
1. Introduction
Ancient environments cannot be observed directly, so paleo-environmental reconstructions rely on indirect 
proxy approaches. A proxy is a characteristic of a material that can be measured, and is known to correlate 
with some aspect of the material's environment of formation. A paleo-environmental proxy reconstruction 
is complete only with a quantitative statement of its uncertainty (Taylor & Kuyatt,  1994). A number of 
proxy-specific statistical models now exist for a handful of mature proxies, however, statistical uncertainty 
in proxy reconstructions remains widely underestimated, particularly for new proxies. Our aim is to explore 
the factors that control the magnitude of uncertainty in reconstructions, and to provide a simple, robust and 
generalizable approach that can be used to estimate the uncertainty associated with any paleo-environmen-
tal proxy reconstruction.

The first step in proxy reconstruction is to constrain a relationship between the proxy variable to be meas-
ured (P) and the environmental variable to be inferred (E) with a calibration data set consisting of paired 
values. For all proxies, the value of P depends on the value of E, so this relationship must be defined with a 

Abstract A quantitative analysis of any environment older than the instrumental record relies on 
proxies. Uncertainties associated with proxy reconstructions are often underestimated, which can lead to 
artificial conflict between different proxies, and between data and models. In this paper, using ordinary 
least squares linear regression as a common example, we describe a simple, robust and generalizable 
method for quantifying uncertainty in proxy reconstructions. We highlight the primary controls on the 
magnitude of uncertainty, and compare this simple estimate to equivalent estimates from Bayesian, 
nonparametric and fiducial statistical frameworks. We discuss when it may be possible to reduce 
uncertainties, and conclude that the unexplained variance in the calibration must always feature in the 
uncertainty in the reconstruction. This directs future research toward explaining as much of the variance 
in the calibration data as possible. We also advocate for a “data-forward” approach, that clearly decouples 
the presentation of proxy data from plausible environmental inferences.

Plain Language Summary Earth's surface environments have varied significantly 
throughout geologic time. Accurate quantification of these ancient environmental changes relies on 
proxies—materials that are known to change composition or morphology with the ambient environment. 
These approaches have provided insight into important questions across the Earth sciences, from the 
context and consequences of biological evolution and volcanic eruptions, to threshold behavior and long-
term feedbacks within the modern climate system. Although the uncertainty associated with an estimate 
of an environmental change is of equal importance to the estimate itself, uncertainties are widely either 
underestimated or else rely on proxy-specific statistical models. Fortunately, a very good, and broadly 
applicable, estimate of uncertainty is extremely simple to calculate. In this paper we show that statistical 
uncertainty in proxy reconstructions is mostly due to the magnitude of scatter around the calibration 
line. We furthermore attempt to give the reader an intuition for how large reported uncertainties in 
proxy reconstructions should be, how and when they can be reduced, and where future efforts to reduce 
uncertainty should be directed.
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forward model, where E is the independent variable, and P is the dependent variable. Calibration data can 
be generated in laboratory experiments by varying E independently from all other influential variables (e.g., 
Bemis et al., 1998; Kluge et al., 2015), or by analyzing natural environmental samples, taking advantage of 
natural temporal or spatial variation in E (e.g., Anand et al., 2003; Dekens et al., 2002; Gray et al., 2018; Kim 
et al., 2008). The second step is to estimate the value of E that led to the value of P, which involves “invert-
ing” the calibration model. As P is always a function of multiple environmental variables in addition to E, 
there is always residual variance in the calibration data, which reflects the complex variability of the natural 
world. It is this residual variance that usually dominates the uncertainty in proxy reconstructions, yet this 
component of uncertainty is often ignored.

In our analysis, we focus on the most common type of linear relationship between E and P where the three 
prerequisites for ordinary least squares (OLS) linear regression are satisfied. Despite its simplicity, OLS line-
ar regression highlights the major problems common to all proxy approaches, and enables us to explore the 
controls on the magnitude of uncertainty in a reconstruction. A number of widely used proxies are based 
on linear calibrations, and any nonlinear, multivariate and more complex models can also be coerced into 
a linear form by algebraic manipulation or by plotting the model-predicted values against the observations.

