 Thermal plasticity of Laminaria digitata in a changing climate 

6.2.1 Phenology of Laminaria digitata under ocean warming 
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controlled by the seasonality of irradiance, photoperiod and nutrients (reviewed by Wiencke et al., 

2009). Photoperiod synchronizes the endogenous growth rhythm in L. digitata (Schaffelke and 

Lüning, 1994; Makarov et al., 1999) which in turn affects the onset of sporogenesis during periods 

of low growth (Buchholz and Lüning, 1999). Temperature and nutrient availability may then 

modulate the efficiency of sporophyte fertility (Figure 1.4; Buchholz and Lüning, 1999; Bartsch et 

al., 2013). Long day lengths additionally enhance gametophyte and sporophyte fertility across 

temperature gradients (Hsiao and Druehl, 1971; Lüning, 1988; Martins et al., 2017), whereas both 

darkness and cold temperature inhibit gametogenesis in the polar winter (Lüning, 1980; Sjøtun and 

Schoschina, 2002). 

At locations which reach high temperatures inhibiting reproductive traits in summer, such as 

Helgoland and Quiberon (Publication I; Bartsch et al., 2013; Oppliger et al., 2014), seasonal 

temperature variation has a larger effect in controlling L. digitata’s life cycle (Martins et al., 2017). 

Sporophytes release meiospores in summer and autumn, including periods when seawater 

temperatures are maximal (Bartsch et al., 2013). Released meiospores may suffer damage from 

interactive effects of high temperature and UV radiation in summer (Roleda et al., 2005; Roleda, 

2009), whereas sporangia likely provide protection from UV radiation (Gruber et al., 2011). Once 

meiospores have settled and germinated, the high thermal resilience and warm growth optimum of 

gametophytes of up to 18°C (Figure 1.4; Lüning, 1980; Martins et al., 2017) ensures vegetative 

persistence at temperatures ≥ 18°C during summer, which may be lethal already for sporophytes 

impacted by multiple stressors especially during emersion (Bartsch et al., 2013). In the absence of in 

situ data on gametophyte development, gametogenesis is thought to subsequently occur in late 

autumn at temperatures ≤ 17°C or in early spring at lowest annual temperatures (Martins et al., 2017), 

but likely not at minimal irradiance during winter (Lüning, 1980). Juvenile recruited sporophytes 

may grow and develop from early spring at temperatures increasing again to their thermal growth 

optimum of 10–15°C (Figure 1.4). According to the results of Publication II, a seasonal pattern of 

recruitment and juvenile sporophyte growth at yearly minimum temperatures benefits growth, 

thermal resilience and the expression of trait plasticity of juvenile sporophytes. 

Due to the coupling of temperature and ontogeny, mean warming of the Atlantic by 2–4°C until the 

end of the century in the maximum greenhouse gas emission scenario (RCP 8.5; Hoegh-Guldberg et 

al., 2014; IPCC, 2019) will potentially disturb the phenology of L. digitata. The earlier onset of the 

warm season along most global coastlines (Lima and Wethey, 2012) has already led to shifts in 

phenology of many marine taxa, e.g. earlier phytoplankton blooms (reviewed by Poloczanska et al., 

2013). Because the onset of sporogenesis is likely controlled indirectly by the photoperiod which 

synchronizes the circannual growth rhythm (see above; Buchholz and Lüning, 1999; Bartsch et al., 

2013), an earlier onset of the warm season will likely not affect the seasonal timing of sporophyte 
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fertility. For instance, during two years differing in spring sea surface temperature by few degrees, 

L. digitata sporophytes on Helgoland initiated sporogenesis at the end of April (Bartsch et al., 2013).  

More importantly, the shortening of the cold season combined with an increase of summer 

periods in which sporogenesis and gametogenesis are inhibited potentially reduces the fertile 

window of L. digitata and may initiate a negative feedback loop. Hypothetically, reduced 

meiospore production and germination at high temperature (Bartsch et al., 2013) may result in a 

lower number of gametophytes to recruit juvenile sporophytes. In consequence, incremental 

reductions in recruitment over generations may reduce population size and genetic diversity of the 

population (Vucetich and Waite, 2003). Therefore, population size, diversity and resilience 

