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Abstract: Benthic dinoflagellates produce a wide array of bioactive compounds, primarily polyke-
tides, that cause toxic effects on human consumers of seafood and perhaps mediate species inter-
actions in the benthic microenvironment. This study assesses toxic and other bioactive effects of
the benthic dinoflagellate Amphidinium operculatum (strain AA60) in two targeted bioassays. The
brine shrimp (Artemia salina) bioassay revealed lethal effects of direct exposure to live dinoflagellate
cells (Treatment A) and even higher potency with ethanolic extracts of lysed cells (Treatment D).
There were no inimical bioactive effects of components released to the aqueous growth medium
(Treatment B) or from aqueous cell lysates (Treatment C). The hypothesis that released bioactive
compounds provide a chemical defense against metazoan grazers is therefore not supported by
these results. The cytotoxic effect of ethanolic crude extracts of this dinoflagellate exhibited mild
to high growth reduction effects on six human cancer cell lines. In particular, crude cell-free ex-
tracts proved highly growth-inhibitory activity towards breast and lung cancer cell lines MCF-7 and
SKLU-1, respectively. Preliminary anti-cancer results indicate that natural bioactive compounds
from Amphidinium are worthy of structural characterization and further toxicological investigation as
potential therapeutants.
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1. Introduction

Benthic marine dinoflagellates are key primary producers and a critical component of
trophic webs, particularly in tropical and sub-tropical ecosystems, such as coral reefs [1].
Species are most commonly found epibenthically, attached to macroalgae, seagrass, and
detritus or as epiphytes upon hard surfaces or sediments. Benthic dinoflagellates produce
a wide array of bioactive compounds, which act as toxins for human consumers of seafood
when accumulated via the marine food chain and may also have toxic or allelochemical
effects on other benthic organisms [2]. Benthic dinoflagellates are notorious as causative
agents of seafood poisoning syndromes, most prominently ciguatera fish poisoning (CFP)
and diarrheic shellfish poisoning (DSP). Known toxigenic benthic dinoflagellates are rep-
resented among more than a dozen species that produce polyketide-derived bioactive
compounds [2–4]. These polyether compounds pose a known or potential risk to hu-
man health, and include okadaic acid and dinophysistoxins, ciguatoxins, maitotoxins,
cooliatoxins, palytoxins, etc., as well as other macrolides of uncertain toxicity [5–8].

The cosmopolitan naked dinoflagellate genus Amphidinium Claparède et Lachmann
is widely distributed in temperate, sub-tropical and tropical marine waters, occurring
in either free-living or endosymbiotic states. Many Amphidinium, including the type
species A. operculatum Claparède et Lachmann, are often amongst the most abundant
dinoflagellates in benthic ecosystems [8]. These epibenthic species can be found attached
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to substrates such as macrophytes or corals or dwelling upon or in the sand. Amphidinium
operculatum is occasionally planktonic through disturbance of its benthic habitat by storm
winds or currents.

Some Amphidinium species, most notably A. carterae, A. gibbosum, A. massartii and A. op-
erculatum, synthesize polyketides belonging to three structural sub-classes [9]: macrolides;
short linear polyketides, and long-chain polyketides. Although toxicologically poorly char-
acterized, these polyketides are often shown to be biologically active. Several Amphidinium
polyketides have demonstrated cytotoxic and/or hemolytic activity against other microor-
ganisms [10–12], and have even been linked to mortality in fish species [6,13,14]. More
specifically, certain amphidinins [15,16], amphidinoketides [17], amphidinolides [18,19],
amphidinolactone [19–21], caribenolide I [22], and iriomoteolides [19,23–25], have shown
cytotoxicity against human tumor cells in vitro. Colon tumor cell line HCT and epidermoid
carcinoma KB cells have been particularly responsive [26]. Accordingly, these dinoflag-
ellate polyketides have gained attention from a biotechnological perspective due to their
promising anti-cancer properties [4,12,26].

Unfortunately, much of the early work on the natural products chemistry and struc-
tural elucidation of polyketides was based upon cultured Amphidinium isolates of uncertain
or unspecified taxonomic identification at the species level. Given the uncertainty in Amphi-
dinium species assignment, and high variability and diversity among strains in capability to
biosynthesize polyketides [8,12,27], it is essential to identify and characterize the strain first.
Then the biological activity of the extracts should be screened, and finally the respective
secondary metabolites identified and purified for further bioactivity assessment.

