
1. Introduction
Between ∼20 and 10 thousand years, before 1950 CE (ka), Earth's climate underwent a shift from a glacial 
maximum to interglacial conditions (e.g., Clark et al., 2012; CLIMAP Project Members, 1976). This transi-
tion, interrupted by climatic anomalies such as Heinrich Stadial 1 (HS1) and the Younger Dryas (YD) stadial 
(Dansgaard et al., 1993; Shakun et al., 2012), was strongly coupled with regional changes in ocean circula-
tion (e.g., McManus et al., 2004; Skinner et al., 2014, 2019). An important component of the ocean-climate 
system is the Atlantic Meridional Overturning Circulation (AMOC). Its variability is thought to have played 

Abstract Changes in ocean circulation are considered a major driver of centennial-to-millennial 
scale climate variability during the last deglaciation. Using four sediment records from the Nordic Seas, 
we studied radiocarbon ventilation ages in subsurface and bottom waters to reconstruct past variations 
in watermass overturning. Planktic foraminiferal ages show significant spatial variability over most of 
the studied period. These differences suggest that the ventilation of the shallower subsurface waters is 
strongly influenced by local conditions such as sea-ice and meltwater input, changes in mixed-layer depth, 
and/or variable contributions of water masses with different 14C signatures. Despite covering a significant 
water depth range, the benthic foraminiferal records show common long-term patterns, with generally 
weaker ventilation during stadials and stronger during interstadials. The Greenland Sea record differs the 
most from the other records, which can be explained by the greater depth and the geographical distance 
of this site. The benthic records reflect regional shifts in deep convection and suggest that the deep 
Nordic Seas have been generally bathed by a single, though changing, deep-water mass analogous to the 
present-day Greenland Sea Deep Water. Since significant offsets in ventilation ages are yielded by different 
taxonomic or ecological groups of benthic foraminifera, the use of uniform material seems a prerequisite 
to reconstruct bottom water ventilation histories.

Plain Language Summary Earth's climate is tightly coupled with the global ocean conveyor 
belt. To understand climate changes, we need to reconstruct past ocean circulation. A suitable place to 
perform such studies is the Nordic Seas. We analyze four sediment records of the last deglaciation (∼20–10 
thousand years ago) during which the Earth's climate experienced a transition from an ice age to a warm 
period, with several plot twists in between. We compare radiocarbon ages of shells of organisms that have 
lived on the bottom of the sea and close to its surface. As these fossils are found in the same sediment 
layers, they lived at the same time in the geological past. However, their radiocarbon ages differ. The 
amount of this difference depends on the intensity of water exchange between the surface and the bottom 
of the ocean. From the difference we infer the pace of deep-water formation. Our results show intensive 
ocean circulation during the relatively warm periods and a weaker exchange of water masses during 
relatively cold periods. The outcomes of our study might help to improve computer models of the ocean-
climate system and allow us to predict with greater confidence its changes in the future.
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an important role in these millennial-scale climate anomalies as it affects the global heat transport and 
air–sea gas exchange (e.g., Broecker, 1998).

Within the North Atlantic region, the Nordic Seas is an area particularly important for the AMOC and, 
thus, well suited for the study of its variability. First, the Nordic Seas constitutes the main surface and the 
only deepwater connection between the Arctic and the Atlantic oceans (Håvik et al., 2017; Swift, 1986). 
Warm and saline Atlantic Water (AW) is advected northward by the North Atlantic Current, transporting 
large amounts of heat in the eastern Nordic Seas, while cold and less saline water flowing southward as 
the East Greenland Current carries sea ice and icebergs into their western part. Second, the Nordic Seas is 
one of the few areas worldwide where open-ocean convection and deepwater formation occur (Marshall & 
Schott, 1999; Rudels & Quadfasel, 1991). The northward flowing AW loses heat, becomes dense enough to 
sink to the bottom, and contributes significantly to the renewal of lower North Atlantic Deep Water—one 
of the most important water masses of the AMOC (Aagaard et al., 1985; Hansen & Østerhus, 2000; R. R. 
Dickson & Brown, 1994). The sea ice advected from the Arctic plays an important role in preconditioning 
the deep convection (Marshall & Schott, 1999).