2. Calibration
A calibration data set consists of paired values of E and P (i.e., ( iE , iP), i = 1, …, n). In the calibration con-
text, E is considered to be an independent non-stochastic variable. The value of P is influenced by E, in 
addition to other, often unknown, factors that are treated in the current approach as noise. P is, therefore, a 
dependent stochastic variable. By convention, the independent variable (E) is plotted on the x-axis, and the 
dependent variable (P) is plotted on the y-axis.

In our example we consider a calibration data set that conforms to the assumptions of the Gauss-Markov 
theorem. This requires that the noise: (a) has zero mean; (b) has a single variance (is homoscedastic); (c) 
comprises uncorrelated values. The intercept (E0) and the slope (E1) of the straight line model are estimated 
by OLS linear regression, where the line minimizes the sum of squared differences between model P values 
and observations of P. This is a “P-on-E” OLS linear regression. The data pairs ( iE , iP; i = 1, …, n) are then 
related by the forward model:

E E � �1 0 ,i i iP E � (1)

where �  is a noise term. We here assume that the noise is normal ( Va 2(0, )i� & ), but this is not a require-
ment for OLS regression. When one of the prerequisites for Equation 1 is not satisfied, an alternative 
method of regression is required. Nonlinear and multivariate models will not be discussed here, nor 
will univariate linear models that account for uncertainties in both variables, but these are thoroughly 
reviewed elsewhere (e.g., Smith, 2009).

This regression model is defined by three parameters: E0, E1 and V . Estimates of these parameters are re-
spectively denoted: E0

ˆ , E1̂ and V̂ . Classically, uncertainties in estimates of E0 and E1 are quantified and 
illustrated by construction of confidence bands (CBs; Figure 1) valid over all E values (hyperbolic CB [Schef-
fé, 1959]) or over restricted intervals (straight lines [Gafarian, 1964]). CBs are constructed in such a way 
that, under repeated experiments, the long-run average of CBs that cover the true line is the nominal prob-
ability, say, 95% (see Casella & Berger, 2002 for a detailed discussion). In the Bayesian approach, all mod-
el parameters are estimated by a posterior distribution that integrates information from the data and the 
model assumptions. Uncertainties in the parameter values decrease with increasing n, typically according 
to 1 / n . Parameter uncertainties can, therefore, be conceptualized as analogous to standard errors, where 
larger calibration data sets result in greater confidence in the model. However, while more calibration data 
improves estimates of the intercept, slope and magnitude of the noise, the same is not true for the uncer-
tainty associated with inverse prediction.
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3. Inverse Prediction
3.1. Inversion of the Forward Model

The goal of a paleo-environmental proxy is to estimate E from P. For a typical linear relationship where 
E is the independent variable; this is called inverse prediction. The classical estimator for E ( 0Ê ; e.g., Os-
borne, 1991), can be straightforwardly derived from Equation 1 as follows:

E
E
�

 0 0
0

1

ˆ
,ˆ

ˆ
PE (2)

where 0P  is a single new value of the proxy variable, and where E0
ˆ  and E1̂ are respectively the estimates of E0 

and E1 constrained from OLS regression. The question is: what is the feasible range of values of 0E  that could 
have given rise to the observed value 0P ? Here we call this the inverse prediction interval (IPI).

Quantifying the IPI is not trivial (e.g., Eisenhart, 1939; Hoadley, 1970, and see Osborne, 1991 for an excel-
lent review). Frequentist inference, which is the primary statistical framework with which most scientists 
are familiar, is based on an assumption that the characteristics of the system have fixed values that can be 
constrained with the addition of data. As E is an independent variable, the uncertainty distribution parallel 
to this axis is not defined, so this statistical framework is not appropriate for estimating the IPI. This is the 
so-called “calibration problem” (Shukla, 1972).