Primary toxicological screening for potential bioactivity effects (i.e., chemical defense)
in predator-prey interactions can be conducted by exposure of target species to whole
cells or extracts of the putative elicitor. Standard test subjects include the brine shrimp
Artemia salina. This crustacean is widely used in ecotoxicological trials because of its ease of
maintenance in the laboratory, short life cycle, high fecundity, and adaptability to different
nutrient regimes [28,29].

Numerous published studies on in vitro assays with cancer cell lines have indicated
the high capacity of secondary metabolites from dinoflagellates to inhibit cancer cell
growth. A few of these novel therapeutants are in the final phases of clinical trials or in
preliminary market phase, indicating high promise for dinoflagellate-derived metabolites
as anticancer agents [4,30]. For decades, cancer drug discovery has been based on screening
tools with cytotoxicity assays, e.g., employing colorimetric detection methods [31]. The
sulforhodamine-B (SRB) assay is widely used as a rapid screening method, based on
measurement of cellular protein content to estimate cellular inhibition (%) resulting from
application of the test analyte [32].

Bioactive compounds produced by Amphidinium species have been barely explored
regarding allelochemical effects in interspecies interaction in natural ecosystems, much
less than even their therapeutic potential. This current study evaluated the bioactivity
(“toxicity”) of a cultured strain (AA60) of A. operculatum isolated from the Veracruz Reef
System (VRS), Gulf of Mexico, against two alternative target groups. Bioassays of Am-
phidinium with the brine shrimp Artemia salina were carried out to determine the general
toxicity effect elicited by direct exposure to dinoflagellate cells or various extracts of cul-
tured cells [6,8,33,34]. The brine shrimp response was evaluated to establish the general
mechanism and effect of toxin release to the micro-environment, e.g., as a potential grazing
inhibitor. In parallel experiments, cytotoxicity screening of extracts against six cancer cell
lines was conducted to assess preliminary activity of crude fractions containing unknown
bioactive components with biotechnological potential as anti-cancer therapeutants.

2. Materials and Methods
2.1. Dinoflagellate Isolation and Maintenance

Cells of Amphidinium operculatum were isolated from seaweed (Padina sp.) sampled
from a buoy within the Veracruz Reef System (VRS) (Veracruz, Mexico, 19◦11′54.10′′ N,
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96◦ 4′0.70′′ W). Live seaweed samples were transported with site water in 50 mL conical
plastic centrifuge tubes with ice packs to maintain ambient temperature around 24 ◦C
during the 12 h transport to the laboratory. Substrate specimens and surrounding medium
were examined for colonizing dinoflagellates in Petri plates under a stereo-dissecting mi-
croscope (Discovery.V8, Zeiss, Göttingen, Germany). Substrates were gently brushed and
single-cells of epibenthic dinoflagellates were isolated by micropipette into sterile 96-well
microplates containing 300 µL 50%-strength GSe growth medium [35] (modified without
soil extract) prepared from autoclaved (121 ◦C, 15 min) seawater filtered through sand,
activated carbon and 1 µm-cartridge-filters. The growth medium, supplemented with
GeO2 (final concentration: 2.5 mg L−1) [36] to inhibit diatom growth, was prepared from
heat-sterilized seawater stock at salinity 36. Clonal isolates were cultured at 25 ± 1 ◦C on
a 12:12 h light:dark cycle and illumination of 50 µmol photons m−2 s−1. Well established
dinoflagellate isolates were transferred to 250 mL Erlenmeyer flasks with full strength mod-
ified GSe medium and maintained as reference cultures under the conditions stated above.

Cultures for experimental biomass production and bioassay testing were started with
a 15 mL inoculum in 250 mL Erlenmeyer borosilicate flasks. Cell density was monitored
until maximal optical density by visible inspection. Final cell counts were performed for
harvest and extraction in late exponential growth to stationary phase transition (ca. two
weeks to 30 d). Cell density at harvest was assessed by taking a 2 mL culture sample
diluted 1:10 with GSe, then fixed with acidic Lugol’s iodine solution, and counted in a
Sedgewick-Rafter counting chamber.

