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Abstract  48 
The regional variability in tundra and boreal carbon dioxide (CO2) fluxes can be high, complicating efforts to 49 

quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict 50 

(i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, 51 

each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy 52 

covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary 53 

productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990–2015 from 54 

148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 55 

fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at 56 

relatively high spatial resolution (1 km2) across the high-latitude region using five commonly-used statistical 57 

models and their ensemble, i.e., the median of all five models, using climatic, vegetation, and soil 58 

predictors. We found the performance of machine learning and ensemble predictions to outperform 59 

traditional regression methods. We also found the predictive performance of NEE-focused models to be 60 

low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that 61 

CO2 sink strength was larger in boreal biome (observed and predicted average annual NEE –46 and –29 g C 62 

m–2 yr-1, respectively) compared to tundra (average annual NEE +10 and –2 g C m–2 yr-1). This pattern was 63 

associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, 64 

and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE 65 

ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990–66 

2015, although uncertainty remains high.  67 

Keywords: land, empirical, Arctic, permafrost, greenhouse gas, CO2 balance, remote sensing 68 

 69 

  70 
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1. Introduction 71 

The terrestrial ecosystem carbon dioxide (CO2) balance is one of the largest uncertainties in the global 72 

carbon budget (Friedlingstein et al., 2020), with high-latitudes (i.e., tundra and boreal biomes) representing 73 

one of the least constrained budgets (López-Blanco et al., 2019; Schuur et al., 2015; Zscheischler et al., 74 

2017). Moreover, due to polar amplification and large carbon stocks, the high latitudes have the potential 75 

for substantial positive feedbacks to climate warming (Abbott et al., 2016; Gasser et al., 2018; Schuur et al., 76 

2008; Turetsky et al., 2020). Currently, in the absence of major disturbances (e.g., fire), boreal forests are 77 

generally CO2 sinks (Bradshaw & Warkentin, 2015; Pan et al., 2011), while regional estimates of tundra vary 78 

from sinks (McGuire et al., 2009, 2012, 2016) to sources (Belshe et al., 2013). Both the winter and growing 79 

seasons are important for these annual budget estimates. A recent synthesis by Natali et al., (2019) found 80 

that winter soil CO2 emissions from the northern permafrost region are larger than previously estimated, 81 

however CO2 uptake by plants over the growing season can be substantial and is often the dominant 82 

component of the annual CO2 budget (Alekseychik et al., 2017; Kolari et al., 2009; Lafleur et al., 2012). The 83 

current state of the annual terrestrial high-latitude CO2 budget (net sink or source) remains highly 84 

uncertain. A key research priority is to develop and compare methods used to estimate CO2 budgets so that 85 

best practices can be identified and regional boreal and tundra budgets constrained at annual and seasonal 86 

time scales. 87 

Estimating high-latitude CO2 fluxes across large areas and over long timescales is challenging due to their 88 

high spatiotemporal variability (Ai et al., 2018; Wilkman et al., 2018) that is controlled by a range of 89 

environmental variables (Camps-Valls et al., 2015; Lund et al., 2010). The ecosystem CO2 balance (net 90 

ecosystem CO2 exchange; NEE) is a relatively small difference between the two large CO2 fluxes of 91 

photosynthesis (gross primary production; GPP) and ecosystem respiration (ER; comprising autotrophic and 92 

heterotrophic respiration). Although NEE can be measured with the eddy covariance (EC) and chamber 93 

techniques (Baldocchi et al., 1988; Lundegårdh, 1927), GPP and ER are estimated indirectly using 94 

environmental light and temperature measurements for EC sites (Lasslop et al., 2010; Reichstein et al., 95 

2005) and light manipulations for chamber sites (Shaver et al., 2007). Field studies have shown that GPP, 96 

ER, and NEE depend on climatic conditions (e.g., temperature, precipitation, and radiation) (López-Blanco 97 

et al., 2017; Nobrega and Grogan, 2008; Zhang et al., 2018), vegetation (Cahoon et al., 2012; Fox et al., 98 

2008; Järveoja et al., 2018), and soil properties (e.g., soil nutrients and moisture) (Arens et al., 2008; Dagg 99 

and Lafleur, 2011; Lund et al., 2009). However, our understanding of the influence of these drivers on GPP 100 

and ER, and particularly on NEE, across the entire boreal and tundra domain remains limited (see e.g., 101 

Belshe et al., 2013; Lund et al., 2010).  102 
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Knowledge of the contemporary high-latitude terrestrial CO2 budget is further limited by an increasing, but 103 

still relatively sparse, flux measurement network (Alton, 2020; Chu et al., 2017; Virkkala et al., 2018). The 104 

majority of flux sites are concentrated within a few intensively studied regions, particularly Alaska and 105 