(Wernberg et al., 2018) may be reduced even in the absence of extreme events such as marine 

heatwaves. This might especially occur towards the warm range edge, where offspring sporophyte 

performance presumably depends more on the reproduction during cold seasons than in more 

northern populations (Publication II; Chapter 6.1.3). L. digitata may already exhibit reproductive 

maladaptations at the species’ southern European range limit, as sporophytes produce a low amount 

of spores, of which a relatively high fraction are diploid instead of haploid meiospores (Oppliger et 

al., 2014). This was attributed by the authors to the warm thermal regime at the species’ trailing edge. 

Subtle differentiations like this may therefore manifest during ocean warming also at more northern 

populations for L. digitata. For other kelps, especially those that produce spores primarily in winter 

(e.g. L. hyperborea, S. latissima; Fredriksen et al., 1995; Bartsch et al., 2008; Sogn Andersen et al., 

2011), effects of ocean warming on the life cycle may manifest in different ways and warrant further 

investigation. 

 

Following an extreme marine heatwave in Western Australia in 2011, which drove a well-

documented regime shift from marine forest to turf algae (Wernberg et al., 2016), the responses of 

kelp species and marine forests to heat and marine heatwaves in particular have received increased 

attention (Holbrook et al., 2020; see e.g. Wilson et al., 2015; Arafeh-Dalmau et al., 2019; Nepper-

Davidsen et al., 2019; Gurgel et al., 2020). Heat stress responses of kelp sporophytes are meanwhile 

well-described for integrative physiological parameters. At sublethal temperature, kelps reduce 

growth, the integrative parameter over all metabolic processes (Publication I; tom Dieck, 1992; 

Wilson et al., 2015), while energy is channelled into stress responses (López-Maury et al., 2008). 

Carbon assimilation is reduced (Pessarrodona et al., 2018; Nepper-Davidsen et al., 2019) while at 

the same time, distal loss of blade tissue increases due to tissue damage and reduced mechanical 

resilience (Simonson et al., 2015; Nepper-Davidsen et al., 2019). The decrease of carbon assimilation 

at increasing temperatures is related to dynamic photoinhibition, which is visible as a reversible 

6.2.2 Marine heatwaves – kelp responses and consequences 
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decrease of optimum quantum yield Fv/Fm (Publication I; Nepper-Davidsen et al., 2019; Hereward 

et al., 2020) before damage occurs to the photosystem in chronic photoinhibition (Hanelt, 1998). To 

prevent an accumulation of reactive oxygen species (ROS) which may over-reduce and damage the 

photosynthetic electron transport chain (Suzuki and Mittler, 2006), kelps may increase 

concentrations of carotenoid accessory pigments, especially xanthophylls, which dissipate excess 

energy from the photosystem (nonphotochemical quenching; Publication I; Li et al., 2019; Nepper-

Davidsen et al., 2019). Additionally, an accumulation of flavonoid and polyphenolic defense 

compounds increases the antioxidant capacity while enduring periods of critical heat stress (Hargrave 

et al., 2017). Nitrate availability has been shown to increase heat resilience of Macrocystis pyrifera, 

presumably due to the availability of nitrogen for increased production of heat shock proteins and 

modification of cell membranes (Fernández et al., 2020). However, cellular nitrogen contents do not 

show consistent responses to high temperature across kelp populations and species (Publication I; 

Roleda and Hurd, 2019). 