There are, however, a number of alternative approaches to frequentist inference that can be used to estimate 
the uncertainty in the value of 0E  for a given 0P . First, in the Bayesian statistical approach, the uncertainty 
distribution in 0E  can be determined in an iterative fashion without formally rearranging Equation 1. Bayes-
ian statistical approaches are well suited to the problem of inverse prediction, but numerical calculations 
can be time consuming, and the development of a model requires familiarity with Bayesian statistics. Sec-
ond, non parametric approaches are based directly on observed distributions of the data. These approaches 
are powerful because they do not require assumptions about error structure within the data to be made, but 
they also require that the data comprehensively represent the system. Third, the “fiducial” approach, which 
was never widely adopted as a broad statistical framework, and is all but absent from the modern statistical 
literature, is nevertheless widely used in the specific example of uncertainty estimation in inverse-predic-
tion problems (Williams, 1959). We refer the reader to (Draper & Smith, 1998) for a full description of this 
approach. Note that the “prediction interval” (PI), or root mean-squared error (RMSE) of an “E-on-P” OLS 
regression (i.e., with E on the y-axis and P on the x-axis) is not a valid estimate of uncertainty in 0Ê . This 
approach violates the assumptions of OLS regression, resulting in an incorrect slope and intercept, and 
an underestimate of the unexplained variance. Given the ubiquitous use of calibration-based estimates 
throughout the geosciences, and the inconsistent calculation of uncertainty, there is a pressing need for an 
uncomplicated, robust and generalizable way to estimate the IPI.

3.2. Recommended Method for Simple Calculation of the IPI

We describe a simple and robust approach for estimating the IPI that can be straightforwardly applied to any 
calibration data set. In this approach we make the simplifying assumption that E1 and E0 are known with 
absolute certainty. Uncertainties in E0 and E1 are, of course, never zero, but this simplification is usually rea-
sonable when the calibration data set shows a visually apparent correlation. If �  is an approximately normal 
distribution, it will be best represented for a finite sample size by a Student's t-distribution. The value of 0E  
corresponding to a single value of 0P , to within an uncertainty D  is then:

DV

E
� r , 2

0 0
1

,
ˆˆ

ˆ
nt

E E (3)

where 0Ê  is the classical estimator of E (Equation 2) and V̂  is the observed standard deviation of the resid-
uals from Equation 1. D �, 2nt  is the dimensionless critical value of the Student's t-distribution, where n is the 
number of calibration data points and a linear model has � 2n  degrees of freedom. D  is the level of confi-
dence desired (i.e., for 95% confidence bounds, D  = (1–0.95)/2 = 0.025). For o fn , D �, 2nt  approaches the 
critical value of the normal distribution ( f0.025,t  = 1.96). This estimate of uncertainty is shown in Figure 1 as 
“Simple IPI” and is graphically intuitive as rotating the standard deviation of the residuals from the P axis 
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Figure 1. Proxy calibrations with associated inverse prediction intervals. Linear regression analyses on an artificial data set of an environmental variable (E), 
and a measurable proxy variable (P). The artificial data set was generated with Gaussian noise in the P axis alone. The regression lines were calculated with a 
P-on-E ordinary least squares (OLS) linear regression. The confidence bands (CBs) of the regressions represent the 95% uncertainty in the model parameters 
intercept and slope. 95% inverse prediction intervals (IPIs) in E are given by four different approaches: 1. Simple IPI (this study: Section 3); 2. Nonparametric 
IPI (Text S1); 3. Fiducial IPI. 4. Bayesian IPI (strictly, credible interval; Text S2). The “true” parameters E1 (slope) and V  (noise), and the sample size, n, are 
prescribed for each condition. All approaches yield similar values of uncertainty in the estimated value of 0E , for a given value of 0P  of 0.5, represented by 
horizontal lines at the bottom of each plot. (a) An ideal calibration consisting of 500 data points. (b) Calibration consisting of 30 data points picked randomly 
from (a). Note the line is less well constrained but the IPI is similar to (a). (c) Calibration with all parameters as (a), except double the noise. Note the line is well 
constrained but the IPI is double that of (a). (d) Calibration with all parameters as (a), except a slope half as steep. Note the line is well constrained but the IPI is 
double that of (a).
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onto the E axis (Figure S1). Equation 3 is equivalent to the “quick-and-dirty” estimate of the uncertainty in 
0E  given by Demidenko et al., which finds an estimate of V  for a Cauchy PDF in the limit of large n (Dem-

idenko et al., 2013, Equation 16).