Fennoscandia (Metcalfe et al., 2018; Pastorello et al., 2020; Virkkala et al., 2019), with just a few sites in 106 

other large regions such as Siberia and northern Canada. Consequently, several methodological issues 107 

related to the temporal, geographical and environmental representativeness of the measurements need to 108 

be addressed to accurately estimate high-latitude carbon budgets. Previous studies have used a variety of 109 

synthesis approaches (Belshe et al., 2013; McGuire et al., 2012), and statistical (Natali et al., 2019), process-110 

based (Lopéz-Blanco et al., 2019; McGuire et al., 2018; Rawlins et al., 2015; Wania et al., 2009) and 111 

atmospheric inversion models (McGuire et al., 2012), yielding highly different sink-source patterns. Most of 112 

these modeling studies have been conducted at coarse spatial resolutions (25 – 100 km km; Natali et al., 113 

2019; Rawlins et al., 2015; López-Blanco et al., 2019) that do not fully capture the local heterogeneity in 114 

high-latitude environments despite their importance for the regional CO2 budgets (Treat et al., 2018). New 115 

efforts synthesizing the current distribution of flux data and developing models at high spatial resolution 116 

are required to improve our understanding on the spatial patterns and magnitudes of CO2 fluxes.  117 

Models that rely on the statistical relationships between CO2 flux and predictor variables have been 118 

increasingly employed (e.g., Jung et al., 2020; Natali et al., 2019; Warner et al., 2019). These statistical 119 

models are useful for predicting fluxes across larger areas (i.e., upscaling) because they directly draw upon 120 

relationships between fluxes and environmental variables, can account for environmental variability across 121 

space and time at high resolutions, and are able to handle biases in the geographic representation of the 122 

data (Jung et al., 2020; Natali et al., 2019; Warner et al., 2019). A broad range of statistical models and data 123 

sources are available for upscaling, but not all of these have been fully utilized. For example, many past 124 

studies have upscaled high-latitude fluxes using a single model (Natali et al., 2019; Peltola et al., 2019; 125 

Ueyama, Ichii, et al., 2013), but how different models compare with each other is not well known (with 126 

exception of Jung et al., 2017 and Tramontana et al., 2016). Further, most of the studies have primarily 127 

used machine learning models due to their ability to capture non-linear relationships in data and lack of 128 

required assumptions (Elith et al., 2008). However, traditional regression methods can be a powerful tool in 129 

upscaling high-latitude ground conditions due to their ability to extrapolate beyond the range of data used 130 

for training, and due to their generalizability and ease of interpretation (Aalto et al., 2018). Finally, many of 131 

the recent upscaling studies have relied on EC flux measurements, neglecting chamber measurements 132 

despite their importance as additional data sources, especially in remote, sparsely-measured treeless 133 

tundra where chambers can capture the entire ecosystem CO2 balance and directly measure NEE and ER 134 

(Natali et al., 2019). Thus, a compilation of both EC and chamber flux measurements and the comparison of 135 
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available modeling techniques is clearly required to ensure accurate CO2 flux estimates from existing data 136 

and models. 137 

Here, we synthesize annual and growing season CO2 fluxes from EC and chamber measurements across the 138 

high-latitude terrestrial tundra and boreal biomes. We then use this new database to upscale annual 139 

average ecosystem CO2 fluxes at relatively high spatial resolution (1 km2) across the high-latitude domain 140 

using several statistical models. We compare our new database of in situ CO2 fluxes to past tundra 141 

syntheses (Belshe et al., 2013; McGuire et al., 2012), provide a detailed assessment of model performance, 142 

analyze the spatial patterns and drivers of CO2 fluxes, and discuss the resulting CO2 budget estimates and 143 

recommendations for future work. We focus on understanding the spatial variability in average CO2 fluxes 144 

instead of a temporal analysis of CO2 flux change; however, our modeling framework also considers the 145 

interannual variability in fluxes.  146 

2. Material and Methods 147 

2.1 Data Collection 148 

2.1.1 Collection of CO2 flux data 149 

Our study area was defined by the high-latitude tundra and boreal biomes (>45 °N) based on global 150 

ecoregions (20.6 x 106 km2; Fig. 1; Dinerstein et al., 2017). We first conducted a literature survey to identify 151 

existing EC and chamber-based terrestrial CO2 flux observations of GPP, ER, and NEE over annual and 152 

growing season periods across the domain. Potential sites were identified from previous studies (Ichii et al., 153 

2017; Marushchak et al., 2013; McCallum et al., 2013; Watts et al., 2014) and prior synthesis efforts (Belshe 154 

et al., 2013; McGuire et al., 2012; Virkkala et al., 2018). We augmented the resulting site list using a Web Of 155 