The first study on gene expression underlying phenotypic stress responses of L. digitata was 

published 15 years ago (Roeder et al., 2005) and allowed to identify changes to metabolic pathways 

before they translate into phenotypic responses (Heinrich et al., 2015). With the advent of affordable 

next-generation sequencing, research of whole transcriptomes has gained increased attention in 

research on kelp responses to abiotic stress (e.g. Heinrich et al., 2012; Iñiguez et al., 2017; Monteiro 

et al., 2019b). Several molecular mechanisms in response to stress are evolutionarily conserved and 

are collected under the term of cellular stress response (CSR; Kültz, 2005). For L. digitata, I 

identified numerous differentially regulated genes from the CSR categories of redox regulation, 

molecular chaperones and lipid metabolism during heat stress, in addition to regulation of pigment 

and carbohydrate metabolism (Publication III). These are in accordance with the phenotypic 

changes observed in response to heat. Modifications of membrane and cell wall rigidity by altering 

carbohydrate and lipid composition (Publication III) may drive changes in thallus morphology and 

reduction of mechanical resilience while growth is reduced (Simonson et al., 2015; Supratya et al., 

2020). Regulation of pigment synthesis and photosystem components corroborates the maintenance 

of photosynthesis during heat stress which was visible in the stability of optimum quantum yield 

Fv/Fm (Publication III). Meanwhile, the regulation of ROS-scavenging and ROS-producing proteins 

implies cellular oxidative stress and signalling in response to heat (Bischof and Rautenberger, 2012). 

The uncontrolled production of ROS occurs through disturbances of the homeostasis of electron 

transport chains in photosynthesis, photorespiration, or mitochondrial respiration (Bhattacharjee, 

2005), and is met by production of ROS-scavenging antioxidants which prevent destructive oxidation 

of lipids, proteins and nucleic acids (Bischof and Rautenberger, 2012). Finally, the induction of heat 

shock protein genes (Publication III) indicates that protein function is impaired at high temperature 
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and has to be supported by chaperone proteins, which ensure correct protein folding, translocation 

and controlled degradation (Wang et al., 2004). 

While these responses are expressed during tolerance of heat stress, the capacity to return to the 

original metabolic state is important for the long-term persistence of populations. L. digitata suffered 

persistent damage from five days at 23°C, as growth did not recover during the following week at 

15°C (Publication I). In a similar experiment, Saccharina latissima persisted during a simulated 

heatwave at 18 and 21°C for 23–27 days, but did not recover to full potential of growth and 

photosynthesis during 2 weeks of post-cultivation at 15°C. In the seagrass Zostera marina, 

transcriptomic stress profiles during an experimental three-week heatwave of 26°C were similar 

among two populations from Denmark and Italy, but only the Italian population returned to control 

values of gene expression following a temperature decrease to 19°C (Franssen et al., 2011), 

indicating a difference among ecotypes in the potential to recover. Therefore, even if populations 

persist during a marine heatwave, lingering stress and/or damage may become evident later in time. 

Currently, marine heatwaves already reach temperatures of 20°C in South England (Joint and Smale, 

2017; Burdett et al., 2019). In combination with stress during emersion at lowest tide, especially air 

temperature and desiccation (Hereward et al., 2020), these temperatures may already drive die-off 

events of sporophyte populations such as on Helgoland in 2003 (Bartsch et al., 2013). Therefore, the 

predicted increase in frequency and duration of marine heatwaves (Oliver et al., 2018) poses an 

additional threat to L. digitata at the warm range edges. 

The resilience of Australian Ecklonia raditata populations to disturbances such as marine heatwaves 

correlated with neutral genetic diversity within populations, presumably due to increased 

physiological versatility among individuals (Wernberg et al., 2018). Publication II provides first 

evidence for variation in thermal plasticity among L. digitata individuals from Helgoland (Figure 

6.1-II), but analogous data from other populations are necessary to evaluate the relationship of 

genetic diversity and response variation in a comprehensive context for multiple populations. Marine 

heatwaves can act as strong disturbance events and may pose bottlenecks for genetic diversity by 

random selection (Gurgel et al., 2020) which reduces diversity and resilience of populations. 

