
1. Introduction
As phytoplankton play a fundamental role in marine food webs and biogeochemical cycling, their commu-
nity structure and taxonomic composition have been widely investigated in recent decades through vari-
ous observational methods and ecological modeling (e.g., Falkowski et al., 2003; IOCCG, 2014; Le Quéré 

Abstract First, we retune an algorithm based on empirical orthogonal functions (EOFs) for 
globally retrieving the chlorophyll a concentration (Chl-a) of phytoplankton functional types (PFTs) 
from multisensor merged ocean color (OC) products. The retuned algorithm, referred to as EOF-SST 
hybrid algorithm, is improved by: (i) using 23% more matchups between the updated global in situ 
pigment database and satellite remote sensing reflectance (Rrs) products, and (ii) including sea surface 
temperature (SST) as an additional input parameter. In addition to the Chl-a of the six PFTs (diatoms, 
haptophytes, dinoflagellates, green algae, prokaryotes, and Prochlorococcus), the fractions of prokaryote 
and Prochlorococcus Chl-a to total Chl-a (TChl-a), are also retrieved by the EOF-SST hybrid algorithm. 
Matchup data are separated for low and high-temperature regimes based on different PFT dependences 
on SST, to establish SST-separated hybrid algorithms which demonstrate further improvements in 
performance as compared to the EOF-SST hybrid algorithm. The per-pixel uncertainty of the retrieved 
TChl-a and PFT products is estimated by taking into account the uncertainties from both input data and 
model parameters through Monte Carlo simulations and analytical error propagation. The algorithm and 
its method to determine uncertainties can be transferred to similar OC products until today, enabling 
long-term continuous satellite observations of global PFT products. Satellite PFT uncertainty is essential 
to evaluate and improve coupled ecosystem-ocean models which simulate PFTs, and furthermore can be 
used to directly improve these models via data assimilation.

Plain Language Summary Phytoplankton in the sunlit layer of the ocean contribute 
approximately 50% to global primary production. They act as the base of the marine food web fueling 
fisheries, and also regulate key biogeochemical processes such as exporting carbon to the deep ocean. 
Phytoplankton contain various taxonomic groups that function differently in the marine ecosystem. The 
global phytoplankton can be observed from space by analyzing the signal leaving from the water surface 
recorded by the ocean color (OC) sensors onboard the satellites. Based on an updated large global data 
set, satellite data from different OC sensors, and sea surface temperature data, we adapted our previous 
approach to improve the quantification of the biomass of the main six phytoplankton groups on a global 
scale. The uncertainty of the satellite products of the phytoplankton groups is calculated by considering 
the errors propagated from the satellite data and the model parameters. This approach for quantifying 
different phytoplankton groups, together with the uncertainty assessment, can be extended to other 
similar OC satellite data which cover different time periods, to ultimately generate long-term global 
distribution maps of multiple phytoplankton groups. This information will help the modelers to predict 
better the phytoplankton changes in the future.
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et al., 2005). With a vast amount of quality-controlled ocean color (OC) remote sensing data now available, 
methods to infer the dominance or fraction of phytoplankton groups, size classes (PSCs) and phytoplankton 
functional types (PFTs) on a large scale both in space and time have evolved. Retrieval algorithms for phy-
toplankton composition have generally been developed based on both in situ measurements and satellite 
products, the former providing the ground truth information at specific time and location, but with the 
latter regularly repeated, high spatial resolution observations can be achieved.

Radiance or reflectance signals leaving the ocean surface and measured by a satellite radiometer contain 
phytoplankton pigment information that can be related to community structure and size classes (Brach-
er et al., 2017; Mouw et al., 2017). Therefore, spectral-based approaches have been developed to retrieve 
the concentrations of phytoplankton chlorophyll, pigments, and multiple PFTs from space (e.g., Alvain 
et al., 2005, 2008; Bracher et al., 2009; Correa-Ramirez et al., 2018; Lange et al., 2020; Werdell et al., 2014; 
Xi et al., 2020). One such approach that has proven efficient is based on the empirical orthogonal function 
(EOF) analysis on the spectral Rrs or water-leaving radiance. By reducing the high dimensionality of the 
spectral data, the dominant signals that best describe the variance of the structures lying in the spectra 
can be assessed to establish statistical models for predicting OC metrics, including various phytoplankton 
pigment and PFT chlorophyll a concentrations (Chl-a) (e.g., Bracher et al., 2015; Craig et al., 2012; Lange 
et al., 2020; Lubac & Loisel, 2007; Soja-Woźniak et al., 2017; Taylor et al., 2013; Xi et al., 2020). Approaches 
based on EOF analysis also exhibited equivalent skill with a little downgrading of the performance when 
applied to reduced spectral resolution (Bracher et al., 2015), enabling their wide applicability to previous 
(e.g., SeaWiFS and MERIS) and current (e.g., MODIS, VIIRS, and OLCI) multispectral OC sensors and 
their merged products. In addition, as these approaches are usually trained to retrieve OC metrics and PFT 
information directly from the satellite spectral data, no prior knowledge of the phytoplankton biomass or 
inherent optical properties (IOPs) is required in its application. This makes the implementation of such 
approaches straightforward and practical for satellite OC products.

The EOF-based approach proposed by Xi et al. (2020) has been shown to provide reliable Chl-a retrievals 
of multiple PFTs on the global scale, through intercomparisons with other satellite-derived PFT and PSC 
products. However, PFT retrievals by Xi et al. (2020) showed rather low performance for prokaryotic phyto-
plankton. Incorporation of additional environmental parameters which are globally available from satellite 
measurements, such as optical depth, sea surface temperature (SST), wind stress, and light availability, have 
the potential to improve PSC prediction accuracy. For instance, Brewin et al. (2015) investigated the influ-
ence of light in the mixed layer on the parameters of the three-component PSC model (abundance-based 
model) of Brewin et al. (2010), and modified the model to better describe the relationship between phyto-
plankton size structure and total chlorophyll with varying light conditions. Ward (2015) and Brewin, Ciavat-
ta, et al. (2017) both incorporated temperature dependence into the three-component model and improved 
the model’s ability in representing Chl-a concentrations in all three PSCs using satellite estimates of SST 
and total Chl-a concentration. Moore and Brown (2020) assessed the impact of separately including SST 
and estimates of light level in the surface mixed-layer on the skill of abundance-based PSC models. Lange 
et al. (2020) also considered SST in their spectral-based algorithm using principal component regressions to 
estimate the surface abundance of picophytoplankton across the Atlantic Ocean.

There has been an emerging trend of the combined use of in situ data, satellite observations, ecosystem 
modeling (Losa et al., 2019), as well as PFT or PSC data assimilation (Pradhan et al., 2020; Xiao & Frie-
drichs, 2014), to allow comprehensive monitoring and predictions of phytoplankton community structure. 
Satellite-derived phytoplankton group-specific products are also expected to be useful for validation of eco-
system model results (e.g., de Mora et al., 2016; Dutkiewicz et al., 2015; Hirata et al., 2013; Holt et al., 2014; 
Pradhan et  al.,  2019; Ward et  al.,  2012). One major challenge of fulfilling these tasks is associating the 
uncertainty with the satellite-derived PFT products (Bracher et al., 2017). Uncertainty estimates have been 
well formulated and generated for other common OC algorithms that use satellite radiance and reflectance 
data to derive OC products such as Chl-a concentration, diffuse attenuation coefficient, and IOPs (McKin-
na et al., 2019; Werdell et al., 2018). Though various approaches have been proposed to globally estimate 
satellite phytoplankton group products (Mouw et al., 2017), only the study by Brewin, Ciavatta, et al. (2017) 
has provided estimates of uncertainty on a per-pixel basis for the North Atlantic Ocean. Uncertainty assess-
ment can be carried out via two methods: validation through comparison of the satellite retrievals with in 
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situ data (e.g., Antoine et al., 2008; Sathyendranath et al., 2019), or error 
propagation by accounting for the uncertainties in the inputs and model 
parameters. Due to the sparse distribution of in situ measurements that 
restricts validation for the uncertainty estimation (Mélin & Franz, 2014), 
error propagation analysis has now been widely used not only to un-
derstand the sensitivity of model inputs and parameters to model out-
puts, but also to estimate pixel-by-pixel uncertainty (e.g., Brewin, Til-
stone, et al., 2017; Kostadinov et al., 2016; Lee et al., 2010; Maritorena 
et al., 2010; Qi et al., 2017).

In this study, we improve the previously developed EOF-based algorithm 
of Xi et al. (2020) for global retrievals of multiple PFT quantities by (1) 
including more matchup data between the in situ pigment data set and 
satellite Rrs data from merged OC products, (2) accounting for the SST 
in the retrieval scheme, and (3) investigating the influence of SST on the 
model parameters and retrieved PFTs with the goal of establishing a set 
of EOF-SST hybrid algorithms to improve the retrievals of TChl-a, Chl-a 
of six PFTs and the fractions of two prokaryotic phytoplankton. By apply-
ing the hybrid algorithms to the merged OC products, we generate global 
distribution maps of the satellite-retrieved PFT quantities, and present 
a method to derive the per-pixel uncertainty propagated from both the 

inputs and retrieval model for each PFT quantity by combining Monte Carlo (MC) simulations and an 
analytical approach.