Science search with key words ("tundra" or "boreal" or "arctic") and ("CO2 flux" or "CO2 exchange" or "CO2 156 

budget"). Additionally, a community call was solicited through a CO2 flux synthesis workshop (Parmentier et 157 

al., 2019), whereby investigators contributed their most current unpublished data. Additional EC data were 158 

downloaded from FLUXNET2015 (Pastorello et al., 2020).  159 

The compiled data set represents all natural vegetation types (categorized by needle- or broadleaf forest, 160 

shrubland, grassland, wetland, and sparse vegetation) present in the study domain. We included flux 161 

measurements from managed forests and wetlands but excluded croplands. While the EC observations 162 

represent all vegetation types, chamber data from forest sites were not included since they do not 163 

represent whole ecosystem fluxes. EC measures NEE directly, whereas GPP and ER are indirect estimates 164 

acquired from various partitioning methods (Lasslop et al., 2010; Reichstein et al., 2005). NEE is also often 165 

gap filled with the indirect GPP and ER estimates. Chambers measure NEE and ER directly, out of which GPP 166 

can be estimated. If a given site reported both EC and chamber fluxes for the same year and period, EC 167 
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fluxes were selected over chambers as EC footprints are larger and correspond better with the scale of our 168 

gridded predictor variables. In experimental manipulation studies, only the fluxes from the control plot 169 

were included. We aggregated spatial replicates of chamber fluxes within a given site and year by 170 

calculating the median flux.  171 

We included studies and sites with NEE, GPP, and ER estimates over a full growing season or year (i.e., 172 

cumulative flux). Growing season flux measurements are provided by EC and chambers. Winter flux 173 

measurements include a variety of methods in addition to EC and chambers (e.g., a gas diffusion method by 174 

Björkman et al., 2010, soda lime by Welker et al., 2004, or an empirical model by Vogel et al., 2009). 175 

Growing season length and measurement period were defined in multiple ways at individual sites. To allow 176 

inter-site comparison, we filtered out measurements that did not represent the entire growing season and 177 

standardized the remaining measurements (see Supplementary Text Section 1.1 and a similar approach in 178 

Belshe et al., 2013). From this filtered data set, we calculated average growing season daily flux rates based 179 

on the reported measurement length and standardized the fluxes based on a common growing season 180 

length. The final list of sites having representative annual or growing season measurements is provided in 181 

Supplementary Table 1, sites that were dropped are in Supplementary Table 2.  182 

The resulting dataset included 148 sites with CO2 fluxes from 1990 to 2015 from variable measurement 183 

periods (Fig. 1). We compiled 1390 cumulative annual and growing season flux values (when chamber 184 

measurements were aggregated per site; Fig. 1); 78 % of the aggregated observations are from EC and 22 % 185 

are from chambers. Annual and growing season NEE were the most widely reported fluxes in the dataset 186 

(Fig. 1). Unlike McGuire et al., (2012) and Belshe et al., (2013) we also included data from the boreal biome, 187 

additional tundra sites, and wetlands (not synthesized in Belshe et al., 2013; Supplementary Fig. 1). Similar 188 

to McGuire et al., (2012) and Belshe et al., (2013), our database primarily represents undisturbed 189 

environments. However, it also includes measurements from ca. 10 sites that have experienced high 190 

natural, anthropogenic or anthropogenically-induced disturbances, such as rapid permafrost thaw 191 

(Bäckstrand et al., 2010; Cassidy et al., 2016; Trucco et al., 2012), fires (Iwata et al., 2011; Ueyama et al., 192 

2019), insect outbreaks (Heliasz et al., 2011; López-Blanco et al., 2017; Lund et al., 2017), or extensive 193 

harvesting practices (Coursolle et al., 2012; Machimura et al., 2005). Throughout the text, positive numbers 194 

for NEE indicate net CO2 loss to the atmosphere (i.e., CO2 source) and negative numbers indicate net CO2 195 

gain (i.e., CO2 sink). GPP and ER are always given as positive numbers. 196 

2.1.2 Gridded predictors and reference flux data 197 

We acquired 10 eco-physiologically relevant predictors at 1 km2 resolution (0.0083°) representing 198 

topographic, soil, climate, and vegetation conditions: topographic wetness index (TWI), potential incoming 199 

direct annual radiation (RAD; MJ cm–2 yr–1), soil organic carbon stocks in the upper 2 m (SOC; tons per ha), 200 
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topsoil (0-5 cm) pH, topsoil clay content (CLAY; %), growing degree days (GDD3; °C), freezing degree days 201 

(FDD; °C), water balance (WAB; mm), normalized difference index (NDVI) and land cover (LC; classes were 202 

mixed or broadleaved forest, needleleaved forest, grassland and shrubland, wetland, sparse vegetation; see 203 

Supplementary Text Section 1.2 and Supplementary Fig. 2 for more information about the predictors). 204 

These predictors characterize previously identified key relationships between CO2 fluxes and summer and 205 

winter temperatures, radiation, precipitation, local hydrology and soil conditions, soil carbon stocks, and 206 

vegetation properties (i.e., see Beer et al., 2010; Belshe et al., 2013; Lund et al., 2010; Natali et al., 2019; 207 

Ueyama, Iwata, et al., 2013). We recognize that GPP and ER partitioning and gap filling rely on some 208 

environmental data (e.g., temperature and radiation), and consequently these fluxes already include some 209 

information about variables that we also used as predictors in our statistical models. We used annual 210 