Changes in ocean circulation and air-sea gas exchange can be reconstructed using radiocarbon ventilation 
ages, which reflect the radiocarbon age difference between ocean water and the atmosphere. The ocean-at-
mosphere 14C disequilibrium is a direct expression of changes in the rate of air-sea gas equilibration, deep-
water renewal and mixing, and changes in water sources (e.g., Adkins & Boyle, 1997; Skinner et al., 2019). 
The intensity of deep convection and, thus, the thermohaline circulation in the North Atlantic changes 
over different timescales from interannual (R. Dickson et al., 1996) to millennial (e.g., Skinner & Shackle-
ton, 2004; Stern & Lisiecki, 2013; Telesiński et al., 2015). During the last glacial, the overturning circulation 
in the Nordic Seas was weak but active (e.g., Ezat et al., 2019), and it collapsed completely during HS1 (Mc-
Manus et al., 2004). The onset of the Bølling-Allerød (BA) interstadial was marked by a resumption of the 
deep water formation (Ezat et al., 2017), which declined into the YD stadial (McManus et al., 2004).

Here, we present a comparison of four radiocarbon ventilation age records from the central and southern 
Nordic Seas (Figure 1), covering the last deglaciation (21.9 ka). Three previously published records include 
cores PS1243 (Thornalley et  al.,  2015), JM11-FI-19PC (Ezat et  al.,  2017), and MD99-2284 (Muschitiello 
et al., 2019). The PS1878 ventilation age record is presented here for the first time. The advantage of this site 
is that it is located close to the present-day convection center (Marshall & Schott, 1999; Telesiński, Spielha-
gen, & Lind, 2014), allowing a direct reconstruction of deep convection changes.

2. Material and Methods
2.1. Chronology

As the base for the chronological framework of the presented records, we use core MD99-2284 as this record 
exhibits the highest temporal resolution and has a robust chronology established by aligning variations in 
downcore sea-surface temperatures with synchronous changes in the hydroclimate record from southern 
Sweden (Muschitiello et al., 2020) in the interval between 10 and 14.8 ka. For the older part of the records, 
we use the chronology of core JM11-FI-19PC, which was previously aligned with the North Greenland 
Ice Core Project (NGRIP) ice core based on tephras, δ18O, magnetic susceptibility, and K/Ti records (Ezat 
et al., 2014, 2017). To align the chronologies of the presented cores, we use their published planktic δ18O re-
cords based on Neogloboquadrina pachyderma (Bakke et al., 2009; Bauch et al., 2001; Ezat et al., 2016; Hoff 
et al., 2016; Telesiński, Spielhagen, & Lind, 2014). We correlate the records using visual tie points as well as 
the Saksunarvatn ash, which is present in cores JM11-FI-19PC and MD99-2284, and the Vedde ash, which 
is found in JM11-FI-19PC, MD99-2284, and PS1243 (Figure 2).

The bottom-most part of core PS1878 was correlated with the onset of the interval of high and stable δ18O 
values in cores PS1243 and JM11-FI-19PC at 20.8 ka (Figure 2). Although this is an uncertain tie, the lack 
of a characteristic structure in this part of the record does not allow for a more accurate correlation. The 
resulting sedimentation rates are relatively high (c. 10.5 cm/kyr, Figure S1) but reasonable, especially taking 
into account high IRD abundance in this interval (Telesiński, Spielhagen, & Lind, 2014). The rapid δ18O 
decrease, most probably associated with the onset of HS1, was correlated with similar features in other 
records dated to 18.5–17.1 ka. The extremely low δ18O values between c. 16 and 14 ka in core PS1878 are 
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interpreted as a local feature that cannot be correlated to other distant records (Telesiński et al., 2015). The 
subsequent tie points include the transition from low to high δ18O values after the end of HS1 (13.8 ka), a 
small but prominent light δ18O peak at 13.5 ka and the light δ18O peak related to the YD stadial at 12.1 ka. 
In cores JM11-FI-19PC, MD99-2284, and PS1243 the latter is also marked by the presence of the Vedde ash 
(Figure 2). The correlation between cores JM11-FI-19PC and MD99-2284 includes more tie points due to 
the higher temporal resolution of these two records (Figure 2). The original, radiocarbon-based age mod-
els with a reservoir age of 400 years were used for the mid-to late Holocene (<9 ka) part of the PS1878 
(Telesiński et al., 2015), PS1243 (Bauch et al., 2001), and JM11-FI-19PC (Ezat et al., 2014) records as the 
structure of the δ18O records does not allow for a well-defined correlation. However, it is generally agreed 
that at least since c. 9 ka ocean circulation and, thus, the planktic reservoir ages were similar to today (e.g., 
Thornalley et al., 2015; Waelbroeck et al., 2001). Nevertheless, our ventilation age reconstruction is limited 
to the interval from the Last Glacial Maximum (LGM) to the early Holocene, that is, 21.9 ka. A comparison 
of sedimentation rates between the original age models and the ones used in this study is shown for each 
core in Figure S1.