2.2. Dinoflagellate Identification

Clonal isolate AA60 in the present study was assigned to A. operculatum Claparède &
Lachmann by detailed photonic and scanning electron microscopy (SEM). Briefly, 50 µL of
live cell culture was mixed with 50 µL of seawater and visualized on a light microscope
(Axio Observer A1, Zeiss, Oberkochen, Germany) at 200–1000χ magnification. Photomicro-
graphic images were recorded after visual inspection of cells. SEM images were obtained
by following the method of Pérez-López et al. [37] for the genus Amphidinium. Cells were
observed on a JSM 6360-LV scanning electron microscope (JEOL Tokyo, Japan).

The Amphidinium species identity was confirmed by sequencing the large subunit
(LSU) and ITS regions of the rDNA gene. DNA was extracted by a modified CTAB
method [9,14,38,39] and purified with DNA Clean & Concentrator (Zymo Research, Irvine,
CA, USA) following the manufacturer’s recommendations. The polymerase chain reaction
(PCR) was performed with the primers D1R [40] and 28-1483 [41] using the Phire Plant
Direct PCR Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufac-
turer’s instructions. PCR thermocycler conditions were set as follows: in a PCR machine
Flexigene (Techne, Staffordshire, UK), 98 ◦C for 5 min, 98 ◦C for 20 s, followed by 40 cycles
at 48 ◦C for 30 s, and finally 72 ◦C for 1 min and 20 s. Sequencing reactions were analyzed
with the Genetic Analyzer ABI Prism 3100 (Applied Biosystems, Foster, CA, USA).

2.3. Preparation of Ethanolic Extracts of Cultured Amphidinium Cells

A. operculatum cell culture (13 mL) was harvested in late exponential to early stationary
growth phase by centrifugation at 35× g for 10 min (Solbat J12, Puebla, Mexico) to yield a
loose cell concentrate with minimal cell damage. The supernatant was removed, and the
cell concentrate was stored at −65 ◦C. For freeze-thaw extraction, the cell concentrate was
thawed and then centrifuged at 1500× g for 5 min at room temperature (24 ◦C). The cell
pellet was washed with 1 mL of cold seawater (4 ◦C), centrifuged again at 1500× g for 5 min
and stored for 24 h at −65 ◦C. The pellet was extracted with 2 mL absolute EtOH (ACS
grade, Merck Millipore, Darmstadt, Germany) and frozen for 30 min at−65 ◦C. Afterwards,
the cell suspension was vortex-mixed for 30 s. The freeze and thaw cycles were repeated
until complete cell disruption was verified by observations with a stereo-microscope
(Discovery V8, Zeiss). Next, the sample was centrifuged at 6720× g for 5 min and the
supernatant was filtered with a 0.2 µm syringe filter (Puradisc, Whatman, Maidstone, UK)
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into a 2 mL microtube. Finally, the crude ethanolic extract was lyophilized (LabConco
Freeze Dry, Kansas City, KS, USA) to yield an EtOH-free extract and stored at −65 ◦C until
use as Treatment D in the acute toxicity bioassay and the SRB assay.

2.4. Acute Toxicity Artemia Assay

Artemia salina dry cysts (Eclosionazul, Mexico, Mexico) were incubated in 2.5% NaCl
medium under continuous illumination and aeration at room temperature. After 48 h
the hatched nauplii were transferred to a Petri dish with fresh saline medium to facili-
tate collection.

Acute toxicity tests were performed with four alternative fractions applied to live brine
shrimp nauplii: Treatment A with live Amphidinium cells; Treatment B with extracellular
growth medium (minus Amphidinium cells); Treatment C with crude Amphidinium cell
lysate; and Treatment D with ethanolic extract of cultured Amphidinium cells.

Treatment A was designed to assess the effects of direct exposure of brine shrimp
nauplii to intact Amphidinium cells. Amphidinium cells (1 mL transfer) were grown and har-
vested from 125 mL of modified GSe medium under the conditions specified in Section 2.1.
A geometric-model dilution series [42] was prepared in modified GSe medium to yield the
following concentrations: 0.3, 1.0, 3.2, 10.0, 31.6, and 100.0 × 103 cells mL−1.

In Treatment B, brine shrimp nauplii were exposed to the growth medium without
Amphidinium cells to examine the effects of extracellular metabolites leaked or excreted
from apparently healthy cells. The supernatant of Amphidinium culture samples prepared
as for Treatment A was retained after gentle centrifugation (ca. 3000× g) to yield the
leaked or excreted metabolites from cell equivalents corresponding to the dilution series
for Treatment A.