Some deductions can be made directly from Equation 3. The uncertainty in 0E  is proportional to V , and is 
independent of the intercept, E0, but decreases with the magnitude of the slope, E1 . This inverse depend-
ence leads to the correct units for V E1/ , and inversion becomes impossible when the slope approaches zero. 
Even when parameters of the model (E0, E1 and V ) are known exactly, uncertainty in 0E  based on a single 
value of 0P  is limited by the scatter of data about the regression line, and is not decreased by increasing the 
number of calibration data.

3.3. Comparison of the Simple IPI Estimate With Alternative Approaches

Using an artificial calibration data set, we compare the Simple IPI to estimates from the well-established 
fiducial approach, a nonparametric approach, and a Bayesian approach. For the fiducial approach we used 
Equation 3.2.6 from Draper & Smith, 1998, which results in curved inverse prediction bands. For the non-
parametric approach, we assumed a constant uncertainty across all E, and defined the IPI to lie within 
the 2.5th and 97.5th percentiles of the distribution of � ˆ

i iE E  (i = 1, …, n; see Text S1 for details). Bayesian 
calibration and prediction can be done: (a) in two steps (e.g., as in Tierney et  al.,  2019; Tierney & Tin-
gley, 2014, 2018), whereby the posterior distributions of the parameters of the forward model are first estab-
lished before they are used to generate posterior distributions of 0E ; or (b) in a single step (e.g., as in Gelman 
et al., 2004, 2020) whereby the posterior distributions of the parameters of the forward model and of the 
value of 0E  are all generated within a single simulation. The Bayesian approach shown in Figure 1 is a two 
step approach (see Text S2 for details).

We furthermore evaluated all of these approaches against an “empirical” Monte Carlo (MC) simulation 
of the error distribution associated with inverse prediction. This involved repeatedly simulating the offset 
between a “known” value of E, and the value of E predicted from Equation 2 (see Text S3 and Figure S2 for 
details). The nonparametric approach produces a slightly asymmetric uncertainty range, and systematically 
underestimates the IPI at low n (Figure S3). The fiducial approach produces flared outward uncertainty 
range reflecting the effect of uncertainty in the slope, and systematically overestimates the IPI at low n (but 
is invalid at very low n; Figure S3). Estimates from the Bayesian and Simple IPI approaches lie closest to the 
simulated uncertainties. The Bayesian approach predicts slightly larger uncertainties at low n, and flares 
outwards very slightly due to uncertainties in the slope. All approaches converge on the same IPI as the MC 
simulation in the limit of large n (Figure S3). Further details of this simulation are given in the supporting 
information (Text S3). We also provide example R and stan (Stan Development Team, 2020) scripts for mak-
ing these calculations (https://github.com/QGeoBio/IPI).

The calibration data set only needs to be large enough to define the three parameters of the model (E0, E1, 
and V ) with some confidence. Further increasing the size of the calibration data beyond this point does not 
significantly improve uncertainty in prediction (compare IPIs in Figures 1a and 1b and S3). For our artifi-
cial data sets, a “sufficiently large” data set to ignore parameter uncertainties is around 30–50 well-spaced 
data points (Figure  S3), but the controls on this value of n are a subject of future research. For a single 
proxy measurement, the IPI is determined by the amount of unexplained variance in the calibration data set 
(more scatter = greater uncertainty; compare Figures 1a and 1c), and the slope of the regression (shallower 
slope  =  greater uncertainty; compare Figures  1a and  1d). Uncertainties in model parameters (which do 
change with increased sample size; compare CBs in Figures 1a and 1b) contribute only a small fraction of the 
total prediction uncertainty. From these comparisons, for calibration data sets exhibiting a visually reasona-
ble correlation between E and P, the Simple IPI approach (Equation 3) is an excellent estimate of uncertainty.

