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Abstract

In addition to observations and lab experiments, the scientific investigation
of the Arctic and Antarctic sea ice is conducted through the employment
of geophysical models. These models describe in a numerical framework
the physical behavior of sea ice and its interactions with the atmosphere,
ocean, and polar biogeochemical systems. Sea-ice models find application in
the quantification of the past, present, and future sea-ice evolution, which
becomes particularly relevant in the context of a warming climate system that
causes the reduction of the Arctic sea ice cover. Because of the sea-ice decline,
the navigation in the Arctic ocean increased substantially in the recent past,
a trend that it is expected to continue in the next decades and that requires
the formulation of reliable sea-ice predictions at various timescales. Sea-
ice predictions can be delivered by modern forecast systems that feature
dynamical sea-ice models. The simulation of sea ice is at the center of this
thesis: A coupled climate model with a simple sea-ice component is used to
quantify potential impacts of a geoengineering approach termed “Arctic Ice
Management”; the skill of current operational subseasonal-to-seasonal sea-
ice forecasts, based on global models with a varying degree of sea-ice model
complexity, is evaluated; and, lastly, an unstructured-grid ocean model is
equipped with state-of-the-art sea-ice thermodynamics to study the impact

of sea-ice model complexity on model performance.

In chapter 2, T examine the potential of a geoengineering strategy to
restore the Arctic sea ice and to mitigate the warming of the Arctic and
global climate throughout the 21%% century. The results, obtained with a
fully coupled climate model, indicate that it is theoretically possible to delay
the melting of the Arctic sea ice by ~ 60 years, but that this does not reduce
global warming. In chapters [3| and [4] T assess the skill of global operational



ensemble prediction systems in forecasting the evolution of the Arctic and
Antarctic sea-ice edge position at subseasonal timescales. I find that some
systems produce skillful forecasts more than 1.5 months ahead, but I also find
evidence of substantial model biases and issues concerning data assimilation
and model formulation.

Chapter 5| deals with the impact of sea-ice model complexity on model
performance. I present a new formulation of the FESOM2 sea-ice/ocean
model with a revised description of the sea-ice thermodynamics, including
various parameterizations of physical processes at the subgrid-scale. The
model formulation grants substantial modularity in terms of sea-ice physics
and resolution. The new system is used for assessing the impact of the sea-
ice model complexity on the FESOM2 performance in different atmosphere-
forced setups with a specific parameter-tuning approach and a special focus
on sea-ice related variables. The results evidence that a more sophisticated
model formulation is beneficial for the model representation of the sea-ice
concentration and snow thickness, while less relevant for sea-ice thickness
and drift. I also highlight a dependence of the model performance on the
atmospheric forcing product used as boundary condition.

In the final part of this thesis, I formulate recommendations for future
developments in the field of sea-ice modeling, with particular emphasis on
FESOM2 and, more generally, on the modeling infrastructure under devel-

opment at the Alfred Wegener Institute.
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1. Introduction

The reader will forgive me if I begin this Ph.D. thesis with a brief digression,
but I cannot resist acknowledging what, for a lot of reasons, made this project
on sea-ice modeling possible and so exciting: the inorganic compound H,O

and its remarkable properties.

Every time an oxygen atom bonds covalently with two hydrogen atoms,
a HoO molecule is formed. This molecule is a fundamental brick for a lot
of substances on our planet, and incidentally, it is the prime constituent of
sea-ice. The electrons of this peculiar molecule cannot resist the charming
attraction of the oxygen nucleus, and, consequently, they can be found more
often in the oxygen vicinity than around the two hydrogen nucleus. The key
to the existence of sea ice as we know it resides in this electronic imbalance,
a behavior which in physical terms is described as polarity: the separation of
positive and negative electrical charges within a molecule. The H,O polarity
allows these molecules to interact with each other, and the strength of the
interactions varies depending on the thermal energy of the system, a quantity
which is measured by temperature. For temperatures below freezing (T<0°C,
at standard environmental pressure and without solutes), the HyO molecules
are less mobile and geometrically organized in space, leading to a solid state
that we call ice. At higher temperatures (0°C<T<100°C), the molecular
motion is more energetic and chaotic, leading to a fluid state which we call
liquid water. Interestingly enough, H5O is one of the few known substances
for which the distance between molecules is slightly larger in the solid phase
compared to the liquid phase. This implies that the ice is less dense than
water and therefore fluctuates on it. As trivial as this behavior might appear
to everyone who ever sipped a cold drink on a summer day, our oceans would
look rather different if the HoO molecules would interact in other ways, with
thick sea ice filling the bottom of the ocean rather than covering the polar

seas as a dynamic reflective blanket.



CHAPTER 1. INTRODUCTION

At this point, allow me to put aside my description of H,O and to pause,
just for a while, the suggestive speculations on sinking sea ice. I promise to
return to them at the end of this chapter. Before this, I will describe the
crucial role that sea ice plays in the climate system and for society, and I will
present the efforts of the scientific community for modeling this remarkable

material.

1.1 Sea ice in a changing climate system

Sea ice constitutes only a very small fraction of the total ice volume on our
planet. However, the Arctic and Antarctic sea-ice systems combined occupy
on average an area of 18 x 10° km?, which corresponds to approximately
5% of the surface of the global oceans. Because of its wide-spread coverage,
and due to the very different physical properties compared to the ocean
and atmosphere, the sea-ice plays a role of prime importance in the climate

system.

I previously condensed the description of sea-ice in the words “dynamic
reflective blanket”. As a blanket, sea-ice acts as a thermal insulator, reducing
the turbulent heat fluxes from the warmer ocean to the colder atmosphere
during winter, and mitigating the warming of the ocean by absorbing heat
during the polar summers (Notz, 2005). Sea-ice is overall a bright and thus
reflective material, and even brighter is the snow that precipitates from the
atmosphere and accumulates over it. For this reason, a large fraction of the
incoming solar radiation in sea-ice covered regions is reflected back to space,
contributing to keeping the polar atmosphere and ocean at relatively cool
temperatures all year round (Perovich, 2003). The sea-ice system is not con-
tinuous and rigid, but it is constituted by a dynamic ensemble of floes with
sizes that span over several orders of magnitude (Gherardi & Lagomarsino,
2015). Generally, the sea-ice cover is organized in larger floes during winter,
when multiple floes freeze together and the sea ice becomes thicker, more
compact, and less mobile. In contrast, it breaks into smaller heterogeneous
floes during summer, when the ice warms and becomes weaker (Stern et al.,
2018). The floes that constitute the sea ice move in response to atmospheric
winds, ocean currents, and interactions with other floes (Leppranta, 2009).
Therefore, sea-ice is not only a mediator of the atmospheric-oceanic heat

exchange, but also of the transfer of momentum from the atmosphere to the
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ocean. Furthermore, the seasonal formation of new sea-ice and the conse-
quent rejection of salty brine into the ocean destabilizes the water column
and contributes to support the ocean thermohaline circulation on a global
scale. In contrast, the melting of sea ice freshens the surface ocean and has
a stabilizing effect on its vertical stratification (Rahmstorf, 1999).

Even though the fundamental physical processes that lead to sea-ice for-
mation are very similar in the Arctic and in Antarctic regions, the resulting
sea-ice differs substantially between the two hemispheres. The Arctic ocean
is a rather closed environment, surrounded by the American and Eurasian
continents, and with few localized exchange gates with other oceans. The
configuration of the coastlines, in combination with the typical modes of
atmospheric and oceanic circulation, favors the recirculation of the sea-ice
into the Arctic basin and reduces its dispersion into warmer peripheral seas.
This allows a substantial part of the sea-ice cover to survive multiple melt-
ing season and to form thicker multi-year ice which, nowadays, can be found
mostly north of Greenland and off the Canadian Archipelago (Maslanik et al.,
2011). On the contrary, the Antarctic sea-ice forms in the Southern Ocean, a
wide ocean basin that surrounds the Antarctic continent and that is in direct
communication with warmer oceans at its northern boundaries. The seasonal
cycle of the Antarctic sea-ice extent is wider than in the Arctic, with a winter
expansion contained by the atmospheric jet stream and by the influence of
the Antarctic Circumpolar Current, followed by a rapid melting phase that
depletes most sea-ice cover. Nevertheless, some multi-year ice can be found
in few protected locations at the end of the melting season (mostly in the
Weddel Sea), while rigid and immobile patches of land-fast sea ice persist all
year round along the Antarctic coastlines (Fraser et al., 2020), attached to
the ice shelves or to grounded icebergs.

The Arctic and Antarctic sea-ice systems respond very differently to the
anthropogenic global warming that has affected our planet in the last decades.
While the Antarctic sea-ice extent features a slightly increasing but not statis-
tically significant trend since the beginning of satellite observational records
in the late '70s (Parkinson, 2019), the Arctic sea ice exhibits a marked de-
cline (Mueller et al., 2018) in extent (Stroeve et al., 2007), volume (Gascard
et al., 2019), and age (Comiso, 2012; Kwok, 2018). The rapid mutations that
the sea-ice is facing, particularly in the Arctic, fostered the interest of the
scientific community in studying this system. On one hand, this responds

to an urgent need of understanding the impact of global warming on polar
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regions, of quantifying feedback mechanisms that could amplify or reduce
the current warming trends, and of preserving the fragile but rich ecosys-
tem that thrives around the sea ice. On the other hand, the technological
advances of our societies, in combination with the reduction of the sea-ice,
open the polar regions to a more sustained human presence that is expected
to grow in the near future (Larsen & Fondahl, 2015), demanding therefore an
in-depth understanding of the sea-ice system for enabling a safe, sustainable,

and proficuous development process of the polar regions.

1.2 Fifty years of sea-ice modeling

In addition to satellite observations, in-situ measurements, and lab experi-
ments, the study of sea-ice is nowadays carried out through the employment
of sophisticated mathematical models. The ultimate goal of these models is
to simulate quantitatively the behavior of the sea ice, its evolution, and its

interactions with the other components of the climate system.

When analyzing the evolution of sea ice models, I cannot refrain from con-
necting major developments in this field to fundamental advances in the field
of sea-ice observations. The understanding of the heat conduction in sea ice,
which led to the first mature sea-ice model of Maykut & Untersteiner (1971),
would not have been possible without the data collected during the Interna-
tional Geophysical Year in 1957-58. Before the availability of the first satellite
observations, the ‘Arctic Ice Dynamics Joint Ezperiment’(AIDJEX)—a se-
ries of experimental campaigns carried out during the ’70s—laid the founda-
tions for understanding the motion of sea ice in the Arctic, which contributed
to the formulation of the first dynamical and thermodynamic model of sea ice
by Hibler (1979), featuring a Viscous Plastic (VP) sea-ice rheology. The ob-
servations from the ‘Surface Heat Budget of the Arctic’ (SHEBA) campaign
(Uttal et al., 2002) advanced our understanding of the interactions between
sea ice and snow with radiation, resulting in a series of more physically con-
sistent parameterizations added to the sea-ice models (e.g. Holland et al.
(2012)). The ‘Multidisciplinary drifting Observatory for the Study of Arctic
Climate’” (MOSAiC)—arguably the largest Arctic expedition in history—can
be considered the next step on this pathway, as this scientific initiative is ex-
plicitly designed to build a solid understanding of sea ice that will shape the

future of sea-ice modeling. In this respect, future modeling improvements

4
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are expected in the description of the snow layer on top of the sea ice, in the
representation of biochemical processes, and finally in the exchange processes
at the interfaces between the sea ice, ocean, and atmosphere.

New and better sea-ice observations have not only contributed to improv-
ing model performances, but they are responsible for continuously shaping
the way we model the sea ice and how we analyze the model results. Right
after the first sea-ice concentration satellite retrieval became available in the
late '70s, Parkinson & Washington (1979) formulated a sea-ice model that
allowed, for the first time, the coexistence of frozen sea ice and open water
in the same grid cell. Such a formulation survives today in our models as
the “sea-ice concentration” variable, and it is extremely successful because
it allows easy comparison between observations and model data. Forty years
afterward, many more examples of observational hybridization can be found
among the variables of our sea-ice models. For example, we are now able to
simulate the fraction of multi-year-ice, the sea-ice age, the sea-ice freeboard,
etc. The adoption of these formulations in models was fostered by the de-
velopment of compatible observations, mostly from remote sensing. In light
of the success of sea-ice models and of their broad application, the afore-
mentioned process has now also changed direction, with the requirements
of sea-ice modeling and data assimilation communities explicitly taken into
account when planning new satellite missions and observational campaigns.

The development of numerical sea-ice models has been driven not only
by the growing quality of observations but also by the availability of compu-
tational resources for running the models and for analyzing the results. As
described by Hunke et al. (2010), the first mature model of sea ice by Maykut
& Untersteiner (1971) was too detailed and sophisticated for the computing
capabilities of the time, and had to be simplified by Semtner (1976) to be
employed over larger domains and for climate applications. The implementa-
tion of an energy-conserving multi-layer sea-ice model for pan-Arctic setups
has only been established almost three decades later by Bitz & Lipscomb
(1999). As the computational resources available to the scientific community
grew steadily, pan-Arctic frontier sea-ice simulations feature, nowadays, very
high spatial resolutions that reach the kilometer-scale (Menemenlis et al.,
2008; Wang et al., 2020). At these resolutions, the continuum assumption,
which is the foundation of classical sea-ice models, starts to fail, as the model
resolution becomes comparable to the typical size of individual sea-ice floes.

This does not necessarily imply that the use of the Hibler-type VP models
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should be abandoned. In this respect, Ringeisen et al. (2019) show that the
MITgem model (Losch et al., 2010) retains a remarkable consistency up to a
resolution of 25m. Nevertheless, alternative sea-ice model formulations be-
come attractive for certain types of applications that require high resolution.
For example, Hunke et al. (2020c) calls for the use of Discrete Element Mod-
els (DEM; e.g. Herman (2016)) for simulating the anisotropic sea-ice pack at
fine spatial scales (few hundred meters) and in small domains, a technique
that would find its natural application into the field of operational short-term

sea-ice forecasting.

In the past decades, sea-ice modeling played a key role in answering sev-
eral scientific questions with a broad impact on our society. In this respect,
the most remarkable achievement of sea-ice models is to have estimated cor-
rectly the declining trend of the Arctic sea-ice extent and volume, and to
have demonstrated the causal link between this trend and the increase of
greenhouse gases in the atmosphere (Notz & Stroeve, 2016). An interest-
ing aspect that characterizes this finding is the multi-model framework from
which it originated. The coordination and combination of different models
have proven to be effective strategies for reducing model uncertainties and
for increasing confidence in the model estimates, evidencing the importance
of initiatives such as the Climate Model Intercomparison Project (CMIP) for

formulating reliable climate projections.

At shorter timescales, sea-ice models are becoming more and more rel-
evant for institutions and organizations that formulate operational environ-
mental predictions (Jung et al., 2016). On one side, this is motivated by
the growing interest of stakeholders in a progressively ice-free and navigable
Arctic Ocean, which opens new opportunities for the development of these
regions, but which also emphasizes the need for predicting the evolution of
the Arctic sea-ice to prevent hazards and to reduce the risks associated with
the extreme polar environment (Emmerson & Lahn, 2012; Stephenson et al.,
2011). On the other side, improving the sea-ice representation in Earth
System Models (ESM) is considered beneficial to increase our predictive ca-
pabilities of the ocean and atmosphere, with important relapses on human

activities.



1.3. TO EACH QUESTION ITS MODEL

1.3 To each question its model

After having introduced the foundations on which modern sea-ice models
rest, I continue this introductory chapter by presenting a rather drastic case
study that, even if abstract and far from our classical sea-ice modelling ex-
perience, helps nonetheless to illustrate the background from which one of
the arguments of this thesis arises.

Let us imagine, once more, a hypothetical world in which the H,O molecules
behave differently from what we are used to, causing the sea ice to sink into
the ocean'l As the sea-ice density is represented by an arbitrary parameter in
most of the models currently in use, we could legitimately think of studying
this situation with one of these models. I embarked on such an exercise by
increasing the sea-ice density in the Finite-volumE Sea ice-Ocean Model ver-
sion 2 (FESOM2; Danilov et al. (2017)) sea-ice and ocean model to a value
10% larger than that of the ocean water. Interestingly, the model calculations
do not fail, nor does the model produce any warning to flag an inappropri-
ate density value. The outcome of the simulation is, not surprisingly, quite
different from what the physical intuition would suggest: even if denser, the
sea ice keeps fluctuating over the lighter ocean and does not sink into it. The
major aspect that differs compared to a standard simulation is the thickness
of the sea-ice, which is correctly reduced due to the higher density of the
material. Does this mean that the FESOM2 model is wrong? Technically
yes, in this situation FESOM2 produces nonphysical results. But, most im-
portantly, we are trying to answer a rather strange, yet legitimate scientific
question with an inappropriate tool that was not designed for this purpose.
In fact, while allowing the coexistence of water and ice at the surface of the
ocean, the model developers designed the sea-ice and ocean components of
FESOM2 making the assumption—very reasonable before my attempt—of a
complete separation of these two elements in the vertical column, with the
sea-ice that, if present, floats over the ocean no matter the relative density
of the two substances.