Whereas neutral genetic diversity may be an indicator of trait variation, it does not allow direct 

derivation of local adaptation, as microsatellite markers are by definition not under selection pressure 

(Ellegren, 2004; Vieira et al., 2016). Populations with reduced neutral genetic diversity 

characteristics may still be performing well under thermal stress if the population has adapted to the 

local environment. For instance, sporophytes from the population of Helgoland presented better heat 

resilience than samples from other, more genetically diverse populations in Publication I (Figure 

6.1-I). The higher heat resilience of South English L. digitata populations compared to more 

northern, Scottish populations (King et al., 2019) also coincides with reduced genetic diversity in the 

southern populations (King et al., 2020a). This was interpreted by King et al. (2020a) as a reduction 



Synoptic discussion 
 

155 

of historically higher diversity due to the challenging habitat and reduced connectivity at the species’ 

trailing edge (Eckert et al., 2008), which may also be applicable to the population of Helgoland 

(Publication I). Marine heatwaves may not only pose random selective events, but they have 

recently been hypothesized as also driving directional selection for thermal traits (Coleman and 

Wernberg, 2020; Coleman et al., 2020a), and may therefore be one of the factors driving ecotypic 

differentiation for thermal tolerance at the range edges. 

Current research on marine heatwaves often focuses on extreme summer temperatures, but 

Publication II demonstrates that seasonal cold temperatures may also be important for the 

performance and persistence of L. digitata populations (Figure 6.1-III). Indeed, marine heatwaves 

during winter can drive competitive disadvantages of native seaweeds competing with warm-adapted 

invasive species, as was shown for the invasive Sargassum muticum at the Welsh coast (Atkinson et 

al., 2020). This was in part due to reduced thermal resilience of the native Fucus serratus and 

Chondrus cripsus in winter (Atkinson et al., 2020). Thermal tolerance of recently grown kelp tissue 

in late winter to early spring was reduced compared to older tissue in summer for L. digitata (by 2°C) 

and L. hyperborea (by 5°C), among other seaweeds on Helgoland (Lüning, 1984). Therefore, 

warming winters may, for instance, support the northward propagation of the warm-temperate kelp 

L. ochroleuca in the Southern United Kingdom (Smale et al., 2015; Hargrave et al., 2017). It is 

becoming evident that ocean warming does not only pose a stressor in summer at highest 

temperatures, but affects phenology, plasticity and species interactions year-round.  

 

The abovementioned effects contribute to the poleward range shifts of seaweeds predicted already 

30 years ago (Breeman, 1990). In recent niche models, habitat suitability of L. digitata was best 

described based on sea surface temperature (SST), salinity and bathymetry (Raybaud et al., 2013; 

Assis et al., 2018). Whereas Raybaud et al. (2013) only considered maximum SST in their best-fitting 

model, Assis et al. (2018) also took into account maximum winter temperature, and predicted a loss 

of suitable habitat area of up to 16% until the end of the century. While L. digitata biomass has in 

part been receding near its southern range limit (e.g. Normandy, France; Cosson, 1999), L. digitata 

biomass has significantly increased at the leading edge in the Arctic Kongsfjorden, Spitsbergen, 

between 1996 and 2013 (Bartsch et al., 2016). With respect to predicted warming, current range 

central populations might reduce their primary productivity in the future as supraoptimal thermal 

conditions become more likely (King et al., 2020b). Bearing in mind these changes and predictions, 

the question arises how well L. digitata as a species is equipped to persist and adapt to a changing 

climate. 

6.2.3 Adaptive capacity of Laminaria digitata during ocean warming 
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I identified response variation on the scale of populations and individuals for Laminaria digitata. 

Despite evidence for differentiation of thermal traits among populations, differentiation was of rather 

minor extent and did not affect the upper thermal limit of wild L. digitata sporophytes (Publication 

I; Figure 6.1-I). Additionally, evidence for local adaptation identified under laboratory settings does 

not equal high productivity of the respective natural population, as is exemplified by the lower in situ 

primary production of the warm-adapted South English L. digitata ecotype compared to range central 

populations (King et al., 2019, 2020b). Therefore, potential local adaptation may not be sufficient to 

buffer loss of sporophytes at southern L. digitata populations during increasingly warm summers. 

