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Wireless localization with diffusion 
maps
Amin Ghafourian1*, Orestis Georgiou2, Edmund Barter3 & Thilo Gross1,4,5,6

In the Wireless Localization Matching Problem (WLMP) the challenge is to match pieces of 
equipment with a set of candidate locations based on wireless signal measurements taken by the 
pieces of equipment. This challenge is complicated by the noise that is inherent in wireless signal 
measurements. Here we propose the use of diffusion maps, a manifold learning technique, to obtain 
an embedding of positions and equipment coordinates in a space that enables coordinate comparison 
and reliable evaluation of assignment quality at very low computational cost. We show that the 
mapping is robust to noise and using diffusion maps allows for accurate matching in a realistic setting. 
This suggests that the diffusion-map-based approach could significantly increase the accuracy of 
wireless localization in applications.

The Internet of Things (IoT) has emerged with the mission of enabling systems of communicating and interact-
ing components with the capability of remote monitoring and control. These systems are designed to smoothly 
integrate into their surroundings within the context of many applications in urban and environmental moni-
toring and control, healthcare, industry, and military. The bold vision of the Smart City is built around such 
IoT systems with billions or even trillions of interconnected devices and  sensors1,2. The positive impact of such 
systems on various domains like infrastructure services, environment, and public safety have been demonstrated 
in numerous case  studies3.

A particular class of interconnected systems are wireless sensor networks (WSN), i.e. networks of wireless 
sensor nodes that measure particular physical features of the environment or  equipments4,5. Each node consists 
of several components. These are typically microcontroller, a wireless RF transceiver, battery, memory, and sen-
sors to measure quantities such as temperature, luminosity, and vibration.

In order to accurately analyze and use the data received from the sensor nodes in applications it is often 
important to be able to identify the location of the  sensors4. While GPS modules can be used for this purpose, 
this incurs additional production costs and results in extra power consumption of the sensors (about 90 mW). 
Furthermore, these modules do not perform sufficiently accurately indoors and underground, where there is 
poor satellite  reception4.

The limitations of using GPS modules define a need for alternative localization methods. RF-based methods 
generally fall into the categories of database, range-based, range-free, and angle-based  methods6–16. In data-
base methods, the most likely location of target devices are inferred through comparing signal features such 
as Received Signal Strength Indicator (RSSI) with a previously obtained  database8. Range-based methods are 
techniques where an estimate of the distance of the target device from a number of known devices, or anchors, 
through signal strength measurements and then multilateration leads to an estimate of the location of the 
 device9–11. Range-free methods utilize the network topology and RF hop count statistics to estimate the location 
of target  devices14,15. In angle-based methods, the angle of arrival (AoA) of the signal from a number of antennas 
are obtained and the position of the device is estimated through  triangulation16.

These methods are affected by errors resulting from background noise, pathloss, shadowing, wireless mul-
tipath fading, non line-of-sight (NLoS), etc. As a result, the methods are often retuned using empirical  models4. 
Model parameters need to be adjusted for specific conditions and therefore such retuning can incur additional 
costs. Some of these methods might also require additional hardware to measure time difference or angle of 
arrival, for instance. Considering RSSI is natively supported by many transceiver chipsets, it would be desirable 
to develop a strategy to use RSSI for accurate sensor localization. Ideally, a developed technique should also 
incur only small computational costs and have a simple implementation, which will make it scalable and easy 
to adapt in various applications.
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An interesting idea was put forward by Keller and  Gur17 who propose to use a spectral embedding method 
for localization. This method provides a very elegant approach to the construction of a spatial map from pairwise 
measurements between nodes. However due to inherent difficulty of the challenge the locations of several nodes 
need to be known to achieve good results.