As described in Sec [1.2] both the complexity of sea-ice models and the
number of problems and applications that they can address grew substan-
tially over the past decades. Nevertheless, what has been demonstrated by

the previous case study is that, despite the efforts made to adopt model for-

'nterestingly, D2O in solid form or ‘heavy ice’, a close relative of the standard ice,
really sinks into HoO (Maitra & Zare, 2016)
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mulations simultaneously consistent with the laws of physics and with the
observed sea-ice phenomenology, sea-ice models still return only a simplistic
characterization of the real world and their performance is tightly connected
to the research questions formulated by the model users. For this reason,
each application that involves modelling should ideally adopt a specific and
appropriate formulation of the model itself. In practice, this is rarely the
case for sea-ice models, as the few available are shared across different sci-
entific fields and employed for various applications. The approach adopted
by the scientific community is surely efficient and not necessarily a bad one,
provided to not forget that the level of complexity that might be required
in some applications could become not justified, or even harmful, in other
cases. I will revisit this argument in the concluding chapter of the thesis in

light of the results presented in the continuation of this manuscript.

1.4 Scope and structure of the thesis

As emerges from the previous sections, the overarching theme of this Ph.D.
dissertation is sea-ice modeling. In practice, this broad topic is here analyzed
by following two main threads: the first concerns the investigations of sea
ice through models, while the second regards the investigation of sea-ice
models themselves. Although the majority of the studies here presented
focus on the sea ice in the Arctic, I try to maintain a global perspective on
the topic, keeping in mind that, as the laws of physics are the same in the
two hemispheres, a good model should in principle be equally adequate in
representing the Arctic and Antarctic sea ice.

The first thread of this thesis touches two of the scientific fields in which
modern sea-ice models find their core area of application: climate projections
at multi-decadal timescales on one side, and operational sea-ice predictions
up to seasonal timescales on the other. As this thesis will demonstrate, the
investigation of these problems is tackled with similar tools that nevertheless
present some fundamental differences The approaches for the sea-ice inves-
tigation are, in fact, tightly connected to the timescale of the problem, and
consequently to the scientific question and to the application requirements.

Climate projection studies typically deal with long timescales, and, in
practice, this translates into a so-called boundary condition problem. The

goal of these studies is understanding, in a statistical sense, the response
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of sea ice to external forcings (i.e. boundary conditions), which can be, for
example, the increase of greenhouse gases in the atmosphere. In this context,
Chapter 2| presents a study in which the sea-ice component of a fully coupled
climate model is adapted to investigate the impact on the climate system
of a hypothetical geoengineering approach to counteract the decline of the
Arctic sea ice. This geoengineering strategy, originally proposed by Desch
et al. (2017) and called ‘Arctic Ice Management’, foresees a large number
of winddriven pumps that shall spread seawater on the surface in winter to
enhance ice growth, allowing more ice to survive the summer melt. We tested
this hypothesis by modifying the surface exchange processes such that the
physical effect of the pumps is simulated, and by performing century-long
ensemble experiments that account for the increase of greenhouse gases in
the atmosphere. The main scientific questions relative to this chapter (Q1

and Q2) are summarized in the following box:

( N

Q1 Can the actuation of the Arctic Ice Management strategy prevent
the decline of the Arctic sea ice?

Q2 Can this approach mitigate the effects of global warming in the
Arctic and beyond?

Chapter [2 has been published in the journal ‘Farth’s Future’ by Zampieri &
Goessling (2019) under the title ‘Sea Ice Targeted Geoengineering Can Delay
Arctic Sea Ice Decline but not Global Warming’.

In contrast to climate projections, operational sea-ice predictions deal
with much shorter timescales and attempt to predict, as accurately as pos-
sible, the trajectory between the present and the future sea-ice state. The
knowledge of the initial sea-ice state (but also of the ocean and atmosphere
initial conditions) is therefore crucial for a correct simulation of the sea-ice
evolution, leading to a so-called initial condition problem. Because a perfect
characterization of the initial state is in practice impossible, and because of
limitation and biases in our models, an ensemble of forecasts is produced
from slightly perturbed initial states, aiming to give indications on the range
of possible future states of the variable of interest and not only the most
likely one. In this context, Chapters [3| and [{4] investigate the skill of sev-

eral operational forecasting systems in predicting the evolution of the sea ice
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edge at subseasonal to seasonal (S2S) timescales, both in the Arctic and in
the Antarctic. The verification methodology employed for evaluating these
forecasts is similar for both hemispheres, and it takes into account the prob-
abilistic nature of these ensemble forecasts. Furthermore, this study goes
beyond the classical sea-ice extent and area concepts by focusing instead on
the sea-ice spatial distribution, which is a relevant piece of information for
stakeholders and potential final forecast users. The main scientific questions

relative to these chapters (Q3 and Q4) are summarized in the following box:

Q3 How skillful are state-of-the-art operational forecast systems in
predicting the evolution of the Arctic and Antarctic sea-ice edge
at subseasonal timescales?

Q4 Which biases affect the S2S forecasting systems? And where do
they originate from?

Chapter |3| has been published in the journal ‘Geophysical Research Letters’
by Zampieri et al. (2018) under the title ‘Bright Prospects for Arctic Sea Ice
Prediction on Subseasonal Time Scales’. Chapter |4 has been published in
the same journal by Zampieri et al. (2019) under the title ‘Predictability of
Antarctic Sea Ice Edge on Subseasonal Time Scales’.

Chapter |5| develops the second thread of this thesis, shifting the focus
from the investigation of sea ice through modeling, to the investigation of
sea-ice models. Specifically, this chapter explores the impact of sea-ice model
complexity on the performances of an unstructured-mesh sea-ice model under
different atmospheric forcings. For making such a study possible, I have first
equipped the unstructured global sea-ice and ocean model FESOM2 with the
single-column sea-ice model Icepack, a set of physical parameterizations that
describe the sub-grid sea-ice processes not explicitly resolved in models. The
update has substantially broadened the range of physical processes that can
be represented by FESOM2. These new features are directly implemented
on the unstructured FESOM2 mesh, and thereby benefit from the unique
flexibility that comes with it in terms of spatial resolution. A subset of the
parameter space of three model configurations with increasing complexity

has been calibrated with an iterative Green’s function optimization method.

10
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This optimization creates the conditions to test fairly the impact of the model
complexity on the sea-ice representation in the FESOM2 model. The main
scientific questions relative to this chapter (Q5 and Q6) are summarized in

the following box:

e 0
Q5 Does a more complex and physically consistent formulation of a
sea-ice model lead to better sea-ice simulations?

Q6 How does the impact of different atmospheric forcings on sea-ice
simulations compare to the impact of model complexity?

Chapter |5 corresponds to a manuscript under review in the ‘Journal on
Advances in Modelling Earth Systems’ (at the time this thesis was written)
under the title ‘Impact of sea-ice model complexity on the performance of an
unstructured sea-ice/ocean model under different atmospheric forcings’.
Chapter [6] concludes this thesis and summarizes the main findings and
conclusions of my research. The results from the main chapters will be placed
in context with the overarching theme of the thesis and, based on these
final considerations, I will give an outlook and recommendations for future

developments in the field of sea-ice modeling.

Remarks Chapters|2, and|[5|constitute either published or ready-for-submission
papers, which have been written together with my co-authors. The contributions of
each individual are detailed at the beginning of the respective chapters. I decided
to retain the original format of the manuscripts, which generates small inconsis-
tencies with the rest of this thesis regarding style, utilization of the first person
plural, and abbreviations. There is a certain degree of redundancy also content-
wise, as each paper is formulated to be independent from the others. I kindly ask

the reader to be indulgent and overlook these imperfections.
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2. Sea ice targeted
geoengineering can delay
Arctic sea ice decline but

not global warming

Abstract

To counteract global warming, a geoengineering approach that aims
at intervening in the Arctic icealbedo feedback has been proposed.
A large number of winddriven pumps shall spread seawater on the
surface in winter to enhance ice growth, allowing more ice to survive
the summer melt. We test this idea with a coupled climate model
by modifying the surface exchange processes such that the physical
effect of the pumps is simulated. Based on experiments with RCP 8.5
scenario forcing, we find that it is possible to keep the latesummer sea
ice cover at the current extent for the next ~60 years. The increased
ice extent is accompanied by significant Arctic latesummer cooling by
~1.3 K on average north of the polar circle (20212060). However,
this cooling is not conveyed to lower latitudes. Moreover, the Arctic
experiences substantial winter warming in regions with active pumps.
The global annualmean nearsurface air temperature is reduced by only
0.02 K (20212060). Our results cast doubt on the potential of sea ice

targeted geoengineering to mitigate climate change.

1Chapterhas been published in the journal ‘Farth’s Future’ by Zampieri & Goessling
(2019) under the title ‘Sea Ice Targeted Geoengineering Can Delay Arctic Sea Ice De-
cline but not Global Warming’ 1 parameterized the geoengineering strategy in AWI-CM,
performed the simulations, and analyzed the data. H. F. Goessling participated in the
discussion of the results and contributed to the writing of the manuscript.
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CHAPTER 2. SEA ICE GEOENGINEERING

2.1 Introduction

The declining trend of the Arctic sea ice extent (Comiso, 2012; Kay et al.,
2011; Stroeve et al., 2012; Lindsay & Schweiger, 2015), caused mainly by
anthropogenic greenhouse-gas emissions (Notz & Stroeve, 2016), is expected
to continue. Projections based on climate models foresee a largely ice-free
Arctic ocean in late summer around the mid-21% century in the business-
as-usual emission scenario (Collins et al., 2013; Jahn, 2018; Niederdrenk &
Notz, 2018; Notz & Stroeve, 2018). The replacement of the highly reflective
ice cover by the dark ocean has been described as one of the most severe
positive feedbacks in the climate system (Manabe & Stouffer, 1980) and
contributes to the Arctic warming amplification (Pithan & Mauritsen, 2014).

The Paris Agreement stipulates the reduction of greenhouse-gas emis-
sions to keep global warming well below 2°C (United Nations, 2015; Corn-
wall, 2015). However, even if all national commitments to curb emissions will
be implemented, the 2°C target will likely be exceeded significantly (Rogelj
et al., 2016). The discussion around alternative approaches based on climate
engineering—the anthropogenic large-scale modification of the Earth’s cli-
mate to mitigate global warming (Keith, 2001; Bellamy et al., 2017; Talberg
et al., 2018)—is highly controversial (Blackstock & Long, 2010; Hamilton,
2013; Givens, 2018). Nevertheless, with the prospect of insufficient emis-
sion reductions, the scientific examination of climate engineering strategies
appears advisable.

Several climate engineering approaches that focus on the Arctic sea ice
cover and the positive ice-albedo feedback have been proposed (Seitz, 2011;
Cvijanovic et al., 2015; Mengis et al., 2016; Desch et al., 2017; Field et al.,
2018). The Arctic Ice Management (AIM) strategy put forward in Desch
et al. (2017) (D17 hereafter), which attracted the attention of the scientific
community and the media alike (rated within the top 5% of all research out-
putE[), entails the large-scale employment of wind-driven pumps that spread
seawater on the ice surface in the winter months. The sea ice and the snow
that is accumulated over it are materials with low thermal conductivity com-
pared to the ocean water. During the freezing season, even a thin layer of
sea ice limits the heat flux from the warmer ocean to the cooler atmosphere

considerably (Trodahl et al., 2001), reducing the growth of additional sea ice.

2 Altmetric Attention Score of Desch et al. (2017): https://wiley.altmetric.com/
details/72217339
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2.1. INTRODUCTION

The AIM approach aims to bypass the thermally insulating effect of sea ice,
allowing thereby more ice to grow thick enough during winter to withstand
the summer melt (Fig. 2.1).

Unperturbed Winter Conditions AIM Winter Conditions
W <
/ —

AIM

N\
. evice

Unperturbed Summer Conditions AIM Summer Conditions

A

Lal O - )

AVAMNY

Device

:] Pre-existing sea ice =) Solar heat flux
- Newly formed sea ice E==) Winter heat flux
D Snow cover Water flux through
- Ocean water l active AIM device

Figure 2.1: Idealized representation of the 215 century sea ice system with and
without Arctic Ice Management (AIM). In unperturbed winter conditions (top
left) the sea ice and snow act as insulator reducing the heat flux from the warmer
ocean to the much colder atmosphere. The sea ice growth takes place mostly at
the ice-ocean interface and is relatively slow (dark blue fraction of the ice floes).
By summer (bottom left) most of the ice has melted, leading to an ice-free Arctic
ocean in the second half of the century and amplifying the warming through the
ice-albedo feedback (yellow fraction of ocean). In AIM conditions (top right) ocean
water is pumped onto the ice, leading to larger heat flux and rapid ice growth at
the surface. More ice withstands the summer melt (bottom right) and increases
the surface albedo.

Based on simple thermodynamical arguments and observations from an
ice mass balance buoy in the Beaufort Sea, D17 estimate that ~1.4m of
seawater would need to be pumped onto the ice to generate ~1.0m of ex-

tra ice thickness over the course of one winter at a typical location in the
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CHAPTER 2. SEA ICE GEOENGINEERING

Arctic Ocean. They envisage the deployment of ~10 million devices, each
comprising a wind turbine, a pump, a water tank, and a delivery system
that distributes the water over an area of 0.1km?. D17 calculate that 1m
extra ice thickness would lead to a shift of the local melt date by ~15 weeks
(3weeks per 0.2 metres). They argue that it might be possible to maintain a
large part of the usually seasonal ice zone throughout the summer by appro-
priate annual repositioning and/or reseeding of the AIM array. Considering
associated albedo changes, D17 calculate a global annual-mean short-wave
radiative cooling by up to 0.14 Wm~2. This is about half of the estimate by
Hudson (2011) for the global annual-mean forcing associated with a virtually
ice-free Arctic summer (0.3 Wm™2) and a significant fraction of the current
anthropogenic radiative forcing by ~1 Wm™2.

Considering energy requirements, economical demands, as well as tech-
nical challenges, D17 conclude that such a major undertaking seems indeed
feasible. However, the question is left open what the quantitative response
of the Arctic as well as the global climate system would be. It is also unclear
whether the local thermodynamic considerations can be scaled up to the
whole Arctic. For example, the large-scale exposure of relatively warm ocean
water is expected to generate positive near-surface temperature anomalies.
Because the surface turbulent heat fluxes are proportional to the surface tem-
perature gradient (Wallace & Hobbs, 2006; Serreze et al., 2007), increased
winter temperatures might induce a negative feedback that dampens the
additional ice growth. Complex climate models that simulate the relevant
physics, including the general circulations of the atmosphere and the ocean,
can provide answers.

Here we use the Alfred Wegener Institute Climate Model (AWI-CM)
(Sidorenko et al., 2015; Danilov et al., 2015a; Rackow et al., 2016) to study
the efficacy of Arctic Ice Management and the response of the climate sys-
tem, in the Arctic and beyond. To this end we modify the parameterisation
of the surface heat and mass fluxes in ice-covered ocean regions north of the
polar circle (~ 66.5°N) such that the effect of the AIM devices is simulated.
The modification is activated during the Arctic winter from October 21 to
March 215 from 2020 onward. The strength of the modification is modu-
lated with two parameters that affect the large-scale spatial extent and the
local efficiency of the pumps. A sensitivity analysis with respect to these
parameters is followed by a more detailed analysis based on ensemble sim-

ulations (4xunperturbed and 4xAIM) with RCP 8.5 scenario forcing until
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2.2. RESULTS

2100. Moreover, we analyse the effect of an abrupt suspension of AIM in
2030 to test its reversibility.

2.2 Results

2.2.1 Regulating the strength of AIM

The impact of AIM depends on the strength of the modification applied. In
the real world, this would depend on the number and spatial distribution
of the deployed AIM devices, as well as their efficiency in distributing the
ocean water over the surrounding sea ice. To start with, we have performed
a simulation where a liquid layer is maintained over the whole ice cover,
allowing us to determine an upper bound for the impact of AIM on the
ice and on the global climate. This extreme scenario should be regarded
as an idealized case to test the response of the climate system to AIM. In
this experiment the mean Arctic ice thickness increases almost linearly by
~2.1m per year from 2020 to 2030 (the historical 1850-2000 annual-mean
value is ~1.8 m). Thereafter the thickness growth slows down until the mean
thickness levels off around 65 m from 2080 onward, corresponding to a pan-
Arctic ice volume of ~ 900 x 10° km?® (Fig.[A.1} right). The ice extent attains
values around 15 x 10°km? in late winter (February) and 13.5 x 10° km? in
late summer (September) (Fig. [A.1} left). This implies almost a doubling
of the late-summer sea ice extent compared to historical conditions (1850
2000). The ice thickness and extent stop growing due to the gradual warming
by increasing greenhouse-gas concentrations and, for the same reason, would
start to decline beyond 2100 despite AIM.