2. Data and Methods
2.1. Data Sets

2.1.1. In Situ Data Set of Phytoplankton Pigments and Data Screening

We updated the large global and open ocean (water depth >200 m) phytoplankton pigment data set (span-
ning 2002–2012) from Losa et  al.  (2017) used in Xi et  al.  (2020) analyzed by High-Performance Liquid 
Chromatography (HPLC), by adding recently published HPLC pigment data (as of February 2020) from Sea-
BASS, PANGAEA, British Oceanographic Data Centre (BODC), and Open Access to Ocean Data (AODN) 
from Australia (data sources in Table S1). All collected data were quality controlled following the method 
by Aiken et al. (2009); only pigment concentrations greater than the HPLC detection limit of 0.001 mg m−3 
were included. In the database, all required pigments for the PFT Chl-a calculation were used (fucoxanthin, 
peridinin, 19′hexanoyloxy-fucoxanthin, 19′butanoyloxy-fucoxanthin, alloxanthin, total chlorophyll b, ze-
axanthin, and divinyl chlorophyll a, reference to Section 2.1.3.1). While investigating the pigment data set, 
we found that data collected from the Palmer Long-Term Ecological Research (LTER, https://pal.lternet.
edu/) in the west of the Antarctic Peninsula showed very high zeaxanthin concentrations (up to 2.7 mg m−3) 
for multiple years during 2002–2012 compared to data from the other cold waters in the Southern Ocean. 
We considered these distinct zeaxanthin measurements from Palmer LTER as nonrepresentative in the 
Southern Ocean and screened the pigment samples which had zeaxanthin concentration higher than the 
mean (0.013 mg m−3) of zeaxanthin concentration in the other waters in the Southern Ocean. Details of the 
data screening and supporting references and communications are provided in the supporting information 
(Text S1 and Figures S1–S3). A total of 8,840 sets of pigment data were finally used in this study and their 
distribution is shown in Figure 1.

2.1.2. Satellite Data

2.1.2.1. Satellite Ocean Color Products

GlobColour (http://www.globcolour.info/) has provided various OC products from different sensors, in-
cluding SeaWiFS, MODIS-Aqua, MERIS, VIIRS-NPP, and Sentinel-3A OLCI. In this study, we used the Sea-
WiFS-MODIS-MERIS merged normalized remote sensing reflectance (Rrs) Level-3 (L3) product (hereafter 
referred to as merged product) which covers the period from July 2002 to April 2012 from the GlobColour 
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Figure 1. Distribution of total chlorophyll a concentration (TChl-a, the 
sum of monovinyl chlorophyll a, divinyl chlorophyll a, chlorophyll a 
allomers, chlorophyll a epimers, and chlorophyllide a) from the quality-
controlled in situ pigment database (2002–2012) used in this study 
(n = 8,840).

https://pal.lternet.edu/
https://pal.lternet.edu/
http://www.globcolour.info/
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data archive (more details in ACRI-ST GlobColour Team et al. [2017]). 
As in Xi et al. (2020), the daily merged product with 4-km resolution was 
used for matchup extraction and the monthly merged product with 25-
km resolution was used for algorithm application. Since this study fo-
cuses mainly on oceanic waters, shelf and coastal waters (<200 m) were 
masked out in the OC products following Hirata et al. (2011) using the 
ETOPO1 bathymetry (Amante & Eakins, 2009).

2.1.2.2. Sea Surface Temperature Data

The SST product used in this study was CMEMS OSTIA (Operational 
SST and Ice Analysis) reprocessed analysis product, which is quality-con-
trolled and available on the CMEMS (Copernicus Marine Environment 
Monitoring Service, https://marine.copernicus.eu/) platform, referenced 
as SST_GLO_SST_L4_REP_OBSERVATIONS_010_011. The CMEMS 
OSTIA reprocessed analysis product is an interpolated product based on 
in situ measurements and satellite observations from both infra-red and 

microwave data on a global regular grid at 0.05° resolution (Donlon et al., 2012; Worsfold et al., 2020). The 
daily SST product from July 2002 to April 2012 was acquired and gridded to 4-km resolution. As for Rrs, 
monthly mean SST from 2002 to 2012 with 25-km resolution were also processed as input for deriving global 
satellite PFT products.

2.1.3. Input Data for PFT Retrieval Algorithm

2.1.3.1. In Situ PFT Chl-a and Fraction Derived From Diagnostic Pigment Analysis

As described in Xi et al. (2020), Chl-a of PFTs based on in situ pigment data were derived using an updated 
diagnostic pigment analysis (DPA) method (Losa et al., 2017; Soppa et al., 2014), that was originally devel-
oped by Vidussi et al. (2001), adapted in Uitz et al. (2006) and further refined by Hirata et al. (2011) & Brew-
in et al. (2015). We used pigment concentrations from the in situ database mentioned in Section 2.1.1 to 
derive the Chl-a of six PFTs—diatoms, dinoflagellates, haptophytes, green algae, prokaryotes, and Prochlo-
rococcus, with fucoxanthin, peridinin, 19′hexanoyloxy-fucoxanthin, total chlorophyll b, zeaxanthin and di-
vinyl chlorophyll a as their diagnostic pigment (DP), respectively. The partial coefficients of the DPs used 
in the updated DPA method were derived using a large global pigment data set as detailed in Table S1 in 
Losa et al. (2017), which were shown to be in good agreement with previous studies. We used these coeffi-
cients rather than determining new ones because the majority (∼80%) of the in situ pigment data used in 
this study are a subset of the global data from 1988 to 2012 compiled in Losa et al. (2017). Due to the weak 
retrieval performance of prokaryote and Prochlorococcus Chl-a in Xi et al. (2020), in this study, we included 
the fractions of prokaryotes (f-prokaryotes) and Prochlorococcus (f-Prochlorococcus) to TChl-a, attempting 
to get improved retrievals of these two PFTs. PFT Chl-a lower than 0.005 mg m−3 were excluded due to high 
uncertainty (Xi et al., 2020) and the corresponding fractions of prokaryotes and Prochlorococcus were also 
excluded.

2.1.3.2. Matchups Between Satellite SST and In Situ PFT Data

SST matchups were extracted by matching data that were spatially colocalized and temporally (on a daily 
basis) coincident with the in situ PFT measurements. A 3×3 macro-pixel centered on the in situ measure-
ment was considered. If the standard deviation compared to the mean value within this macro-pixel was 
lower than 25%, then the macro-pixel was considered suitable for the matchup. The arithmetic median of 
the macro-pixel was defined as the SST value for the in situ site.

2.1.3.3. Matchups of Rrs Merged Product to In Situ PFT and Satellite SST Data

Matchups of satellite Rrs to in situ PFT and satellite SST data were extracted from global 4-km daily merged 
products. The same extraction, averaging, and quality control protocol as followed in Xi et al. (2020) was 
used to derive matchups. As described in Xi et al. (2020), due to more matchup points and equivalent re-
trieval performance compared to 3×3 matchups, single-pixel matchups were used as the input data for the 
final retrieval approach (Figure 2). Matchup data with the nine spectral bands of 412, 443, 490, 510, 531, 
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Figure 2. Geographical locations of single-pixel matchups of GlobColour 
merged Rrs at nine bands with in situ PFT and satellite SST data. PFT, 
phytoplankton functional type; SST, sea surface temperature.

https://marine.copernicus.eu/
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547, 555, 670, and 678 nm from the merged products were chosen as the 
algorithm input data (Table 1). A total of 483 sets of matchup data cover-
ing the global ocean were extracted (Figure 2).

2.2. Algorithm Retuning

The EOF-based PFT retrieval algorithm development and performance 
assessment were detailed in Xi et al. (2020). Using the updated matchup 
data, the Xi et al. (2020) algorithm was retuned and statistically assessed 
as detailed below. Figure 3 shows the scatterplots of the matchup data of 
SST to TChl-a, the six PFT Chl-a, and the two PFT fractions. Generally, 
TChl-a, Chl-a of diatoms, haptophytes, dinoflagellates, and green algae 
show a decrease with increasing SST. However, Prokaryote and Prochlo-
rococcus Chl-a and their fractions show positive correlation with SST. 
The statistically significant correlations indicate that introducing SST as 
an additional term into the Xi et al. (2020) algorithm (see Section 2.2.1) 
might improve the algorithm’s performance. With a 10-point running 
mean applied to the data, there is a noticeable shift in the trends of most 

PFT quantities as a function of SST at approximately 13 °C. This further led us to establish for SST < 13 °C 
a different EOF-SST hybrid algorithm than for SST ≥ 13 °C (see Section 2.2.2). Prochlorococcus data, as an 
exception from other PFTs, are rarely recorded in high latitudes with low temperature. Our final match-
up data set compiled in Section 2.1.3.3 contained few (n = 2) divinyl chlorophyll a (a marker pigment of 
Prochlorococcus) measurements with low concentrations (0.001 mg m−3) when SST < 10 °C, which is in 
agreement with the observations by Flombaum et al. (2013). Therefore, we excluded the regions where SST 
is below 10 °C and did not consider a different EOF-SST hybrid algorithm with SST < 13 °C for the Chl-a 
and fraction retrievals of Prochlorococcus.