AMS 14C dates of N. pachyderma in the interval 42.5–45.5 cm (c. 9.5–10.9 ka) of core PS1878 yielded re-
versed ages (Table S1). Because the sediment material in this core section may have been affected by biotur-
bational activities e.g., vertical burrowing, this interval is omitted in the discussion.
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Figure 1. Map of major surface and bottom water currents in the northern North Atlantic and the Nordic Seas 
(Hansen & Østerhus, 2000). Location of studied cores PS1878 (3,048 m water depth; red star; Telesiński, Spielhagen, & 
Lind, 2014), PS1243 (2,711 m water depth; blue circle; Bauch, Erlenkeuser, et al., 2001), JM11-FI-19PC (1,179 m water 
depth; purple circle; Ezat et al., 2014) and MD99-2284 (1,500 m water depth; green circle; Muschitiello, D'Andrea, 
Schmittner, et al., 2019).
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2.2. Ventilation Age Reconstructions

Core PS1878 from the central Greenland Sea (Figure 1) has been shown to contain a continuous record 
of submillennial resolution, covering the interval from the LGM until present (Telesiński, Spielhagen, 
& Lind, 2014; Telesiński, Spielhagen, & Bauch, 2014; Telesiński et al., 2015). For the present study, four 
previously published AMS 14C dates on planktic foraminifera N. pachyderma (Telesiński, Spielhagen, & 
Lind, 2014; Telesiński et al., 2015) were used for reservoir age calculations. Seven additional planktic sam-
ples and 18 benthic samples (two samples consisting of epifaunal species Cibicidoides wuellerstorfi, five 
samples of shallow infaunal species Oridorsalis umbonatus, and seven samples of miliolid Pyrgo spp.) were 
dated at the Poznan Radiocarbon Laboratory, the National Ocean Sciences Accelerator Mass Spectrometry 
(NOSAMS) facility and the Alfred Wegener Institute (Table S1). All samples contained only pristine speci-
mens of the selected taxa (or, in a few cases, also minor amounts of other taxa, see Table S1).
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Figure 2. (a) The NGRIP ice cores δ18O record (Andersen et al., 2004) plotted along with planktic δ18O records of 
cores (b) PS1878, (c) PS1243, (d) JM11-FI-19PC, and (e) MD99-2284. Dashed lines indicate tie points used for the visual 
correlation of the records. Gray vertical bars indicate ash layers used for the correlation. SA, Saksunarvatn Ahs; VA, 
Vedde Ash.
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The reconstructions were generated by propagating chronological and analytical errors were propagated 
using a statistical approach. Radiocarbon ventilation ages were estimated using a random walk model fit-
ted via Markov chain Monte Carlo (MCMC) and taking into account both calendar age uncertainty and 
14C measurements errors. Our random walk model (RWM) has been successfully employed to estimate 
and compare 14C ventilation histories from deep-sea sediments and corals from the last deglaciation, and 
a full mathematical formalism can be found in Muschitiello et al. (2019). We reconstruct shallow subsur-
face (∼100 m water depth or more, especially at times of thicker halocline, cf. Greco et al., 2019) reservoir 
ages using N. pachyderma and bottom water 14C ventilation ages using infaunal and epifaunal nonmiliolid 
benthic foraminifera. Hereafter, we will refer to these ages as Planktic-Atmosphere (P-Atm) and Benthic-At-
mosphere (B-Atm) ventilation ages, respectively. We also determine the difference between paired benthic 
and planktic 14C dates to determine the age difference between the subsurface and the bottom water, here-
after referred to as the Benthic-Planktic (B-P) age offset.