The near-surface temperature response in this extreme case is profound:
Averaged over 2021-2060 north of 66.5° N, the Arctic is colder by ~5.2K in
September, compared to the 4-member ensemble of unperturbed runs with-
out AIM, but warmer by ~10.6 K in February when the pumps are active
(Fig. [A.2} top). The northern middle latitudes (30° N-60°N), however, are
warmer by 0.5 K-1.0 K throughout the year. This implies that the radiative
cooling from the increased albedo is not strong enough to (over-)compensate
the effect from the direct Arctic winter warming which is transported to
lower latitudes by atmospheric advection and persists there in the ocean
mixed layer throughout the year. (The September warming of the north-

ern middle latitudes tends to be present already after a single AIM season
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CHAPTER 2. SEA ICE GEOENGINEERING

(Fig. ; 2020), which is not compatible with the typical time scale for
oceanic transport.) The results raise the question whether a more moder-
ate implementation of AIM, where pumps are employed only where they are
needed to make the ice thick enough to survive the summer melt, might be
better suited to generate an overall cooling. A weaker AIM implementation
is also more realistic given that it seems unlikely that the AIM devices would
be able to maintain a closed cover of liquid water and also in regard to the
number of devices required: The extreme case corresponds to more than 10
times the number of devices envisaged by D17.

We have thus introduced two parameters that affect the large-scale spatial
extent and the local efficiency of the AIM devices: The Global Modulation
Parameter (GMP) determines an ice thickness threshold beyond which the
pumps are deactivated. Thereby the modification is active only in regions
with relatively thin ice, where extra ice thickness can reduce the chances of
the ice to melt completely over the course of the subsequent summer. In
contrast, the Local Modulation Parameter (LMP) determines which fraction
of the ice surface in model grid cells with active pumps is covered by wa-
ter. The LMP represents the spatial density of AIM devices as well as their
efficiency to maintain a liquid layer.

To explore the impact of the two parameters, we have conducted 9 sim-
ulations from 2020 to 2040 by combining 3 GMP values (1m, 2m, and 3m)
with 3 LMP values (25%, 50%, 75%) (Figs. and [A.3). Averaged over
all 20 years, the March sea-ice extent falls short of the historic level by 1.1-
1.7x10%km? in any of these settings (Fig. . One reason for this low
sensitivity is that the historical winter sea ice edge is located south of the
southern bound of the AIM domain at 66.5° N, except in der Nordic Seas.
Furthermore, this reflects that the winter ice edge is largely controlled by
large-scale atmospheric (and oceanic) temperatures: if they never fall below
the freezing point, no ice can grow, irrespective of AIM. In contrast, the
September sea ice extent and the sea ice volume at any time of the year are
strongly sensitive to the two parameters, with larger values of the parameters
leading to larger extent and volume. The influence exerted by the thickness
threshold (the GMP) is stronger than the one by the local density/efficiency
(LMP). The LMP has only a minor influence for GMP = 1m, where the
impact of AIM is generally weak because 1 m ice thickness is typically not
enough to withstand the summer melt. The influence of the LMP grows with

increasing GMP.
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Figure 2.2: The nine pie charts show the sea ice extent and volume anomalies in
nine sensitivity simulations (2020-2040) compared to historical conditions (1850—
2000) for March and September. The numbers inside the pie charts provide the
anomalies in 10% km? for the sea ice extent and in 103 km? for the sea ice vol-
ume. Each pie chart corresponds to one combination of the Global Modulation
Parameter (GMP; increasing from left to right) and the Local Modulation Param-
eter (LMP; increasing from bottom to top). The LMP and GMP choice defines
the active AIM domain (red area in the GMP maps) and therefore the strength
of the AIM in the simulations. The combination GMP = 2m and LMP = 25%
(marked in red) is used for the 215° century AIM simulations. AIM = Arctic Ice
Management

For the 21%* century simulations discussed in the following we have chosen
GMP = 2m and LMP = 25%. This setting restores the summer sea ice
extent, which largely determines the ice-albedo feedback, quite accurately
to historical levels (Fig. [2.2). Moreover, assuming that a single AIM device
covers ~ 0.1 km?, averaged over winter 20202040 this setting approximately

corresponds to 10° active devices (Fig. bottom), as envisaged by D17.
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Figure 2.3: Top: Evolution of pan-Arctic sea ice extent (left) and volume (right)
in March (upper curves) and September (lower curves). Bottom left: daily number
of active devices as function of time of the year (vertical) and year (horizontal)
in the AIM simulations (ensemble mean). NSIDC = National Snow and Ice Data
Center, SI = Sea Ice, PIOMAS = Pan-Arctic Ice Ocean Modeling and Assimilation
System, AIM = Arctic Ice Management.

2.2.2 Arctic sea ice in the 215 century with AIM

The unperturbed simulations without AIM coherently project a virtually ice-
free Arctic ocean in late summer after 2060 (Fig. [2.3). The introduction of
AIM in 2020 induces a strong and sudden perturbation of the sea ice state. At
first a new quasi equilibrium close to historical conditions is reached within
a few years. Compared to the unperturbed ensemble, the sea ice volume
increases by ~40% in March and ~60% in September, and the September
extent increases by ~40%, whereas the March extent is again hardly affected.
After the transition phase, however, the declining trend in sea ice volume
is similar for both ensembles. For the month of March (September), the
declining sea ice volume trend is —163 + 2’;:};(—121 + 3;%;) for the control

’;Zi (—144 + 2';%;) for the AIM ensemble mean
(Tab. . Also the September sea ice extent shows a clear declining trend

due to the greenhouse-gas induced warming: —8.3 £+ 0.3 X 104% for the

ensemble mean and —182+ 3

control ensemble mean and —6.2+0.2 x 104;’%; for the AIM ensemble mean
(Tab. |A.1)). Based on the sea ice extent trends of the two ensemble means, a
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virtually ice-free Arctic ocean (sea ice extent < 1x10%°km?) occurs 6646 years
later with AIM. While the exact delay depends on the parameter considered,
overall the Arctic sea ice decline is delayed by roughly 60 years through AIM.

Our approach entails that the number of active AIM devices continuously
changes in response to the spatial ice thickness distribution, both between
years and within a freezing season (Fig. bottom-left). In early 2020,
immediately after the AIM activation, the number of active devices ( 20 X
10) is particularly large because the sea ice thickness is below the thickness
threshold (GMP = 2m) in most places. Until around 2060, the area of
ice less than 2m thick and hence the number of active devices tends to
decrease monotonically from 10 x 10° to < 5 x 10° devices over the course of
each freezing season. After 2060 the seasonal maximum is shifted gradually
towards the end of the freezing season because the greenhouse-gas induced
warming impedes the thickness growth, so that the seasonal ice area growth
becomes faster than the seasonal growth of the ice area with thickness >2 m.
Similarly, the seasonally-averaged number of active devices grows towards
the end of the century because the ice area with thickness >2m declines
more rapidly than the total ice area.

If AIM would generate unanticipated detrimental effects of any kind, it
would be important that the approach is reversible. To test this, we have
branched off four additional simulations from the AIM ensemble in 2030
where AIM is turned off. The sea ice extent and volume return to the unper-
turbed trajectory within a transition period of less than 10 years (Fig. ,
purple curves). This is consistent with earlier findings that there is no tipping
point associated with Arctic sea ice and the ice-albedo feedback (Tietsche
et al., 2011) and suggests that AIM is fully reversible. While this can be
regarded as a beneficial property of AIM, it also implies that the array of
devices would need to be maintained constantly to stay on a trajectory with
delayed Arctic sea ice decline. The rapid loss of the response to geoengineer-
ing once it is discontinued seems to be common to geoengineering techniques
trying to alter the Earth’s albedo (McCusker et al., 2014).

2.2.3 The climate impact of AIM

The increased surface albedo associated with the additional sea ice results
in significantly more reflected solar radiation in the Arctic during summer

(~5.0Wm™2 at the top of the atmosphere in July north of the polar circle
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for 2021-2060; ~6.5 Wm~2 for 2061-2100; see also Fig. . Averaged over
the globe, the solar radiative forcing due to AIM amounts to ~0.25 Wm~2 in
July (for 2021-2060 as well as 2061-2100), but only ~0.02 Wm~2 for 2021
2060 and ~0.08 Wm™2 for 2061-2100 when averaged over the whole year.
The latter corresponds to slightly more than half of the estimate by D17,
and a quarter of the estimate by Hudson (2011) for a summer ice-free Arctic
Ocean.

In the Arctic, AIM leads to a consistent late-summer cooling (Fig. ;
top-left; September). Averaged over the area north of the polar circle,
September near-surface (2m) temperatures are reduced by ~1.3K during
the first half of the simulations (2021-2060) and by ~1.4 K during the sec-
ond half (2061-2100) compared to the unperturbed simulations. The Arctic
winter response is more heterogeneous in both space and time (Fig. ; top-
left; February). In February, most areas of the Arctic Ocean are cooled by
AIM during the first decades (average temperature anomaly over cooling
regions is ~-1.1K), whereas some peripheral seas including the Baffin Bay
area and the Kara Sea are subject to additional near-surface warming (av-
erage temperature anomaly over warming regions is ~1K); on average the
Arctic is cooled by ~0.3 K. Towards the end of the century the regions with
AIM-induced warming expand further into the Arctic Ocean; the average
Arctic cooling turns into a warming by ~0.5 K. This adds to the 10.7 K of
Arctic February warming in 2061-2100 relative to historical conditions in the
unperturbed simulations.

The Arctic temperature response (Fig. ; top-left) is caused mainly by

four mechanisms:

1. In winter, the AIM devices maintain a layer of liquid water approxi-
mately at the freezing point on the ice surface. This leads to strongly
enhanced surface heat fluxes and warm temperature anomalies in areas
with active devices. This explains the February warming that expands
gradually from the peripheral regions to the central Arctic. Fig.
shows a clear correspondence between regions with warm temperature

anomalies (top-left; February) and the active AIM regions (bottom).

2. Some marginal thin-ice regions of the Arctic ice cover experience winter
cooling instead of warming despite active AIM devices, simply because
these regions are ice-free in the unperturbed simulations. These regions,

including the northern Barents Sea, have gained ice through increased
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Figure 2.4: Top-left: Near-surface (2m) temperature anomalies (AIM ensemble-
mean minus unperturbed ensemble-mean) for the periods 2021-2060 and 2061—
2100. Top-right: as before but for the total precipitation anomaly. Bottom: grid
cell fraction with active AIM devices. Note that the 25% upper boundary is defined
by the GMP. Stippling indicates local statistical non-significance of the anomaly
at the 95% confidence level according to a two-tailed t-test.

advection from AIM-affected upstream regions.

3. Regions with ice thicker than 2m that were previously subject to AIM
encounter weaker winter heat fluxes from the ocean to the cold atmo-
sphere due to the increased ice thickness compared to the unperturbed
simulations. Such thick-ice regions without AIM activity thus experi-
ence cold temperature anomalies. This explains the February cooling
in the central Arctic in 2021-2060.

4. In summer, the additional ice in the AIM ensemble has a direct cooling
effect on the atmosphere and surface ocean by latent heat absorption
associated with its melting, as well as an indirect cooling effect due to
the increased surface albedo and accordingly reduced solar radiative

heating. This explains the Arctic summer cooling.

While the impact of AIM on Arctic temperatures is substantial, lower-

latitude regions are only weakly affected. The strongest influence outside
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the Arctic is exerted on the northern North Atlantic (Fig. 2.4} top-left). In
particular the Irminger Sea and the Labrador Sea are affected by enhanced
ice export from the Arctic. The additional ice leads to a moderate cooling by
up to ~1 K that prevails year-round throughout the century, but the Atlantic
Meridional Overturning Circulation (AMOC) is not sensitive to these changes
(Fig. . Outside the northern North Altlantic, the temperature response
to AIM is weak and mostly not statistically significant. Some late-century
anomalies, like the winter warming in central Eurasia and the summer cooling
south of Alaska, appear to be locally significant (Fig. ; top-left), but
limited field significance for the middle and low latitudes as a whole suggests

that these temperature anomalies might be spurious.

The annual-mean near-surface temperature response of the northern mid-
dle latitudes (30°N-60°N) to AIM is close to zero (~-0.04 K and ~-0.02 K
in the first and second half of the simulations), with minor seasonality. This
means that the middle-latitude warming obtained with the extreme-AIM
experiment (Fig. can be prevented with a careful regulation of the in-
terference. However, a significant cooling outside the Arctic (and northern
North Atlantic) is still not accomplished. The annual global-mean near-
surface warming of ~1.9K and ~3.6K in the first and second half of the
unperturbed simulations is reduced by only ~0.02 K and ~0.05K, despite

the intervention in the Arctic ice-albedo feedback.

Finally, a large-scale interference with the climate system can in principle
also affect other relevant aspects of climate besides radiation and tempera-
ture. The most obvious additional impact of AIM in our simulations is
an enhancement of the hydrological cycle and precipitation in regions with
warming and moistening due to active devices in winter (Fig. [2.4} top-right;
February). We also find a drying across the Arctic Ocean in summer (Fig. ;
top-right; September), albeit less significant than the associated cooling. The
precipitation response beyond the Arctic is weak, and small regions with lo-
cally significant anomalies again appear not to withstand field significance
considerations. In general, the large-scale circulation does not respond coher-
ently to AIM in our simulations, despite the modified meridional near-surface
temperature gradient. We conclude that the impact of AIM on climate out-

side the Arctic (and the northern North Atlantic) is generally weak.
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2.3 Discussion

This study involves a number of simplifying assumptions and approxima-
tions. The AIM implementation neglects peculiarities associated with ice
formation at the surface instead of the bottom. Differences in the amount of
salt rejected during the freezing and related to the flooding of the snow cover
would have implications for the physical properties of the resulting sea ice, in-
cluding its surface reflectivity and its mechanical behaviour. More generally,
the use of a single climate model with necessarily simplified representations
for all components of the physical climate system implies that our results are

subject to uncertainty.

The difference between our estimate for the global annual-mean solar
radiative forcing of AIM (0.08 Wm™2 for 2061-2100) and the estimates by
D17 (0.14 Wm™2) and Hudson (2011) (0.3 Wm~?2) can have various reasons.
The amount of clouds prevailing over the Arctic in summer for instance
modulates the impact of changes in surface albedo. However, the Arctic
summer cloud cover in our simulations amounts to about 80%, which is in
line with the assumptions and observations used in D17 and Hudson (2011).
We also do not find a response of the summer cloud cover that would be strong
enough to explain the difference (Fig. [A.4). Other relevant factors include
the assumed or simulated ice surface albedo and how it develops when melt
ponds form (which is treated by a diagnostic melt pond scheme in our model)
as well as the assumed or simulated sea-ice area difference. In fact the latter
might explain why D17 arrive at a higher estimate: They assume that the
albedo change would occur over the entire area of the Arctic Ocean (107 km?),
whereas the ice extent anomalies in our simulations amount to roughly half
of that area (depending on the year and time of the year; compare Fig. 3 for

September).

Another element of uncertainty arises from the way we regulate the
strength of AIM: Our implementation implicitly assumes that the deploy-
ment and relocation of devices is accomplished so efficiently that the evolving
areas with ice thinner than 2m are equipped with devices during the whole
winter. Our estimate of ~ 10 x 10° for the number of required devices, cor-
responding to the number suggested by D17, should thus be regarded as a

lower bound.