A particular incarnation of the wireless localization problem is the so-called Wireless Localization Matching 
Problem (WLMP)18 where the challenge is to match a set of sensor nodes with an a priori known set of sensor 
locations, called positions. This type of problem arises, for instance, in facilities where a large number of devices 
need to be installed in specific locations (e.g. smart lights, smoke detectors, thermostats, etc.). In this setting 
the set of positions is known and documented in the facility blueprint, whereas keeping track of the position at 
which a particular device is installed (likely by subcontractors) creates a significant management  overhead4,7. A 
similar challenge arises in novel approaches to disaster response, where sensor nodes are airdropped, leading to 
a de facto random distribution of  nodes6,19. The set of positions of nodes, but not individual node IDs, can then 
be obtained by aerial imaging such that locating each device again poses a  WLMP18.

In this paper, we formulate a solution strategy for WLMP, which is in essence a bipartite matching problem 
between a number of stationary positions and sensor nodes. In our proposed method, we use position coordinates 
along with RSSI between pairs of nodes to obtain the best matching between nodes and position candidates. 
The key innovation that makes this matching efficient is the use of diffusion maps to embed the nodal positions 
in a new Euclidean space where matching can be performed and with the mapping itself allowing for consider-
able denoising. In contrast to Keller and  Gur17 the application of the diffusion map to the conceptually simpler 
WLMP challenge allows us to capitalize strongly on the power of the diffusion map and achieve very accurate 
results. The proposed solution is versatile and computationally efficient, which makes it an attractive approach 
for a spectrum of applications.

The wireless localization matching problem
In WLMP, we consider a network of M wireless nodes labeled n1, n2, . . . , nM , and M candidate positions 
p1, p2, . . . , pM . The positions are known, but it is unknown at which position each node is located. Nodes are 
equipped with radio transceivers and can exchange messages among them and thus RSSI between pairs of nodes 
can be obtained and sent to a backhaul server for post-processing. The pairwise RSSIs are recorded in matrix R 
where Rij is the signal strength between nodes ni and nj . For localization purposes this can be converted into entry 
Dij of the distance matrix using a suitable propagation model. Such models often depend on the specific network 
type and potentially noisy environment under consideration. The server must then match each node ni to its 
corresponding position pj using the RSSI measurements, the propagation model, and the position coordinates. 
Anchor nodes, i.e. nodes whose positions are known, might be included. In that case, the server needs to match 
the remaining nodes and positions, possibly taking advantage of the anchor nodes.

Methods
Matching problems are well studied and powerful algorithms that solve such problems exist. However, before 
these algorithms can be applied we must formulate a method to quantify how well a set of RSSI measurements 
match a specific position. A complicating factor is that measurements and positions use different coordinate 
systems. The RSSI measurements encode sets of pairwise distances, whereas the positions are given directly in 
terms of physical coordinates, e.g. longitude and latitude. The positions thus live in a low-dimensional (typi-
cally 2D) physical space whereas the RSSI measurements live in a high-dimensional data space. This means that 
the distance estimates from RSSI, the positions, or both need to be mapped onto a different coordinate system 
before matching algorithms can be applied. The question then arises what coordinate system is most suited to 
facilitate the subsequent matching.

The key insight used in this paper is that an advantageous coordinate system for the matching problem 
can be constructed using a method known as the diffusion  map20–24. The diffusion map is a manifold learning 
technique that can discover low-dimensional manifolds in datasets. Node positions in space can be thought of 
as one such dataset in which a one, two, or three-dimensional manifold exists. This is due to the expectation 
that for the purpose of the localization, node positions can adequately be described in a Euclidean space with 
as many dimensions. The diffusion map can then be used to find a natural parameterization of this manifold 
implied by the distances. The matching is then carried out in the new coordinates determined by the diffusion 
map (explained below). Importantly, this approach only requires information that would typically be available 
in applications, i.e. locations of candidate positions and signal strength measurements between pairs of nodes.