In Treatment C, aqueous lysates of cultured Amphidinium cells were prepared to test
intracellular metabolite effects on brine shrimp nauplii. The pellets obtained from the
centrifuged Treatment B samples were resuspended in 2 mL modified GSe medium and
homogenized (Polytron homogenizer, Thomas Scientific, Swedesboro, NJ, USA) for 30 s
on ice. To assure cell disruption, samples were vortex-mixed for approximately 40 s and
treated under 3 freeze-thaw cycles, followed by ultrasonication (USR-1, Julabo, Allentown,
PA, USA) on ice. Finally, the pooled extracts were homogenized and pipetted to yield a
geometric dilution series corresponding to cell equivalents for Treatment A.

In Treatment D, freeze-dried ethanolic extract of cultured Amphidinium cells was
applied (EtOH-free) to brine shrimp to assay the effects of EtOH-soluble intracellular
components on behavior and mortality of nauplii. The lyophilized ethanolic extract was
dissolved in 1 mL modified GSe seawater medium by ultrasonication to yield a final
concentration of 4.3 mg mL−1 equivalent to 8.9 × 105 cells mL−1. For the experimental
assay, the stock extract was diluted to the following: 153.0, 114.8, 86.1, 64.6, 48.4, 36.3, 27.2,
20.4, and 15.3 µg mL−1, based on a geometric-model dilution series [42], equivalent to 31.6,
23.7, 17.8, 13.3, 10.0, 7.5, 5.6, 4.2, and 3.2 × 103 cells mL−1, respectively.

Bioassays were conducted in triplicate for each treatment in 96-well microplates
containing 100 µL of 2.5% NaCl medium with 10 nauplii and addition of 100 µL of each
treatment. GSe seawater medium and 2.5% NaCl solution served as negative controls
(n = 3). The microplates were incubated under normal laboratory conditions (12:12 h
artificial daylight:dark, 24 ◦C) for 24 h. After this time, dead nauplii were counted, and
then 100 µL of 1:1 EtOH:acetone were added to each well to sacrifice the surviving nauplii
to determine the total number, in case there were more than 10 nauplii in the test wells.

2.5. Dose-Response Curve

A dose-response curve was plotted to assess LC50 mortality, the treatment concentra-
tion yielding death of 50% of the test subjects under the specified experimental conditions.
The percentage of nauplii mortality was calculated as follows:

% Mortality = (Nm/Nt) × 100 (1)
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where Nm represents the number of dead nauplii and Nt the total nauplii [43]. Mean
mortality percentage for each concentration tested was adjusted to a five-parameter logistic
equation with GraphPad Prism version 8.3 (GraphPad Software, San Diego, CA, USA).

2.6. Cell Line Culture and Assays

Six human cancer cell lines were assayed for effects on growth after exposure to
ethanolic extracts of Amphidinium cultures: U251 (human glioblastoma), PC-3 (human
prostatic adenocarcinoma), K562 (human erythroleukemia), HCT-15 (human colorectal
adenocarcinoma), MCF-7 (human mammary adenocarcinoma), SKLU-1 (human lung ade-
nocarcinoma). All cancer cell lines were obtained from the National Cancer Institute (NCI,
Bethesda, MD, USA). The cell lines were cultured in RPMI-1640 medium [44] supplemented
with 10% fetal bovine serum, 2 mM L-glutamine, 10,000 units mL−1 penicillin G sodium,
10,000 µg mL−1 streptomycin sulfate and 25 µg mL−1 Amphotericin B (Gibco, Waltham,
MA, USA), and 1% non-essential amino acids (Gibco) [44]. The cell lines were maintained at
37 ◦C in humidified atmosphere with 5% CO2. The viability of the cells in the experiments
exceed 95% as determined with Trypan blue [44].

2.7. Sulforhodamine B Assay

Cytotoxicity of the ethanolic extract of A. operculatum cells was evaluated with a col-
orimetric screening method based on the detection of cellular protein with sulforhodamine
B (SRB). This microculture assay was configured to measure cell growth, as described in
the protocols established by NCI [44]. The tissue culture cells were removed from the
culture flasks by treatment with trypsin and diluted with fresh medium. A fixed volume
(100 µL) of cell suspension, containing 5 to 10× 103 cells per well, was pipetted into 96-well
sterile microtiter plates, and then incubated at 37 ◦C for 24 h in a 5% CO2 atmosphere. The
lyophilized ethanolic extract (prepared as described in Section 2.3) was diluted with PBS
buffer. Subsequently, 100 µL of the diluted ethanol extract were added to each well.