4. Example
Figure 2 shows a reconstruction of the surface ocean carbonate ion concentration ([ �2

3CO ]) across the ter-
mination of the last glacial cycle (Barker & Elderfield, 2002) using the foraminifera shell-weight proxy. This 
proxy is based on the size-normalized weight (SNW) of planktic foraminifera shells, which is shown to be 
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higher at higher [ �2
3CO ]. Based on this simple univariate core-top calibration, the 95% IPI is approximately 

r 20 PM (Figure 2a). The authors concluded that reconstructed [ �2
3CO ] decreased from the last glacial max-

imum (a20 ka) to the mid-Holocene (a6 ka) consistent with changes in carbonate chemistry expected from 
the timing and magnitude of 2CO  change observed in ice core records (Figure 2b). The inferred direction 
of the [ �2

3CO ] change is robust to the 95% level, but the magnitude of the change may be within a factor of 
5 (max change = '[ �2

3CO ] = 110 PM from 290 to 180 PM; min change = '[ �2
3CO ] = 20 PM from 240 to 220 

PM; see Figure S4).

If the following were true: (a) the nature of the samples in the calibration and the reconstruction were the 
same; (b) the signal was driven by [ �2

3CO ]; and (c) the scatter in the calibration and the time series was all 
noise (i.e., random), the noise in the time series of SNW of planktic foraminifera would reflect the noise in 
the calibration (i.e., � ). In this example, the coherency (autocorrelation) of the signal is very high, and the 
scatter in proxy data is relatively low. While this suggests that the signal in the proxy data is real (i.e., there 
was significant decrease in SNW of planktic foraminifera shells through this interval), there is a substan-
tial uncertainty associated with how much of this signal was driven by [ �2

3CO ] (Figure 2b). The value of �  
derived from the core-top calibration is assumed to reflect natural variability, and its translation to an un-
certainty in reconstructed [ �2

3CO ] implicitly includes the possibility that the observed trend in the SNW of 
planktic foraminifera shells could be driven by alternative additional influential variables (e.g., temperature 
[Qin et al., 2020] or nutrient concentration [Aldridge et al., 2012]).

5. Discussion
We restrict our discussion to the statistical perspective, with the following caveats: Calibrations, and the 
assumptions necessary for their application, must be representative throughout the geologic interval of 
interest. In other words, an assumption of uniformitarianism (sensu. Hutton  [1785]) at the level of an 
observed relationship between E and P is the assumption that the model parameters, E0, E1 and V , are 
constant through time. If the defined relationship is purely empirical, such that the mathematical form 
of the relationship is not mechanistically prescribed, and the coefficients of the relationship do not have 
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Figure 2. Example: Surface seawater carbonate ion concentration ([ �2
3CO ] in PM) reconstructed using size-normalized foraminifera shell weights (SNW) over 

the last glacial cycle (Barker & Elderfield, 2002). The data shows a decrease in [ �2
3CO ] from the last glacial maximum (a20 ka) to the mid-Holocene (a6 ka). Note 

that for the calibration we applied ordinary least squares (OLS) linear regression to the log transformed size-normalized weight (SNW) data whereas Barker and 
Elderfield (2002) fit an exponential curve to the SNW data. Inverse prediction intervals calculated were based on the calibration data set presented in the same 
study. See text for discussion and Figure 1 for details of each approach.
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a physical meaning, it is difficult to evaluate the validity of this assumption, or justify extrapolation of the 
model beyond the calibration data. The integrity of the measured characteristic of the material on which 
the proxy is based must also be unchanged from the state in which it appears in the calibration, to the state 
in which it is used for a reconstruction, and not be significantly impacted by intervening processes (e.g., 
transport or diagenesis).