Given R , we calculate the distance matrix D using a suitable wireless propagation path loss model. As an exam-
ple, we adopt here a non-singular version of the Friis transmission equation indicative of the inverse square law

We also consider the log-distance path loss  model25

where a comes from device specifications and accounts for transmit power, antenna gains, frequency of transmis-
sion, and reference path loss. η is the path loss exponent that represents effects from the environment clutter and is 
typically a value between 2 and 4. We will use these two models in the subsequent simulations. In practice, other 
propagation models could also be adopted such as those specified by the 3rd Generation Partnership Project, 
or more recent 5G  measurements26.

(1)Rij =
1

D2
ij + 0.1

.

(2)10 log10 Rij = a− 10η log10 Dij
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We now construct a similarity matrix C as

where k is an appropriate kernel. Here we use the Gaussian kernel

with

It is important that a short ranged kernel is used as the most salient information will be contained in the estimated 
distances between close nodes.

We now regard the similarity matrix as the adjacency matrix of a weighted network and construct the net-
work’s row-normalized Laplacian

This matrix is related to the transition matrix of a random walk in a network, and describes diffusion processes 
on the network  nodes21.

To construct a natural coordinate system for the nodes we consider spectral properties of L . It is guaranteed 
that L has real non-negative eigenvalues. The number of zero eigenvalues is identical to the number of compo-
nents in the  network27 and hence we expect to find exactly one zero eigenvalue. The eigenvector corresponding 
to this eigenvalue does not carry any information and is ignored in the following.

The most relevant eigenvalues for our purpose are the smallest non-zero eigenvalues as they carry information 
about the major dimensions of the system. We define ith eigenvector to be the eigenvector with the ith smallest 
non-zero eigenvalue.

We interpret the entries of eigenvectors of L as coordinates along new coordinate  axes20. Note that the eigen-
vectors of the M ×M matrix L have M entries, i.e. one entry per node. We store the coordinates in matrix N such 
that Nij is the ith entry of the jth eigenvector, corresponding to the jth coordinate of node ni.

In typical use cases from applications the matching problem is effectively two dimensional such that the first 
two eigenvectors of the Laplacian already capture sufficient information. Consider for example a factory floor 
where the variation is much larger in the two horizontal dimensions than in the vertical. However, it is required 
to take the third eigenvector into account in problems where the third dimension is relevant.

In some other cases, taking other eigenvectors into account may also be necessary. The diffusion map is 
essentially a harmonic analysis of networks and its use in localization relies on using eigenvectors that span 
the main dimensions of physical space. The first eigenvector always spans the longest dimension of the system. 
However, if the positions are in a layout that has significantly different length scales (for instance, if the positions 
are on the boundary of a narrow rectangle), the eigenvector that encodes information about the location in the 
secondary direction may not be the second eigenvector as harmonics of the major direction might have smaller 
eigenvalues. In such cases taking a small number of additional eigenvectors beyond the second, including the 
eigenvector for the shorter dimension, into account solves the problem. Our results (below) indicate that this 
is a very minor issue in practice as even in very long and thin geometries accurate matching is possible without 
the eigenvector for the short dimension unless the nodes form a perfect lattice. In the examples below we use 
the two eigenvectors of L corresponding to the two dimensions of the layout such that N is an M × 2 matrix, 
unless noted otherwise.

We repeat the above process for the predefined positions. The distance matrix is now formed using the dis-
tances between the known positions

We construct the corresponding similarity matrix and normalized Laplacian as above and use the same Laplacian 
eigenvectors as our new coordinates for the positions. We denote the jth coordinate of position pi as Pij which 
is analogous to Nij for the nodes.

Using the diffusion map we have found the new coordinates of the nodes N and positions P . The matching 
can now be done in terms of these new coordinates. Because the identification of the new coordinates is based 
on eigenvector computation, information about the sign of the axes is lost. Hence, coordinates for nodes can 
have opposite signs (but are not scaled) with respect to the corresponding coordinates for positions. While this 
slightly complicates matters, it is a very small concern for the actual application. If we know the position of one 
of the nodes, we can compare the signs of the node’s coordinates with those of the corresponding position. If any 
of the coordinates differs in sign, we invert the signs of the respective coordinate entries for all nodes (i.e. the 
entries in the respective column of N).