Our work does not consider the economic and technical feasibility of the
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construction, deployment, and maintenance of the enormous array of AIM
devices that would be required. It also does not touch the political and soci-
etal dimension associated with such a planetary-scale intervention. Moreover,
we do not attempt to provide precise estimates for the impacts of AIM on the
climate system. This also holds for possible impacts on permafrost thaw and
associated carbon emissions due to the summer cooling and winter warming
in Arctic land regions. Rather, our results constitute a first assessment of the
efficiency and impacts of AIM from a climate physics perspective. We find
evidence that AIM can in principle delay the Arctic sea ice decline by several
decades. Yet the cooling of lower latitudes, anticipated as a consequence of
the intervention in the ice-albedo feedback, fails to materialise. These results
cast doubt on the potential of sea ice targeted geoengineering as a meaningful

contribution to mitigate climate change.

2.4 Methods

2.4.1 The AWI climate model

We use the Alfred Wegener Institute Climate Model (Sidorenko et al., 2015;
Rackow et al., 2016, AWI-CM) which contributes to the Coupled Model
Intercomparison Project Phase 6 (Eyring et al., 2016, CMIP6). For the
atmospheric model component ECHAMG6 (Stevens et al., 2013) we use the
coarse-resolution version with ~ 1.8° grid spacing. For the unstructured-
mesh ocean and sea-ice model component FESOM-1.4 (Timmermann et al.,
2009) we use the “CORE2” mesh with a resolution of ~25km in the Arctic
and ~ 1.27 x 10° surface nodes globally. Details on the influence of the
model resolution of the two model components can be found in Sein et al.
(2018) and Rackow et al. (2019). The sea-ice model (Danilov et al., 2015a)
includes an elastic-viscous-plastic (EVP) rheology and a thermodynamical
component based on (Parkinson & Washington, 1979), including a prognostic
snow layer (Owens & Lemke, 1990). The heat, momentum and mass fluxes
at the interface between the ocean (including the sea ice) and the atmosphere
are computed within the atmospheric model and exchanged 6-hourly via the
OASIS3-MCT coupler. The surface fluxes play a central role in this study
because the implementation of AIM in AWI-CM is based on the modification

of the surface exchange processes.
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2.4.2 AIM implementation

Our implementation of AIM acts on the vertical fluxes of heat, mass and
momentum across the ocean/ice-atmosphere interface. When AIM is active,
it is assumed that a fraction of the sea ice defined by the Local Modulation
Parameter (LMP) is covered by a thin but persistent water layer (PWL).
The PWL has the same temperature as the sea surface and is thus close to
the freezing point in regions with sea ice. The PWL is continuously restored
by the AIM devices as soon as the water freezes or evaporates. The lower
boundary of the atmosphere thus corresponds to an increased fraction of
open water because the PWL masks the sea ice underneath. The latent and
sensible heat fluxes, which represent the turbulent part of the surface heat
budget, are calculated for a correspondingly altered open water fraction.
Likewise, the surface thermal emissivity and the surface albedo are set to
open water values for the PWL-covered part, even though the shortwave
radiation plays a minor role during the Arctic winter. Since the PWL covers
the sea ice and inhibits ice sublimation, only evaporation from the PWL is
allowed in the AIM-affected part of the ice surface. Snow has a temperature
of at most 0°C, whereas the PWL is close to the freezing point of salty sea
water at ~ —1.8°C. Snow falling into the PWL is thus immediately added
to the ice mass without latent heat changes, whereas snow falling into open

water is assumed to melt and absorb latent heat.

Formulated as a weighted average of the original fluxes over open water
(w) and ice (i), the total heat flux H and the total mass flux M thus depend

on the sea ice concentration A; and the LMP as follows:

H = (1-LMP - A4;)(QF + Qf + Qiw + Qdw) + ... 2.1)
.+ (LMP - 4) (Q5 + Q1 + QLw + Qsw) + (1 — 4) (Panow - Ly)

M = (1 — LMP - Al) Eevap + (LMP ' Al) Esubl + Psnow + Prain (22)

where A; is the sea ice concentration, Qrw and Qsw are the net longwave
and shortwave radiation, P, and Py, are the liquid and solid precipitation,
L is the latent heat of fusion of melting ice, (Js is the sensible heat flux, @)y, is
the latent heat flux, and Eg, and Eey,p are the sublimation and evaporation

fluxes. The momentum flux calculation remains unchanged.
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This modified formulation is used from October 215 to March 21%* (the
Arctic freezing season) in grid cells north of the polar circle (~ 66.5°N) where
the ice thickness is below the Global Modulation Parameter (GMP). No GMP
is applied in the extreme AIM simulation.

Except for the described modifications, the sea ice physics remain the
same as in the standard FESOM model. The sea ice model does not include
a grounding scheme (i.e. no seabed stress is considered), and the ice thickness
is not limited by the ocean depth, which has implications for the realism of

our extreme AIM experiment in particular in shallow ocean regions.

2.4.3 Experimental setup

Our CMIP-type simulations are designed to test the response of the climate
system to AIM in a progressively warming climate. After a 700-year spin-up
simulation with constant CMIP6 pre-industrial (1850) forcing, we performed
a single simulation until 1999 with transient CMIP6 historical forcing. In
2000, small perturbations were applied to the atmospheric model to generate
a 4-members ensemble of simulations that continued until 2014 with CMIP6
historical forcing. Since the new CMIP6 scenario forcings (O'Neill et al.,
2016) were not yet available at the time, we used CMIP5 scenario forcing
from 2015 onward, accepting a minor discontinuity in the forcing. RCP 8.5
corresponds to the “business-as-usual” scenario where no substantial efforts
are implemented to curb greenhouse-gas emissions. The 4 unperturbed sim-
ulations were conducted until 2100.

In 2020 a total of 13 simulations was branched off from the unperturbed

simulations:

e 1 simulation with extreme AIM, that is, with LMP=100% and no GMP
applied, until 2100,

e 9 sensitivity simulations combining 3 GMP values (1 m, 2m, and 3m)
with 3 LMP values (25%, 50%, 75%) until 2040, one of which (GMP=2m,
LMP=25%) is extended to 2100, and

e 3 additional simulations with GMP=2m and LMP=25% until 2100,
with each member of the resulting 4-member ensemble initialised from

one of the 4-member unperturbed ensemble.
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2.4.4 Simulated versus observed historical sea ice state

A realistic simulated sea ice state is an important prerequisite for a meaning-
ful quantitative assessment of AIM. The Arctic sea ice extent simulated for
the period 1979-2017 is in overall agreement with observations in terms of
mean value, trend, and inter-annual variability (Fig. ; top-left), although
the model seems to slightly underestimate the March sea ice extent and fails
to simulate years with particularly low sea ice extent as they occurred in 2007
and 2012. The AWI-CM slightly underestimates the Arctic sea ice volume
compared to PIOMAS (Schweiger et al., 2011) during the period 1979-2005.
The more recent volume values are better represented. Nevertheless, the
model captures the declining sea ice volume trend (Fig. ; top-right). The
spatial thickness distribution are also realistically simulated, with thicker ice
north of Greenland and the Canadian Archipelago compared to the rest of
the Arctic (Fig. [A.6). The modelled sea ice thickness can be visually com-
pared to sea ice thickness satellite retrievals and reanalysis products (Wang

et al., 2016; Ricker et al., 2017).

29



CHAPTER 2. SEA ICE GEOENGINEERING

30



3.

Bright prospects for
Arctic sea ice prediction

on subseasonal time scale

Abstract

With retreating sea ice and increasing human activities in the Arctic
come a growing need for reliable sea ice forecasts up to months ahead.
We exploit the subseasonaltoseasonal prediction database and provide
the first thorough assessment of the skill of operational forecast sys-
tems in predicting the location of the Arctic sea ice edge on these
time scales. We find large differences in skill between the systems,
with some showing a lack of predictive skill even at short weather
time scales and the best producing skillful forecasts more than 1.5
months ahead. This highlights that the area of subseasonal prediction
in the Arctic is in an early stage but also that the prospects are bright,
especially for late summer forecasts. To fully exploit this potential, it
is argued that it will be imperative to reduce systematic model errors

and develop advanced data assimilation capacity.

1

!Chapter [3| has been published in the journal ‘Geophysical Research Letters’ by

Zampieri et al. (2018) under the title ‘Bright Prospects for Arctic Sea Ice Prediction on
Subseasonal Time Scales’. 1 downloaded and analyzed the S2S sea-ice forecasts and the
OSI-SAF and ASI sea-ice concentration observations. H. F. Goessling, T. Jung, and I par-
ticipated in the discussion of the results. I prepared the manuscript with the contribution

of all co-authors.
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3.1 Introduction

The observed rapid retreat of Arctic sea ice and the prospect of a virtually
ice-free Arctic Ocean in late summer by the middle of this century (Collins
et al., 2013; Wang & Overland, 2009; Overland & Wang, 2013; Stroeve et al.,
2007) have fueled socio-economic interests in the region (Emmerson & Lahn,
2012; Stephenson et al., 2011). As a consequence there is a growing demand
for reliable predictions of Arctic weather and sea ice across a wide range of
time scales, to reduce the risks that come with enhanced activities in the
high north (Jung et al., 2016).

Much of what is known about the skill of existing systems in predict-
ing Arctic sea ice is based on the Sea Ice Outlook (SIO) (Stroeve et al.,
2014)—an effort of the international research community that since 2008 has
been aiming to build and evaluate seasonal sea ice prediction capabilities. So
far, SIO dynamical predictions have shown limited skill, with simple statis-
tical forecasts being of comparable quality (Stroeve et al., 2014; Blanchard-
Wrigglesworth et al., 2017). On the other hand, perfect-model studies suggest
significant potential predictability at seasonal time scales (Tietsche et al.,
2014; Goessling et al., 2016a; Guemas et al., 2016), indicating that there is
scope for major improvements. On much shorter weather time scales (up
to ~10 days ahead) high-resolution forecast systems are increasingly being
used by operational ice services (Carrieres et al., 2017; World Meteorologi-
cal Organization, 2017), and recently research has started into exploring the
predictability of sea ice on these shorter time scales (e.g. Mohammadi-Aragh

et al. (2018)).

The potential for skillful predictions of Arctic sea ice on subseasonal-
to-seasonal time scales has improved considerably through recent develop-
ments. Recognising the urgent need for a better representation of the sea
ice-ocean system, forecast centres are moving towards using fully coupled
models (Smith et al., 2015). This also holds for shorter weather time scales,
where features such as the location of the sea ice edge can feed back signif-
icantly to the atmosphere, thereby influencing the further evolution of the
coupled system (Jung et al., 2016). This development towards using cou-
pled models is reflected by the fact that six out of eleven forecast systems
contributing to the recently established Subseasonal to Seasonal (S2S) Pre-
diction database (Vitart et al., 2012, 2016) include dynamical sea ice compo-
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nents. These dynamical models replace relatively crude schemes where the
sea ice state is simply persisted from its initial state and/or relaxed towards
climatological conditions. In fact, the S2S database constitutes an unprece-
dented opportunity for a thorough assessment of state-of-the-art operational
predictions of Arctic sea ice on subseasonal timescales. Numerous refore-
casts are available for each of the contributing systems, which is critical for
making robust statements about the skill and the associated uncertainties.
Furthermore, the forecasts cover the whole annual cycle, allowing to deter-
mine seasonal variations in skill. To our knowledge, this study represents the
first assessment of these systems in the Arctic, showing that the field of sub-
seasonal prediction of Arctic sea ice is in a early stage, but also highlighting

that prospects for skillful predictions are bright.

3.2 Data

The ensemble forecasts analysed here have been obtained from the database
of the Subseasonal-to-Seasonal Prediction (S2S) project. Here we consider
only those six systems that include a sea ice model coupled to an atmospheric
and ocean model, thereby producing actual dynamical sea ice forecasts. The
only exception is the older ECMWF forecast system (ECMWF Pres.) where
the sea ice state is persisted for the first 15 days of the forecast and then
relaxed towards climatology. Archiving of real-time ensemble forecasts in
the S2S database started in January 2015 only. However, corresponding re-
forecasts are available approximately for the previous two decades. The S2S
forecast systems exhibit different forecast lengths, initialisation frequencies,
ensemble sizes, data assimilation methods and model physics (Tab. .
Despite their differences, however, some forecast centers also share some of
the same model components, typically the ocean or sea ice model, includ-
ing the extreme case of UKMO and KMA which share the same forecasting
system altogether. Differences in ensemble size and initialisation frequency
exist between real-time forecasts and the corresponding reforecasts. The ini-
tialization strategy also varies among the systems: some feature a balanced
assimilation among sea ice,ocean and atmospheric components (EMCWF,
UKMO, KMA, NCEP), in contrast MF and CMA adopt a two tier initial-
ization strategy. To ensure a sufficiently large sample size, while allowing

comparability between the systems, our analysis is focused on the common
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reforecast period 1999-2010. The sea ice concentration fields from the S2S
database are provided on a 1.5°x1.5° longitude-latitude grid, although the
sea ice models run are at higher resolution (from 0.25°to 1°).

The verification is carried out against daily sea ice concentration data
from passive microwave (PMW) satellite measurements. As for the forecast
data, we use the 15% sea ice concentration contour to determine the location
of the ice edge. The main observational product used here is the Global
sea ice Concentration data record (OSI-SAF, 2016). Discrepancies between
true and observed ice edge locations are mainly caused by the presence of
summer melt ponds over the sea ice. These are interpreted as open water
by PMW sensors (Kwok, 2002; Notz, 2014) and cause a northward shift of
the ice edge (Comiso & Nishio, 2008). However, since most of the forecast
centers also assimilate PMW measurements, we expect this systematic error
to be propagated also to the forecasts and to have a limited impact on our

analysis.

3.3 Methods

We apply the recently introduced Spatial Probability Score (SPS; Goessling
& Jung (2018)) as verification metric, which can be regarded as the extension
of the Integrated Ice Edge Error (IIEE; Goessling et al. (2016a)) to proba-
bilistic ice edge forecasts. These metrics are specifically designed to capture
the accuracy of the forecasted ice edge and to overcome the limitations of
more widely used metrics such as the difference in pan-Arctic sea ice extent
or area. The latter only evaluate the total extent of the ice cover, but fail
to provide useful information about its spatial distribution. In contrast, the
SPS and the IIEE account not only for differences in total sea ice extent but
also for ice that is forecast at a wrong location.

The decomposition of the IIEE for the ensemble-median ice edge into
Overestimation (O) and Underestimation (U) or, alternatively, Absolute Ex-
tent Error (AEE) and Misplacement Error (ME) (Goessling et al., 2016a),
adds information to the SPS and provides insights into the origin of forecast
errors. O is the spatial integral of all areas where the forecast sea ice concen-
tration is above 15% but the observed sea ice concentration is below 15%; U
is the spatial integral of all areas where the forecast sea ice concentration is
below 15% but the observed sea ice concentration is above 15%. The AEE
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component represents the total difference in sea ice extent between forecast
and observation, while the ME component accounts for sea ice that is fore-
cast at a wrong location. A more extensive description of the verification
metrics can be found in Sec. [B.2.

The computation of verification scores is conducted on a per-grid-cell
basis. Therefore it is necessary to remap either the forecast data or the
observations (or both) to a common grid and to investigate the impact of
the forecasts and observation resolution on our results. In the analysis, the
observational data were remapped by first-order conservative remapping to
the relatively coarse-resolution forecast data. Further details on the role of
resolution in observations and forecasts can be found in Sec. Only grid
cells that are classified as ocean (including sea ice) in all models and in the
observations were used (see the resulting land-mask in Fig. [B.4, Employing
a common conservative land-mask guarantees an unbiased comparison of the
skill of different forecast systems.

A meaningful assessment of the forecast skill requires the introduction
of observation-based benchmarks based on the same metric employed for
measuring the forecast error. If the forecast error is lower than that of a
benchmark, the dynamical forecasting system has some predictive skill. Oth-
erwise, the observational record can be used to build a better forecast. We
have followed two strategies to construct a meaningful benchmark. Firstly,
we defined a climatological benchmark forecast as the 10-member ensemble
of states observed at the same time of the year during those 10 years preced-
ing the respective forecast target time. Secondly, we defined a persistence
benchmark based on the observed sea ice conditions one month before the
forecast target time (Blanchard-Wrigglesworth et al., 2010). The climatolog-
ical benchmark is more restrictive than the persistence benchmark for most
of the year (see Sec. and Fig. and is therefore used to assess the
skills of the S2S systems.