We also recalculated the previously published ventilation ages of cores JM11-FI-19PC, MD99-2284, and 
PS1243 (Ezat et al., 2017; Muschitiello et al., 2019; Thornalley et al., 2015, respectively) according to the 
modified age models, using the same RWM (Table S2). In the case of core PS1243, we calculated only P-Atm 
reservoir ages as the benthic samples of this record consisted of both miliolid and nonmiliolid foraminifera 
(Thornalley et al., 2015, see the discussion in, Ezat et al., 2017).

Each stratigraphic tie-point used for the marine–marine (δ18ONp–δ18ONp) and marine–ice core (δ18ONp–
δ18Oice) correlations is generally associated with a non-negligible error on the depth scale. This is because 
the sampling resolution across records does not match. Here, we adopt a similar methodology as that de-
vised by Olsen et al. (2014) and assume that the error in depth can be constrained by neighboring sampling 
data points, that is, the maximum depth difference between a given tie point measurement and the two 
adjacent sampling levels that straddle the tie point. We assign an error corresponding to 1σ, which is two-
fold more conservative than that used by Olsen et al. (2014), who assigned a 2σ error. After synchronization 
to the dated records using the tie points discussed above, we converted the depth error in the age domain 
and estimated the uncertainty associated with our tie-points as follows: 160 years for PS1878, 450 years 
for PS1243, 190 years for JM11-F1-19PC, and 25 years for MD99-2284 (note that this core has an average 
sampling resolution of ∼5–10 years per measurement). These uncertainty estimates were ultimately incor-
porated into the RWM used to estimate the ventilation ages described above.

3. Results and Discussion
While the B-Atm ventilation ages of epifaunal C. wuellerstorfi (BCw-Atm) and infaunal O. umbonatus (BOu-
Atm) in core PS1878 were <2700 14C years throughout the record, the miliolid Pyrgo species (mostly Pyrgo 
depressa) yielded ventilation ages of up to c. 12,000 14C years (Table S1). It has been observed before that 
Pyrgo and most probably other miliolid species yield radiocarbon ages much older than the co-occurring 
nonmiliolid species (e.g., Ezat et al., 2017; Heier-Nielsen et al., 1995; Vorren & Plassen, 2002). The issue has 
been comprehensively discussed by Ezat et al. (2019), and here, we refrain from using the Pyrgo ventilation 
ages for the reconstruction of past bottom water ventilation.

In cores PS1878 and JM11-FI-19PC, dating of different nonmiliolid benthic foraminiferal species or eco-
logical groups from the same sample yielded varying ventilation ages (Figures 4a and 4b and Tables S1 
and  S2). In PS1878, the epifaunal foraminifera yielded lower ventilation ages. In the JM11-FI-19PC re-
cord, the epifaunal dates are c. 200–400 14C years older than the infaunal species, which could largely be 
explained by the differences in species habitat, given the sedimentation rates. All the observed differences 
exceed estimated errors. Except for one case in core PS1878 described below, we use all B-Atm ages from 
nonmiliolid foraminifera for the ventilation history reconstruction. However, we recommend using, if pos-
sible, narrow and uniform taxonomic or ecological groups of foraminifera for the reconstruction of bottom 
water ventilation.

During the LGM and the onset of the deglaciation (21–18 ka), the P-Atm values of PS1878 were relatively 
low, oscillating around c. 500 14C years (Figure 3a and Table S1). These values are in good agreement both 
with JM11-FI-19PC and PS1243 (Figures 3b and 3c) though it should be kept in mind that the tie point 
used to correlate the bottom-most part of the PS1878 record is fairly uncertain (see above) and so are the 
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resulting reservoir ages. Nevertheless, the ventilation of the uppermost 
water column both in the southern and in the central Nordic Seas was 
in a range similar to modern values of ∼400 years. The B-Atm ages in 
JM11-FI-19PC (≥1,000 14C years, Figure  4b) were significantly higher 
than at present (∼500 years, e.g., Hansen & Østerhus, 2000; Mangerud 
et al., 2006). Altogether, the data seem to confirm the active, though weak 
Nordic Seas overflows suggested for this period (Ezat et al., 2017). How-
ever, it remains unclear whether the well-ventilated surface water origi-
nated from vertical convection or was laterally advected from the south 
(e.g., Rasmussen et al., 1996). The latter is evidenced by the occurrence 
of the small-sized subpolar species Turborotalita quinqueloba in core 
PS1243 (Bauch et al., 2012; Thibodeau et al., 2017).