Even in the case where we don’t have one known node we can run the matching multiple times for the differ-
ent axes coordinate signs and compare the quality of matching. If we are working in two dimensions that means 

(3)Cij =
{
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the matching needs to be done 4 times (axis 1 inverted, axis 2 inverted, both inverted, none inverted) and the 
orientation that leads to the best match (see below) is picked as the result. In practice, this solves the problem 
unless the configuration of positions is fundamentally ambiguous (e.g. forming a symmetric lattice), in which 
case the correct matching can be picked from the, typically 4, alternatives by testing the assignments in one node.

For the matching we compute the Euclidean distances Eij between the locations of node ni and position pj in 
terms of the diffusion coordinates. We then organize nodes and positions into assignment pairs such that the sum 
of the distances within pairs is minimized. For this purpose we use the Kuhn–Munkres algorithm, commonly 
referred to as the Hungarian  algorithm28,29.

The Hungarian algorithm is used to find a minimum weight matching in the bipartite graph where nodes 
and positions are vertices and Eij is the weight of the edge that can be placed between ni and pj . The algorithm 
then uses dynamic rebalancing of the edge weights to identify a set of links of minimal weight that connects 
each node to exactly one position.

For the method proposed here, the Hungarian algorithm is the rate-limiting step that determines com-
putational complexity. The algorithm can be implemented with a time complexity of O(M3) . For very large 
problems it might be advantageous to switch to alternatives to the algorithm such as one proposed by Ramshaw 
and  Tarjan30 with a running time of O(M2

√
Mlog(M)) . However, we expect that the efficiency of the method, 

as proposed here, will be sufficient for most applications. A reasonably efficient implementation on a standard 
desktop computer should be able to quickly match many thousands of nodes.

We use MATLAB to carry out the simulations. We start by defining a position layout and its associated dis-
tance matrix. Next, we randomly assign sensor nodes to positions. We calculate noiseless RSSI values from the 
distance matrix between the nodes. We then add Gaussian noise to RSSI values and calculate the noisy distance 
matrix D . The signal-to-noise ratio (SNR) is calculated as signal mean over the standard deviation of the noise. 
Localization accuracy is evaluated as proportion of nodes assigned to correct positions. We repeat each experi-
ment corresponding to each SNR value 100 times and report the mean accuracy and the 99% confidence interval.

Results
As a first test we consider a system with 58 positions arranged in a plausible layout for a factory floor (Fig. 1a) 
with the inverse square law propagation model. As expected, using one node to align the eigenvectors reduced 
the computation time but lead to exactly the same results as picking the best of the four candidate assignments. 
The algorithm yields good accuracy even at moderate SNRs (Fig. 1b). At an SNR greater than 5, it is almost 
certain that the correct matching is retrieved.

To understand possible sources of failures we now investigate some intentionally difficult cases. We con-
sider 4 different layouts where 80 positions are placed in a 2-dimensional grid (grid layout) and randomly in a 
2-dimensional plane (random 2D layout), and 81 positions are placed equidistantly along both coordinate axes 
(uniform biaxial layout) and randomly along the coordinate axes (random biaxial layout). Figure 2 shows the 
layouts and accuracy results for each case. The two random layouts are harder to match because they contain 
some positions that are very close together and hence easy to confuse. Proximity of nodes also explains why 

Figure 1.  Performance in a realistic scenario. Shown are node positions (a) and the achieved accuracy in terms 
of signal-to-noise ratio (b). The curve is a mean over 100 realizations of the noise. The area around the curve 
represents a 99% confidence interval. In such realistic scenarios the method achieves perfect or near perfect 
matching results even at low signal-to-noise ratios of around 5.
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accuracy is less in the biaxial layouts. However, in all of these cases the method still achieves perfect or near-
perfect results at moderate SNRs.