However, evidence for heat resilience of reproductive traits of gametophytes (Martins et al., 2020) 

indicates that gametophytes may, at least for some generations, replenish the sporophyte populations 

after die-off events in summer, such as on Helgoland between 2003 and 2004 (Bartsch et al., 2013). 

Potentially more important for the adaptive capacity of the species than present local adaptation is 

the presumed high genetic variation for plasticity among genotypes (Publication II; Figure 6.1-II). 

The fact that thermal reaction norms of several traits differed among individual genetic lines implies 

that thermal traits have the potential to evolve within the thermal limits of the species (Newman, 

1994; Reed et al., 2011), and that strong selection on genetically (and phenotypically) diverse 

populations may drive adaptive processes (Coleman and Wernberg, 2020; Coleman et al., 2020a). 

However, indications that increasing temperature during ontogeny may reduce response plasticity 

and growth of juvenile sporophytes (Publication II; Staehr and Wernberg, 2009) imply that the same 

process of warming, which exerts a selective pressure on kelp sporophytes, might simultaneously 

decrease the strength of directional selection by reducing response plasticity in kelps.  

While populations at the trailing edge in Brittany are at risk of extinction, L. digitata biomass is 

increasing in Arctic populations (Bartsch et al., 2016). In the Arctic, increasing temperature does not 

pose a stressor for L. digitata. However, the Arctic is warming rapidly by 3–4°C until the end of the 

century (Müller et al., 2009), which increases sedimentation and reduces seawater salinity due to 

permafrost erosion, glacial melting and freshwater runoff (Peterson et al., 2002; Filbee-Dexter et al., 

2019). Increasing seawater turbidity drives a shift of Arctic L. digtata to shallower depths (Bartsch 

et al., 2016) while freshwater input may induce hyposaline stress (Li et al., 2019; Monteiro et al., 

2019b). Still, models predict an overall increase of kelp forest extent and biomass in the Arctic due 

to reduced sea ice cover and warming (Assis et al., 2018; Filbee-Dexter et al., 2019). The prospect 

of loss of warm ecotypes and dispersal of cold ecotypes of L. digitata implies a decrease in the 

adaptive capacity to warming of the entire species. The strong spatial structuring among kelp 

populations (Billot et al., 2003) implies that the unique genetic diversity in glacial refugia populations 

at L. digitata’s trailing edge (Assis et al., 2018; Neiva et al., 2020) will likely not be “rescued” by 

connectivity and gene flow to more northern populations. Rare, long-distance gene flow events may 

hypothetically introduce new alleles to a population (Schiel, 2004) and might even produce more 
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resilient phenotypes (Publication III; Figure 6.1-IV), but the low connectivity among extant L. 

digitata populations suggests that this does not occur regularly for L. digitata (Publication I; King 

et al., 2020a; Neiva et al., 2020). The low degree of connectivity among L. digitata populations in 

Brittany is rather explained with gradual gene flow via stepping stone habitats (as hypothesized in 

Publication I). 

Further aspects which niche models do not take into account are biotic interactions and competition 

among species which may be differentially affected by climate change. Marine forests are structured 

differently along the latitudinal gradient according to the thermal characteristics of key kelp species, 

e.g. higher abundance of Alaria esculenta and Saccharina latissima in cold-temperate Northern 

Europe and increasing abundance of Laminaria ochroleuca towards warm-temperate Southern 

Europe (Smale and Moore, 2017; Smale, 2020). L. ochroleuca is extending its range northward, 

which is documented well in South England, where it competes with L. hyperborea (Smale et al., 

2015). The high abundance of gastropod grazers associated with L. ochroleuca is contrasted by a 

high amount of epiphytes growing on the stipes of L. hyperborea (Smale et al., 2015). Taking into 

account also the differential patterns in seasonal growth and carbon export (Pessarrodona et al., 