During HS1, the P-Atm reservoir ages increased significantly both in the 
southern and in the central Nordic Seas (Figure 3). In the PS1243 record, 
the P-Atm values rose to c. 1,500 14C years already around 17.1 ka. This 
trend is in agreement with the PS1878 record where the values increased 
to >1,900 14C years after 16 ka. Extremely low planktic δ18O values be-
tween 18 and 14 ka in core PS1878 (Figure 2b) suggest the presence of 
a freshwater and sea-ice lid in the central Nordic Seas throughout this 
period (Telesiński et al., 2015), which could have hampered air-sea gas 
exchange and ventilation of subsurface waters. In core JM11-FI-19PC, 
the P-Atm reservoir ages increased gradually to reach c. 1,000 14C years 
at the end of HS1 (Figure 3c), indicating a less pronounced ventilation 
weakening. The B-Atm ventilation ages in the southern Nordic Seas (core 
JM11-FI-19PC) also increased over HS1 to reach a maximum of c. 2,000 
14C years at 15.4 ka (Figure 4b). This value is in agreement with that from 
core MD99-2284 (c. 2,100 14C years at 14.7 ka, Figure 4c). Unfortunately, 
the lack of reliable benthic ventilation age estimates in the PS1878 record 
precludes conclusions on the ventilation changes over HS1. Neverthe-
less, extremely high P-Atm ventilation ages over HS1 in core PS1878 and 
B-Atm ventilation ages in late HS1/early BA in all three records suggest a 

significant reduction of deepwater formation in the Greenland Sea during this stadial. Most probably, large 
amounts of freshwater and sea ice that affected the areas of deepwater formation for ∼4,000 years (Figure 2) 
created a halocline strong enough to prevent deep convection (Sarnthein et al., 1995; Telesiński, Spielhagen, 
& Lind, 2014; Telesiński et al., 2015). As a result, the meridional circulation in the Nordic Seas slowed down 
(McManus et al., 2004; Stanford et al., 2011), resulting in limited AW inflow, reduced Nordic Seas overflow, 
and a gradually decreasing ventilation of bottom and subsurface waters also in the southern Nordic Seas.

In the PS1243 record, the P-Atm reservoir ages decreased below 500 14C years after the end of HS1 (Fig-
ure 3b). A shift of similar timing and amplitude was observed in a record from the eastern Nordic Seas and 
associated with the collapse of marine-based sectors of the Eurasian Ice Sheet (Brendryen et al., 2020). In 
contrast, in the southern Nordic Seas, the P-Atm ventilation ages continued to increase and reached maxi-
mum values of 500–1,000 14C years in MD99-2284 and 1,000–1,500 14C years in JM11-FI-19PC only around 
13.5–14 ka, that is, in the middle of the BA interstadial (Figures 3c and 3d). An offset largely exceeding the 
estimated uncertainties can be observed between the two southernmost records around this time (median 
values of c. 700 vs. 1,100 14C years, respectively). Although quite small compared to the temporal variability 
of both records, the difference is noteworthy taking into account the small distance between the two sites 
(only c. 150 km apart). We hypothesize that more sea ice and meltwater accumulated on the lee side of the 
Faroe Islands (relative to the dominant ocean current direction, see Figure 1), where site JM11-FI-19PC 
is located, leading to increased ventilation ages. Site MD99-2284, located in the main flow of the NAC, re-
mained ice-free over the discussed time interval, resulting in much better ventilation. At present, however, 
more robust conclusions cannot be drawn from the available data. The divergence of the central Greenland 
Sea record is less surprising, taking into account the geographical distance and the different oceanographic 
regime of this site with a strong influence of freshwater. Despite a slight decrease compared to HS1, the 
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Figure 3. Planktic-Atmosphere (P-Atm) reservoir age estimates 
of cores (a) PS878, (b) PS1243, (c) JM11-FI-19PC, and (d) MD99-
2284. Shading reflects the 95% posterior credible interval (2σ) of 14C 
ventilation as a function of age found by MCMC using random walk 
model (see Section 2.2 for details) and taking into account analytical and 
chronological uncertainty in our observed data. Stratigraphic units are 
indicated at the top. BA, Bølling-Allerød interstadial; HS1, Heinrich Stadial 
1; LGM, Last Glacial Maximum; YD, Younger Dryas stadial.
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P-Atm values of the PS1878 record remained >1,500 14C years throughout 
the BA (Figure 3a). The described discrepancies between the records (es-
pecially between the two southernmost records) indicate that the ventila-
tion of subsurface waters shows substantial spatial variability, suggesting 
that it highly depends on local conditions such as, for example, sea ice 
and meltwater volume.