(1990–2015) data for GDD3, FDD, WAB, and maximum summer NDVI; the remaining predictors were 211 

considered to be static. In cases where an annual flux value extended over multiple years (i.e., 212 

measurement period from October to September of the following year, or where a study reported an 213 

average flux from multiple years), a median climate or NDVI value for those years was used. All predictor 214 

data sets were masked to only include tundra and boreal biomes (Dinerstein et al., 2017), and to exclude 215 

permanent water bodies, urban areas, and croplands based on a land cover dataset developed by ESA, 216 

(2017). 217 

We compared our annual ecosystem NEE predictions and budgets (see Section 2.2.1) with FLUXCOM, a 218 

global product derived from FLUXNET EC towers and machine learning at 0.5 ° resolution (Baldocchi et al., 219 

2001; Jung et al., 2017; Tramontana et al., 2016) and an ensemble of global Earth system models from the 220 

Coupled Model Intercomparison Project Phase 5 (CMIP5) at 1.92 x 1.5 ° resolution (Taylor et al., 2012) 221 

(Supplementary Text Section 1.2).  222 

2.2 Data Analysis 223 

2.2.1 Statistical Modeling 224 

Our main response variables were annual and growing season cumulative GPP, ER, and NEE, but we also 225 

modeled daily average GPP, ER, and NEE during the growing season. Annual and growing season CO2 fluxes 226 

were linked to the environmental predictors using a range of different statistical modeling methods 227 

(Supplementary Fig. 3). We used five statistical models; two were extensions of linear regression models, 228 

and three were based on machine-learning.  All of these models have been widely used in empirical CO2 229 

flux upscaling studies (Bond-Lamberty and Thomson, 2010; Hursh et al., 2016; Tramontana et al., 2016; 230 

Ueyama, Ichii, et al., 2013). Specifically, we examined generalized linear models (GLMs); generalized 231 

additive models (GAMs); generalized boosted regression trees (GBMs); random forest (RF models); and 232 

support vector machines (SVMs).  GLM is an extension of linear regression models where the response 233 
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variable can have a non-normal distribution, and the regression is generalized by linking the linear model to 234 

the response variable via a link function (Nelder and Wdderburn, 1972). GAM is a more flexible method 235 

than generalized linear modeling, as it can use local spline smoothing functions constrained by the user to 236 

fit non-linear relationships between the response variable and the predictor (Hastie and Tibshirani, 1987). 237 

GBM and RF are tree-based machine learning methods, where modeling is based on splitting the data into 238 

multiple trees (Breiman, 2001; Elith et al., 2008). SVM is a powerful machine learning method based on 239 

projecting vectors into a high-dimension space with a kernel function and then fitting an optimal 240 

hyperplane (Smola and Schölkopf, 2004).  241 

We used several model approaches because individual models have inherent strengths and weaknesses 242 

(Supplementary Text Section 2). For example, machine learning methods might suffer from overfitting, 243 

whereas regression methods might result in unrealistic values when extrapolated outside the model data 244 

range. Further, individual models may detect different patterns in the data, and the best performing 245 

models are not always the same for different response variables (Segurado and Araújo, 2004). We also 246 

produced an ensemble prediction by calculating a median prediction over the five predictions from the 247 

individual modeling methods (see also Tramontana et al., 2016). We used the median instead of the mean 248 

to avoid extreme predicted values inflating the ensemble prediction. In this procedure, the uncertainty of 249 

the ensemble is expected to be lower than the uncertainty of a single model (Aalto et al., 2018). 250 

Consequently, we produced six model predictions for each of our response variables. 251 

To determine the main drivers of the spatial patterns of response variables, the relative contribution of 252 

predictors in the models was assessed using a prediction re-shuffling approach (Niittynen and Luoto, 2018). 253 

We first fit the model and developed predictions using the original data, and then repeated this procedure 254 

with the values for one predictor randomly permuted. The contribution of a variable was calculated as a 255 

correlation between these two predictions (i.e., original model and the model with a shuffled predictor) 256 

subtracted from one: 257 

Relative contribution = 1–correlation (Predictionoriginal data, PredictionRandomly permuted data) 258 

Values close to 1 indicate that the two predictions were different, indicating high variable importance of 259 

the predictor variable. Each predictor was randomly permuted 100 times for each flux with each of the 260 

modelling methods, and an ensemble contribution was derived by taking a mean of the values. To visualize 261 

a predictor’s effect on a response variable after controlling for the effects of other predictors, partial 262 

dependence plots were derived from the random forest model. For both variable importance and partial 263 

dependence plot analyses, we used daily average growing season fluxes because the growing season length 264 

estimates that were used to calculate growing season fluxes are not independent from GDD3. We found 265 
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that the daily average fluxes correlated strongly with the growing season fluxes (Pearson’s correlation 0.93-266 