2019), a replacement of L. hyperborea or L. digitata by L. ochroleuca may drive trophic shifts in 

kelp forests based on the different ecological function of the key species. However, L. ochroleuca’s 

low tolerance to desiccation and freezing might prevent a replacement of L. digitata in the infralittoral 

fringe (Hargrave et al., 2017; King et al., 2018). Following the experimental removal of L. digitata 

at sites in Brittany, France, the warm-temperate annual kelp Saccorhiza polyschides (Tilopteridales) 

recruited quickly and the ecosystem took between 18–24 months to revert to its initial state (Engelen 

et al., 2011), which additionally highlights the impact of single disturbance events on population 

persistence. Under Arctic summer warming scenarios at 9–10°C, co-cultivation of gametophytes and 

sporophytes indicated a competitive advantage of A. esculenta over L. digitata in development and 

growth under laboratory conditions (Zacher et al., 2019). In turn there is evidence that L. digitata 

might outcompete the cold-adapted Hedophyllum nigripes where they co-occur in the warming 

Arctic (Franke, 2019). Lastly, shifts throughout the food web may control abundance of kelps forests 

in multitrophic cascades. For instance, grazing by sea urchins can remove entire marine forests 

(Sivertsen, 2006), but they might recover if ocean warming facilitates an increase in abundance of 

urchin predators such as crabs (Christie et al., 2019b). 

This amounts to the conclusion that the adaptive capacity to climate change of kelp species in general 

and Laminaria digitata in particular is a highly variable and complex framework which cannot be 

defined globally. Responses of L. digitata to ocean warming are shaped by interactive effects of the 

species’ genetic diversity, local adaptation, population structure, local environmental conditions, 

strength and direction of selective forces, mating system, within-generational and cross-generational 

phenotypic plasticity, and biotic interactions with competitors and herbivores. Thermal trait 



Synoptic discussion 
 

158 

variability is thereby an important aspect of L. digitata’s response to ocean warming, but care should 

be taken when extrapolating evidence from laboratory experiments to conditions in the wild. Yet, 

what has become increasingly obvious during my investigations is the consistent adaptation of 

L. digitata as a cold-temperate to Arctic species. L. digitata may persist at temperatures > 20°C 

(Publication I; Publication III), but it thrives at 5–15°C (Figure 1.4; Figure 6.2; Publication II) 

and neither local adaptation, within- or cross-generational plasticity nor heterosis were shown 

to improve the species’ performance at high temperature beyond the limits that were described 

almost 40 years ago (Bolton and Lüning, 1982). Within this century, mean Atlantic sea surface 

temperatures are predicted to increase by a range of 2–4°C (RCP 8.5; Hoegh-Guldberg et al., 2014; 

IPCC, 2019) while marine heatwaves increase in frequency and duration (Oliver et al., 2018). Taking 

into account the relatively weak differentiation among populations, and the potentially negative 

effects of warming winters on kelp sporophyte performance, it is unlikely that the diverse range 

of thermal trait variability of L. digitata will prevent an extinction of the threatened populations 

at the species’ warm range edge. Still, the variability of trait responses to sub- and supraoptimal 

temperature indicates that L. digitata possesses the potential to adapt within the species’ eurythermal 

performance range which may benefit range central and northern populations under ocean warming. 

 

In this chapter I discuss perspectives for research on and with kelp which build on the concepts and 

hypotheses presented within the scope of this dissertation. The methodological development of 

fundamental research on kelps is not as advanced as for plant and animal research (Chan et al., 2006). 

Still, the increasing availability of genomic, transcriptomic and epigenetic resources for brown algae 

(e.g. Publication III; Cock et al., 2010; Heinrich et al., 2012; Monteiro et al., 2019a; Coelho et al., 

2020) provides valuable tools to complement manipulative experiments and investigate the 

molecular basis of trait variation and plasticity in the future. 

To further investigate local adaptation among kelp populations (Publication I), the first aim should 

be to verify that any phenotypic differences among populations are of genetic origin. To rule out 

potential cross-generational effects, common garden experiments should be conducted on subsequent 

offspring generations (F2+) of sporophytes and gametophytes which were reared in a common 

laboratory environment (King et al., 2018). Ideally, at least 20 gametophyte isolates are obtained 

each from range central and marginal populations to experiment on replicated genetic lines and relate 

genetic variation for plasticity (sensu Publication II) to neutral genetic diversity among populations. 