2.2.1. Adapted EOF-SST Hybrid PFT Algorithm Based on the Whole Data Set

The input data set used in the EOF-SST hybrid algorithm was the matchup data set that included the collo-
cated nine-band Rrs from the merged products, satellite SST data, and in situ PFT data. Figure 4 depicts the 
flowchart of the EOF-SST hybrid algorithm, in which the EOF analysis remained unchanged by still using 
singular value decomposition (SVD) to decompose the (standardized) Rrs spectra into the EOF scores (U), 
singular values (Λ), and EOF loadings (V) as in Xi et al. (2020). Now, when formulating the regression mod-
els of PFTs, we introduced SST as an additional term together with the column vectors u1,2,..,n in U. Similar 
to Xi et al. (2020), we applied a stepwise routine to obtain the smaller regression model by removing least 
significant variables in U through minimization of the Akaike information criterion (AIC). The adapted 
regression model is expressed as

      p 0 1 1 2 2ln n n SSTC a a u a u a u a SST (1)

where a0 is the intercept, a1,2,…n, and aSST are the regression coefficients for the selected EOF scores and SST, 
respectively. With the adapted regression model, the same steps for cross-validation and model assessment 
of Xi et al. (2020) were carried out to test the robustness of the fitted model: the whole collocated data set 
was randomly split into two subsets—the first subset containing 80% of the data was used for model fitting/
training and the rest 20% was used for prediction. The procedure was run for 500 permutations to (1) record 
for each permutation the model parameters for further uncertainty assessment, and (2) generate a final 
statistical assessment based on the statistics of the model performance derived from each permutation.

For the model assessment, we considered the slope (S) and the intercept (a) of the generalized linear model 
(GLM) regression and coefficient of determination (R2), which were based on the log-scaled PFT predic-
tions against the log-scaled in situ PFT data. We also considered the root-mean-square difference (RMSD), 
the median percent difference (MDPD), and the bias that were based on the non-log-transformed concen-
tration data. These metrics were expressed as
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Sensors

Center wavebands (nm)

412 443 490 510 531 547 555 670 678

SeaWiFS × × × × × ×

MODIS × × × × × × × ×

MERIS × × × × ×* ×

Note. *There was no band at 555 nm for MERIS itself, but the GlobColour 
Team provided for MERIS the 555 nm through an interspectral conversion 
made by using: Rrs (555) = Rrs (560) * (1.02542 − 0.03757 * y − 0.00171 * 
y2 + 0.0035 * y3 + 0.00057 * y4), where y = log10(CHL1) and CHL1 is the 
total Chl-a concentration estimated by OC4 (ACRI-ST GlobColour Team 
et  al.,  2017). With this conversion, Rrs at 555  nm for MERIS were also 
included in our study.

Table 1 
List of the Nine Bands From Sensors SeaWiFS, MODIS, and MERIS Used 
in the GlobColour Merged Products
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Figure 3. Scatterplots of in situ TChl-a, PFT Chl-a, and fractions of prokaryotes and Prochlorococcus versus collocated satellite SST data. The correlation 
coefficient (R) was calculated based on the 10-point running mean (red curve). PFT, phytoplankton functional type; SST, sea surface temperature.
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where N is the number of observations of PFTs (Co) and the corresponding predictions (Cp). Meanwhile, 
the cross-validation statistics (R2cv, RMSDcv, and MDPDcv), representing both the model robustness and 
compromised model performance, were also determined by taking the mean of the statistical parameters 
R2, RMSD, and MDPD from all permutations, respectively.

2.2.2. SST-Separated Hybrid PFT Algorithms

Given the difference in SST-PFT relationships between the two data sets (SST < 13 °C and SST ≥ 13 °C, 
Figure 3), for all PFT quantities (excluding Prochlorococcus Chl-a and f- Prochlorococcus), we separated the 
matchup data set at 13 °C as a divide and established two specific EOF-SST hybrid algorithms using the two 
data sets (referred to as SST-separated hybrid algorithms) following Section 2.2.1 (Figure 4). Note that the 
performance of the SST-separated hybrid algorithms was evaluated statistically based on all the predictions 
and in situ data to be consistent with that for the EOF-SST hybrid algorithm.

2.2.3. Application of Algorithms

The established algorithms were applied to the satellite Rrs data from the merged products (Section 2.1.2) 
to retrieve PFTs globally (Figure 4). By projecting the satellite Rrs data onto the EOF loadings (V), a new set 
of EOF scores (Usat) was derived and was then used for the global PFT prediction together with SST as an 
additional term in the fitted model in Equation 1, where a0 and a1,2,…n were obtained in the step of model 
training.
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Figure 4. Flowchart illustrating the EOF-SST hybrid algorithm and the SST-separated hybrid algorithms for predicting 
TChl-a, Chl-a of six PFTs, and two fractions with GlobColour merged product. The red dashed-line box depicts the 
model training with the pigment-satellite matchup data; the green dashed-line box depicts the model application to 
satellite products and the blue dashed-line box shows model outputs (i.e., the predicted PFT quantities). EOF, empirical 
orthogonal function; PFT, phytoplankton functional type; SST, sea surface temperature.
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As various categories of data sets were compiled in Section 2 for different analyses regarding PFT global 
retrieval algorithms and uncertainty assessment, Table 2 summarizes the details of the data sets compiled 
for this study. It should be noted that the numbers of the data points indicated in Table 2 are based on valid 
TChl-a data. This may be lower for specific PFT data sets (indicated in Figures 5 and 6 and Tables 4 and 5 in 
Section 3.1) as PFTs can be absent in some samples.

2.3. Uncertainty Assessment of PFT Retrieval

To quantify the uncertainty of the satellite PFT retrievals, we considered the uncertainties propagated from 
the input satellite Rrs (σRrs) and SST (σSST), and the uncertainty of the model/algorithm parameters (σa). 
Other uncertainty sources exist, that is, in situ HPLC pigment measurement error and uncertainties in the 
DPA-derived PFT data resulting from incorrect assignment of PFTs from marker pigments. In the current 
study, we could not quantify the combined uncertainty from HPLC measurements and the DPA-derived 
PFTs due to limited information and therefore did not include this error source in the uncertainty assess-
ment, although this error source should still be kept in mind even though they could not be quantified 
in this study. Detailed discussion regarding this aspect has been elaborated in Section 3.3.4 following the 
results of PFT uncertainty.

All computations of the uncertainties in this study were based on the logarithmic transformed data follow-
ing conventional practice in the field of OC (Sathyendranath et al., 2020). However, we used natural loga-
rithms instead of the common (base 10) logarithms, as our algorithm was developed based on the natural 
logarithms. For comparison with other studies, the common logarithmic uncertainty can be obtained by 
dividing our uncertainty by ln(10), that is, approximately a factor of 2.3. For brevity only the uncertainty 
derived based on the whole EOF-SST hybrid algorithm is presented as a general approach to quantify and 
consolidate the PFT uncertainty from different error sources.

2.3.1. Structure of the Uncertainty Propagation

With the EOF-SST hybrid retrieval models expressed in Equation 2, the retrieval model applied to the satel-
lite data can be written in the following form:

         1 1 2 2, , ln sat sat sat sat
P o n n SSTy Rrs SST C a a u a u a u a SSTa u (5)

where a represents all the model coefficients and u represents all the EOF score vectors derived from Rrs 
data. Each u component can be expressed as:

 sat
iu f Rrs (6)
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Type of data set Purpose of use Subsection Number

Data involved

HPLC 
pigments

TChl-a and 
DPA-derived 

PFTs SST

Rrs at 
nine 

bands

In situ pigment database Original in situ database Section 2.1.3.1 8,840 ×

Collocated SST and PFTs PFT dependence on SST Section 2.1.3.2 8,840 × ×

Matchups of PFTs, SST, and Rrs EOF-SST hybrid algorithm Section 2.1.3.3 483 × × ×

Matchups of PFTs, SST, and Rrs SST-separated algorithm for waters with SST≥13 °C Section 2.2.1 368 × × ×

Matchups of PFTs, SST, and Rrs SST-separated algorithm for waters with SST<13 °C Section 2.2.2 115 × × ×

Training data set from matchups Monte Carlo simulations Section 2.3.2 242 × × ×

Test data set from matchups Uncertainty validation Section 2.3.3 241 × × ×

Table 2 
Summary of Data Sets Included in Section 2 for Various Analyses/Usages
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Figure 5. Regressions between observed (x-axis, obs.) and predicted (y-axis, pred.) PFT quantities using EOF-SST hybrid algorithm: (a) TChl-a, (b) 
diatoms, (c) dinoflagellates, (d) haptophytes, (e) green algae, (f) prokaryotes, (g) f-Prokaryotes, (h) fraction-derived prokaryote Chl-a, (i) Prochlorococcus, (j) 
f-Prochlorococcus, and (k) fraction-derived Prochlorococcus Chl-a. EOF, empirical orthogonal function; PFT, phytoplankton functional type; SST, sea surface 
temperature.
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To estimate the final uncertainty of the retrieved PFTs,  y, we assume that the uncertainties due to a, 
u, and SST in Equation 5 are not correlated with each other. According to the Guide to Uncertainty in 
Measurement (JCGM, 2008), the combined uncertainty of different sources could be estimated based on 
the law of propagation of uncertainty. Using the partial differences, the uncertainty of the PFT retrievals is 
presented theoretically as:

           
 

       
                     

2 2 2
2 2 2 2 2 2

y
1 0

.
N n

Rrs a SSTy Rrs y a y SST i ii ii i

y y y
Rrs a SST

 (7)

XI ET AL.