The cultured cells were exposed to the extract for 48 h at a final concentration of
24.7 µg mL−1, equivalent to 5.1 × 103 cells mL−1. PBS buffer was used as negative control.
After incubation, cells were fixed to the plastic substratum by addition of 50 µL of cold
50% aqueous trichloroacetic acid. The plates were incubated at 4 ◦C for 1 h, washed with
distilled water, and air-dried. The trichloroacetic-acid-fixed cells were stained by addition
of 0.4% SRB. Free SRB solution was then removed by washing with 1% aqueous acetic
acid. The plates were air-dried, and the bound dye was solubilized by addition of 10 mM
unbuffered Tris base (100 µL). The plates were placed on a shaker for 10 min, and the
absorption at 515 nm was determined with an ELISA plate reader (Bio-Tex Instruments, TX,
USA). Percentage of inhibition was calculated as described by Vichai and collaborators [32].
The results were graphed with GraphPad Prism version 8.3.

2.8. Statistics

To compare the differences between the dose-response curves obtained from the acute
toxicity Artemia assay (Section 2.4), the confidence interval (α = 0.05) was determined with
GraphPad Prism version 8.3. One-way ANOVA (α = 0.05) was used to assess the inhibitory
effect of the ethanolic extract on the cancer cell lines tested. An a posteriori Tukey test
(α = 0.05) was applied to establish the significant differences between effects on cancer-cell
lines. The ANOVA and Tukey’s test were performed with Microsoft Excel version 15.13.3.
(Microsoft Corporation, Redmond, WA, USA)

3. Results and Discussion
3.1. Dinoflagellate Description and Identification

A. operculatum (AA60) cells (n = 6) are ellipsoidal in shape (mean length: 27.48 ± 4.59 µm;
mean width: 18.26 ± 2.73 µm) and correspond to the classic description of the species [45].
The reduced epicone is located at the center apex of the cell, but oriented toward the left
side (Figure 1a). Multiple orange-yellow chloroplasts are found near the center of the cell,
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radiating to the periphery (Figure 1a). The nucleus is located in the posterior part of the
cell (Figure 1b). Posterior trailing flagellar insertion is near the epicone on the central axis
of the cell (Figure 1c).
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Figure 1. Amphidinium operculatum AA60. (a) and (b) Dorsal view by photonic microscopy. (c) Ventral
view by scanning electron microscopy. Scale bar = 10 µm.

The LSU and ITS rDNA sequences align well with those provided in the literature [38],
and leave no doubt regarding the species identity. The sequences of the LSU and ITS
regions of the rDNA gene of AA60 are available in the DNA repository database (GenBank
accession number MT325891).

3.2. Acute Toxicity Assay

A. operculatum was toxic towards Artemia salina nauplii when they were exposed to
whole cell culture (Treatment A) and ethanolic extract (Treatment D). The effect on the
nauplii was almost immediate after applying the most concentrated dilutions of ethanolic
extract (at 153, 115, and 86 µg mL−1, equivalent to 31.6, 23.7, and 17.8 × 103 cells mL−1,
respectively). The toxic metabolites of A. operculatum act rapidly, but the response is dosage-
threshold dependent upon the cell equivalents. In contrast, when nauplii were treated with
cell-free extracellular medium (Treatment B) and cell lysate (Treatment C) of A. operculatum
AA60, no nauplii mortality was observed (as in the negative controls) throughout the
dilution series.