3.4 Results

3.4.1 Annual-mean sea ice forecast skill

The annual-mean skill of different forecasts in predicting the Arctic sea ice
edge can be inferred from Fig. 3.1l The most striking feature is that the

forecast skill varies substantially across the different systems. Compared to
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the climatological benchmark, the CMA and MF systems do not show any
predictive skill, even at initialization time. On the other hand, the ECMWF
system shows predictive skill all the way to a lead time of 45 days. The other
systems (KMA, NCEP and UKMO) are comparable to ECMWEF for short
lead times; the error growth is larger, however, leading to a faster loss of
predictive skill.

The wide range of error growth rates among the different models is in
stark contrast to what can be found for predictions of atmospheric fields,
which are much more similar in terms of skill (Jung & Matsueda, 2016).
This highlights the fact that the field of sea ice prediction with weather and

climate models is still in its infancy.

>~
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o NCEP —— UKMO
—— CMA (out of range) —— ECMWF Pres.
— MF — KMA
ECMWF —— Climatology
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0 10 20 30 40 50 60
Lead Time [Days]

Figure 3.1: Annual-mean skill in terms of the Spatial Probability Score (SPS)
of the different forecast systems (colored-solid lines) and the climatological bench-
mark forecast (gray-solid line) in predicting the Arctic sea ice edge as a func-
tion of lead time. Results have been averaged over the common reforecast period
1999-2010. Predictions with SPS values smaller than the climatological value
(= 0.55 - 10% km?) can be considered skillful. The shading and dashed lines indi-
cate ~95% confidence intervals, based on standard errors obtained from the twelve
individual annual means. Note that the CMA forecast system is not depicted given
that its large errors lie outside of the range shown. ECMWEF Pres. is based on
the predecessor ECMWEF system, the main difference being that sea ice was not
simulated dynamically but prescribed based on a combination of persistence and
climatology. SPS = Spatial Probability Score; S2S = Subseasonal to Seasonal;
NCEP = National Centers for Environmental Prediction; CMA = China Meteo-
rological Administration; MF = Météo-France; ECMWEF = European Centre for
Medium-Range Weather Forecasts; UKMO = UK Met Office; KMA = Korea Me-
teorological Administration.
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Although the skill of ECMWEF, KMA, NCEP and UKMO at initial time
is much better than that of MF and CMA, initial errors are still quite large
(half the values of the climatological benchmark; Fig. . Given that, based
on satellite data, the sea ice conditions should be reasonably well known at
the time of the initialization, the large initial errors suggest that there is still
substantial scope for improving the data assimilation procedure and thereby
the prediction skill of subseasonal forecast systems.

The skill of the UKMO and KMA systems is almost identical (Fig.
because of the same system shared. However, given that they represent in-
dependent forecast realizations (ensemble members) of the chaotic climate
system, their agreement demonstrates that the data available in the S2S
database allow to draw robust conclusions about the skill of sea ice fore-
casts. Furthermore, noting that UKMO ensemble size is larger than KMA
(Tab. B.1)), the slightly higher skill of UKMO compared to KMA suggests

that ensemble size matters to improve sea ice edge predictions.

3.4.2 Seasonal variations in forecast skill and origins

of error

The results discussed so far were based on annually-averaged values. How-
ever, since high latitudes experience very different physical conditions at
different times of the year, it appears likely that the predictability of Arc-
tic sea ice is seasonally dependent. In this section, this seasonality will be
further explored.

Despite the specific biases affecting each system, a general feature of the
SPS, including the climatological benchmark, is a pronounced seasonal cycle
with two peaks at the end of the winter and summer seasons (Fig. [3.2)).
This pattern can be explained by a corresponding seasonality of the ice edge
length, which reaches its maxima in late winter and in summer. In general,
a longer edge simply implies on average a larger area where forecast and
observations can disagree.

The ECMWF system achieves the largest skill in late summer, when ac-
tual predictions remain for all the lead times much better than climatological
forecasts, which exhibits particularly low skill in this period (Fig. , top
left). A possible explanation for this is that around September the uncer-
tainty in the ice-edge location is the largest due to higher mobility of the

ice. However, the ECMWF forecast system is able to capture a relatively
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Figure 3.2: Skill in terms of the SPS of individual forecast systems in predicting
the Arctic sea ice edge as a function of the time of the year (target date) and
for six different lead times (see legend). Results have been averaged over the
common reforecast period 1999-2010. Note that Day 60 is missing for NCEP
and ECMWEF (both versions) due to their shorter lead time ranges, and that
Initial Time corresponds to Day 1 for all systems except NCEP and MF where
it corresponds to Day 2 for technical reasons. SPS = Spatial Probability Score;
S2S = Subseasonal to Seasonal; NCEP = National Centers for Environmental
Prediction; CMA = China Meteorological Administration; MF = Météo-France;
ECMWEF = European Centre for Medium-Range Weather Forecasts; UKMO =
UK Met Office; KMA = Korea Meteorological Administration.

large fraction of that variability and therefore the forecast error is not larger
around September than at other times of the year. Lower relative skill is
found from October through July; during this time of the year only short-
term forecasts out to ~18 days achieve meaningful skill compared to the

climatological benchmark.

The error components provide further insights into the performance of the
ECMWF forecast system. An evident feature is a peak in SPS in July for
short lead times (Initial, Day 8 and Day 18) (Fig. 3.2, ECMWF). This reflects
a less accurate initialization of the ice edge compared to the rest of the year.
The O,U error decomposition (Fig. reveals that the peak is associated
with a development of a substantial model bias: The initial position of the
ice edge is systematically underestimated (O ~ 0% and U ~ 100%) from
July to October.

Interestingly, the forecasts less accurately initialized in July produce com-
parably skillful long-range (day 45) predictions for late summer, with an ap-
proximate balance between O and U (O =~ 40% and U ~ 60%, Fig. and
the ME dominating over the AEE (ME ~ 70% and AEE ~ 30%, Fig.[B.3). A
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possible reason for this apparent contradiction is that the skill in late Septem-
ber, which marks the beginning of the freezing season, is related to sources
of predictability residing in components of the climate system other than
the sea ice. For example, the heat content stored in the surface ocean could
influence the sea ice edge position in the early freezing season (Blanchard-
Wrigglesworth et al. (2010); Sec. [B.4). The underestimation of the initial
ice edge in the ECMWF system continues until late September, affecting
the forecasts at longer lead times in October. The striking transition at the
beginning of the freezing season, when the underestimation and the absolute
extent error components start to dominate, hints at a delayed onset of the
ice growth season in the ECMWF system.

A similar seasonal cycle as for ECMWF can be found for UKMO, KMA
and NCEP, at least for forecasts out to 818 days, which show still some
skill. For longer lead times (beyond day 18), UKMO and KMA show a rapid
error growth in August and September. The decomposition of the forecast
error reveals that this deterioration of skill is associated with the develop-
ment of a substantial model bias that is reflected by an underestimation
of the integrated Arctic sea ice extent (O &~ 10% and U ~ 90%, Fig. [B.2,
KMA and UKMO). The NCEP system exhibit notable differences in how
the initially similar imbalances evolve with lead time (Fig. B.2, NCEP).
In particular, the dominance of overestimation in January and February
increases, and an initially balanced state in August and September turns
overestimation-dominated with lead time, pointing to positive model biases
for sea ice extent during these months. In contrast, a rapid transition from
overestimation-dominated to underestimation-dominated errors around the
end of September hints at a delayed onset of the ice growth season in the
model, similar as in the ECMWF system.

The CMA system, which is outperformed by the climatological bench-
mark for all lead times and times of the year, exhibits particularly large er-
rors from August to October (Fig. , CMA). From July to September the
skill decreases (i.e., the SPS increases) with lead time, implying that very
large initial errors during this part of the year are amended over the course
of the forecast model integration towards a less unrealistic state. Further-
more, the CMA system considerably overestimates the Arctic sea ice extent
from November to June, and underestimates the extent even more strongly
from July to October (Fig. CMA). Moreover, the CMA system features

a series of negative SPS spikes in spring; the cause of these can be tracked
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down to a single forecast bust associated with an erroneous initialisation on
25 March 2007.

The MF system is approximately as skillful as the climatological bench-
mark from October to April, with only a weak dependence on lead time
(Fig. , MF). During the melting season from May to September, how-
ever, the MF system is less skillful and exhibits large initial errors that are
slightly amended with growing lead time. Errors in long-term prediction in
September are dominated by an underestimation of the pan-Arctic sea ice
cover, whereas biases play a minor role in the MF system at other times of
the year. This suggests that a more accurate initialisation of the MF sys-
tem might already be sufficient to improve ice-edge forecasts of this system

considerably.

3.4.3 The benefit of using a more realistic representa-

tion of sea ice and ocean

ECMWF updated its operational forecast system in November 2016. Until
then, sea ice conditions were determined based on the persistence of the ini-
tial conditions for the first 15 forecast days, followed by a relaxation towards
average sea ice conditions observed during the five years preceding the fore-
cast target time (ECMWEF Pres.). The change to a more advanced approach,
in which sea ice dynamics and thermodynamics are explicitly represented by
a sea ice model, provides a unique opportunity to study the impact of this
critical development of the forecast system. Note that the system update also
included an increase of the ocean model resolution from 1°to 0.25°. For our
assessment we exploit the fact that reforecasts for 1999-2010 are available for
both versions of the ECMWF system. Figure illustrates recent forecasts
from the two ECMWF system versions in comparison with the observed sea
ice edge derived from different passive-microwave products (OSI-SAF, 2016;
Spreen et al., 2008).

The accuracy of the ice-edge location in the initial conditions is similar for
the two versions of the ECMWF system; with increasing lead time, however,
the version with explicit sea ice physics included quickly outperforms the
older version with simple sea ice treatment (Figs.[3.1land[3.2). This highlights
that investments in forecast system development can lead to major advances
in predictive skill.

Not surprisingly, using persistence, even for short lead times, leads to
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an overestimation of sea ice during the melting season from April to August
and an underestimation during the growing season from October to February
(Fig. B.2, ECMWF Pres., dark and light blue lines). Around day 18 of the
forecasts, the older version of the ECMWF system exhibits an intermittent
increase in skill that is a result of the gradual transition from initial-state
persistence towards average conditions of previous years (Fig. . In fact,
the temporary decrease of the SPS from day 19 to day 22 suggests that
the older version could have benefited from an earlier transition towards

climatological sea ice fields.

3.4.4 Case study: the summer of 2007

Some of our main results can be further illustrated by considering subsea-
sonal sea ice forecasts for the exceptional summer of September 2007, which
was the first in a series of summers with anomalously low Arctic sea ice ex-
tent. Not surprisingly, the climatological forecast clearly overestimates the
ice extent in large parts of the Arctic (Fig. . The ECMWF system clearly
captures the observed sea ice edge in its 30-days forecast. The ECMWEF en-
semble spread appears reasonable, with probabilities transitioning smoothly
from 0 to 1 along the observed ice edge. This indicates that the ensemble is
reliable, that is, neither under- nor over-dispersive. In contrast, the NCEP
forecast, although clearly more skillful than the climatology, is overconfident
regarding the ice edge location, with probabilities transitioning sharply from
0 to 1 in disagreement with observed ice edge. The UKMO and KMA systems
produce very similar forecasts, including a region at about 170°W where the
amount of sea ice is strongly underestimated, also confirming the similarity of
the systems. The CMA model is a clear outlier in the sense that initialization
and model errors lead to the complete absence of Arctic sea ice during this
time of the year. The MF forecast is characterised mostly by overestimation
of the ice extent in the Siberian sector, combined with an underestimation
along eastern Greenland. This misplacement suggests that the MF system
does not capture the particularly high sea ice transport trough Fram Strait
which occurred in summer 2007. In this specific year, the persistence bench-
mark provides a better representation of the September ice edge than other
empirical schemes based on the climatological sea ice state (ECMWF Pres.
and the climatological benchmark forecast). This suggests that the use of the

climatological benchmark has particularly pronounced drawbacks in unusual
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years such as 2007, which are more common in a rapidly changing climate.

ECMWF UKMO KMA
Day 30 - 2007.09.15 Day 30 - 2007.09.15 Day 30 - 2007.09.15
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Figure 3.3: 30-day forecasts for 15 September 2007 of the sea ice probability
(probability that sea ice concentration exceeds 15%) as obtained from different
forecast systems and from climatological and persistence benchmarks. The ob-
served sea ice edge (15% contour of OSI-SAF sea ice concentration) is also shown
(red contour). ECMWF = European Centre for Medium-Range Weather Fore-
casts; UKMO = UK Met Office; KMA = Korea Meteorological Administration;
NCEP = National Centers for Environmental Prediction; CMA = China Meteo-
rological Administration; MF = Météo-France.
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3.5 Discussion

This paper provides the first overview of the subseasonal skill of state-of-the-
art coupled forecast systems in predicting the sea ice edge in the Arctic. By
exploiting the recently established S2S database, we find a surprisingly large
range of skills with some of the systems showing no skill at all, even at short
weather time scales, and the best system producing skillful forecasts up to
45 days in advance. The fact that prediction skill is largest in late summer
suggests that useful long-range forecasts can be provided to stakeholders

during a time of the year when marine operations peak.

Our analysis of error components has revealed that seasonally dependent
model biases play a critical role. This calls for dedicated efforts to improve
the realism of coupled models in the Arctic, with the ultimate aim of reduc-
ing systematic model errors. Bias correction could be a means to improve
real-time forecasts. In fact, a method specifically designed to bias-correct
ice-edge forecasts has been recently proposed (Director et al., 2017), and
the reforecasts needed for bias correction are available in the S2S database.
However, the size of the biases in some of the models, which are comparable
in size or even larger than the anomalies one would like to predict, suggests

that non-linearity may be an issue.

The large differences in the accuracy of the initial conditions for sea ice
between the systems is related to the way how the forecasts are initialized,
that is, the way how observations are assimilated into the coupled models.
A major difference between the CMA and MF systems and the other (more
skillful) systems is that the former two systems do not directly assimilate any
sea ice observations into their models, unlike the other systems that assimi-
late sea ice concentration. In principle, one could have expected to see some
skill also for the CMA and MF systems because (i) they do assimilate other
ocean variables that affect the sea ice, in particular sea-surface temperature
(SST), and (ii) the evolution of the atmosphere, which largely drives sea ice
anomalies, is constrained through the assimilation of atmospheric observa-
tions. However, our results indicate that these aspects are not sufficient to
generate realistic sea ice initial states, and that direct assimilation of sea ice

observations is required.

Even the systems with a more accurate initialisation of sea ice (ECMWF,
UKMO, KMA, and NCEP) exhibit considerable ice-edge initial errors that
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amount to about half of the error of the climatological benchmark. This
agrees well with the assessments of the Arctic sea ice cover in reanalyses by
Chevallier et al. (2016) and Uotila et al. (2018), who found a substantial
spread in the sea ice edge position between reanalyses, particularly in late
summer. Several mechanisms could contribute to the initial error: one is that
adjustments of sea ice concentrations based on other assimilated variables
(in particular SST) to obtain more consistent states introduce inaccuracies
in the ice-edge location. Constraints related to delays in the availability
of observational sea ice products might also contribute to the initial errors,
although it is not obvious whether such constraints applying to real-time
operations are also an issue for the reforecasts.

We conclude that the accuracy of sea ice initial states needs further re-
search and will be critical to advance the field of Arctic sea ice forecasting on
subseasonal time scales. While for short-range summer predictions (below 10
days) or subseasonal winter predictions a correct initialization of the sea ice
concentration field might be sufficient to achieve skillful forecasts of the ice
edge, for longer timescales the role of the sea ice thickness initialization will
be crucial, especially during the melting season. In this regard, new satellite
observational products have the potential to improve sea ice initial conditions
considerably. Of particular interest are, for example, sea ice thickness obser-
vations from multiple instruments, with a proven potential to help constrain
sea ice initial states (Mu et al., 2017; Day et al., 2014).

The sea ice prediction is a central element of major international efforts
such as the Polar Prediction Project along with its flagship activity, the Year
of Polar Prediction (Jung et al., 2016), suggesting that there is an opportunity
for resource mobilization and international coordination that promises immi-
nent progress. This factors, and the already achieved progress documented
by our analysis, indicate that the prospects for subseasonal prediction of

Arctic sea ice are bright.
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4.

Predictability of Antarctic
sea ice edge on subseasonal

time scales!