5.1. Calibration Data: Experiments Versus Natural Samples

Calibrations based on experiments and calibrations based on natural samples provide different constraints 
on the model parameters. Constraining the coefficients of the linear model, E0 and E1, is usually the primary 
goal of regression analysis. For this, laboratory experiments are arguably the most reliable approach because 
E can be varied in isolation and both E and P can usually be measured with low uncertainty. By contrast, in 
natural samples, environmental variables are often not measured directly, but instead are taken from global 
or regional databases that are binned in space and time, which introduces uncertainty in the value of E 
that corresponds to the measured value of P. For P-on-E OLS regression, uncertainty in E has the potential 
to result in an underestimate of the slope (regression dilution), and may necessitate an errors-in-variables 
alternative to regression such as reduced major axis regression (Draper & Smith, 1998), York regression or 
Bayesian methods. While experiments can be used to constrain predictor coefficients, in the real world P 
depends on various quantities that span the predictor parameter space. What if E—chosen because it is the 
environmental variable of interest—is not the variable exerting the strongest control on P in nature? The 
choice of cross-section through environmental parameter space represented by the experiments may lead 
to a significant interpretative bias during subsequent application if a calibration based on experiments is 
treated as directly representative of the natural world (e.g., Evans et al., 2018; Gray & Evans, 2019; Peterse 
et al., 2012).

Understanding the nature and magnitude of � , meanwhile, is an often overlooked goal of regression analy-
sis. Consider P as a function P (E, A, B) where A are stochastic variables that are responsible for some noise 
even under ideal controlled laboratory conditions and B are stochastic variables that represent environmen-
tal factors other than E or A. A might reflect instrument precision or biological variability, while B reflects 
any environmental variable that can be held constant under laboratory conditions, but may vary in the 
natural world. In a linear regression model between P and E, A and B are treated as a combined noise term, 
� . Note that the Gauss-Markov assumptions for OLS regression require that the mean of the noise in the 
dependent variable must be everywhere zero—thus, values of the environmental variables reflected by B 
must themselves be uncorrelated with E. Variances are usually additive, so one might expect that �  is larger 
in field samples compared to laboratory samples. Indeed, more unexplained variance in natural samples 
compared to laboratory experiments can be seen as an indication that another parameter not considered 
in laboratory studies is influential in the natural world. However, this is complicated by the potential for 
averaging (see below discussion).

Paleoenvironmental reconstructions always involve natural samples, so the value of �  used to calculate 
the IPI includes both A and B— this is information that can only be generated with a calibration based on 
natural samples, as a controlled laboratory experiment only provides information on A. In theory, it would 
be possible to comprehensively explore proxy parameter space with experiments. In practice, this is very dif-
ficult to do. The dimensionality of the relevant parameter space is often unknown before it is explored, and 
exploration is limited by the constraints of time and cost of experiments. “Double calibrations”, including 
both laboratory experiments and natural samples, may be a necessary compromise to isolating the effects of 
influential parameters, and estimating the fraction of real world variation that can be quantified.

5.2. Noise Versus Systematic Uncertainty and Replicate Analyses
Under certain circumstances, the uncertainty in 0E  can potentially be reduced by replicate measurements 
of 0P . However, whether this is possible depends on the nature of the unexplained variance in the calibra-
tion, and the nature of the noise in the paleoenvironmental samples. From the perspective of replication, 
the unexplained variance in the calibration can be thought of as a combination of: (a) noise, which is en-
tirely stochastic, and which represents the range of measured values generated from repeated sampling of 
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the “same” environment; and (b) systematic unexplained variance which is the result of variability in an 
influential environmental variable other than E. (a) would include all of the laboratory-based stochastic 
variables referred to as A above, but might also include some variables referred to above as B, including any 
natural events that are stochastic such as weather. (b) might include the effects of diagenetic status, or any 
environmental parameter that varies in a non-stochastic way in space and time, and between paleo-sam-
ples. The component of uncertainty due to unexplained variance of type (a) is reduced with replicate sam-
pling, whereas that due to type (b) is usually not.