0.94), so they can be assumed to reflect the same relationships with the predictors. 267 

To extrapolate across the domain, we fit the models using the entire data set to produce annual flux 268 

predictions and their ensembles that were subsequently averaged to 1990-2015 mean values. Because the 269 

ensemble predictions were among the most accurate and least uncertain predictions across all response 270 

variables, and because their use is generally recommended in predictive efforts (Araújo and New, 2007), 271 

our final flux maps were based on the flux ensemble. Because growing season length has been estimated in 272 

several different ways in previous studies, we aggregated growing season budgets for two additional 273 

periods to compare the tundra and northern permafrost region growing season budgets to previous 274 

studies: Belshe et al., (2013) and Natali et al., (2019). Belshe et al., (2013) estimated the growing season to 275 

be 100 days at each site, and Natali et al., (2019) used the May-September period (153 days) for the 276 

growing season. For this comparison, we calculated a growing season NEE budget by multiplying the 277 

growing season daily NEE predictions by 100 and 153 days. However, we suggest our time-varying growing 278 

season estimate more reliably represents true growing season length as it captures the variability in 279 

growing season length across the high-latitude region. Regional budgets of annual NEE and the time-280 

varying 100- or 153-day growing season NEE were calculated for the entire study domain (i.e., tundra and 281 

boreal biomes; Dinerstein et al., 2017), the northern permafrost region (Brown et al., 2002; excluding 282 

permafrost south of the boreal biome; includes regions both in tundra and boreal biomes), the non-283 

permafrost region located within our study domain (includes boreal regions in Fennoscandia and some 284 

parts of Russia and Canada), and the boreal and tundra wetland and upland regions (based on the biomes 285 

and wetland and non-wetland classes in LC; ESA, 2017) by averaging the budgets estimated from annual 286 

ensemble predictions over the 26-year period. In addition to annual and growing season budgets, we also 287 

calculated a non-growing season budget (see Supplementary Table 3).  We had different numbers of 288 

observations and sites available for each flux and model, and consequently observed and predicted ER and 289 

GPP fluxes and budgets do not sum up to NEE. 290 

2.2.2 Model fit, predictive performance and uncertainty 291 

To evaluate model fit, we predicted fluxes over the entire model training data. To assess the predictive 292 

performance of the models, we used a leave-one-site-out cross validation scheme in which each site was 293 

iteratively left out from the data set, and the remaining data were used to predict fluxes for the excluded 294 

site (Bodesheim et al., 2018). For both model fit and predictive performance, we calculated bias an average 295 

of the absolute error between prediction and actual observation, Pearson correlation (r) to determine the 296 

extent of linear relationship between the observed and predicted fluxes, and root mean squared error 297 

(RMSE) to estimate the model error. We use the terms “observed” and “predicted” to distinguish between 298 
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field measurements and model predictions but acknowledge that some of these observed values represent 299 

indirect estimates of fluxes. 300 

We evaluated the prediction uncertainty of all flux models and the budget uncertainty of annual and 301 

growing season NEE models using a repeated random resampling procedure (Aalto et al., 2018). Prediction 302 

uncertainty was calculated to characterize the spatial variability in flux predictions across the high-latitude 303 

region, whereas budget uncertainty quantified the range of potential NEE budget values. We used 304 

bootstrapping (fractional resampling with replacement based on LC classes) to subset the model training 305 

data into 200 different data sets, all of which had the same number of observations as the original flux data 306 

itself. These 200 data sets were then used to produce 200 individual predictions with all five statistical 307 

models and their ensemble for each flux and for each year from 1990 to 2015 to assess prediction 308 

uncertainty which was summarized using the prediction interval (PI; 95th percentile – 5th percentile). 309 

Uncertainty for annual and growing season NEE budgets was estimated by calculating the range of budgets 310 

from the 50 first ensemble predictions out of the 200 predictions for each year from 1990 to 2015, due to 311 

computational constraints. The prediction uncertainty of annual NEE was also assessed by comparing the 312 

average annual NEE budgets with the annual NEE derived from annual ER and GPP predictions, by 313 

examining alternative estimates from other studies (i.e., FLUXCOM and CMIP5) and by calculating a 314 

standard deviation across these products to evaluate where the regional differences occur. For more 315 

details, see Supplementary Text section 2.3 and Supplementary Fig. 4.  316 

3. Results 317 

3.1 Observed flux variation 318 

Flux measurements showed considerable variation in magnitudes and signs (sink vs source) across the high-319 

latitude environments (Fig. 1 and Table 1). Observed annual NEE (no upscaling) was on average a small 320 

source of CO2 in the most northern parts of the study domain (tundra: +10 g C m–2 yr-1, 42 sites, northern 321 

permafrost region: +6 g C m–2 yr-1 based on 63 sites) and in drier environments (tundra upland: +16 g C m–2 322 

yr-1, 34 sites), whereas the boreal biome (–46 g C m–2 yr-1, 41 sites), and in particular boreal uplands (–47 C 323 

m–2 yr-1, 36 sites), and non-permafrost-boreal regions (–90 g C m–2 yr-1, 20 sites) were net ecosystem CO2 324 

sinks. All environmental categories were, on average, net CO2 sinks during the growing season, with the 325 

average NEE ranging from –37 to –115 g C m–2 period-1 (Table 1). Tundra upland and non-permafrost 326 

regions had the lowest average growing season sink strength. The non-permafrost region sink was greatly 327 

reduced by one disturbed site that had large source values up to +600 g C m–2 period-1 (Petrone et al., 328 