Since nauplii mortality was only observed with Treatments A and D, the lethal con-
centration for 50% of the nauplii (LC50) was assessed only for these treatments (Figure 2).
The toxicity of intact live cells of A. operculatum against brine shrimp was significantly
lower (α = 0.05) (LC50 = 8.1 ± 0.8 × 103 cells mL−1) than with the ethanolic extract
(LC50 = 35.8 ± 0.8 µg mL−1, equivalent to 7.4 ± 0.2 × 103 cells mL−1). Nevertheless, no
significant differences were found between the dose-response curves for Treatments A
and D.
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3.3. Ecotoxicological Assessment of A. operculatum

The biosynthetic pathways and extracellular release mechanisms for bioactive com-
pounds produced by Amphidinium species are poorly understood. There is even less
knowledge regarding their role in species interactions in the environment. In the current
bioassay experiments, the brine shrimp Artemia salina was shown to be negatively affected
by direct exposure to live cells of A. operculatum AA60 and to ethanolic extract but insensi-
tive to application of cell lysate and cell-free growth medium. Since living Amphidinium
cells were toxic, the brine shrimp are susceptible to toxic intracellular compounds released
only upon digestive release from dinoflagellate cells after grazing, but insensitive to the
inactivated or matrix-bound components in cell lysates.

Alternatively, the lethal effect of exposure to actively metabolizing dinoflagellate
cells but not cell lysates may be due to the production of extracellular mucus [46]. Ex-
opolysaccharide (“mucus”) is produced by a wide variety of microalgae and cyanobacteria,
particularly in benthic environments. Such mucus may play multiple roles in cell attach-
ment to substrates, inhibition of bacterial colonization and resistance to predators [47].
For example, the benthic toxigenic dinoflagellate Ostreopsis ovata can cause sea urchin
(Paracentrotus lividus) larval mortality at high cell densities by completely covering the
larvae, thereby creating a mechanical barrier affecting larval swimming [48].

Mucus production by benthic Amphidinium species is well known [47]. Mortality of
crustacean nauplii in the presence of whole live cells in the bioassays with A. operculatum
could be due to purely hydromechanical effects. Mucus sheathes the nauplii and disrupts
its swimming appendages and/or inhibits oxygen transfer (“smothering”) [49].

Clumping of cells by mucus aggregates may cause impaired feeding by obstructing
the gastrointestinal tract of Artemia. Moreira-González and collaborators [46,50] inferred
this based on their observations on the effect of different species of Amphidinium on Artemia
salina. No detailed investigation of grazing rate or behavior was conducted over the acute
toxicity trials in the experiments presented herein. Yet we did confirm by microscopic
observations that the A. operculatum AA60 produced abundant mucus and often clumps of
cells. Given the size of Artemia nauplii (400 to 500 µm [51]) at the stage at which the current
experiments were carried out, they should have been able to filter food particles varying
from 1 to 50 µm [52]. This is within the size range of A. operculatum AA60 cells, but mucus
aggregates producing clumps of cells could make it more difficult for predators to ingest
them [53]. In any case, there is circumstantial evidence that metabolic impairment and
mortalities of crustaceans by exposure to naked dinoflagellates is mediated by a synergistic
chemical mechanism rather than exclusively as a hydromechanical response to mucus pro-
duction. Mucus can provide enhanced exposure to noxious or toxic bioactive compounds
retained within the hydrogel. This magnifies the surface contact area, intensifying and
prolonging the exposure [54]. In the case of A. operculatum, a synergistic toxic effect on the
membrane ATPase pump may account for the rapid effect of benthic dinoflagellate cells
that come in contact with larvae [19]. This rapid response on Artemia nauplii is consistent
with the fact that the molecular target of some amphidinolides produced by Amphidinium
involves functional ATPase [19].

Exposure to cells of the mucus-producing naked dinoflagellate formerly called Gyro-
dinium corsicum affects the motor functions of the copepod Acartia grani thereby causing
paralysis [55]. Gyrodinium corsicum is now recognized as a synonym of Karlodinium cor-
sicum (Paulmier, Berland, Billard & Nezan) Siano & Zingone [56]. This species is a known
producer of potent polyether karlotoxins associated with fish mortalities via membrane
disruption [57]. The dinoflagellate attaches to the surface of the copepod and disrupts the
mechanical and chemical sensory system of its antennae, which can enhance the direct
absorption of toxic substances produced [55].