The B-Atm ventilation ages decreased in the southern Nordic Seas re-
cords over the BA interstadial from c. 2,000 14C years to c. 1,000 14C years. 
Together with the increase in P-Atm values, this resulted in the B-P off-
set decreasing to c. 0 14C years (Figures 5b and 5c), revealing intensive 
exchange between the surface and deep ocean. Despite the weak sub-
surface water ventilation most probably caused by abundant meltwaters 
from the retreating ice sheets (e.g., Rüther et al., 2012), the low B-P offset 
indicates a rapid reactivation of meridional circulation in the southern 
Nordic Seas at the onset of the BA interstadial, as suggested earlier by 
Ezat et al. (2017), McManus et al. (2004) and Stanford et al. (2011).

In the PS1878 record of the early BA interstadial, two different benthic 
foraminiferal species gave significantly diverging results. Epibenthic C. 
wuellerstorfi yielded 14C age younger than the co-occurring planktic N. 
pachyderma. Negative B-P offsets have previously been observed in the 
western Iceland Sea between 15 and 25 ka (Voelker et al., 2000). Howev-
er, the BOu-Atm value from the same sample is much higher than the BCw-
Atm value. Taking into account that the 14C age of C. wuellerstorfi might 
be influenced by the very low abundance of this species (Telesiński, 
Spielhagen, & Bauch  2014) or by modern radiocarbon contamination 
(Muschitiello et al., 2019), we find the 14C age of O. umbonatus and the 

ventilation ages derived from it more reliable. The BOu-Atm value of c. 2,700 14C years at 14 ka is the highest 
in all three records and indicates extremely weak ventilation of bottom waters in the central Greenland 
Sea during the early BA. Even though the ventilation rapidly improved over the interstadial, it remained 

significantly weaker than in the southern Norwegian Sea which might 
be caused not only by the distal location of this site but also the signif-
icantly greater water depth. Nevertheless, at the BA/YD boundary, the 
B-P offset was low (Figure 5a), which might indicate the onset of deep 
convection in the central Greenland Sea. The gradient of the ventilation 
strength between the southern and the central Nordic Seas resembles the 
delay in AW advection into the central Nordic Seas over the early Holo-
cene (e.g., Telesiński et al., 2015), caused by a deglacial freshwater input 
from the Greenland Ice Sheet (GIS) (Blaschek & Renssen, 2013). During 
the BA interstadial, the influence of GIS meltwaters must have been even 
stronger than during the Holocene, preventing the central Nordic Seas 
from reaching a modern-like circulation pattern and potentially pushing 
the convection center farther south.

During the YD stadial, the P-Atm offsets in the southern Nordic Seas 
were low and close to modern values. In the central part of the basin, 
they decreased from c. 1,700 14C years to c. 1,000 14C years over this in-
terval (Figure  3). The B-P offsets increased, especially in cores PS1878 
and MD99-2284 (Figure 5), indicating a disturbance in overturning cir-
culation. Over this interval, the Nordic Seas were affected by freshwa-
ter intrusions originating either from the Arctic (e.g., Condron & Win-
sor,  2012; Telesiński et  al.,  2015) or from the Fennoscandian Ice Sheet 
(e.g., Dokken et al., 2013; Muschitiello et al., 2015, 2016). The freshwater 
lid in the central Nordic Seas must have been strong enough to perturb 
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Figure 4. As in Figure 3 for Benthic-Atmosphere (B-Atm) ventilation 
age estimates of cores (a) PS878, (b) JM11-FI-19PC, and (c) MD99-2284. 
Datapoints of epifaunal and infaunal benthic foraminifera are marked 
with squares and circles, respectively. Stratigraphic units are indicated at 
the top. BA, Bølling-Allerød interstadial; HS1, Heinrich Stadial 1; LGM, 
Last Glacial Maximum; YD, Younger Dryas stadial.