2014), but this was not apparent in the annual averages because the same site did not report annual fluxes. 329 

Although the distribution of environmental conditions at the sites were fairly representative 330 



12 
 

(Supplementary Fig. 5), colder environments with low NDVI and GDD3 as well as high FDD were less well 331 

represented (e.g., large areas of Siberia; Fig. 1). 332 

3.2 Predictive performance of the models 333 
The model fit and predictive performance analyses indicated that the GBM, RF and SVM (machine learning) 334 

methods outperformed the GLM and GAM (regression model) approaches across most of the response 335 

variables (in particular with NEE, but also with GPP and ER; model fit of annual machine learning models: r = 336 

0.69–0.99 vs. regression models: r = 0.6–0.92; predictive performance of annual machine learning methods: 337 

r = 0.2–0.73 vs. regression models: r = 0.12–0.72; Fig. 2). We found that the machine learning-based 338 

methods were less uncertain (Supplementary Fig. 6) and always predicted values within the range of the 339 

observed fluxes as opposed to regression models. However, the machine learning method that performed 340 

best and had the least uncertainties varied depending on the flux response variable. 341 

Ensemble predictions were among the best performing models (model fit of annual and growing season 342 

ensemble models: r = 0.68–0.94; predictive performance of annual and growing season ensemble models: r 343 

= 0.21–0.73; Fig. 2 and Supplementary Fig. 7). However, similar to the individual models, model fit and 344 

predictive performance was lower for annual and growing season NEE compared to GPP and ER (model fit 345 

for GPP and ER: r = 0.89–0.94 vs. NEE: r = 0.68–0.77; predictive performance for GPP and ER: r = 0.53–0.71 346 

vs. NEE: r = 0.21–0.27; Fig. 2 and Supplementary Fig. 7). Annual models for ER and NEE exhibited a better fit 347 

and predictive performance than the growing season models, whereas the opposite was true for GPP (Fig. 2 348 

and Supplementary Fig. 7). The growing season GPP model fit and predictive performance was higher than 349 

that of the ER models, but annual GPP and ER models performed equally well. In most predictive 350 

performance analyses the lowest and highest observed fluxes were over- and underestimated, respectively, 351 

indicating overall poor predictive performance at the extremes (Supplementary Fig. 8–9).  352 

Average predicted and observed fluxes were of similar magnitude (Table 1). However, there was a 353 

tendency for the average predicted values to have slightly larger GPP and ER values (e.g., observed and 354 

predicted annual GPP in the tundra: 250 g C m–2 and 378 g C m–2, respectively) and stronger net CO2 sink 355 

values than what was observed (e.g. observed and predicted annual NEE in the tundra: +10 g C m–2 and –2 g 356 

C m–2, respectively). Our cross-comparison of annual and growing season flux ensemble predictions showed 357 

there was a mismatch between annual and growing season component fluxes in approximately 2 % of the 358 

pixels (growing season GPP/ER larger than annual GPP/ER) and that unrealistic flux values (negative GPP or 359 

ER) were found in less than 0.01 % of the pixels in the ensemble predictions.  360 

3.3 Predicted flux variation 361 
Predicted fluxes showed pronounced spatial variability across the region with a general trend towards 362 

increasing fluxes and sink strength with decreasing latitude for GPP, ER, and NEE (Fig. 3 and Supplementary 363 
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Fig. 10). The variability was related to differences in climate (GDD3 and FDD), solar radiation (RAD) and 364 

vegetation greenness (NDVI), which had the strongest influence on most of the fluxes (Fig. 4). Moreover, 365 

SOC, CLAY, and LC were important variables for annual NEE; CLAY and SOC both had a positive yet 366 

saturating relationship. The relationship between LC and annual NEE suggested that the annual and 367 

growing season net sink strength was largest in wetlands and smallest in sparse vegetation (Supplementary 368 

Fig. 11–12). Some variables had a very low variable importance for most of the fluxes (e.g. TWI, soil pH). 369 

Our predictions revealed regional hot spots in annual and growing season NEE, GPP, and ER. Strong annual 370 

and growing season CO2 sinks, having low ER and high GPP, were found in forested regions with high GDD3, 371 

NDVI, RAD, and low FDD across Fennoscandia and European Russia, southern Canada, and southern Siberia 372 

(Fig. 3 and Supplementary Fig. 10). Annual CO2 sources were identified within northern and central Siberia, 373 