Abstract

Coupled subseasonal forecast systems with dynamical sea ice have
the potential of providing important predictive information in polar
regions. Here, we evaluate the ability of operational ensemble predic-
tion systems to predict the location of the sea ice edge in Antarctica.
Compared to the Arctic, Antarctica shows on average a 30% lower
skill, with only one system remaining more skillful than a climatolog-
ical benchmark up to ~30 days ahead. Skill tends to be highest in
the west Antarctic sector during the early freezing season. Most of the
systems tend to overestimate the sea ice edge extent and fail to capture
the onset of the melting season. All the forecast systems exhibit large
initial errors. We conclude that subseasonal sea ice predictions could
provide marginal support for decisionmaking only in selected seasons
and regions of the Southern Ocean. However, major progress is possi-
ble through investments in model development, forecast initialization

and calibration.

!Chapter {4 has been published in the journal ‘Geophysical Research Letters’ by
Zampieri et al. (2019) under the title ‘Predictability of Antarctic Sea Ice Edge on Sub-
I downloaded and analyzed the S2S sea-ice forecasts and the
OSI-SAF sea-ice concentration observations. H. F. Goessling, T. Jung, and I participated
in the discussion of the results. I prepared the manuscript with the contribution of all

seasonal Time Scales’.

co-authors.
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4.1 Introduction

Reliable predictions of the sea ice edge location are becoming increasingly im-
portant to ensure the safety of human activities at both poles. Furthermore,
providing skillful predictions has been recognized as an important scientific
challenge that will need to be addressed in the coming years (Alley et al.,
2019). Previous efforts of the research community have focused mostly on
the Arctic, partly due to the higher economic interests that are at stake and
due to its proximity to highly-populated regions. While the number of stake-
holders that requires sea ice predictions in the Arctic is relatively large and
ranges from shipping companies to tourism (Stephenson et al., 2011; Emmer-
son & Lahn, 2012), Antarctic sea ice predictions in the past were relevant
mostly for logistical aspects related to research activities. However, in recent
years the tourism industry is flourishing also around Antarctica (Eijgelaar
et al., 2010), and the presence of the fishing industry in the Southern Ocean
is also expected to increase (Cheung et al., 2010; Smetacek & Nicol, 2015),
calling for reliable Antarctic sea ice forecasts to manage the risks that come

with enhanced activities.

Sea ice forecasting is not only relevant at short “weather” timescales (fore-
casts up to 10 days ahead), but also at subseasonal and seasonal timescales
(forecasts from weeks to months ahead). The work by Chen & Yuan (2004)
is one of the first attempts at providing seasonal predictions of the Antarc-
tic sea ice cover using a statistical approach. Holland et al. (2013) evaluate
the mechanisms of Antarctic sea ice predictability. More recently, Ordonez
et al. (2018) compared sea ice predictability between the Arctic and Antarc-
tic. Both these studies are based on climate models as research tools. The
systematic investigation of operational sea ice prediction systems, with the
assimilation of the observed sea ice state and possibly ensemble-based, is still

at a very early stage.

While the Sea Ice Outlook (Stroeve et al., 2014; Blanchard-Wrigglesworth
et al., 2017) has established a framework to build and evaluate Arctic late-
summer sea ice prediction capabilities in 2008, a similar exercise for the
Antarctic region, targeting the February sea ice minimum (SIPN South—
2017-2019), has been initiated only very recently (Massonnet et al., 2018,
2019), that is almost ten years later. In fact, the international scientific

community has recognized the need to advance the field of sea ice prediction
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at both poles simultaneously (Jung et al., 2016; Goessling et al., 2016¢). In
this sense, the present study contributes to closing an important knowledge
gap.

The recently established database of the Subseasonal to Seasonal (S2S)
Prediction Project (Vitart et al., 2012, 2016) has proven to be valuable for
evaluating the predictive skill of operational S2S ensemble forecast systems
in the Arctic (Zampieri et al., 2018; Wayand et al., 2019). The availability
of comprehensive sets of both reforecasts and real-time forecasts allows for
a robust assessment of the forecast skill over a relatively long time period
(> 10 years), covering the whole seasonal cycle. Here, we extend the analysis
by Zampieri et al. (2018) for the Arctic, to Antarctica, addressing the two

following guiding questions:

e Are fully coupled forecasting systems in the Antarctic better than

observation-based benchmark forecasts in predicting the sea ice edge?

e Does the predictive skill of dynamical forecast systems differ between

the two hemispheres?

Thereby, the goal is to establish a reference against which future progress in
Antarctic sea ice prediction can be quantified. To our knowledge, this study
is the first assessment of the S2S forecast systems in the Antarctic, especially
when it comes to focusing on the sea ice edge position, which is a crucial
variable for navigation and for planning human activities in the Southern

Ocean.

4.2 Data and Methods

The sea ice forecasts are verified against observations using a verification
metric suitable for quantifying the accuracy of the sea ice edge location.
The resulting forecast error is compared to that of observation-based bench-
mark forecasts to assess the predictive skills of the forecast systems and to
understand associated shortcomings and model biases. This section briefly
describes the main features of forecasts, observations, verification metrics
and benchmark forecasts used in this study. A more detailed description of
the methods, forecasts and observations can be found in the work of Zampieri

et al. (2018), including its supplements.
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4.2.1 Forecasts and observations

The ensemble sea ice forecasts considered here belong to the S2S Database (Vi-
tart et al., 2016), which provides sea ice concentration as a standard output
variable. Here we focus on the six forecasting systems that employ a dynam-
ical sea ice model in their coupled model: the National Centers for Environ-
mental Prediction (NCEP), China Meteorological Administration (CMA),
Météo-France (MF), European Centre for Medium-Range Weather Forecasts
(ECMWF), UK Met Office (UKMO) and the Korea Meteorological Admin-
istration (KMA) forecast systems. Additionally, we also consider the old ver-
sion of the ECMWF forecast system in which the sea ice concentration was
prescribed based on combining initial sea ice fields with relaxation towards
climatological fields (ECMWEF Pres.), a method that could be described as
damped persistence. The technical features of these forecast systems are
quite diverse: they differ in terms of initialization frequency (from daily to
monthly), ensemble size (from 3 to 15 ensemble members), forecast length
(from 44 to 60 days) and assimilation strategy. Only some of the systems
directly assimilate sea ice concentration from observations and none of them
assimilates sea ice thickness. Here, we consider the raw forecast data without
calibration (bias/drift correction). The S2S Model Description?| includes a
detailed description of the S2S forecast systems.

The observations used to verify the forecasts are daily sea ice concentra-
tion fields retrieved from passive-microwave satellite measurements (OSI-450
— OSI-SAF (2016); Lavergne et al. (2019)). The sea ice edge has been defined
as the 15% sea ice concentration contour line for both the forecast ensemble
members and the observations. The verification results are averaged over
a 12-years reforecast period (1999-2010) common to all of the S2S forecast
systems. All the analyses have been conducted with the sea ice observa-
tion fields interpolated to the 1.5° x 1.5° grid on which the S2S forecasts
are provided. A common conservative land-sea mask has been obtained by
combining the land-sea masks of all the models and observations based on
the following criteria: if a grid cell is classified as land in one forecast system
or in the observations, such classification is extended to all the other forecast
systems, thus excluding that grid cell from all the analyses. The verification
has been constrained to this land mask to allow a fair comparison between

the different systems.

2Ihttps ://software.ecmwf . int/wiki/display/SQS/Models|
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4.2.2 Verification metrics

The basic verification metric employed in this study is the Spatial Probability
Score (SPS) (Goessling & Jung, 2018), which is defined as follows:

SPS = /A(Pf(:c) — P,(x))*dA. (4.1)

Py and P, are the local sea ice probabilities (SIP: the ensemble-based prob-
ability of sea ice concentration being above a certain threshold—here 15%
if not differently stated) of respectively forecast and observation at location
x. A property of the SPS that makes this metric suitable for verifying en-
semble forecasts is its ability to deal directly with probabilities, which allows
avoiding degrading probabilistic forecasts to deterministic ones. Since the
sea ice observations considered here are deterministic and not probabilistic,
their SIP simply consists of binary fields with 0 (no ice) and 1 (ice-covered
cell). A is the integration domain, which is the northern hemisphere for the

Arctic forecasts and the southern hemisphere for Antarctic forecasts.

Unlike the pan-Arctic sea ice extent, which measures only the total sea
ice coverage, the SPS is designed to capture the accuracy of the sea ice spa-
tial distribution and thus that of the sea ice edge location. Furthermore, the
SPS can be decomposed into an Overestimation component (0 — SPS fraction
caused by a local overestimation of the ice edge extent) and an Underestima-
tion component (U — SPS fraction caused by a local underestimation of the
ice edge extent), which provide additional insight into the type of the fore-
cast error (Goessling et al., 2016a; Zampieri et al., 2018). Finally, the SPS
can be also normalized (Norm. SPS) if divided by the length of the sea ice
edge (Goessling et al., 2016a; Melsom et al., 2019; Palerme et al., 2019). The
Norm. SPS provides an estimate of the average distance between the (prob-
abilistic) forecast edge and the (deterministic) observed edge. An advantage
of this version of the metric is that it is easily understandable by potential
forecast users. In this study, the length of the observed climatological sea
ice edge, defined as the median of the climatological SIP (Fig. [C.1)), is used

as normalization factor to assess longitudinal variations in Antarctic sea ice

forecast skill (Sec. 4.3.3).
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4.2.3 Benchmark forecasts

The predictive skill assessment of the forecast systems is based on the follow-
ing approach: if for a given lead time the forecast SPS is lower than the SPS
of some observational-based benchmarks, we consider this system to have
predictive skill for that lead time. We employ two benchmark forecasts as
a reference to assess the predictive skills of the S2S forecast systems: 1. a
probabilistic climatological forecast (CLIM) based on the observed sea ice
conditions of the 10 years previous to the forecast target time at the same
time of the year and 2. a deterministic persistence forecast (PERS) based

on the observed sea ice state at the forecast initial time.

4.3 Results

4.3.1 Comparison of the annual-mean forecast skills at

the two poles

The annual-mean forecast skills in predicting the Arctic and Antarctic sea
ice edge location are shown in Fig. in terms of the SPS. In the following,
we first focus on the Antarctic and then compare the predictive skills in the
two hemispheres.

The ECMWF system (yellow line) is overall the most skillful system when
it comes to predicting the Antarctic ice edge location. The system outper-
forms the CLIM and PERS benchmark forecasts from about day 5 to day
~30. The UKMO and KMA forecast systems (green and purple lines), which
share the same model configuration, exhibit virtually identical results and
show marginal predictive skill from day 8 to day 15. The old version of the
ECMWEF forecast system (ECMWEF Pres. — magenta line) is less skillful than
the benchmarks at all lead times and is characterized by a non-monotonic
growth of the forecast error. The non-monotonicity is caused by the blend-
ing of different observations: first, the initial sea ice conditions are persisted
up to day 15 of the forecast, and afterwards, the sea ice concentration is
relaxed towards the climatological state based on the observations of the 5
years before the forecast target date.

The NCEP forecast system (light blue line) shows a rapid growth of the
forecast error and has on average no predictive skill over the benchmarks.

The wide uncertainty band is the result of large inter-annual variability of
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Figure 4.1: Annual-mean forecast skill in predicting the sea ice edge location in
terms of the SPS of the different S2S systems (colored-solid lines), the climatolog-
ical benchmark (constant gray-solid line) and the persistence benchmark (growing
gray-solid line) as a function of forecast lead time for the Antarctic (left) and Arctic
(right) regions. Note the different scales for the SPS. The averaging is performed
over the common 12-years reforecast period (1999-2011). The shading and dashed
lines indicate ~95% confidence intervals, based on standard errors obtained from
the twelve individual annual means. SPS = Spatial Probability Score; S2S = Sub-
seasonal to Seasonal; NCEP = National Centers for Environmental Prediction;
CMA = China Meteorological Administration; MF = Météo-France; ECMWEF =
European Centre for Medium-Range Weather Forecasts; UKMO = UK Met Office;
KMA = Korea Meteorological Administration.

the NCEP forecast error. The MF forecast system exhibits an error 30%
larger than CLIM already at initial time, growing further with lead time.
Finally, the CMA forecast system (not visible in Fig. because out of
range for all lead times) is affected by strong biases related to the lack of
assimilation of sea ice observations as well as to significant model biases in
the polar regions. In the Antarctic, the ice edge extent is almost always and
everywhere underestimated (Fig. , pointing to a wide-spread warm bias
in the CMA system.

The results indicate some similarities between the two hemispheres. Firstly,
the model ranking in the Antarctic is comparable to that in the Arctic. The
only exception is the NCEP forecast system, which shows a degradation of its
predictive skill in the Southern Ocean relative to the skills of the other sys-
tems and benchmarks. With the exception of April and May, the NCEP sea
ice edge extent tends to be overestimated in most places (Fig. [4.3)), pointing
to a prevailing cold bias. Since the same sea ice model physics are imple-

mented for both hemispheres, our results suggest that the NCEP forecast
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system would benefit from a more careful tuning of its parameters to match
better the observed state in the Southern Ocean. A second feature common
to the two hemispheres is the large initial error, which amounts to ~ 50%
of the CLIM error in the decently initialized systems (ECMWEF, UKMO,
KMA). As described in Zampieri et al. (2018), the initial error can have mul-
tiple sources, such as the adjustment of the sea ice edge to the sea surface
temperature during the data assimilation, employment of different sea ice
observations in the assimilation and verification phases and finally interpola-
tion errors due to the regridding of the model and observational data to the
coarse S52S grid. Understanding the relative contributions of different sources
to the total initial error is challenging and beyond the scope of the present

study.

Selected forecasts users might be interested in the verification of differ-
ent sea ice concentration contours rather than the usual 15% threshold that
defines the ice edge. Fig. shows a moderate error reduction when consid-
ering a higher threshold (50%), both for the forecast systems (only ECMWF
is displayed) and for the climatological benchmark. This leads to a slight
increase of the predictive skill at longer lead times (the forecast loses predic-
tive skills at day 39 instead of day 37) that could be explained by a reduced
sensitivity of the compact ice to weather events. Moreover, we observe a
substantial reduction of the initial error (~40%), suggesting that this error
is in part caused by a misrepresentation of dispersed sea ice in the marginal

ice zone.

Finally, an obvious difference between the annual-mean forecast errors in
the two hemispheres is their overall magnitude. The Antarctic SPS is on
average x2.6 larger than the Arctic SPS. This difference is in part explained
by the fact that the Antarctic sea ice edge is on average x1.8 longer than
the Arctic one (Fig. . If one assumes errors in terms of ice edge dis-
tance to be regionally independent, then the forecast SPS would tend to be
proportional to the length of the edge. However, under this assumption, the
sea ice edge length difference can explain only ~70% of the hemispheric SPS
discrepancy, while the remaining ~30% reflects increased errors in terms of
ice-edge distance in the Antarctic. A way to account for variations in ice
edge length explicitly is to normalize the SPS with the ice edge length; such
an approach is taken in Sec. [4.3.3|
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4.3.2 Seasonality and components of the Antarctic fore-

cast error

One of the strengths of the S2S Database is the availability of forecasts all
year round for a period of time longer than a decade. This allows us to assess

seasonal variations of the forecast error.
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Figure 4.2: Skill in predicting the Antarctic sea ice edge location in terms of
the SPS of seven individual S2S forecast systems. The results have been averaged
over the common 12-years reforecast period (1999-2011). The SPS is displayed for
six different lead times (see legend) as a function of the target date (expressed in
days of the year). The different resolution with respect to the target date reflects
differences in the initialization frequency of the reforecasts. Note the different SPS
scale adopted for the CMA forecast system. SPS = Spatial Probability Score;
S2S = Subseasonal to Seasonal; NCEP = National Centers for Environmental
Prediction; CMA = China Meteorological Administration; MF = Météo-France;
ECMWEF = European Centre for Medium-Range Weather Forecasts; UKMO =
UK Met Office; KMA = Korea Meteorological Administration.

The CLIM benchmark forecast exhibits seasonal variations of the SPS
that correlate well to the length of the sea ice edge (Fig. , dashed curves;
compare with Fig. . The SPS reaches its minimum value in March,
immediately after the annual sea ice extent minimum and when the sea ice
edge is the shortest. The CLIM SPS slowly grows during the following months
as the ice edge becomes longer and stretches further to the north. The CLIM
SPS maximum is finally reached during the melting season in November and
December when the Antarctic sea ice edge is the longest.