10.1029/2020JC017127

10 of 27

Figure 6. Combined regressions between observed (x-axis, obs.) and predicted (y-axis, pred.) PFT quantities from two sets of EOF-SST hybrid algorithms based 
on different SST ranges: (a) TChl-a; Chl-a of (b) diatoms, (c) dinoflagellates, (d) haptophytes, (e) green algae, and (f) prokaryotes; (g) f-Prokaryotes and (h) 
fraction-derived prokaryote Chl-a. The dotted black line shows the 1:1 line and the solid black line indicates the regression based on the whole data set. EOF, 
empirical orthogonal function; PFT, phytoplankton functional type; SST, sea surface temperature.
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Since the uncertainties propagated from errors of model parameters (σy(a)) and SST (σy(SST)) are both linear, 
they can be analytically derived and expressed together as:

           


    
2 22 2 2 2 2 2

1
.

N
sat
i a a sst SSTy a y SST i ssti

u SST a (8)

where  SST = 0.46 °C (Worsfold et al. [2020] for the OSTIA SST product);  ai and  aSST  were determined 
during the cross-validation procedure as described in Section 2.2.1. To further illustrate how  ai and  aSST  
were determined, Figure S4 shows the distributions of the coefficients derived from all 500 permutations 
in the cross-validation, using diatoms as an example. As the coefficient distributions followed the normal 
distribution, the uncertainty of each coefficient was determined by calculating the corresponding standard 
deviation. The uncertainties of the model coefficients for all other PFT quantities were also determined in 
the same manner.

Since the fraction-derived prokaryotes and Prochlorococcus Chl-a were calculated by multiplying their frac-
tions and the TChl-a together, the corresponding uncertainties were determined by the uncertainties of 
TChl-a and that of f-Prokaryotes (f-Prochlorococcus). Using yproka_conv, y1, and y2 to denote the fraction-de-
rived prokaryote Chl-a, TChl-a, and f-Prokaryotes, the uncertainty of the fraction-derived prokaryote Chl-a, 
 _yproka conv , can be determined by the uncertainty of TChl-a ( 1y ) and f-Prokaryotes ( 2y ) through the fol-

lowing equation:

      2 2
12_ 1 2 1 22 ,y y y y yproka conv r (9)

where 12r  is the correlation coefficient between  1y  and  2y  (as both depend on SST-related uncertainties). 
Equation 9 also applies for the uncertainty of the fraction-derived Prochlorococcus Chl-a.

Among all uncertainty components in Equation 7, the uncertainty propagated from errors in the satellite Rrs 
spectra,   y Rrs , is the challenging part to quantify, as it is nonlinear and not as straightforward as the other 
two uncertainty sources, due to the EOF analysis performed with the spectra. We therefore used an MC 
simulation-based approach to estimate the   y Rrs  as detailed in the following section.

2.3.2. Rrs Uncertainty Propagation

Based on the uncertainty of the water leaving radiance for SeaWiFS, MODIS-Aqua, and MERIS report-
ed in Maritorena et al. (2010), Rrs absolute uncertainties for these sensors were derived and used in the 
GlobColour product. In our study, we took the root mean square (RMS) of the common bands from two or 
three sensors as the uncertainty of the merged products (Table 3). Using the matchup data for the merged 
products at nine bands, the following steps were carried out to fulfill the uncertainty propagation from 
Rrs to the PFTs.
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Wavebands (nm) 412 443 490 510 531 547 555 670 678

MODIS σRrs 0.00071 0.00063 0.00049 – 0.00024  0.00019 – 0.000055 0.000030

MERIS σRrs 0.00066 0.00059 0.00047 0.00033 – – 0.00023 0.00010 0.000098

SeaWiFS σRrs 0.00072 0.00064 0.00050  0.00036 – – 0.00025 0.000075 –

RMS σRrs 0.00070 0.00062 0.00049 0.00035 0.00024 0.00019 0.00024 0.000080 0.000072

Note. The root mean square (RMS) was taken as the uncertainty of the merged products.

Table 3 
Absolute Uncertainties of Rrs (σRrs, Sr−1) for Different Sensors in the Merged Products Derived Based on Maritorena 
et al. (2010)
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1.  The 483 Rrs matchup spectra were randomly divided equally into two data sets—50% as the training 
data set (in a total of 242), and the other 50% as the testing data set (in a total of 241). The corresponding 
matchups of in situ PFT and retrieved PFT data were also divided accordingly (Table 2).

2.  For the training data sets, we performed 10,000 MC simulations to randomly introduce for each band 
the Rrs uncertainty (σRrs) to each spectrum in the training data set (in a total of 2,420,000 simulated 
spectra).

3.  The MC simulated Rrs spectra were applied to the EOF-SST hybrid algorithm to estimate the PFTs with 
Rrs uncertainty taken into account. For each sample, 10,000 estimates of the PFT were generated from 
the 10,000 MC simulated Rrs, so that the uncertainty (standard deviation, σMC-PFT) of the PFTs were de-
termined based on these 10,000 estimates for each sample.

4.  When the σMC-PFT for all samples in the training data set were determined through Step 3, a look-up table 
(LUT) was built for each PFT by fitting σMC-PFT as a function of the retrieved PFT.

5.  The LUT for each PFT was applied to the testing data set for the uncertainty validation, and also to the 
satellite PFT products to derive per-pixel uncertainty of the satellite PFT due to Rrs,   y Rrs , which was 
combined with uncertainties from the other sources via Equation 7 to derive the final uncertainty of PFT 
satellite retrievals.
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N MDPD (%) RMSD (mg m−3) R2 MDPDcv(%) RMSDcv (mg m−3) R2cv

EOF-SST hybrid model

 TChl-a 483 31.55 1.08 0.82 31.51 1.14 0.81

 Diatoms 345 56.25 0.92 0.77 57.71 0.98 0.76

 Dinoflagellates 295 54.00 0.89 0.62 54.68 0.71 0.60

 Haptophytes 454 42.88 0.16 0.71 43.63 0.17 0.69

 Green algae 323 51.57 0.10 0.53 52.96 0.11 0.51

 Prokaryotes 438 43.79 0.09 0.42 45.44 0.09 0.38

 f-Prokaryotes 441 47.35 0.21a 0.70 47.72 0.21a 0.68

 Fraction-derived prokaryotes 434 42.13 0.09 0.46

 Prochlorococcus 204 42.60 0.02 0.24 44.97 0.02 0.17

 f-Prochlorococcus 210 41.52 0.09a 0.62 43.99 0.09a 0.57

 Fraction-derived Prochlorococcus 198 39.90 0.02 0.24

Original EOF-based algorithm

 TChl-a 394 37.41 1.24 0.76 37.08 1.27 0.75

 Diatoms 306 73.70 1.21 0.65 74.74 1.29 0.63

 Dinoflagellates 272 55.32 0.93 0.62 57.29 0.72 0.59

 Haptophytes 387 47.16 0.22 0.64 48.62 0.24 0.61

 Green algae 262 55.81 0.11 0.51 56.26 0.11 0.48

 Prokaryotes 367 53.70 0.13 0.15 55.08 0.13 0.11

 Prochlorococcus 142 39.65 0.02 0.24 42.68 0.02 0.18

Note. N is the number of valid matchups for each parameter. Cross-validation was not applied for the fraction-derived prokaryotes and Prochlorococcus Chl-a 
because they are the results of the multiplication between their fractions and the TChl-a. As a comparison, the statistics of the previous EOF-based algorithm 
(without SST) by Xi et al. (2020) for the TChl-a and six PFT Chl-a are also presented (lower panel). Bold marks the improved (or same) statistics.
Abbreviations: EOF, empirical orthogonal function; MPDP, median percent difference; OC, ocean color; PFT, phytoplankton functional type; RMSD, root-
mean-square difference; SST, sea surface temperature.
aThe unit (mg m−3) of RMSD does not apply to f-Prokaryotes and f-Prochlorococcus which have a range of 0–1.

Table 4 
Statistics of Regression Models for TChl-a, Six PFT Chl-a, Fractions of Prokaryotes and Prochlorococcus and the Corresponding Fraction-Derived Chl-a Using SST 
and EOF Modes Based on the Nine-Band Rrs Matchups From Merged OC Products (Upper Panel)
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2.3.3. Assessment of the Per-Pixel PFT Uncertainty

With the steps in Section 2.3.2, the uncertainty propagated from the Rrs to the satellite retrieved PFTs (the 
term   2

y Rrs  in Equation 7) was determined by applying the LUT to each pixel of the satellite-derived PFT 
products. Together with the other two terms,   2

y a  and   2
y SST  which were calculated analytically through 

Equation 8, the combined PFT uncertainty  y of each pixel from different sources was ultimately obtained.