YD BA HS1 LGMHolocene
−500

0
500

1000

B
-A

tm
 

14
C

 V
en

til
at

io
n 

A
ge

 
(y

ea
rs

)

1500
2000
2500

10
Age (ka)

15 20

PS1878

3000

A

median B-Atm age
95% Cl

epifaunal
infaunal

0
500
1000

B
-A

tm
 

14
C

 V
en

til
at

io
n 

A
ge

 
(y

ea
rs

)

1500
2000

JM11-FI-19PC

2500

B

0
500

1000

B
-A

tm
 

14
C

 V
en

til
at

io
n 

A
ge

 
(y

ea
rs

)

1500
2000 MD99-2284
2500

C

10 15 20

ce
nt

ra
lN

or
di

c 
Se

as

so
ut

he
rn

 N
or

di
c 

Se
as

Figure 5. Benthic-Planktic (B–P) offset of cores (a) PS878, (b) JM11-
FI-19PC, and (c) MD99-2284 based on ventilation estimates in Figures 3 
and 4. Lines denote the posterior median value and pointwise 68% and 95% 
credible intervals. Stratigraphic units are indicated at the top. BA, Bølling-
Allerød interstadial; HS1, Heinrich Stadial 1; LGM, Last Glacial Maximum; 
YD, Younger Dryas stadial.
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deepwater formation at least transiently (Bauch et al., 2001; McManus et al., 2004). On the other hand, the 
presence of freshwater enhanced sea-ice (Cabedo-Sanz et al., 2013; Müller et al., 2009) and brine formation 
(Thornalley et al., 2011). The latter could explain the improved mixing of the upper water column and low 
P-Atm ventilation ages.

At the onset of the Holocene, the P-Atm and B-Atm ventilation ages both in the central and southern Nor-
dic Seas decreased, reaching values close to modern. This confirms that already in the early Holocene the 
circulation in the Nordic Seas became similar to today (e.g., Thornalley et al., 2015; Waelbroeck et al., 2001).

4. Summary and Conclusions
The comparison of four planktic records from the Nordic Seas covering the last deglaciation reveals general-
ly consistent variations in P-Atm reservoir ages over most of the studied period, albeit important spatial var-
iability exists in some intervals (e.g., during the BA interstadial, Figure 3). The significant differences in the 
P-Atm records suggest that the ventilation of subsurface waters was strongly influenced by local conditions 
such as, for example, sea-ice and meltwater input, changes in mixed-layer depth, and/or changing contri-
butions of water masses with different 14C signatures. Marine radiocarbon dates, especially of planktic mi-
crofossils, are commonly used to constrain marine chronologies. They are usually corrected for the globally 
averaged ocean-atmosphere reservoir age offset (R = 405 years; Reimer et al., 2013), sometimes taking into 
account a regional difference (ΔR), constant in time. Our results clearly show that a strong variability in 
planktic reservoir ages might occur both in time and in space, even within a relatively small area such as 
the central and southern Nordic Seas. These fluctuations should be taken into account when constructing 
radiocarbon-based age models in the future.

The changes in benthic ventilation ages, though of higher amplitude than their planktic counterparts, seem 
to exhibit a more consistent general pattern, with high values in HS1 and the YD stadial and low values 
during the BA interstadial and the Holocene. The PS1878 record differs the most from the other records, 
for example, over the BA interstadial, where ages are much older than in the records from shallower, more 
southerly sites. As the presented records cover a large range of water depth, from 1,179 m (JM11-FI-19PC) 
to 3,048  m (PS1878), the general coherence of the benthic records, compared to the planktics, suggests 
that the deep Nordic Seas have been generally bathed by a single water mass analogous to the present-day 
Greenland Sea Deep Water (Marshall & Schott, 1999). Changes in benthic ventilation ages reflect variations 
in the renewal of this deepwater mass and were directly related to the intensity of deepwater formation 
(deep convection) in the Nordic Seas and the overflows into the North Atlantic. They were therefore direct-
ly linked to regional shifts in ocean circulation and millennial-scale climate changes. Taking into account 
significant offsets in ventilation ages between different benthic species (not only miliolid vs. nonmiliolid but 
also, e.g., epifaunal vs. infaunal nonmiliolid species), we recommend using, if possible, narrow taxonomic 
or ecological groups of foraminifera for the reconstruction of bottom water ventilation.
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