In principle, if the unexplained variance in the calibration was all noise ([a] above), and if the nature of the 
calibration data and the paleo-data were the same, the noise in a paleo-time series in P should reflect the 
noise in the calibration. In this ideal case, true replicates at each time point would reduce the uncertainty 
in the reconstruction. However, it is usually not possible to distinguish between (a) and (b), and similarities 
between the magnitude of the noise in the calibration and the paleo-data, are only circumstantial evidence 
of their common origin. Furthermore, there is ambiguity over the nature of a true replicate. Measurement 
replicates can account for instrumental error, and sample replicates can account for sediment heterogeneity, 
but are these true replicates of sampling the same environment? In reality, the definition of a true replicate 
depends on the proxy under consideration.

Further complications arise when the nature of the calibration samples and the target samples are different. 
For example, consider a hypothetical proxy based on material produced at the surface of a body of water. The 
calibration relies on sediment trap samples with seasonal changes in environment, while reconstructions are 
based on sediment samples. In this scenario, the analyzed material in both sediment trap samples and down 
core samples has been subjected to multiple influential environmental variables. However, each data point in 
the calibration represents a short interval of time (weeks to months), whereas a 1 cm depth interval of sediment 
would contain the integrated signal over years to tens of thousands of years, depending on the rate of sedimen-
tation, and depth of bioturbation. If the reconstructed time series contains less noise than (unexplained vari-
ance in) the calibration, one possibility may be that the nature of the sediment samples smooths out noise or 
seasonal effects. Another explanation may be that the down-core signal is skewed toward one season because a 
larger fraction of material produced at one time of year is transported to depth and archived in the sediment. If 
the reduced scatter is due to a reduction in noise through temporal averaging, this might be reproduced in the 
calibration—and thus accounted for—through replicates, based on separate but closely spaced sediment traps 
(targeting the “same” environment). In the case of seasonal skew, it would be necessary to develop a mathe-
matical model to relate the sub-annual surface signal to the export flux using additional information about the 
environment to determine the integrated contribution to the sediment throughout the year.

If a time series with substantially lower noise than the calibration is produced, either through the use of 
true paleo-replicates, moving average (MA) or local regression (LOESS or LOWESS) approaches, or as a re-
sult of smoothing through the nature of sediment accumulation, there can be some confidence that any sig-
nal in the data represents a real change. However, this does not help to constrain the nature of the change. 
Unless the impact of influential variables other than E can be quantified or discounted, the uncertainty in 
the reconstruction of a change in E must be large enough to include the possibility that it is a non-E envi-
ronmental variable responsible for driving the observed change in P.

5.3. Relative Environmental Change

Often, the goal of paleoclimate reconstruction is to determine the magnitudes of relative change of an en-
vironment over a period of time. A common misconception arises when relative change at the same core 
location is assessed. Intuitively, trends or anomalies in the reconstructions based on data from samples 
from the same core location should be associated with far smaller uncertainties than values compared 
between different sites. In this case relative change is often reported with only analytical uncertainties, or 
the uncertainty in the slope. To understand whether this is appropriate, consider an end-member scenario 
where the calibration data set consists of an infinite number of data points and there is zero uncertainty 
in the slope. It must be incorrect that zero uncertainty in the slope corresponds to zero uncertainty in the 
reconstructed value of E, because environments change in a multivariate fashion, and random events 
impact the value of P.
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When the magnitude of the IPI is large relative to the magnitude of the signal in the proxy data, the recon-
structed environmental change cannot be reported as robust. However, there is a subtle but fundamental 
distinction between asking (a) “what change in the environmental variable ('E  is reflected by the observed 
change in P ('P)?”, compared with the much weaker question, (b) “what 'E  could explain the observed  
'P?”. The estimate is the same for both of these questions (calculated from Equation 2), but there is a large 
difference in the associated uncertainty. The uncertainty associated with (b) corresponds to the uncertainty 
in the slope of the calibration line (E1), while that associated with (a) has an uncertainty corresponding to 
the (much larger) IPI. This difference in uncertainties reflects the strength of the statement. When assessing 
the plausibility of a hypothesis, it may be appropriate to quote the uncertainty associated with (b). However, 
comparisons between different proxies, or between proxies and models, always requires that the uncertain-
ty associated with (a) is used. We suggest that this distinction is made explicit whenever paleoclimate data 
are presented.