3. Results and Discussion
3.1. EOF-SST Hybrid Algorithms for PFT Retrievals

3.1.1. EOF-SST Hybrid Algorithm Based on the Whole Matchup Data Set

Before setting up the EOF-SST algorithm, we first updated the original SST-independent EOF-based algo-
rithm of Xi et al. (2020) using the larger input data set used in this study. The performance of the updated 
algorithm showed nearly identical performance as compared to the original one presented in Xi et al. (2020) 
(details not shown), suggesting that the original algorithm can be hardly improved by purely enlarging the 
training data set. We then applied the EOF-SST hybrid algorithm developed in the current study to derive 
the TChl-a, PFT Chl-a, and the fractions of two PFTs based on the regression models built using the EOF 
scores derived from the nine-band Rrs data, SST, and the in situ PFT data. As presented in Table 4 and Fig-
ures 5a–5f and 5h, compared to the original algorithm in Xi et al. (2020), the EOF-SST hybrid algorithm 
shows significant improvements for all predicted quantities except for Prochlorococcus where weak per-
formance still remains. For TChl-a and Chl-a of diatoms, haptophytes, dinoflagellates, and green algae, R2 
increased from a range of 0.51–0.76 to a range of 0.53–0.82 and R2cv increased from a range of 0.48–0.75 to 
a range of 0.51–0.81. MDPD reduced from its range in Xi et al. (2020) of 37%–74% to a range of 32%–56%, 
while MDPDcv reduced from 37%–75% to a range of 32%–58%. RMSD and RMSDcv values are also signifi-
cantly lower in the EOF-SST hybrid algorithm compared to the previous results.

To further improve the prediction of prokaryote and Prochlorococcus Chl-a, the hybrid algorithm was also 
trained to retrieve the fractions of prokaryotes and Prochlorococcus to TChl-a. This was motivated because 
prokaryotes dominate in low TChl-a midlatitude to low-latitude waters, so generally their Chl-a is low. By 
using their fraction instead of Chl-a, a better spread of the data is achieved that enhances the signal to be 
retrieved which is beneficial for application in abundance-based PSC retrievals (e.g., Brewin et al., 2010). As 
expected, the prediction models for the two fractions performed well with R2 > 0.62 and MDPD within 47% 
(Table 4). Though the overall performance of the fraction retrieval for the two PFTs had been improved, the 
regression between the predicted and observed f-Prochlorococcus (Figure 5j) show that higher discrepancies 
exist in low fraction values, indicating that it is still difficult to accurately derive Prochlorococcus Chl-a from 
the fraction when f-Prochlorococcus < 0.2. Using predicted TChl-a, the fractions were further converted 
to Chl-a for the two PFTs. Table 4 shows that the fraction-derived prokaryote Chl-a retrieval displays im-
proved performance compared to the directly retrieved prokaryotes (R2 of 0.46 vs. 0.42, MDPD of 42% vs. 
44%, and with equivalent RMSD of 0.08 mg m−3), but is downgraded compared to the f-Prokaryotes (Fig-
ure 5g). The fraction to Chl-a conversion scheme shows little improvement in predicting Prochlorococcus 
Chl-a (Table 4 and Figure 5k vs. Figure 5i). Though f-Prochlorococcus is overall better predicted compared to 
the direct retrieval of Prochlorococcus Chl-a, by using the conversion, R2, and RMSD of the fraction-derived 
Prochlorococcus Chl-a estimation deteriorate due to the low signal-to-noise ratio in the retrieved TChl-a and 
f-Prochlorococcus. The MDPD and bias are however slightly improved. Weak prediction performance of the 
fraction-derived Prochlorococcus Chl-a reveals that it is still challenging to enhance their retrieval accuracy 
to the same level as other PFTs due to the low concentrations and small variability (Xi et al., 2020).

3.1.2. SST-Separated Hybrid Algorithms for Different SST Regimes

As described in Section 2.2.2, SST-separated hybrid algorithms were developed to retrieve the PFT quanti-
ties respectively for the two temperature regimes. Table S2 summarizes the coefficients fitted in the stepwise 
regression models based on the whole data set, data set with SST ≥ 13 °C, and data set with SST < 13 °C, 
respectively. EOF modes chosen for different PFTs vary with different data sets, such that SST as an addi-
tional regression term may not always been used in the final prediction models due to different levels of 

XI ET AL.

10.1029/2020JC017127

13 of 27



Journal of Geophysical Research: Oceans

correlation with PFTs in different SST regimes. The SST term had been 
identified as insignificant within the stepwise minimization method rou-
tine performed in the model regression procedure if the contribution of 
SST to the PFT estimation was neglectable. Moreover, the weighting coef-
ficient fitted on the SST term changed when different data sets were used. 
For instance, aSST fitted in the prediction models for prokaryote Chl-a us-
ing the whole data set was 0.088, and increased to 0.117 for the data set 
with SST < 13 °C, but was not used in the prediction model for the data 
set with SST ≥ 13 °C which is also consistent with the SST-PFT relation-
ship (Figure 3). The 10-point running mean trend showed that SST had a 
distinct positive correlation with the prokaryote Chl-a but the correlation 
turned insignificant when SST was higher than 13 °C.

Table  5 shows the combined statistics of the regression models from 
SST-separated hybrid algorithms for the two temperature regimes, while 
Table S3 displays separately the statistics for the two regimes. Generally, 
Table S3 shows that TChl-a and the eukaryotic PFT Chl-a are better re-
trieved for the data set with SST ≥ 13 °C though RMSD is higher simply 
because their Chl-a spanned a wider range than in cold waters (Figure 6). 
In contrast, both direct and fraction-derived prokaryote Chl-a retrievals 
show significantly improved performance for the data set with SST < 
13 °C, suggesting that better estimations for prokaryotes can be achieved 
by considering the strong correlation between prokaryote Chl-a and SST 
in cold waters. For a global PFT retrieval scheme in this study, we focused 

more on the combined statistics and the overall performance of the SST-separated hybrid algorithms. As 
shown in Table 5 and Figure 6, the improvement for TChl-a estimated from the SST-separated algorithms 
is rather small, indicating that responses in the TChl-a concentration to different SST regimes are relatively 
stable. For predictions of Chl-a of all PFTs, except Prochlorococcus for which the separation of SST does 
not apply, the SST-separated algorithms perform considerably better, indicated by improved statistics in 
terms of R2, RMSD, and MDPD (Table 5). Prokaryotes, both in terms of Chl-a and fraction, show the most 
promising improvement compared to that from the non-separated EOF-SST hybrid algorithm. With good 
performances in retrieving the f-prokaryotes and TChl-a, the prokaryote Chl-a is more accurately derived 
by converting the fraction to concentrations (Figure 6h) compared to the directly retrieved prokaryote Chl-a 
(Figure 6f), with an increase of R2 from 0.51 to 0.55 and reduced MDPD from 40.89% to 38.04%. Though 
prokaryotes retrieval is still not as good as the other PFTs such as diatoms and haptophytes, it is equivalent 
to the green algae retrieval with even lower MDPD. Compared to the prokaryote retrieval in Xi et al. (2020), 
this result is a significant improvement after a series of experiments by including SST in the retrieval model, 
establishing separated models based on SST regimes, and retrieving first the fraction and performing the 
conversion.

Our global in situ PFT data with SST around the threshold 13 °C located roughly between 35 and 45°N or 
°S, correspond well to the findings of Ward (2015): Their SST-dependent PSC models show a general decline 
in picophytoplankton biomass polewards of 40°N or °S, contrary to the overall trends for TChl-a, microphy-
toplankton, and nanophytoplankton biomass. Our Figure 3 shows the same declining trend for prokaryote 
(picophytoplankton) Chl-a in high latitude waters with SST < 13 °C, while Chl-a of diatoms, dinoflagellates 
(corresponding to microphytoplankton), and haptophytes (corresponding to nanophytoplankton) in cold 
waters are generally higher than in waters of SST ≥ 13 °C. Similarly, Brewin, Ciavatta, et al. (2017) chose a 
relatively higher SST value (15 °C) to partition their data set into two subsets with roughly equal numbers 
in the North Atlantic Ocean, and also found significantly different model parameters for high and low tem-
peratures. Coincidentally, Moore & Brown (2020) analyzed the trends in parameters of PSC fraction models 
for the whole Atlantic Ocean, and found that the different model parameter changes occurred in the SST 
ranges of 5 °C–15 °C, 15 °C–25 °C, and > 25 °C, respectively. All these similar behaviors in models incor-
porating SST for PFT or PSC estimations suggest ecological connections. Mouw et al. (2019) have investi-
gated the ecological drivers for phytoplankton size distribution. Among the nine considered environmental 
parameters (e.g., eutrophic depth, TChl-a, SST, mixed layer depth, etc.), they found that the euphotic depth 
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N R2
RMSD (mg 

m−3)
MDPD 

(%)

TChl-a 483 0.83 0.84 30.01

Diatoms 345 0.82 0.83 51.00

Dinoflagellates 295 0.65 0.86 52.56

Haptophytes 454 0.74 0.16 39.86

Green algae 323 0.56 0.10 47.85

Prokaryotes 438 0.51 0.08 40.89

f-Prokaryotes 441 0.76 0.16a 36.06

Fraction-derived prokaryotes 434 0.55 0.08 38.04

Note. Improved (or same) parameters are marked as bold, by comparing 
to those from the hybrid algorithm without separating SST (Table 3).
Abbreviations: MPDP, median percent  difference; RMSD, root-mean-
square difference; SST, sea surface temperature.
aNote that the unit (mg m−3) of RMSD does not apply to f-Prokaryotes.

Table 5 
Combined Statistics of the Regression Models From the SST-Separated 
Hybrid Algorithms for Matchup Data With SST ≥13 °C and With  
SST <13 °C
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is the most important parameter driving the variability of percent microphytoplankton (Sfm) on a global 
scale, covering the central gyres and the majority of the high-latitude ocean. However, in other regions, 
Sfm distribution is driven by a balance of light and mode of nutrient delivery. In summary, SST and other 
environmental parameters always covary with each other and have compound effect on PFT abundance 
and variability, and different PFTs behave differently both in time and space. Though it is still challenging 
to clearly explain the ecological connections behind these phenomena, a number of indications provided by 
the studies above lead to some potential directions to be investigated in future.