In general, the S28S forecast systems exhibit similar seasonal variations as
the CLIM benchmark, in particular at the initial time. The only exception
is CMA, which, as already mentioned, is affected by strong model and data
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Figure 4.3: Relative contributions to the Integrated Ice Edge Error of the
ensemble-median ice edge from Overestimation(O) versus Underestimation (U) of
individual S2S systems as a function of the time of the year (target date) and for
six different lead times (see legend). Results have been averaged over the common
reforecast period 1999-2010. SPS = Spatial Probability Score; S2S = Subsea-
sonal to Seasonal; NCEP = National Centers for Environmental Prediction; CMA
= China Meteorological Administration; MF = Météo-France; ECMWEF = Eu-
ropean Centre for Medium-Range Weather Forecasts; UKMO = UK Met Office;
KMA = Korea Meteorological Administration.

assimilation related biases that we do not further discuss. The ECMWF
seasonality is in line with the CLIM benchmark, with the forecast error ap-
proaching the climatological error with increasing lead time. Only during
the second half of the freezing season (May to August) the forecast errors
at longer lead times significantly exceed the CLIM error due to an overall
overestimation of the sea ice edge extent (Fig. — ECMWF). The UKMO
and KMA systems show a similar freezing-season bias, also linked to an over-
estimation of the ice edge extent. These two systems exhibit an additional
degradation of the predictive skills during the melting season (December and
January, Fig. for lead times longer than 18 days. This suggests that
the two systems have difficulties transitioning into the sea ice melting regime
when initialized during a maximum-extent phase. The NCEP forecast system
is characterized by a similar bias that is largest during the melting season.
Specifically, NCEP strongly overestimates the ice edge extent during most

of the year, except in the first two months of the freezing season (March to

May — Fig. [4.3).

54



4.3. RESULTS

4.3.3 Regional skill in terms of ice edge distance

Fig. displays the longitudinal variation of the forecast and CLIM bench-
mark errors in terms of the Norm. SPS. In agreement with our previous
findings, only the ECMWF forecast system is still partially skillful after one
forecast month. The forecast error exceeds the error of the climatological
benchmark after 32 forecast days in the east Antarctic sector (from 80°E
to 170°E; Fig. and even earlier in the Haakon VII Sea. However, the
system is skillful up to day 44 in some portions of the West Antarctic sector
(Ross, Amundsen and Weddell Seas), where the Norm. SPS remains up to
40km lower compared to CLIM. The other forecast systems lose their pre-
dictive skill much faster and none of them is skillful at the monthly range
in any location around Antarctica (Fig. . The very similar UKMO and
KMA systems are on average skillful up to day 18 (green lines lower than
CLIM), whereas the remaining systems lose their predictive skill before day
8 (ECMWF Pres. and NCEP) or are not even skillful at initial time (MF
and CMA).

The skill in predicting the sea ice edge location differs substantially among
the S2S forecast systems. However, the analysis of the annual-mean longi-
tudinal variation of the forecast error reveals also some features common
to multiple systems. The forecasts are overall less skillful (relative to the
climatological benchmark) in the eastern Antarctic [0°E;180°E] than in the
western Antarctic [—180°E;0°E]. This does not necessarily imply that the
models are particularly good at capturing the evolution of the sea ice edge in
the West Antarctic regions, but rather that the climatological forecasts are
more accurate in the eastern sectors because of a lower sea ice edge variabil-
ity. Both CLIM (Fig. 4.4} gray-dashed line) and the S2S forecasts (coloured
lines) exhibit larger errors in terms of ice edge distance (Norm. SPS) in the
Ross and Weddell Seas, suggesting that formulating accurate subseasonal sea
ice edge predictions in these regions is challenging because of the high com-
plexity and variability of the local climate system. Our results agree with
Massonnet et al. (2018) who find large sea ice area prediction uncertainties

in the Weddell and Ross Seas for late summer.
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Figure 4.4: Annual-mean sea ice edge forecast error in terms of the Norm. SPS
of seven individual S2S forecast systems and of the CLIM benchmark as a function
of longitude. The results are averaged over the common 12-years reforecast period
(1999-2010) and displayed for 6 lead times (see legend). The longitude domain
[—180°E, 180°E] is divided into 24 equally-spaced bins. Note the different Norm.
SPS scales adopted for the forecast systems. Geographical names of the main
oceanic sectors and ice shelves are indicated in respectively black and blue in
the upper-left plot. Norm. SPS = Normalized Spatial Probability Score; NCEP
= National Centers for Environmental Prediction; CMA = China Meteorological
Administration; MF = Météo-France; ECMWEF = European Centre for Medium-
Range Weather Forecasts; UKMO = UK Met Office; KMA = Korea Meteorological
Administration.
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A further error peak can be observed in the west Haakon VII Sea (0°E to
40°E). Unlike the previous error peaks in the Ross and Weddell Seas (fea-
tured both in the CLIM benchmarks and the S2S forecasts), the west Haakon
VII Sea error peak is more pronounced for the forecast systems (ECMWF,
ECMWEF Pres., UKMO, KMA and NCEP) than for the CLIM benchmark.
The NCEP system displays a particularly fast error growth with lead time
in this region. In contrast, in the more skillful systems (ECMWEF, UKMO
and KMA) this regional error peak appears to be caused mainly by accord-
ingly large initial errors (> 100 km). More generally, the Antarctic average
initial error in these systems is considerable (>~ 70km), suggesting again
that investments into the sea ice initialization procedure appear promising

to enhance predictive capacity.

4.4 Discussion

This study provides the first thorough assessment of the skill of current opera-
tional ensemble forecasting systems in predicting the location of the Antarc-
tic sea ice edge on subseasonal timescales. We find that only one of the
considered forecast systems outperforms two benchmarks (persistence and
climatology) for a wide range of lead times, namely from about 5-30 days.
On average, the other systems perform worse than either persistence or cli-
matology at any lead time considered here. The forecasts are in general more
skillful in the west Antarctic sector than in the east Antarctic sector, where
the climatological benchmark forecast provides a more accurate estimate of
the sea ice edge location. In particular, the ECMWF forecast system out-
performs the climatological benchmark forecast in the Ross, Amundsen and
Weddell Seas, where predictive skill up to 44 days into the forecast is found.

We identify two types of errors that are common to several forecast sys-
tems: (i) a “freezing-season bias” that affects ECMWEF, UKMO, KMA and
MF and (ii) a “melting-transition bias” that affects UKMO, KMA and NCEP
(Balan-Sarojini et al., 2019; Blockley & Peterson, 2018). Both are caused by
a systematic overestimation of the sea ice edge location (i.e. predicted to be
too northward). While the first bias can be explained by a misrepresentation
of thermodynamical processes in the coupled models, with the oceanic sur-
face cooling and freezing too rapidly, the second bias could be linked to an

initial overestimation of the sea ice thickness, which would delay the melting
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onset and thus the ice edge retreat in spring. At the moment we are not able
to test this last hypothesis because the S2S Database does not include sea
ice thickness as a standard output variable.

The hemispheric comparison reveals that differences between the Arctic
and Antarctic cannot be explained by differences in the sea ice edge length.
This holds not only for the S28S forecast systems but also for the climatological
benchmark forecast, suggesting that larger model biases in the Southern
Ocean are not the major cause for this difference, but rather that this is
due to an intrinsic property of the Antarctic climate system. The Antarctic
forecast skill degradation points to a higher variability of the Antarctic sea
ice edge at subseasonal timescales compared to the Arctic. Similar differences
in skill between the hemispheres have been found for atmospheric predictions
in polar regions and beyond (Jung & Matsueda, 2016; Bauer et al., 2015).

Given the relatively large forecast errors—ranging from 50 km to 250 km
even for the best forecast systems—sea ice edge forecasts with state-of-the-
art operational systems need to be used carefully. However, there might be
some useful applications already. One example relates to the medium-term
planning of ship tracks to optimize the provision of research stations in the
Antarctic continent during the brief Antarctic summer and at the beginning
of the freezing season. Furthermore, the probabilistic nature of the S2S
forecasts could be beneficial for identifying the possibility of extreme sea ice
conditions.

Our results suggest that current sea ice edge forecast capabilities for the
Southern Hemisphere are lagging behind those for the Northern Hemisphere.
Nevertheless, we anticipate that major improvements in forecast models and
initialization techniques, together with further in-situ observations to better
understand the physical processes at the atmosphere-sea ice-ocean interfaces,
will render Antarctic sea ice forecasts a valuable resource for guiding opera-

tional decision-making in the Southern Ocean.
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Impact of sea-ice model
complexity on the performance
of an unstructured sea-ice/ocean
model under different

atmospheric forcings

!Chapter 5| corresponds to a manuscript under review in the ‘Journal on Advances
in Modelling Earth Systems’ (at the time this this was written) with the title ‘Impact
of sea-ice model complexity on the performance of an unstructured sea-ice/ocean model
under different atmospheric forcings’. 1 implemented the single-column model Icepack
into the FESOM2 sea-ice and ocean model and I formulated the software for the Greens’s
function optimization and for the analysis of the simulation results. I downloaded and
processed the ERAS atmospheric forcing while F. Kauker did the same for the NCEP
product. J. Froehle worked on the visualization of some model results and observations.
H. Sumata developed the scripts for the cost function computation and processed the
sea-ice observations used in the optimization procedure. I prepared the manuscript with
contributions from all co-authors.
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CHAPTER 5. IMPACT OF MODEL COMPLEXITY
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Abstract

We have equipped the unstructured-mesh global sea-ice and ocean
model FESOM2 with a set of physical parameterizations derived from
the single-column sea-ice model Icepack. The update has substan-
tially broadened the range of physical processes that can be repre-
sented by the model. The new features are directly implemented on
the unstructured FESOM2 mesh, and thereby benefit from the flex-
ibility that comes with it in terms of spatial resolution. A subset
of the parameter space of three model configurations, with increas-
ing complexity, has been calibrated with an iterative Green’s function
optimization method to test fairly the impact of the model update
on the sea-ice representation. Furthermore, to explore the sensitivity
of the results to different atmospheric forcings, each model configura-
tion was calibrated separately for the NCEP-CFSR/CFSv2 and ERA5
forcings. The results suggest that a complex model formulation leads
to a better agreement between modeled and the observed sea-ice con-
centration and snow thickness, while differences are smaller for sea-ice
thickness and drift speed. However, the choice of the atmospheric
forcing also impacts the agreement of FESOM?2 simulations and ob-
servations, with NCEP-CFSR/CFSv2 being particularly beneficial for
the simulated sea-ice concentration and ERAS for sea-ice drift speed.
In this respect, our results indicate that the parameter calibration
can better compensate for differences among atmospheric forcings in
a simpler model (i.e. sea-ice has no heat capacity) than in more energy

consistent formulations with a prognostic ice thickness distribution.



5.1. INTRODUCTION

5.1 Introduction

Sea-ice is a key component of the climate system (Dieckmann & Hellmer,
2010) and it plays a central role as a physical regulator of the energy ex-
change between atmosphere and ocean in polar regions (Doscher et al., 2014).
Furthermore, sea-ice represents by itself a platform where large ecosystems
thrive (Spindler, 1994), and it is a fundamental element in the lives of coastal
human communities in the Arctic (Cooley et al., 2020). Because of the strong
and rapid transformations that sea-ice has faced in recent years due to global
warming (particularly in the Arctic; Notz & Stroeve (2016)), there is an ur-
gent need to better understand and being able to quantify the physical and
biogeochemical mechanisms regulating the sea-ice system, to inform decision-
makers and various stakeholders. Reliable dynamical sea-ice models are fun-
damental tools for accurately predicting the evolution of sea ice at multiple

timescales, from days to centuries into the future.

In the past decades, there has been a constant development of more com-
plex and physically consistent sea-ice model formulations, summarized by
Hunke et al. (2010) and Notz (2012), and of which we give a brief overview
in Sec. 5.2.2. At the same time, the resolution of sea-ice and ocean mod-
els has increased due to the growing availability of computational resources,
and so has the resolution and quality of the atmospheric reanalyses used to
force the models. These developments, together with the growing availability
of more accurate sea-ice observations to constrain our models, have lead to
better sea-ice simulations. Multiple studies attribute a relevant role in im-
proving the sea-ice model performances to more realistic model formulations
(Vancoppenolle et al. (2009); Massonnet et al. (2011); Flocco et al. (2012);
Roach et al. (2018b), among others). However, in the framework of the Cou-
pled Model Intercomparison Project (CMIP), the SIMIP Community (2020)
(Sea Ice Model Intercomparison Prohect) shows that it is unclear to what
degree differences between CMIP6, CMIP5, and CMIP3 sea-ice simulations
are caused by better model physics versus other changes in the forcing. In the
field of subseasonal and seasonal sea-ice forecasting, simple dynamical mod-
els exhibit predictive skills comparable or even better than those of more
complex forecast systems (Zampieri et al., 2018, 2019), suggesting that the
yeartoyear variability, the skill of the atmospheric models, and the quality

of initial conditions dominate the variation in ensemble prediction success
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(Stroeve et al., 2014). In conclusion, to what extent the model complexity
impacts the quality of sea-ice simulations remains an open question always
evolving with our models (Blockley et al., 2020).

A key aspect to examine when assessing the relative performances of mul-
tiple model formulations is whether these are all appropriately tuned (Miller
et al., 2006). Because of an interdependency of model parameters and a lack
of comprehensive ice and snow observations, the model parameters are in
general underconstrained (Urrego-Blanco et al., 2016), and their systematic
calibration can substantially impact the quality of the simulations (Turner
et al., 2013b; Massonnet et al., 2014; Ungermann et al., 2017; Sumata et al.,
2019a; Roach et al., 2018a). Furthermore, acknowledging the substantial dif-
ferences between the reanalysis products used to force the sea-ice models in
stand-alone setups (Batrak & Miiller, 2019), we argue that the same model
configuration should be also optimized separately for different forcing con-
ditions. As shown by Miller et al. (2007), the behavior of a specific model
formulation can change substantially based on the forcing used.

Most of the relevant sea-ice parameterizations and modeling strategies de-
veloped over the years have been collected by the scientific community and
integrated into sophisticated sea-ice models, the most advanced and com-
plete of which is arguably CICE, (Hunke et al., 2020a). The CICE model is
distributed in combination with the Icepack column-physics package (Hunke
et al., 2020b) — a collection of physical parameterizations that account for
thermodynamic and mechanic sub-grid processes not explicitly resolved by
the models. Because of its modularity, Icepack can be conveniently imple-
mented in ocean and sea-ice models other than CICE. In this regard, this
study presents a new version of the Finite-volumE Sea ice-Ocean Model ver-
sion 2 (FESOM2; Danilov et al. (2017)) that exploits the capabilities of
the Icepack column physics package. As we describe in Sec. [5.2.2] the de-
velopment of the FESOM?2 sea-ice component has been mostly focused on
dynamical aspects, while the adopted sub-grid sea-ice parameterizations were
quite simple and outdated if compared to those implemented in other sea-
ice models. This resulted in a partially inconsistent physical formulation of
the standard FESOM2 model, caused for example by the missing represen-
tation of the sea-ice internal energy. The inclusion of Icepack in FESOM2
has substantially broadened the range of sea-ice physical processes that can
be simulated by the FESOM2 model, making it an ideal tool for answering

the scientific questions posed below.
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Based on the new FESOM2-Icepack implementation, we designed a set
of experiments to assess the impact of the sea-ice model complexity on the
quality of the sea-ice simulations. Ten parameters from three distinct model
setups are optimized with a semi-automated calibration technique and com-
pared to different types of sea-ice and snow observations. Because we deal
with a standalone ocean and sea-ice model (i.e. no coupling to an atmospheric
model) the calibration process is conducted separately for two different at-
mospheric reanalysis products used to force FESOM2. Based on the outcome
of the calibration and the resulting model performance, we try to address the

following questions:

1. Does a more complex and physically consistent formulation of the sea-
ice model lead to better sea-ice simulations given the resolution, cover-
age and uncertainty of satellite Earth Observations (EO) of the sea-ice

available today?

2. How does the impact of different atmospheric forcings on the sea-ice

model performance relate to the impact of model complexity?
3. Which sea-ice formulation can be calibrated more effectively?