Greenland, northern and central Alaska, as well as northern Canada. These regions were located mainly in 374 

the tundra, characterized by high FDD, and low GDD3 and NDVI. Growing season CO2 sources were located 375 

in southeastern Siberia, northern Siberia and some parts of southern and northern Canada. Largest 376 

uncertainties in flux predictions were found in areas with relatively strong CO2 sinks in the boreal biome, 377 

such as in Fennoscandia and eastern Canada, but also in the tundra (e.g., Canadian Arctic Archipelago; Fig. 378 

3 and Supplementary Fig. 10). The largest differences across our annual NEE, and CMIP5 and FLUXCOM 379 

predictions were found in European Russia, Fennoscandia, and southeastern Canada (Fig. 5a-d). 380 

3.4 Terrestrial ecosystem NEE budget for the high-latitude region 381 
Our ensemble predictions showed that the annual terrestrial ecosystem CO2 sink was considerable for the 382 

high-latitude tundra and boreal region over the 26-year (1990–2015) study period (Table 2). The annual 383 

NEE budget (based on upscaled NEE data) averaged –419 Tg C yr–1 (90 % uncertainty range: –559 to –189 Tg 384 

C yr–1; range of budgets across the 26-year time period: –449 to –366 Tg C yr–1). When estimating annual 385 

NEE according to the separately modeled annual GPP (11,344 Tg C yr–1) and ER (10,397 Tg C yr–1) budgets, 386 

we obtain a NEE budget of –948 Tg C yr–1. The average high-latitude growing season NEE budget over the 387 

period of 1990–2015 was –1,018 Tg C yr–1 (–1,332 to –455 Tg C yr–1, 90 % uncertainty range), which was 388 

supported by the difference between the average growing season ER (5,800 Tg C yr–1) and GPP (7,016 Tg C 389 

yr–1) budgets. For the regional budgets, see Table 2. 390 

The average annual NEE budgets over the study period from CMIP5 and FLUXCOM were –488 and –1056 Tg 391 

C yr–1, respectively (Supplementary Table 4). In the boreal biome, average annual GPP in our study was 392 

8,850 compared to 8,561 Tg C yr–1 in FLUXCOM. In the tundra biome, the average annual GPP in this study 393 

was twice as high as in FLUXCOM (2,495 and 1,267 Tg C yr–1, respectively). Differences were larger for 394 

annual ER. Our annual ER budget for the boreal and tundra biomes was 8,241 and 2,156 Tg C yr–1, 395 

respectively, but the same budgets were only 6,363 and 1,200 Tg C yr–1 in FLUXCOM. For the regional NEE 396 

budgets estimated with CMIP5 and FLUXCOM, see Supplementary Table 4. 397 



14 
 

4. Discussion 398 

This study provides a conceptual and methodological framework to bridge the gap between local, regional, 399 

and high-latitude scales in statistical flux upscaling. Our framework is unique in that it 1) compiles a new 400 

data synthesis of growing season and annual fluxes using EC and chamber data and investigates the drivers 401 

of these fluxes; 2) quantifies the performance of different statistical models; and 3) provides the first 402 

spatially continuous high-latitude maps of CO2 fluxes and their uncertainties at high spatial resolution, 403 

capturing the inherent spatial heterogeneity in predictors and fluxes and minimizing biases in upscaling 404 

compared to coarser scale models (Fig. 5e). The better geographical and environmental coverage of the flux 405 

measurements compared to past efforts improves our understanding of the spatial patterns and regional 406 

budgets of terrestrial ecosystem CO2 fluxes, however uncertainties in our direct model estimates of NEE 407 

remained rather high.  408 

4.1. Drivers and spatial patterns of GPP, ER, and NEE 409 
Our results suggest that climatic, vegetation, and soil variables were all important predictors for terrestrial 410 

ecosystem CO2 fluxes. However, almost all CO2 fluxes were strongly driven by the broad climatic gradients 411 

and spatiotemporal variability in radiation, growing and winter season climatic conditions, water balance, 412 

and the resulting vegetation greenness patterns, supporting the findings of previous syntheses (Belshe et 413 

al., 2013; Lund et al., 2010; Natali et al., 2019). Even though these climatic variables are not independent of 414 

our GPP and ER estimates (see section 4.2.), confidence in these results can be drawn from the underlying 415 

mechanistic relationships between the climate drivers and fluxes. For example, GPP across large scales is 416 

dependent on growing season temperatures, length of season, and radiation, which regulate and provide 417 

resources for plant growth (López-Blanco et al., 2017; Lund et al., 2010), and ER is largely driven by 418 

enzymatic processes, which are tightly linked with temperatures (Davidson et al., 2006) as well as plant 419 

growth (La Puma et al., 2007). In general, we found that warmer, moderately wet, and greener conditions 420 

(i.e., environments of higher biomass as indicated by NDVI) increased the magnitude of annual GPP and ER. 421 