3.2. Global Maps of PFT Quantities From Merged Rrs Products

The improved EOF-SST hybrid algorithms from both Sections 3.1.1 and 3.1.2 were applied to the merged 
Rrs products and SST data to derive the global TChl-a, PFT Chl-a, and the fractions (see Figure  4, part 
model application). To illustrate the global distribution of the PFTs, Figures 7 and 8 show the annual mean 
generated from the derived monthly PFT quantities (except Prochlorococcus) for the year 2011 using the 
EOF-SST hybrid algorithm (established in Section 2.2.1) and the SST-separated algorithms (established in 
Section 2.2.2), respectively, with the absolute difference between the two products. Since Prochlorococcus 
barely exist at cold temperatures (see Section 2.2), global maps of Prochlorococcus Chl-a and f-Prochlorococ-
cus are generated only for regions with SST ≥ 10 °C (Figure 9).

In general, distribution patterns of the retrieved TChl-a and the four eukaryotic PFTs from the EOF-SST hy-
brid algorithm are consistent with those from the combination of the SST-separated algorithms (Figure 7). 
However, distinct differences between the retrievals from the two approaches are found in latitudes higher 
than 40°N/S (Figures 7k–7o). Compared to TChl-a derived from the EOF-SST hybrid algorithm (Figure 7a), 
TChl-a derived from SST-separated algorithms (Figure 7f) are elevated in the North Pacific and Atlantic 
Oceans, as well as in most regions between 40°S and 60°S of the Southern Ocean, while decreased in most 
of the high latitude marginal seas and in the Arctic except for the Barents Sea (Figure 7k). Diatom Chl-a 
from the SST-separated approach is enhanced in high latitudes and coastal waters (Figure 7g vs. Figure 7b). 
Haptophyte Chl-a is enhanced mostly in the moderately high latitudes (e.g., 45°S–60°S near-polar fronts) 
and decreased in very high latitudes and marginal seas using the SST-separated algorithms (Figure 7n). 
Changes in Chl-a for dinoflagellates and green algae generally follow the changes in haptophyte Chl-a but 
are much milder (Figures 7m and 7o). Compared to the retrievals of Xi et al. (2020), satellite-derived PFTs 
from the SST-separated algorithms are in better agreement with the equivalent products from other global 
studies (e.g., Brewin et al., 2015; Hirata et al., 2011; Losa et al., 2017).

The retrievals of prokaryote Chl-a, f-prokaryotes and the fraction-derived prokaryote Chl-a using SST-sep-
arated algorithms present generally lower values globally except in the regions around 20°S–40°S in the 
southern hemisphere, 20°N–40°N in the north Pacific Ocean and between 30°N and 45°N in the north 
Atlantic Ocean (Figures 8g–8i). The fraction-derived Chl-a shows more reasonable global distribution (Fig-
ures 8c and 8f) compared to the direct retrievals (Figures 8a and 8d), given the improved performance via 
fraction conversion for prokaryotes in Section 3.1. The EOF-SST hybrid algorithm derived f-prokaryotes is 
saturated (up to 1) in the gyres or their adjacent regions (Figure 8b). This saturation is remarkably reduced 
by the SST-separated algorithms (Figure 8e) thanks to the better description of the prokaryotes’ dependency 
on the temperature in the algorithm, resulting in that fraction-derived prokaryote Chl-a from SST-separated 
algorithms (Figure 8f) has the most reliable retrieval quality among all prokaryote Chl-a retrievals shown in 
Figure 8. Compared to the prokaryote retrieval in Xi et al. (2020), where the original EOF-based algorithm 
overestimates the prokaryote Chl-a dramatically, the fraction-derived prokaryote Chl-a in this study shows 
better agreements with previous studies (Hirata et al., 2011; Losa et al., 2017) but is relatively lower in the 
polar regions.

Regarding Prochlorococcus, although the fraction-derived Chl-a showed no distinct improvement in model 
performance compared to the direct Chl-a retrieval (Section 3.1.1), the global retrieval depicts an overall de-
crease in the fraction-derived Chl-a (Figure 9c) compared to the direct retrieval (Figure 9a), and is in closer 
agreement with in situ observations and other satellite retrievals (Alvain et al., 2008; Hirata et al., 2011). 
The conversion to Chl-a is restricted by the high uncertainty at low TChl-a and also the low variability of 
Prochlorococcus Chl-a (Xi et al., 2020).
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Figure 7. Satellite-derived estimates of annual (2011) mean surface TChl-a, Chl-a of diatoms, dinoflagellates, haptophytes, and green algae. Panels (a–e): 
EOF-SST hybrid algorithm with non-separated SST. Panels (f–j): Combined estimates from SST-separated hybrid algorithms for SST ≥ 13 °C and SST < 13 °C, 
respectively. The magenta curve indicates the isotherm of 13 °C. Panels (k–o): Absolute difference between the combined estimates from SST-separated 
algorithms and that from EOF-SST hybrid algorithm, that is, panels (f–j) minus panels (a–e). EOF, empirical orthogonal function; PFT, phytoplankton 
functional type; SST, sea surface temperature.
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The general geographic patterns of Chl-a for the six PFTs, using the algorithms proposed in this study, are 
consistent with current knowledge (e.g., Bracher et al., 2020; Brewin et al., 2015; Hirata et al., 2011; Losa 
et al., 2017). It also indicates that spectral-based approaches have the capability to derive PFT information 
equivalently to or better than abundance-based approaches. Though TChl-a has been considered as an ef-
fective first-order predictor of absorption spectra (Cael et al., 2020), PFTs that have different assemblages of 
accessory pigments, in addition to chlorophyll a, are extractable from spectral measurements with the aid of 
environmental parameters. The improvements obtained in our study also agree well with previous studies 
that incorporated SST to their PSC models. Ward (2015) reported increases of microphytoplankton and na-
nophytoplankton Chl-a and decreases of picophytoplankton Chl-a in cold polar regions using the temper-
ature-dependent functions compared to the temperature-independent functions. Moore & Brown (2020), 
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Figure 8. Same as in Figure 7 but for annual (2011) mean surface Chl-a of prokaryotes, f-Prokaryotes, and the fraction-derived prokaryote Chl-a.

Figure 9. Satellite-derived estimates of annual (2011) mean surface (a) Chl-a of Prochlorococcus, (b) f-Prochlorococcus, and (c) fraction-derived Prochlorococcus 
Chl-a using the EOF-SST hybrid algorithm.
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though only focused on the temperate to tropical zones of the Atlantic Ocean, noted that picophytoplankton 
abundance estimated by the SST-included models was lower in the gyres and temperate zones and higher 
in equatorial region than that from the baseline model without SST incorporation. These changes are also 
observed in the PFTs retrieved by our EOF-SST hybrid algorithms. For instance, compared to our original 
algorithm in Xi et al. (2020), the EOF-SST hybrid algorithms show much more realistic distributions: they 
generate higher Chl-a in polar waters and lower Chl-a in midlatitude to low-latitude for diatoms and hapto-
phytes; much lower prokaryote Chl-a in polar waters and gyres, and higher prokaryote Chl-a in equatorial 
region. The prokaryotic phytoplankton distributions particularly show more contrasting patterns between 
gyre and non-gyre regions. Our improved retrievals show higher TChl-a in the Southern Ocean where sat-
ellite derivations from conventional algorithms are often underestimated (e.g., Johnson et al., 2013; Soppa 
et  al.,  2014). PFT quantities are better retrieved by the SST-separated algorithms which account for the 
effect of SST more accurately in the statistical models by separating cold and warm waters than the hybrid 
algorithm, suggesting that subtle model configurations of such environmental parameters help to describe 
phytoplankton community variability more precisely. Nevertheless, validation with in situ pigment and/or 
PFT data is always favorable when more measurements are available.

3.3. PFT Uncertainty

3.3.1. Look-up Table for Uncertainty due to Rrs

Following the steps listed in Section. 2.3.2 to build the LUT for quantifying PFT uncertainty propagated 
from Rrs uncertainty, Figure 10 and Table 6 show the regressions and the statistical results of σMC-PFT against 
the originally predicted PFT quantities. Higher R2 and lower RMSD are achieved in general when higher 
degree of polynomial is used (Table  6). However, the difference between different regressions is rather 
small except for dinoflagellates, which is caused by their few data points at higher concentrations with 
corresponding lower MC-derived uncertainties (Figure 10c). Distinct differences between polynomial re-
gressions also exist in those PFTs whose correlations to σMC-PFT are weak (e.g., Figures 10a, 10f and 10g). To 
be conservative, linear regressions were taken as the final LUT functions to determine   y Rrs .

It is noted that   y Rrs  can not always be well defined by fitting a linear function. For example, the uncer-
tainty from MC simulation for TChl-a shows little variation (0.495–0.525) (Figure 10a), indicating that the 
uncertainty is not dependent on TChl-a and does not change much with TChl-a (R2 = 0). Uncertainties as-
sociated with prokaryotic phytoplankton (prokaryotes and Prochlorococcus) Chl-a are not well correlated to 
their retrievals either (R2 < 0.21). The uncertainties of their fractions are however highly dependent on the 
fraction retrievals with an inverse correlation (R2 > 0.40); the retrieval of higher fractions thus bears lower 
uncertainty. The derived regressions imply that the LUTs quantify well the PFT uncertainty propagated 
from Rrs uncertainty for the non-prokaryotic PFT Chl-a and the fractions of the prokaryotic phytoplankton 
but not for the prokaryotic Chl-a. TChl-a uncertainty is relatively stable and not related to the retrieved 
TChl-a.