In the “Methods” section we mentioned that complications can arise from the presence of harmonic eigenvec-
tors. To illustrate these we study a system of 40 positions in a strip layout (Fig. 3a). In this case the first eigenvec-
tor contains information about the position of nodes along the primary axis of the strip. Hence this eigenvector 
cannot be used to differentiate between nodes that only differ in the secondary axis position (Fig. 3b).

Figure 2.  Performance in different artificial scenarios. Shown are node positions and matching accuracy 
analogously to Fig. 1. Matching is harder in biaxial layouts (e–h) than in uniform layouts. Highly random 
layouts (c,d,g,h) introduce an additional difficulty because they contain some positions that are very close 
together. Even in these intentionally difficult scenarios good matching results can be achieved if the signal-to-
noise ratio is sufficiently high.

Figure 3.  Usage of additional eigenvectors. If positions form long and thin lattices (a) information about 
the location along the shorter lattice direction is only contained in higher eigenvectors (b), as the first three 
eigenvectors assign almost the same value to pairs of points. Hence the accuracy plateaus at around 50% if only 
the first three eigenvectors (blue) are used for matching (c). However, using the first and the fourth eigenvectors 
(black) or all of the first 4 eigenvectors (red) yields good results.
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The second and third eigenvectors are higher harmonics of this eigenvector and thus contain essentially 
the same information. While these eigenvectors can be taken into account for more accurately locating a node 
in the primary direction, even using all 3 eigenvectors does not let us distinguish between nodes that lie side-
by-side in the strip. Hence the matching accuracy plateaus at around 50% if these eigenvectors are used in the 
matching (Fig. 3c).

The first eigenvector that contains information about the position along the secondary axis is eigenvector 4. 
Hence using either the first and fourth eigenvectors, or all of the first 4 eigenvectors yields good matching results.

Figure 4.  Small shifts in a lattice mitigate the effect of harmonics. We consider the layout from Fig. 3a, but 
shift one of the rows of positions by either 0.01 units (a) or 0.5 units (b). While this has little effect on the 
matching using eigenvectors 1 and 4 (black) already a small shift significantly improves the matching when only 
eigenvector 1 is used (red). At small signal-to-noise ratios or for larger shifts, using the first eigenvector yields 
better results.
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We note that such problems due to harmonics only arise in the relatively artificial situation where the two 
rows of the strip are perfectly side-by-side. As we shift one of the rows even by small amounts, using only the first 
eigenvector yields an increasingly accurate matching, possibly even surpassing the accuracy for when considering 
the first and the fourth eigenvectors (Fig. 4).

We expect that the problems caused by the presence of harmonics will only play a minor role in applications. 
However, the possibility that such problems might occur highlights the need to select appropriate eigenvectors 
for the matching. The choice of eigenvectors to use can be made by checking whether a given set of eigenvec-
tors can resolve all positions. Thus the backhaul server could determine a suitable set of eigenvectors once the 
blueprint is made available.

Next we investigate problems in 3D. We consider 120 positions that are either placed randomly or form a 
3-dimensional grid. Location matching, using the first 3 eigenvectors, yields in both cases accurate results even 
at low SNR (Fig. 5). The accuracy thus surpasses that of the 2D layouts. This increase in accuracy is explained 
because the network of measurements is denser in 3D (i.e. lower effective diameter of the node graph) and a 
lesser chance that nodes are placed very closely together in the random layout.

In our final simulations we use the log-distance path loss model with η = 3 and a = −50 as a typical value 
for wireless sensors. We take a 72 node hexagonal lattice (Fig. 6a) as well as a 257 node Koch curve with 4 itera-
tions (Figure 6c). The method yields an accurate matching for both of these layouts, with matching accuracy 
for the lattice (Fig. 6b) surpassing that of the Koch curve (Fig. 6d) due to the larger range of length scales in the 
fractal arrangement.