5.4. Influence of Multiple Environmental Factors

Systematic uncertainty can be accounted for through the inclusion of additional explanatory variables in to a 
multiple regression model. This requires higher dimensional data sets and more complex models (e.g., Evans 
et al., 2016; Peterse et al., 2012; Tierney & Tingley, 2014). Note that the accurate attribution of the effect of 
each environmental variable on the value of P is limited if the explanatory variables are correlated (exhibit 
collinearity or temporal auto-correlation) but cannot be assumed to perfectly co-vary on all relevant spatial 
and temporal scales (Kutner et al., 2004). This is extremely common in natural environments. When multiple 
regression models (based on uncorrelated predictors) are used for reconstructions, explicit assumptions can 
be made about the likely ranges of these additional variables to constrain the parameter space.

A promising future direction to this approach could include the combination of multiple measurements 
with common explanatory variables into a multiple multivariate analysis. If k  measurable characteristics of 
the same system ( (1)P , (2)P  … ( )kP ) are all functions of an equal number of environmental parameters ( (1)E , 

(2)E  … ( )kE ), a model relating the control of (1: )kE  to (1: )kP  could be inverted to constrain (1: )kE  from measure-
ments of (1: )kP  simultaneously. When multivariate data are considered together, there is potential to place 
tighter constraints on the system as a whole than is possible with a single explanatory variable alone.

6. Summary and Outlook
In summary, any variance in the calibration that cannot be explained must be reflected in the uncertainty in 
the reconstruction. We provide a simple method to calculate this uncertainty (Equation 3). The focus must, 
therefore, be on accounting for as much of the variance in the calibration data as possible, either through 
appropriate replicate measurements, through additional explanatory variables, or through an explicit mech-
anism relating calibration and down-core data. The uncertainty associated with inverse prediction for a 
calibration with a single explanatory variable is not significantly improved with the addition of more data 
once the parameters of the model (E0, E1 and V ) are reasonably well constrained. The controls on what 
constitutes a sufficiently large data set to ignore parameter uncertainties is a subject of future research. We, 
therefore, suggest that the emphasis should shift away from the generation of calibration data sets consist-
ing of a very large number of data points comprising a single explanatory variable, and toward data sets that 
consist of fewer data points that comprise multiple explanatory variables.

In an ideal world, one would have the same level of noise in laboratory experiments, modern field data 
and paleo data. However, one would expect that the noise level increases from laboratory experiments to 
modern field data and further to paleo data because of additional influences of processes not represented in 
the laboratory or on short time scales. The differences in noise levels could provide clues about the nature 
of deviations from the ideal world. In reality, the noise level of paleo data might be even lower than those of 
the corresponding lab data because of smoothing due to averaging.

Paleoclimate proxies usually have calibrations that contain a relatively large amount of unexplained vari-
ance, which translates to large uncertainties in reconstructed values. We advocate for an approach where 
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the measurement data are presented as the direct observations, and the environmental reconstruction can, 
subsequently, be presented as a plausible interpretation. The uncertainty in the magnitude of environmen-
tal change that would plausibly explain the observation, corresponds to the uncertainty in the gradient (E1).  
Absolute reconstructions must carry the full associated uncertainty of the IPI. This distinction between 
assessing the plausibility of a hypothesis, and reconstructing absolute changes or states of environment, is 
subtle but of fundamental importance when comparing proxy records or integrating proxies with models.

Data Availability Statement
The data for the example in Figure 2 are available from Barker and Elderfield (2002); data were otherwise 
not used nor created for this research. R and Stan scripts for the calculations described in this manuscript 
are available on GitHub (https://github.com/QGeoBio/IPI), and an interactive web application is under 
development and will be available at: http://www.qgeobio.com/IPI.
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