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NEGIS ice stream & airborne survey

further details: Franke et al., JGR, 2020

Survey: May 2018

Radar: AWI UWB

MCORDS5, 8 elements

Operation in narrow band 

mode: 180-210 MHz

https://doi.org/10.1029/2020JF005689


Across flow radargrams NEGIS

Strong amplitude

modulations in 

all across-flow

radargrams

= not „normal“ 

internal layers!

Jansen et al., upcoming



Across flow radargram NEGIS

amplitude modulation – origin?

Jansen et al., upcoming



Presentation overview (= )

Part 1: Physics

• Where are the modulations coming from?

• What do they tell us?

Part 2: Analysis

• From observations to horizontal anisotropy

Part 3: Implications

• What can we learn about ice stream dynamics?

first last



Part 1: Physics – a birefringent medium

Dc = (1.6995 - 1.6903) 108 m/s

= 0.54% c0

Interference of radar waves

travelling with slightly different 

velocities:

Beat frequency fmod = f1 - f2



Theory: Fujita et al. (2006) (on ice)

l1

l2

q

Bulk properties of polycrystals: 

Bulk properties related to single crystals:

(for a single crystal)

modulation

with beat

frequency fmod

no modulation

https://www.cambridge.org/core/journals/journal-of-glaciology/article/radiowave-depolarization-and-scattering-within-ice-sheets-a-matrixbased-model-to-link-radar-and-icecore-measurements-and-its-application/3F55550C441988125BED34BCDD6E2F68
https://www.cambridge.org/core/journals/journal-of-glaciology/article/radiowave-depolarization-and-scattering-within-ice-sheets-a-matrixbased-model-to-link-radar-and-icecore-measurements-and-its-application/3F55550C441988125BED34BCDD6E2F68


Relating modulation to anisotropy

Phase difference f of ordinary and extraordinary

wave cause modulation (Fujita et al., 2006)

= 0.034Dl

0

0

= const . Dl z

= 0.078 Dl z

assuming vertically

constant fabric

l2 l1

for f = 195 MHz

Taylor expansion (e.g. Jordan et al., 2019)

(bulk properties of polycrystals)

Dl: horizontal anisotropy

https://www.cambridge.org/core/journals/journal-of-glaciology/article/radiowave-depolarization-and-scattering-within-ice-sheets-a-matrixbased-model-to-link-radar-and-icecore-measurements-and-its-application/3F55550C441988125BED34BCDD6E2F68
https://www.cambridge.org/core/journals/journal-of-glaciology/article/radiowave-depolarization-and-scattering-within-ice-sheets-a-matrixbased-model-to-link-radar-and-icecore-measurements-and-its-application/3F55550C441988125BED34BCDD6E2F68
https://www.cambridge.org/core/journals/journal-of-glaciology/article/radiowave-depolarization-and-scattering-within-ice-sheets-a-matrixbased-model-to-link-radar-and-icecore-measurements-and-its-application/3F55550C441988125BED34BCDD6E2F68
https://ieeexplore.ieee.org/document/8755860


Nodes from destructive interference

• modulation A ~ A0 cos(f): minimum for f = (2n-1)p

• wave number: k = 2p / wavelength = 2p fmod /c

Dl = 0.1 Dl = 0.2 Dl = 0.3f = kz = 0.078Dlz

Dl = 4.8.10-7 fmod

Dl ~ k ~ fmod

k / 2p = 3.75/3000 m    = 7.5/3000 m   = 11/3000 m

=>   k = 0.0078 m-1          = 0.015 m-1 = 0.023 m-1

Dl = 0.099               = 0.192            = 0.294

forward simulation:
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What would theory produce?

Polarimetric plots (e.g. Ershadi et al., 2021)

increasing Dl (~ k ~ fmod ) more node(line)s

node

node

node

node

https://tc.copernicus.org/preprints/tc-2020-370/
https://tc.copernicus.org/preprints/tc-2020-370/


Part 2: Analysis

Processing flow:

• pre-processing of radargrams
(remove features which would cause artefacts)

• (semi-)automatic extraction of fmod from

radargrams
(low-pass filtering & spectrogram analysis)

• mapping of Dl along all profiles



Removing layers to visualize nodes

Bandpass filtering (fmod = 100 – 600 kHz ⩯ Dl = 0.03 – 0.16)

Across:

Along:



Presence: everywhere

Jansen et al., upcoming

Franke et al., JGR, 2020

across flow

along flow

https://doi.org/10.1029/2020JF005689


Test: visible in different radar system?