Discussion
In this paper we proposed a solution to the Wireless Localization Matching Problem. The method is easy to 
interpret. In essence, it consists of mapping the position coordinates and noisy sensor node coordinates to a 
new space spanned by the principal directions of the data manifold implied by the pairwise distances (1), taking 
the projection of the data onto the first few coordinates as an optimal approximation of the new coordinates (2), 
and carrying out the bipartite matching in the new space where explicit coordinate data are now available for 
both sensor nodes and positions (3).

The key innovation was devising the first two steps, where we used diffusion maps to embed the original 
data points in the new space with the desirable coordinates. Due to the robustness of the mapping to noise as 
well as its optimality in terms of faithfulness to the original pairwise relationships, the method results in perfect 
or very accurate matching in numerous scenarios. We demonstrated in numerical simulations that the pro-
posed algorithm can solve the matching problem without errors in realistic examples if the signal-to-noise ratio 

Figure 5.  Localization performance in 3D problems. Node positions for grid (a) and random (b) layouts are 
shown. The accuracy plots (c) illustrate that the method can be implemented in solving 3D problems.
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exceeds a threshold that is typically between 101 and 102 . We believe this is sufficient to allow robust matching 
in applications.

Compared to several alternative methods in addressing the WLMP, the present approach is of lower compu-
tational complexity. A brute-force matching has a factorial time complexity and maximum likelihood matching 
methods involve a polynomial time likelihood calculation for each hypothesis corresponding to an assignment 
as well as an optimization algorithm like mixed integer programming or genetic algorithm whose complexity 
might depend on initial parameters and will at worst be of exponential  time4. The proposed approach, however, 
has a third-order polynomial time complexity when implemented with the Hungarian method.

We emphasize that our algorithm does not require information beyond the blueprint of potential positions of 
equipment and pairwise signal strength measurements between proximal wireless sensors. In contrast to previ-
ous  approaches17 for related problems, the method proposed here does not require anchor nodes, except in the 
case of fundamentally ambiguous layouts, where one node needs to determine the orientation of eigenvectors. 
It thus uses only information that would typically be accessible in the envisioned applications. Likewise, the 
numerical demand is such that even for very large systems it can be met with readily available desktop hardware.

When applying the algorithm, care has to be taken to take the right number of eigenvectors into account. 
However, it is easy to work out the right number by mapping the positions and testing for modal relationships 
among the first few eigenvectors. While it is thus essential that applications of the method should include a 
preprocessing step in which suitable eigenvectors are picked, this step could be straightforwardly integrated in 
software.

The examples considered in our tests focused on intentionally difficult cases. Configurations of positions in 
the real world are likely to result in more accurate assignments than some of the extreme scenarios considered 
here. We expect that similar to the example in Fig. 1 perfect matching can already be achieved at a signal-to-noise 
ratio of about 5. We also expect that the main ideas in the method can be extended to include more general cases 
where bipartite matching and localization tasks are involved.

We hope that the proposed method will help to realize the future applications of wireless localization. Besides 
numerical simulations, future physical experiments will potentially yield further insight for assessing the feasibil-
ity of the method as well as its implementation details. We anticipate that future refinements of this approach will 
lead to additional improvements. Such refinements may include the use of improved models in the construction 
of the distance matrix or the use of a thresholding step, which is commonly used in other applications of the 
diffusion map. However, the fine-tuning of the additional parameters introduced by these refinements as well as 
the benefit conveyed by them will likely depend on the specific application.

Figure 6.  Performance using the log-distance path loss model. A hexagonal lattice (a,b) and a Koch curve with 
4 iterations (c,d) layouts were considered. The method results in accurate matching in both layouts. The more 
varied length scales in the fractal compared to the lattice configuration results in less accuracy in smaller signal-
to-noise ratios.
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