3.3.2. Validation of PFT Uncertainty

The linear LUTs were applied to the retrieved PFT quantities in the testing data set to determine the cor-
responding   y Rrs . The final consolidated uncertainties of the retrieved PFTs from the testing data set,  y, 
were then estimated using Equation 5. With matchup data from the testing data set (Step 1 of Section 2.3.2), 
it is possible to assess whether or not the estimated uncertainties for the PFT products are accurate by 
comparing them to the actual error, δy, defined as δy = ln(cp)−ln(co). If the uncertainty  y is truly represent-
ative of its standard deviation and thus is reliable, the distribution of the actual errors normalized by the 
estimated errors δy/σy should, to some extent, follow a standard centered normal distribution (Maritorena 
et al., 2010). Therefore, to validate the estimated PFT uncertainty  y, the testing data set was compared to 
the corresponding δy. Note that σy and δy are both natural-logarithmic based.

Figure 11 shows the histograms of δy/σy distribution derived from the testing data set for all PFT quantities. 
The corresponding normal distributions determined by the mean and SD are also displayed in comparison 
with the centered standard normal distribution. For the majority of PFT quantities, the δy/σy distribution 
coincides well with the standard normal distribution, with mean values close to zero and the SD vary-
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ing from 0.84 to 1.22. Diatoms, haptophytes, and green algae present slightly lower modeled uncertainty 
compared to the actual errors (SD > 1.09). Relatively lower SD (<0.8) are found for Prochlorococcus Chl-a 
and fraction, and the fraction-derived Chl-a both for prokaryotes and Prochlorococcus. The fraction-derived 
prokaryote Chl-a presents higher modeled uncertainty (i.e., lower SD of δPFT/σPFT in Figure 11h) compared 
to the direct retrieval of prokaryote Chl-a (Figure 11f), even though the former shows better prediction 
performance (Table 3). This result suggests the possible underestimation of the actual errors in the direct 
retrieval for prokaryotes. Prochlorococcus Chl-a and fraction show overall higher modeled uncertainties 
compared to the actual error (SD ≤ 0.73, Figures 11i–11k). However, a skewed distribution of δy/σy is found 
for the direct retrieval of Prochlorococcus Chl-a and f-Prochlorococcus (Figures 11i and 11j) whereas the 
fraction-derived Chl-a shows milder skewness in their δy/σy (Figure 11k). This result suggests the modeled 
uncertainty is better described for the fraction-derived Prochlorococcus Chl-a than the direct Chl-a retriev-
als. The validation of the PFT uncertainty indicates that our modeled uncertainty is in general close to the 
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Figure 10. Scatterplots of σPFT based on the MC simulations versus originally retrieved (natural-logarithmic based) PFTs. Regression lines of linear (red), 
polynomial fittings with degrees of 2 (green) and 3 (blue) are also shown. MC, Monte Carlo; PFT, phytoplankton functional type.
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actual error (SD of δy/σy is close to 1), implying that the uncertainty assessment we performed in this study 
is reliable and conservative.

3.3.3. Per-Pixel PFT Uncertainty

Satellite PFT uncertainties were generated for each pixel by applying all uncertainty terms in Equation 7 to 
the monthly retrieved PFT products. The annual mean uncertainty for the year 2011 was determined to be 
consistent with the global PFT maps in Figures 7–9. As a composite product, the annual mean uncertainty 
was obtained by computing the root mean square of the monthly uncertainty, the same as for the composite 
uncertainty of other OC products, for example, the ESA Ocean-Color Climate Change Initiative (OC-CCI) 
TChl-a product (Sathyendranath et al., 2019). It should be noted that in the ideal case, we should apply 
the uncertainty quantification scheme first to the PFT daily products, and then compute the monthly or 
yearly composite based on the multi-day uncertainties. However, detailed computations have shown that 
the monthly composites from the daily products have poorer spatial coverage compared to the directly 
derived monthly products, mainly due to fewer valid pixels for the nine-band Rrs spectra in the daily to 
monthly composites than from the direct monthly products. In addition, the uncertainty derived directly 
from the monthly products is very comparable to the monthly composite generated based on daily uncer-
tainty (e.g., for TChl-a uncertainty the R2 = 0.98 and slope = 1.00 between the two derivations, details not 
shown). Therefore, in the present study, we applied the uncertainty quantification scheme directly to the 
monthly PFT products to save computing time and achieve better spatial coverage for the derived per-pixel 
uncertainties.

Figure 12 shows the annual composite of uncertainties for all the PFT quantities, including also the uncer-
tainty for TChl-a derived from the EOF-SST hybrid algorithm in comparison to the uncertainty of the OC-
CCI v4.2 TChl-a product (Figure 12a vs. Figure 12d). Uncertainties for diatoms (Figure 12b), dinoflagellates 
(Figure 12c), haptophytes (Figure 12e), and green algae (Figure 12f) display similar distribution patterns 
with their Chl-a retrievals, with low uncertainties in the gyres, and higher uncertainties in high latitude 
regions and marginal seas. The overall lowest uncertainty is obtained for haptophyte Chl-a (the natu-
ral logarithmic uncertainty varied from 0.28 to 1.35). The uncertainty for green algae Chl-a is also low 
(0.42–1.45), whereas diatom Chl-a shows higher uncertainty (0.47–1.53) and dinoflagellates overall have 
the highest uncertainty (0.63–1.64). Regarding the two prokaryotic phytoplankton, the uncertainty for the 
direct retrieval of prokaryote Chl-a shows lower uncertainty in the polar regions but higher in the low lati-
tudes (Figure 12g); the uncertainty for Prochlorococcus shows generally high uncertainty in latitudes higher 
than 35° both south and north and also in the gyres (Figure 12j). The uncertainties for the prokaryotic 
fractions  (Figures 12h and 12k) show reverse distributions to the fraction retrievals with low uncertainty 
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Linear Polynomial 2 Polynomial 3

R2 RMSD R2 RMSD R2 RMSD

Diatom Chl-a 0.51 0.262 0.51 0.262 0.52 0.262

Dinoflagellate Chl-a 0.58 0.277 0.62 0.264 0.65 0.252

Green algae Chl-a 0.74 0.208 0.74 0.207 0.74 0.207

Haptophyte Chl-a 0.57 0.244 0.57 0.243 0.57 0.243

Prochlorococcus Chl-a 0.21 0.549 0.36 0.494 0.36 0.494

Prokaryote Chl-a 0.07 0.354 0.07 0.354 0.10 0.347

TChl-a 0.00 0.004 0.01 0.004 0.01 0.004

f-Prochlorococcus 0.81 0.176 0.82 0.175 0.82 0.175

f-Prokaryotes 0.40 0.302 0.41 0.30 0.42 0.296

Note. Linear regressions were chosen for uncertainty quantification.
Abbreviations: EOF, empirical orthogonal function; PFT, phytoplankton functional type; RMSD, root-mean-square 
difference; SST, sea surface temperature.

Table 6 
R2 and RMSD of the Regression Functions Fitting the Relationship Between σPFT and Retrieved PFT Quantities (Using 
EOF-SST Hybrid Algorithm)
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in  midlatitude to low-latitude compared to that in high latitudes. The uncertainty for f-prokaryotes is low-
er than f-Prochlorococcus uncertainty. Fraction-derived prokaryote and Prochlorococcus Chl-a uncertain-
ties basically follow the patterns of their corresponding fraction uncertainties but are higher (Figures 12i 
and 12l), as they are derived by combining both the fraction and TChl-a uncertainties, with the latter exhib-
iting little spatial variation (Figure 12a).
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Figure 11. Distributions of the actual error normalized by the modeled propagated error (δPFT/σPFT) for all the retrieved (using EOF-SST hybrid algorithm) PFT 
quantities from the testing data set: (a) TChl-a; Chl-a of (b) diatoms, (c) dinoflagellates, (d) haptophytes, (e) green algae, and (f) prokaryotes; (g) f-Prokaryotes, 
(h) fraction-derived prokaryote Chl-a, (i) Prochlorococcus Chl-a, (j) f-Prochlorococcus, and (k) fraction-derived Prochlorococcus Chl-a. Red and green curves 
indicate the fitted normal distribution and the standard centered normal distribution, respectively. The red asterisk represents the mean point of the fitted 
distribution, and the green circle highlights the point of zero. Mean value and standard deviation (SD) of δy/σy are also shown. EOF, empirical orthogonal 
function; PFT, phytoplankton functional type; SST, sea surface temperature.