• Ground-based survey 2019

• Mills-T UHF radar, f = 600-900 MHz

=> same features, higher fmod (because of f)

c
u
rv

e

waveform artefact

Yan et al., 2020

https://ieeexplore.ieee.org/document/9086068


Still not convinced?

Comparable approach:

T. J. Young et al.

Polarimetric radar-sounding to infer and

quantify shear margin ice fabric anisotropy

EGU21-2107

(Thwaites Glacier eastern shear margin)

https://meetingorganizer.copernicus.org/EGU21/EGU21-2107.html


Getting formal: fmod as f(r)

Spectrogram along radar profile

original data

Processing:

• bandpass filter

• time cut

• bandpass filter

spectrogram

=> fmod



Mapping Dl

EGRIP camp

shear margin

• displayed: only profiles across flow

• limited range of Dl

flow lines



Plausible ranges of Dl

xx (S5@68m) x

EGRIP ice core

Weikusat et al., 

EGRIP PP cons.

Franke et al., 2019

EGRIP symp.

Dl

• EGRIP: Dl = 0.3 for z > 500 m

• Assuming wide-spread simple shear (girdle)

l1  0

0.5 ~ l2 ~ 0.05 Dl = 0.05 – 0.5 ⩯ fmod = 190 kHz – 1.9 MHz

0.5   l3   0.95

• Visible range (radar data analysis):

Dl = 0.03 – 0.16 ⩯ fmod = 100 kHz – 600 kHz

• Resolution: 

Dl = 0.02 – 0.4 ⩯ fmod = 75 kHz – 1.5 MHz 

(f = 195 MHz for AWI UWB)



Part 3: Implications

Questions:

• What can we actually detect?

• Where do we see horizontal anisotropy?

• How does it change spatially?

• What does it mean for ice dynamics?



Large-scale flow field

Jansen (strain rates from Neckel & Measures)

Strain rates from surface velocities: 

across flow strain in-flow shear in-flow strain

• laterally compressive

• accelerating flow

• small-scale variations

• considerable shear
Westhoff et al., 2020

(a-1)

https://www.cambridge.org/core/journals/annals-of-glaciology/article/stratigraphybased-method-for-reconstructing-ice-core-orientation/9ECB932117D5E1B5C6981B69A86A5932


Dynamics: when does fabric change?

Along-flow signatures of changing fabric anisotropy:

• Horizontal anisotropy seems to change when ice

thickness changes

=> Indication of internal deformation?

• Not yet investigated: lateral effects

Franke et al., 

JGR, 2020

https://doi.org/10.1029/2020JF005689
https://doi.org/10.1029/2020JF005689


NEGIS along-flow profile

Modelled contribution to flow from internal deformation

ISSM

v: velocity

vb: basal velocity

Rückamp/Humbert



Anisotropic ice-flow model

Lilien et al., upcoming

Fabric along flow line
PRELIMINARY!

ELMER/ICE

• Bed topography: BedMachine (400 m interpol)

• Anisotropy: GOLF (Gillet-Chaulet et al., 2006)

• No subglacial hydrology

• Basal sliding: linear Weertman



Close-up on northern shear margin

horizontal

anisotropy Dl

background:

across-flow

strain rate (a-1)

shear margin



Conclusions I: Methodology

What do we get from beat frequency?

• strength of horizontal anisotropy Dl = l2 - l1

• as function of position (consistent with ice core)

Disappearing modulation (amplitude ~ 0):

• orientation of eigenvector || radar profile

• or Dl = 0

Several beat frequencies in spectrogram:

• potentially vertically changing Dl

Problems: 

• beat signals lost in shear margin (low SNR from folding)

• artefacts in automatic analysis => manual correction



Conclusions II: Ice-stream dynamics

Spatial pattern of Dl: across flow

• increases towards margin (from outside)

• decreases slightly in ice stream

Spatial pattern of Dl: along flow (preliminary)

• Dl increases around bedrock undulation

Process interpretation:

• Strong correlation with shear strain rate

• qualitative agreement with anisotropic flow model

• but: mangitude of Dl does not match (yet)

Open question:

• how to constrain l3 = 1 - 2l1 – Dl to get absolute values

from co-pol measurements only?

=> non-nadir geometries, other options?
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