The remainder of this paper is organized as follows: the method section
presents the standard (Sec. and Icepack (Sec. FESOM2 formula-
tions, followed by the theoretical description of the Green’s function approach
for the calibration of the model parameter space (Sec. . We then de-
scribe the experimental setups employed in the study and we present the
practical implementation of the calibration technique (Sec. , as well as
the observations used for constraining the parameter space and for validating
the model results (Sec. [5.2.5). The results section (Sec. describes the
impact of the parameter optimization on the model performances in terms
of cost function reduction. Furthermore, we explore the discrepancies of the
various optimized model configurations by comparing the simulated sea-ice
and snow state to different types of observations, and by linking this to
differences in the optimized model parameters. Finally, the computational
performances of three model setups is analyzed for assessing the sustainabil-
ity of more sophisticated, and thus computationally more demanding, sea-ice
setups for diverse modeling applications (Sec. .
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5.2 Methods

5.2.1 Standard sea-ice formulation in FESOM?2

Danilov et al. (2015b) describes in detail the numerical implementation of
the Finite Element Sea-Ice Model (FESIM), which is the standard sea-ice
component of FESOM2. Three alternative algorithms are available for solv-
ing the sea-ice momentum equation: a classical elastic-viscous-plastic (EVP)
approach coded following Hunke & Dukowicz (1997) plus two modified ver-
sions of the EVP solver: the modified EVP (mEVP; Kimmritz et al. (2015)),
and the adaptive EVP (aEVP; Kimmritz et al. (2016)). Three sea-ice tracers
are advected based on a finite element (FE) flux corrected transport (FCT)
scheme (Lhner et al., 1987): the sea-ice area fraction a;, and the sea-ice and
snow volumes per unit area, v; and v,. The thermodynamic evolution of sea
ice is described by a simple 0-layer model (i.e. the sea-ice and snow layers
have no heat capacity) that follows Parkinson & Washington (1979). The
interaction between the radiation and sea ice is mediated by four constant
albedo values (dry ice, wet (melting) ice, dry snow, and wet (melting) snow)
that respond to changes in the atmospheric near-surface temperature, thus
including an implicit description of the radiative effect of melt ponds during
the melting season. No incoming shortwave radiation penetrates through the

snow and sea-ice layers.

5.2.2 Icepack implementation in FESOM2

[cepack (Hunke et al., 2020b) — the column physics package of the sea-ice
model CICE — is a collection of physical parameterizations that account for
thermodynamic and mechanic sub-grid processes not explicitly resolved by
the hosting sea-ice model. The modular implementation of Icepack allows
the users to vary substantially the complexity of the sea-ice model, with
the possibility of choosing between several schemes and a broad set of ac-
tive and passive tracers that describe the sea-ice state. Similarly to FESIM,
Icepack can make use of a simple 0-layer sea-ice and snow thermodynam-
ics scheme (Semtner, 1976). However, two more sophisticated and energy
consistent multi-layer thermodynamics formulations, taking into account the
sea-ice enthalpy and salinity, are also available: the Bitz & Lipscomb (1999)

thermodynamics (BL99 hereafter), which assumes a temporally constant sea-
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ice salinity profile, and the “mushy layer” implementation, with a prognostic
sea-ice salinity description (Turner et al., 2013a). To account for the sea-ice
thickness variations typically observed at sub-grid scales, Icepack discretizes
the sea-ice cover in multiple classes, each representative of a sea-ice thick-
ness range, and describes prognostically the evolution of the Ice Thickness
Distribution (ITD) in time and space (Bitz et al., 2001). The processes lead-
ing to changes in the ITD are sea-ice growth and melt, snow-ice formation
(flooding), and mechanical redistribution (i.e. sea-ice ridging and rafting due
to dynamical deformation; Lipscomb et al. (2007)). In terms of the interac-
tion between sea ice and radiation, Icepack includes two more sophisticated
parameterizations in addition to a simple albedo scheme similar to that of
FESIM. In the “CCSM3” formulation, the surface albedo depends on the
sea-ice and snow thickness and temperature, and it is defined separately for
the visible and infrared portion of the spectrum. The main difference be-
tween this and the constant albedo approach is a reduction of the surface
reflectivity for thin sea-ice or snow. The even more sophisticated “Delta-
Eddington” formulation exploits the inherent optical properties of snow and
sea ice for solving the radiation budget (Holland et al., 2012), and it can be
combined with three explicit prognostic melt pond schemes (Holland et al.,
2012; Flocco et al., 2010; Hunke et al., 2013). Finally, the Icepack radiation
implementation allows the penetration of part of the incoming shortwave ra-
diation through snow and sea ice, leading to additional energy absorption in
the water column below the sea ice.

Icepack v1.2.1 has been implemented in FESOM2 and can now be used
as an alternative to the standard FESIM thermodynamic module. As the
standard FESIM implementation, the Icepack column-physics subroutines
run every ocean time step. All the Icepack variables are defined directly on
the FESOM2 mesh, ensuring an optimal consistency between the ocean and
the sea-ice components of the model. The inclusion of Icepack in FESOM2
required a revision of the calling sequence within the sea-ice model (Fig. ,
which now follows that of the CICE model (Hunke et al., 2020a). The coef-
ficients mediating the momentum and heat exchanges between atmosphere
and ice, previously constant in FESIM, have been updated and are now com-
puted iteratively based on the stability of the atmospheric near-surface layer
(Jordan et al., 1999). The solution of the momentum equation for comput-
ing the sea-ice velocity does not change when running in FESOM2-Icepack

configuration. Two alternative formulations of the sea-ice strength P are
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available in Icepack and can be used in the EVP solver:

Standard FESOM2

Dynamics L
. EVP Tracers Radiation & O lyr.
© mEVP advection thermodynamics
. aEVvP
FESOM2 - Icepack
Thermodynamics Dynamics . Radiation
5 @l . EVP Tracers Mechanical +  Constant
+  BL99 *  mEVP advection redistribution . ccsm3
¢ Mushy layer e aEvpP * Delta-Eddington

Figure 5.1: Schematic describing the calling sequences of the Standard FESOM?2
and FESOM2-Icepack implementations.

Hibler (1979): P = P*ye~¢ (=) (5.1)

mmmuwmzpzqq/ h?w,(h)dh (5.2)
0

where h = v/a is the ice thickness, P*, C*, and C} are empirical parameters,
Cp, = pilpw — pi)9/(2pw) is a combination of the gravitational acceleration
and the densities of ice and water, and w,(h) is a function that represents
the effective sea-ice volume change for each thickness class due to mechanical
redistribution processes. In this study, the Hibler (1979) approach (H79
hereafter) is adopted for all model setups instead of the Rothrock (1975)
approach (R75 hereafter). The reasoning behind this choice will be discussed
in Sec. 5.2.4]

In the FESOM2 implementation of Icepack, each tracer is advected sep-
arately using the FE-FCT scheme by Lhner et al. (1987) as described in

Kuzmin (2009). The tracer advection is based on the conservation equation

oOT+V-(Tv)=0, (5.3)

where T is a generic advected tracer with no dependencies and v is the sea-
ice velocity that solves the momentum equation. If a tracer T, depends on
another tracer 77, the advected quantity that satisfies Eq. is T =T1T,.
This concept can be generalized for a tracer with more than one dependency.
Icepack comes with a vast set of required and optional tracers. As for the
standard FESIM, a;, v;, and v, are required tracers. However, in Icepack
these three variables are defined separately for each ice thickness class. The

skin temperature of the sea-ice, or in the presence of snow of the snow, T
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is also defined separately for each thickness class and depends on a; for the
advection. If the BL99 or mushy thermodynamics are used, the enthalpy of
sea-ice and snow layers (¢;,qs), and the sea-ice salinity s; become also required
tracers and depend on v; or v,. Several more tracers are available (melt pond
fraction and depth, sea-ice age, first-year ice fraction, level ice fraction and
volume, etc.) depending on the chosen setup of the model. All these tracers
are implemented in the FESOM2-Icepack model.

5.2.3 Green’s function approach for the optimization

of model parameters

The Green’s function approach is a simple, yet powerful method that, given
some observations, can be used for the calibration of the parameter space of
general circulation models (Stammer & Wunsch, 1996; Menemenlis & Wun-
sch, 1997; Menemenlis et al., 2005; Nguyen et al., 2011; Ungermann et al.,
2017). The practical realization of one iteration of this method requires to
compute an ensemble of n sensitivity simulations by perturbing separately
each one of the n parameters that we choose to optimize. The Green’s
functions of these sensitivity simulations are then combined through discrete
inverse theory for constructing an optimal linear solution that minimizes the
difference between the model state and the observations, and which corre-
sponds to a set of optimal parameter perturbations. Menemenlis et al. (2005)
and Ungermann et al. (2017) provide an extensive mathematical derivation
of the method. Here, we limit our description to a few important points.
Given a vector of m observations y and their measurement uncertainties
o, the relationship between the observations and a model operator G can be

expressed as

y=Gv)+e, (5.4)
where v contains a generic set of n parameter perturbations around a ref-
erence state vy, and € represents the discrepancy between the observations
and the model results. The optimal set of parameters v,, can be obtained
by minimizing a quadratic cost function

F=¢Re, (5.5)

where R, the covariance matrix of €, is assumed to be a simple diagonal
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matrix with elements R;; = (0;)~% (with ¢, j = 1...m), meaning that obser-
vation errors are considered independent. In this study, each element of R
is further divided by the total number of observations of its corresponding
observation type. In this way, the same weight is given to each observational
type employed in the optimization. We assume now that a linearization of
the system holds, and that the model operator G can be represented by a
matrix G, so that the misfit between observations and the control simulation

(for which v = 0) can be expressed as

Ay =y—-G0)=Gr+e. (5.6)

In practice, G is an m X n matrix constructed by combining the Green’s
function for each of the parameter perturbations v = (v ...v,). Specifically,

g;—the j™-column of the matrix G—is

Gv;) — G(0)
gi=—"—>, (5.7)
Vj
where G(v;) is the sensitivity simulation where only the parameter v; is
perturbed. The set of optimal parameters that minimizes the cost function

is given by

Vopt =V + (GTRG)'GTR Ay . (5.8)

Even if the Green’s function approach is a robust method for tuning the
model effectively, there is no guarantee that the estimated optimal parame-
ters lead to a model state that corresponds to a global minimum of the cost
function, in particular if the cost function is not a “well-behaved” function
as in the case of sea-ice observations. In this respect, the results by Sumata
et al. (2013) shows that a stochastic optimization method is more appropri-
ate for finding a global minimum of the cost function than gradient descent
methods as the Green’s function approach (Figs. 4 and 5 of Sumata et al.
(2013) reveal the heterogeneity of the sea-ice concentration cost function).
In the context of this study, where the model optimization is performed for
three model configurations each forced with two sets of atmospheric bound-
ary conditions, the Green’s function approach has been chosen because it
provides a balance between the effectiveness of the method, simplicity of

implementation, and associated computational costs.
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5.2.4 Model simulations

All model simulations are run on a global mesh with 1.27 x 10° surface
nodes and 46 vertical levels. This unstructured mesh has approximately a
1° resolution over most of the domain, but it is refined along the coastlines,
in the equatorial regions, and north of 50°N, where the resolution reaches
~25km (see Fig. 4a in Sein et al. (2016) for more details on the mesh).
The atmospheric boundary conditions used to force the FESOM2 model are
derived from two reanalysis products: the European Centre for Medium-
Range Weather Forecasts Reanalysis, 5" Generation (ERA5) global reanal-
ysis (Hersbach et al., 2020) and the NCEP Climate Forecast System (NCEP
hereafter; Saha et al. (2010, 2014)). The fields used to force the model are
the 2-m air temperature and specific humidity, the 10-m wind velocity, the
downward longwave and shortwave radiation, and the liquid and solid precip-
itations. The ocean component of the FESOM2 model is initialized in 1980
from the PHC3 ocean climatology (Steele et al., 2001). A sea-ice thickness
of 2m is set at initial time in regions with sea surface temperature below
the freezing temperature of sea water of typical salinity for the inner Arctic
surface ocean.

The Green’s function approach for parameter optimization is applied to

three different model setups of increasing complexity:

C1 Low-complexity configuration corresponding to the standard FESIM im-
plementation within FESOM2, as described in Sec. 5.2.1.

C2 Medium-complexity configuration based on the FESOM2-Icepack imple-
mentation described in Sec. [5.2.2. This configuration features an I'TD
with 5 thickness classes, the BLI9 thermodynamics (4 sea-ice layers

and 1 snow layer), and the CCSM3 radiation scheme.

C3 High-complexity configuration based on the FESOM?2-Icepack imple-
mentation. Like C2, C3 features an I'TD with 5 thickness classes and
the BL99 thermodynamics. The CCSM3 radiation is replaced by the
Delta-Eddington scheme, and the melt ponds are prognostically de-
scribed with the CESM parameterizations (Holland et al., 2012).

Each configuration is optimized twice, once for each atmospheric forcing
employed: ERA5 (suffix “E” hereafter) and NCEP (suffix “N” hereafter).

This leads to a total of 6 optimal parameter sets, each one optimized by
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Figure 5.2: Schematic of one iteration of the Green’s function approach for
parameter optimization as employed in our study for each configuration. When
the second iteration is performed, the optimized model run computed at the end
of the first iteration serves as control run for the second one.

performing two iterations of the Green’s function method. A schematic of
the Green’s function optimization procedure is displayed in Fig. 5.2 Each
configuration undergoes a 20-year spin-up (1980-2000) to guarantee a real-
istic state of the modelled upper ocean and of the sea-ice cover in (quasi-
Jequilibrium with the chosen atmospheric forcing product and the individual
parameter set. The model optimization window is limited to the 14 years

period 2002-2015, i.e. the cost function is evaluated in this period.

The R75 formulation of the sea-ice strength is arguably more physically
consistent than the H79 formulation, as it includes information about the
ITD in each grid cell and it considers potential energy changes associated
with the redistribution. However, Ungermann et al. (2017) show that the
H79 approach leads to a better fit between model data and observations
when properly tuned. In addition, the R75 sea-ice strength is much more
non-linear then H79 one. For these reasons, and for being able to compare
the C1 setup (no ITD; only H79 available) to the C2 and C3 setups (with
ITD; both H79 and R75 available), all the simulations here presented employ
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the H79 sea-ice strength formulation.

Because the finite availability of computational resources limits in practice
the number of parameters that can be optimized with the Green’s function
approach (a separate sensitivity run is needed for each parameter one in-
tends to optimize), the parameters have been chosen based on their ability
to influence the sea-ice state of the model, as described in previous studies
(Massonnet et al., 2014; Urrego-Blanco et al., 2016; Ungermann et al., 2017;
Sumata et al., 2019a). In total, 10 model parameters are optimized for each
of the three model setups (Tab.[5.1)). The chosen parameters act on various
sea-ice parameterizations: thermodynamics, dynamics, radiation, and me-
chanical redistribution. Some are common to all three configurations (ao,
ks, P*, C*, and cjo), while others are specific to the formulation of each
setup. Note that dp has been classified as radiation parameter (Tab. [5.1h)
because the chosen melt pond scheme describes only the radiation effects of
melt ponds. The ice-atmosphere drag coefficient ¢;4 has not been optimized
following the results of Massonnet et al. (2014)), which show that optimizing

the atmospheric drag is not necessary if P* and cjo are already optimized.

5.2.5 Observational products

The Green’s function optimization method is based on three types of monthly
averaged satellite observations and their uncertainties: sea-ice concentration,
thickness, and drift (Fig. . We employ the OSI SAF Global Sea Ice
Concentration Climate Data Record v2.0 (EUMETSAT Ocean and Sea Ice
Satellite Application Facility, 2017) for the period 2002-2015. The retrieval
of this product is based on passive microwave data from the SSM/I (Special
Sensor Microwave/Imager) and SSMIS (Special Sensor Microwave Imager/-
Sounder) sensors (Lavergne et al., 2019). The data are distributed on a
polar stereographic 25km resolution grid, which is approximately the same
resolution of our model in the Arctic.

Two complementary sea-ice thickness datasets are considered during the
freezing season (October to April): the monthly northern hemisphere sea-
ice thickness from Envisat (2002-2010; Hendricks et al. (2018b)) and from
CryoSat-2 (2011-2015; Hendricks et al. (2018a)). The merged CryoSat-
2/SMOS sea-ice thickness product has not been considered for the parameter
optimization because we decided to prioritize the optimization of thick sea-

ice regions over the marginal ice zone. The evolution of the thin ice cover
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(a) Optimized parameters in C1

Ocean albedo oo

Dry sea-ice albedo ayy
Wet sea-ice albedo apy,
Dry snow albedo asq
Wet snow albedo QS

Therm. conductivity snow kg
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