Journal of Geophysical Research: Oceans

As the PFT prediction models are based on multiple linear regressions, the uncertainty of the model coef-
ficients and SST are propagated linearly to the PFT retrievals following Equation 8. Their corresponding 
uncertainties are found to have much less spatial variability compared to σy(Rrs). As a result, the distribution 
patterns of the pixel-wise uncertainties generated for the PFT quantities are very much subject to σy(Rrs) 
derived from the linear LUT functions. It should be noted that the LUTs built for prokaryote and Prochloro-
coccus Chl-a cannot represent their uncertainties sufficiently (Figures 10f and 10g), hence their uncertainty 
products (Figures 12g and 12j) should be used with caution. The uncertainties for the fractions and the 
fraction-derived prokaryote and Prochlorococcus Chl-a, however, are reported with higher confidence as 
they are well described by the LUTs and the error propagation analysis. Uncertainties for the other PFT 
quantities are in general well and conservatively quantified, which are also justified by the uncertainty val-
idation. Yet uncertainties for satellite-derived PFTs have been rarely reported, with the exception of Brew-
in, Ciavatta, et al.  (2017), who performed uncertainty evaluation on phytoplankton size classes and two 
phytoplankton groups (diatoms and dinoflagellates) retrieved by the retuned abundance/ecological based 
algorithm in the North Atlantic region. Though the exact values of the uncertainty estimates are not provid-
ed by Brewin, Ciavatta, et al. (2017), their uncertainty maps for diatoms and dinoflagellates are within the 
same order of magnitudes (when converted from the base-10 logarithm to the natural-logarithm) and show 
similar distribution patterns with our uncertainty products in the North Atlantic Ocean.
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Figure 12. Per-pixel uncertainty (in natural logarithmic scale) of the annual mean of 2011 for the satellite-derived PFT quantities from EOF-SST hybrid 
algorithm. The dashed-line box frames in particular (a) the uncertainty of TChl-a from the EOF-SST hybrid algorithm in comparison to (d) the OC-CCI TChl-a 
uncertainty. EOF, empirical orthogonal function; PFT, phytoplankton functional type; SST, sea surface temperature.
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Compared to the reported uncertainty for the OC-CCI TChl-a product, the uncertainty of TChl-a from our 
EOF-SST hybrid algorithm is considerably lower. Our TChl-a uncertainty varies from 0.52 to 0.58 (Fig-
ure 12a), presenting very little spatial variability with only slightly higher uncertainty in the gyres and some 
marginal seas. The OC-CCI TChl-a uncertainty ranges between 0.43 and 1.18 (Figure 12d), showing large 
spatial variability with much higher uncertainty in the marginal seas and high latitudes compared to our 
TChl-a uncertainty. Low uncertainty for the OC-CCI product in and surrounding the gyres is comparable 
with our uncertainty estimates. Remarkably reduced uncertainty of the TChl-a derived by the EOF-SST hy-
brid algorithm in high latitudes (>40°) indicates that the EOF-SST hybrid algorithm has great potential in 
improving TChl-a estimation, especially in polar regions where the standard OC algorithms typically intro-
duce high errors (IOCCG, 2015). The overall lower uncertainty in our TChl-a product also reveals at a cer-
tain scale that our estimates for most of the PFT quantities and the corresponding uncertainties are reliable.

3.3.4. Potential Caveat in the Uncertainty Analysis

As mentioned in Section 2.3, we did not include the uncertainties of the HPLC measurements and the 
DPA-derived PFTs in our PFT per-pixel uncertainty construction. According to IOCCG (2019), uncertainties 
of the HPLC-based Chl-a are around 7% and can be higher for other pigments (Claustre et al., 2004). We 
were not able to obtain this information for our large global data set collected from various cruises in the 
last decades. Mostly no other descriptors of phytoplankton taxonomic composition had been measured and 
details on the HPLC measurement error (including all associated steps, e.g., filtration, extraction, and HPLC 
analysis accuracy) are not available. Nonetheless, HPLC-based pigment measurements still remain as one 
of the most widespread and quality-controlled methods currently available, and are robust for quantifying 
pigments and their concentrations (Van Heukelem & Hooker,  2011). However, the methods that trans-
form the pigment concentrations into PFT quantities rely on assumptions that might be violated (Moore 
& Brown, 2020). There are still large uncertainties in how we characterize the PSCs and PFTs in situ (e.g., 
Brewin et al., 2014; Chase et al., 2020). We used HPLC data to derive PFT Chl-a and fractions by determin-
ing the DPs, for which the DPA method was updated by Losa et al. (2017) based on previous refinements 
(e.g., Brewin et al., 2015; Hirata et al., 2011; Uitz et al., 2006). It is known that marker pigments used for PFT 
identification are often shared among taxonomic groups, bringing uncertainty to the quantification of PFTs 
(Jeffrey et al., 2011). A recent study by Chase et al. (2020) examined the PSCs derived from DPA by compar-
ing to the cytometry data and found that DPA tended to mis-assign several major phytoplankton groups to 
size classes. They provided recommendations to revise these mis-assignments by adjusting the attribution 
of phytoplankton groups to different PSCs, also Hirata et al. (2011) and Brewin et al. (2014) have pointed to 
that. As we directly used the DPs for our PFT determination and did not assign the DPs to size classes (see 
Section 2.3.1.1); unfortunately, these recommendations by Chase et al. (2020) and other researchers do not 
apply to our study. However, validations of DPA-based PFT derivations using data from other sources such 
as microscopy and flow cytometry are always desirable, although we still have to bear in mind that different 
quantities are determined and also their conversion bear large uncertainties (Bracher et al., 2017).

Using both global and regional HPLC data sets, Kramer and Siegel (2019) performed hierarchical cluster and 
EOF analyses to examine the associates between and among pigment groups, and demonstrated that four 
major phytoplankton groups (diatoms/dinoflagellates, prokaryotes, haptophytes, and green algae) could be 
identified on global scales. Their results showed that diatoms and dinoflagellates grouped together on glob-
al scales but could always be separated on local scales. Our data set includes many if not most of the data 
sets of Kramer & Siegel (2019) both from global and local regions, which was used to determine six PFTs. 
Therefore, according to their findings, our dinoflagellate Chl-a (using peridinin as DP) and Prochlorococcus 
Chl-a (using divinyl chlorophyll a as DP) quantifications might not be confident. Interestingly, this is re-
flected in our PFT uncertainty maps which show that retrievals of dinoflagellate and Prochlorococcus Chl-a 
have relatively higher uncertainty ranges than others (Figures 12c and 12l), whereas haptophytes and green 
algae show the lowest uncertainty ranges (Figures 12e and 12f). These uncertainty maps, though without 
directly taking into account the errors in the in situ PFTs due to DPA, correspond to the results of assess-
ment performed by Kramer & Siegel (2019) and thus carry partly the uncertainty due to DPA through the 
retrieval algorithms. Nevertheless, it is still necessary to reconstruct the uncertainty assessment with the 
attribution of the in situ PFT uncertainties when they are better understood.
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4. Summary
This study improved the previously established EOF-based statistical approach by Xi et al. (2020) for global-
ly estimating the Chl-a of six PFTs using merged OC Rrs products. The modified retrieval scheme, referred 
to as EOF-SST hybrid algorithm, was developed by using updated input data sets and accounting for the 
influence of SST on the derived PFT quantities. Furthermore, fractions of prokaryotes and Prochlorococcus 
were also included as retrieved PFT quantities, which resulted in more accurate retrievals compared to 
retrieving their Chl-a directly. The retrieved fractions were used together with TChl-a retrievals to obtain 
a fraction-derived Chl-a for the two PFTs, which showed prominent improvements for prokaryote Chl-a, 
but not for Prochlorococcus Chl-a. By further splitting the input data set according to the PFT dependence 
on SST in different SST regimes, separated retrieval algorithms for low and high-temperature waters were 
established, leading to further improved performance for all PFTs than the hybrid algorithm based on the 
whole data set. Improvements for PFT retrievals were largest in high latitudes. Finally, the pixel-by-pixel 
uncertainty of the satellite PFT retrievals was assessed by accounting for the uncertainties from input data 
and model parameters via an error propagation method. These satellite PFT uncertainties, for the first time 
reported on a global scale and for spectral-based PFT retrieval approaches, provide reliable error estimates 
for the PFT products which allow us to better understand the product quality both in time and space.

This study used the GlobColour merged OC products spanning a period from 2002 to 2012 only. However, 
our EOF-SST hybrid algorithm including pixelwise uncertainties can easily be expanded to other OC sen-
sors, such as MODIS-VIIRS merged and OLCI products, encompassing information at least at nine spectral 
bands. The algorithm can also be adapted and well-suited to hyperspectral OC data (e.g., PACE); its perfor-
mance for PFT retrievals may potentially be improved with higher spectral resolution and incorporation of 
environmental information. Uncertainty assessment for the PFT estimates from different satellite products 
is needed for consistent long-term PFT data from multiple satellite sensors with assured continuity. Such 
data are critical to track changes in phytoplankton community structure under the changing climate. PFT 
products with uncertainty estimates are also beneficial to applications of ecosystem modeling by helping 
to simulate and/or evaluate the model outputs, as well as being assimilated within these models to further 
improve forecasting marine biogeochemistry, as used by many marine services.

Data Availability Statement
The DPA-derived PFT Chl-a for diatoms, haptophytes, and prokaryotes from the pigment database I were 
published already in Losa et al. (2017) and are available from PANGAEA: https://doi.pangaea.de/10.1594/
PANGAEA.875879 (Soppa et al., 2017). Table S1 lists the data sources where the global HPLC data were 
obtained. Matchup data used for the algorithm establishment in this study, including the collocated in situ 
pigment-derived PFT data, CMEMS SST, and nine-band Rrs data from the GlobColour merged products, are 
available from PANGAEA: https://doi.pangaea.de/10.1594/PANGAEA.930087 (Xi et al., 2021).
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