Further, experiments on key traits related to fitness should take into account their phenology in the 

wild. For instance, L. digitata sporophyte reproduction should be assessed in a warm temperature 

6.3 Perspectives and opportunities for kelp research 



Synoptic discussion 
 

159 

gradient at long day length, and gametophyte fertility in a cold temperature gradient at short day 

length, to be relatable to summer and winter conditions along the latitudinal distribution range.  

Additionally, further research among kelp selfings and crosses is necessary to understand effects and 

mechanisms involved in inbreeding and outbreeding (Publication III). To quantify effects of 

inbreeding depression and heterosis, optimum performance and thermal tolerance may be tested in 

physiological experiments comparing sporophytes of at least 20 lineages (see above) of selfings, 

within-population crosses and across-population crosses. In cooperation with mariculture, controlled 

in situ experiments on cultivation lines may allow to assess also the fertility of adult sporophytes to 

take into account that effects may manifest later in the life cycle (Raimondi et al., 2004).  

A major objective in researching local adaptation and heterosis is to link genetic characteristics to 

phenotypic responses (Pardo‐Diaz et al., 2015; Hoban et al., 2016; Yang et al., 2017; King et al., 

2018). Instead of neutral microsatellite markers, which do not allow inferences of selective forces, 

adaptive markers which are under selection pressure may be linked to local adaptation (Coleman et 

al., 2020a). Laboratory experiments should therefore be complemented by molecular analyses, e.g. 

of genome-wide single nucleotide polymorphisms (SNPs) which may serve as neutral and adaptive 

markers (Heylar et al., 2011; Batista et al., 2016). They may therefore allow to identify quantitative 

trait loci (QTL) which are linked to adaptive traits (Liu et al., 2010; Price et al., 2018) and expression 

of heterosis (Yang et al., 2017).  

Further research on cross-generational plasticity and carry-over effects (Publication II) should 

investigate their magnitude and significance in the wild. To investigate how kelp reproduction during 

ocean warming affects offspring sporophyte performance in situ, replicated genetic lines initiated 

from gametophyte isolates should be subjected to temperature pre-treatments simulating 

gametogenesis and recruitment (sensu Publication II and Gauci, 2020) under control and warming 

scenarios for autumn, winter and spring. The resulting offspring sporophytes with different 

temperature histories should then be transplanted to the field to quantify growth and fertility in situ, 

which will allow to estimate the significance of non-genetic effects on the performance of natural 

populations.  

A range of non-genetic mechanisms may be underlying cross-generational plasticity in kelps. To 

strengthen the evidence for CGP, further experiments manipulating the sporophyte environment 

before sporogenesis should be conducted to confirm whether effects persist in next-generation 

sporophytes across meiosis, gametogenesis and fertilization. Offspring sporophytes may then be 

investigated for molecular mechanisms modulating their trait plasticity. For instance, evidence for 

DNA methylation was recently detected in kelp gametophytes and sporophytes (Qu et al., 2013; Fan 

et al., 2020) which can mediate response variation in the absence of genetic variation, as was recently 

shown in seagrass (Jueterbock et al., 2020). Analysis of histone modifications suggests that protein-



Synoptic discussion 
 

160 

DNA interactions shape response variation in E. siliculosus (Bourdareau, 2018; Coelho et al., 2020). 

Additionally to these epigenetic mechanisms, parental effects may be mediated by somatic 

mechanisms such as provisioning of propagules (Lundgren and Sultan, 2005), which in the case of 

kelps may be through neutral lipids (Brzezinski et al., 1993; Steinhoff et al., 2011). 

What cannot be considered in laboratory experiments is the obvious assumption that all of the above 

effects act interactively in the wild. Therefore, a comprehensive approach to investigate the 

integrative metabolic response of wild populations to the prevailing environment, including any 

potential effects of local adaptation, within- and cross-generational plasticity, would be to conduct a 

comparative transcriptomic study among hundreds of wild sporophytes sampled at the same time of 

year across the entire latitudinal distribution, e.g. during the warmest and/or coldest month. Such a 

comprehensive dataset will, provided funding and workforce, allow to identify key processes shaping 

performance and resilience of marine forests while also providing population genetic information 

based on SNPs in the transcripts (Jueterbock et al., 2016). 