With A. operculatum, given that Treatment B did not affect the nauplii, strain AA60
does not release substantial amounts of targeted bioactive compounds to the surrounding
medium from healthy cells. Moreover, the outcome of Treatment D on the nauplii supports
the idea that A. operculatum keeps its lipophilic bioactive compounds intracellularly. The
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rapid effect of the ethanolic extract on nauplii concurs with the fast-acting mechanisms
proposed for hemolytic toxic compounds from dinoflagellates [46]. The evaluation of
Treatment C with cell lysate at first appears to contradict this interpretation, considering that
no dead nauplii were observed. These findings could mean, however, that some potentially
bioactive compounds are not water-soluble. Such compounds may be inactivated or
chemically bound by the lysate matrix, thus generating no effect on the nauplii. This would
explain why, in the absence of live dinoflagellate cells, nauplii mortality occurred only
when the bioactive compounds were first extracted into EtOH, a better solvent than water
for the less polar polyketides produced by Amphidinium.

Complementary research on an A. operculatum clone from Brazil (strain Ao-Ecpb-1) [46]
has established that the toxicity effect on Artemia, with comparable bioassay methods, is
not unique to strain AA60 from the Veracruz Reef System (VRS), Gulf of Mexico. The A.
operculatum strain Ao-Ecpb-1 exhibited higher toxicity when nauplii were exposed to whole
live cells than to the EtOH-soluble cell fraction [46]. In comparison with Amphidinium
strains of A. massartii (LC50 = 31 cells mL−1) and A. operculatum (LC50 = 347 cells mL−1)
isolated from Cuba and Brazil, respectively [46], the LC50 of strain AA60 (8065 cells mL−1)
was much higher. Hence AA60 is less toxic on a per cell basis. The much lower cell
toxicity for the A. operculatum populations from the VRS may pose a relatively lower
ecotoxicological risk to human health. Yet it is premature to conclude such an assessment
without screening multiple isolates from the region for strain-specific variability.

3.4. SRB Assay on Cell Lines

The SRB assay showed that the ethanolic extract from A. operculatum, at a dosage of
24.7 µg mL−1 (equivalent to 5110 cells mL−1), inhibited the growth of all the cancer cell
lines tested (Figure 3). Cell lines MCF-7 (human mammary adenocarcinoma) and SKLU-1
(human lung adenocarcinoma) showed the highest inhibitory activity with around 60%
cell inhibition, followed by U251 (human glioblastoma) (37.1%), HCT-15 (human colorec-
tal adenocarcinoma) (20%), K562 (human erythroleukemia) (14.5%), and PC-3 (human
prostatic adenocarcinoma) (13.2%). Significantly higher inhibition was found between
MCF-7 and SKLU-1 and all the other cell lines (Tukey’s post-hoc test); p-value < 0.00001
for MCF-7 and p-value ≤ 0.00001 SKLU-1, compared with PC-3, K562, and HCT-15.MCF-7
(p-value < 0.00092) and SKLU-1 (p-value = 0.00128) were also both significantly more
growth inhibited than U251. No significant differences in inhibition were found among
PC-3, K562 and HCT-15 cell lines.
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Figure 3. Growth inhibition of cell lines exposed to A. operculatum ethanolic extract at 24.7 µg mL−1 (equivalent to 5110 cells
mL−1). Histograms show the mean ± sem (n = 3) of inhibition (%). Cell type: U251 (human glioblastoma); PC-3 (human
prostatic adenocarcinoma); K562 (human erythroleukemia); HCT-15 (human colorectal adenocarcinoma); MCF-7 (human
mammary adenocarcinoma); SKLU-1 (human lung adenocarcinoma).
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3.5. Cytotoxicity of A. operculatum on Cancer Cell Lines

Extracts of Amphidinium cells have received recent attention due to cytotoxic properties,
especially from strains of A. carterae, A. massartii and A. operculatum, against selected
target planktonic organisms and cell lines. Several bioactive compounds produced by
Amphidinium have been isolated and tested (albeit not exhaustively screened) against cancer
cells with favorable results, as in the case of amphidinolides [18,19], caribenolides [22]
and amphidinols [4,9,26]. In this context, we anticipated that the ethanolic extract from
A. operculatum AA60 may also inhibit cancer cell growth; this proved to be the case at an
assay dose of 24.7 µg mL−1. Prior to this study, there were no reports on evaluation of
crude ethanolic extracts of Amphidinium cells on cancer cell lines, but there were a few
investigations on effects of methanolic cell extracts. Cytotoxicity of methanolic crude
extract from two A. operculatum strains collected from Jeju Island, Korea has been evaluated
with promielitic cell line HL-60 of human leukemia. At 50 µg mL−1, the extract of both
strains caused strong growth inhibition between 40 and 60% in HL-60 cell line, whereas at
25 µg mL−1 growth inhibition was ca. 30% [4,11]. On this basis, the methanolic extracts
of the strains isolated from Korea were apparently more cytotoxic than the ethanolic
extract of the A. operculatum AA60 on a leukemia cell line. Note the moderate inhibition
of growth of K562 (only 14.5%) in response to AA60. The slight polarity differences
between methanolic versus ethanolic exaction is not expected to yield dissimilar fractions
of putatively bioactive polyether compounds. Nevertheless, this dosage comparison must
be interpreted cautiously because of the undefined differences in the leukemia cell lines.

The growth inhibition effect of extract of A. operculatum AA60 was particularly pro-
nounced on cell lines MCF-7 (human mammary adenocarcinoma) and SKLU-1 (human
lung adenocarcinoma), both with about 60% inhibition. There are no previous reports in
which a crude extract of A. operculatum was tested against MCF-7. However, a methanolic
extract of A. carterae cells has been assayed against MCF-7; at high dosage (175 µg mL−1),
it proved to be remarkably potent, with 100% cell growth inhibition [58]. The high extract
dose tested was almost seven times higher than the concentration in the current study,
therefore the dose-response effects on growth are not directly comparable.

Methanolic extract of A. carterae cells inhibited growth of human lung adenocarcinoma
cells (A549) by approximately 40% at a dosage of 50 µg mL−1 [59]. Nevertheless, the result
obtained herein with the ethanolic extract against SKLU-1 (lung cancer) reveals that the
ethanolic extract from A. operculatum strain AA60 is more cytotoxic against a similar lung
cancer cell line. The extract from AA60 inhibited 20% more at half the dosage in the study
by Samarakoon et al. [59] with A. carterae cells.

Direct comparisons of potency must be interpreted with extreme caution even when
homologous assay methodologies and identical target cell lines are selected. The effects of
slight differences in application of assay protocols are difficult to evaluate. Moreover, direct
comparison and interpretation of cell-equivalent dose-responses should be viewed critically
because of differences in cell content and composition of the extracted bioactive metabolites
between Amphidinium strains and species. The effect on cell growth inhibition by the
ethanolic extract as tested could be more potent than indicated in the results presented due
to the limited solubility of the bioactive compounds in aqueous PBS. As a preliminary step,
screening of such crude extracts for bioactivity is vital to the determination of inhibition
mechanisms. These results with Amphidinium extracts open the door to further investigation
on the chemical composition of this crude ethanolic extract and discovery of potential
therapeutants against cancer cells.

4. Conclusions

Healthy live cells of Amphidinium operculatum AA60 do not release substantial amounts
of toxic compounds to the immediate microenvironment, at least at dosages lethal to poten-
tial grazing crustaceans and at environmentally realistic cell densities found in nature. The
brine-shrimp assay does not support the hypothesis that these are acting as allelochemicals
against metazoan predators. Despite the apparent low cell toxicity of A. operculatum AA60
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other strains from the VRS may be more toxic. Future increase in the abundance of these
dinoflagellates due to environmental regime shifts affecting coral reefs would further
enhance the toxic effect on various marine invertebrates and larvae of species of ecological
and economic importance. The risk to human health of known polyether compounds
produced by Amphidinium when accumulated in seafood remains to be evaluated.

High cell densities may partially compensate for low cell potency, and total release
of xenobiotics upon senescence of benthic micro-blooms may yield unrecognized but
profound effects upon reef communities. Such compounds are expected to be released by
mechanical cell disruption, e.g., resulting from storms or other turbulent events. These
athecate dinoflagellates are rather fragile. During senescence phase of the growth cycle,
cells lose membrane integrity. The exact mechanism by which these compounds are leaked
or excreted into aqueous medium from healthy cells remains to be determined.

Amphidinium AA60 synthesizes bioactive compounds capable of inhibiting the growth
of some cancer cell lines, particularly MCF-7 (human mammary adenocarcinoma) and
SKLU (human lung adenocarcinoma). These preliminary results confirm the potency of
mostly unknown bioactive compounds produced by the dinoflagellate A. operculatum and
close phylogenetic relatives. For this reason, the biotechnological potential of Amphidinium
strains should be further explored to evaluate not only the effects of crude extract, but also
to screening for effects of purified fractions of known composition of bioactive molecules.
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