Insights from fundamental research may then be applied to kelp mariculture and restoration. 

Selective breeding programs are producing resilient and productive kelp cultivars for the Asian 

seaweed industry (Li et al., 2007, 2008; Zhang et al., 2011), but the genetic science behind seaweed 

breeding and domestication is still in an initial phase (Westermeier et al., 2010; Robinson et al., 2013; 

Camus et al., 2018). The identification of alleles for high yield growth characteristics (Liu et al., 

2010; Xu et al., 2015) and genetic loci associated with heterosis (Yang et al., 2017) will allow more 

targeted breeding based on genetic and phenotypic traits. Pre-treatments on microscopic stages 

before cultivation in the field may then make use of within- and cross-generational effects to 

maximize crop yield. Additionally, these methods may be applied in efforts of “assisted adaptation” 

to restore and maintain threatened marine forests (Filbee-Dexter and Smajdor, 2019; Wood et al., 

2019; Coleman et al., 2020b). As reviewed by Coleman et al. (2020b), population resilience may be 

reinforced by introducing genetic diversity (“genetic rescue”), introducing selected genotypes with 

desirable traits (“assisted gene flow”), or by making use of heterosis by cross-breeding ecotypes. 

Persistent beneficial effects of artificial outbreeding have already been shown over multiple 

generations of plants (Willi et al., 2007) and animals (Lindsay et al., 2020) in the wild. Whether these 

methods should be applied to natural kelp populations is highly debatable, as it is centred around 

creating value for humans rather than preservation of what we deem “natural”, but which is lost in 

our industrialized world (Filbee-Dexter and Smajdor, 2019). Therefore, the application of these 

methods on wild marine forests is ultimately not a question of technique, but a question of ethics, 

which we have to carefully consider from now on. 
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Responsiveness to an environment is one of the key characteristics of life (Koshland Jr., 2002). If 

differences in these responses among individuals are heritable, natural selection may drive adaptation 

of populations and evolution of a species. This has been a central principle of biology for more than 

150 years (Darwin, 1859). Still, current research is investigating the diverse mechanisms underlying 

such response variability, meanwhile often with the background of anthropogenic climate change 

and its impact on nature. Making a small contribution to this fundamental objective, the results 

presented in this dissertation provide evidence for thermal trait variability of the forest-forming kelp 

Laminaria digitata on different scales from populations to life cycle stages. On large spatial scales, 

L. digitata populations have differentiated slightly in their thermal resilience in accordance to the 

prevailing climate. Within populations, I provide evidence for genetic variation for phenotypic 

plasticity among individuals, which may allow directional selection and adaptation during ocean 

warming. Temperature also modifies the plasticity of traits across generations and individual 

ontogeny, potentially mitigating or amplifying effects of ocean warming. By artificially cross-

breeding differentiated lineages within the species, new phenotypes may be created. Integrating these 

responses into a framework of seasonal temperature variation in the field and predictions of ocean 

warming showed that L. digitata, as a cold-temperate to Arctic species, is adapted well to the current 

conditions along its distributional range, but may not be equipped to respond to rapid climate change 

at its warm range edges. Discussion has been initiated whether to artificially maintain marine forests 

threatened by climate change, and some of the concepts investigated in this dissertation may be 

investigated further for such applications, namely genetic variation for plasticity, heterosis, and 

cross-generational plasticity. Which molecular processes are driving these effects is largely unclear 

as yet, but the haplo-diplontic life cycle of kelps provides a unique experimental system to further 

explore these mechanisms. The experimental designs, concepts and data discussed in this dissertation 

therefore contribute to the growing knowledge of trait variability and the adaptive capacity of kelps, 

and will hopefully inspire further research. 

6.4 Conclusion 
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