However, our results also indicate that the overall net sink strength increases with larger greenness, 422 

warmer and shorter winters, and wetter climate. These results suggest that GPP and ER respond rather 423 

similarly to changes in climate and vegetation conditions across the high-latitude region, although GPP 424 

might increase even more due to increases in vegetation greenness (Berner et al., 2020) and changing 425 

climate (Lund et al., 2010). However, differences in these relationships might occur in different regions 426 

(Belshe et al., 2013) and land cover types (Baldocchi et al., 2018; Lafleur et al., 2012). 427 

In addition to the climate and greenness variables operating mostly at large scales, other more local-scale 428 

variables such as soil organic carbon stock and land cover helped explain CO2 fluxes. Soil organic carbon 429 

stock was the most important predictor for annual NEE, and it had a positive relationship with it, 430 
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demonstrating that areas with high carbon stocks might lose more CO2. However, this result was not 431 

supported by the annual ER models, which would represent the main process behind this relationship (i.e., 432 

larger carbon stocks have more potential for increased CO2 emissions, particularly in dry conditions (Voigt 433 

et al., 2019)). The lack of this relationship might be due to annual ER models not covering the full range of 434 

conditions represented by the annual NEE models, or spurious causal relationships being identified by the 435 

relatively poorly-performing NEE models. The importance of land cover was expected as it summarizes 436 

many key processes related to carbon cycling (e.g. the carbon uptake capacity, temperature sensitivity, as 437 

well as quantity and quality of carbon inputs into the soil; Sørensen et al., 2019) and distinguishes other 438 

environmental characteristics across the land cover types (e.g., soil moisture is likely higher in wetlands 439 

than in sparse vegetation).  440 

Our ensemble prediction suggested that most of the southern high-latitude terrestrial region was an annual 441 

net ecosystem CO2 sink while the central and northern regions were neutral or small net CO2 sources. 442 

Observed and predicted spatial patterns in fluxes were similar to those described by most previous studies. 443 

For example, our compiled field observations and predictions are consistent with the majority of Alaskan 444 

tundra being an annual ecosystem CO2 source on average, similar to the average observed fluxes in 445 

McGuire et al., (2012) or the prediction in Ueyama et al., (2013). The strongest annual ecosystem CO2 sinks 446 

in our study were located in southern European Russia, Fennoscandia, and southern Canada, as also 447 

observed in the FLUXCOM products (Jung et al., 2017; Tramontana et al., 2016).  448 

For some regions, our ensemble prediction differed from the predictions of previous studies. The 449 

distribution of annual CO2 sources across the tundra biome was larger in our prediction compared to 450 

FLUXCOM, particularly in Siberia and Canada. This was likely explained by our models being based on a 451 

larger number of tundra sites from Canada, Greenland, European Russia, and Siberia, which were not 452 

covered by the FLUXCOM model training data. Some of the sites in these regions were annual CO2 sources 453 

on some years (Emmerton et al., 2016; Karelin et al., 2013). A similar disagreement was found between an 454 

Asia-focused statistical upscaling analysis by Ichii et al., (2017) which suggested stronger sink strength 455 

across large parts of Siberia, likely due to a limited number of northern eddy covariance sites used to train 456 

their models. The largest regional differences between our predictions, CMIP5, and FLUXCOM occurred in 457 

central Siberia, Fennoscandia, European Russia, and Canada, and these differences were primarily driven by 458 

the fact that CMIP5 showed these regions to be primarily sources whereas they were sinks in FLUXCOM 459 

and our analysis (Fig. 5). These regional differences demonstrate that these particular areas should be 460 

studied further to understand the sink-source patterns more accurately in the future. 461 

Our uncertainty estimation suggests that CO2 flux predictions should be interpreted carefully in areas that 462 

lack sampling locations or have large variability in fluxes that cannot be captured by the predictor variables. 463 
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Such areas are particularly concentrated in European Russia, eastern Canada, and the Canadian Arctic 464 

Archipelago. As the accuracy of the prediction can usually be improved with increases in the quantity and 465 

quality of data, new measurements in these regions would likely improve the accuracy of high-latitude CO2 466 

flux models.  467 

4.2 Key sources of uncertainty in our modeling approach  468 
No single best model could be identified across the five modeling methods. However, the three machine 469 

learning methods outperformed the two regression models, particularly for NEE, as demonstrated by the 470 

improved model performance, lower uncertainty and the lack of unrealistically high or low flux values in 471 

predictions. The better performance of the machine learning methods was likely related to their flexibility 472 

and capability to find complex structures in the flux data (Elith et al., 2008). Our results demonstrate that 473 

several machine learning methods should be tested to produce the most accurate high-latitude flux 474 

predictions and that ensemble methods provide robust predictions (Araújo and New, 2007). Our results 475 

also indicate that an ensemble prediction based on machine learning methods alone would likely lead to 476 

higher model accuracy and transferability (see also Tramontana et al., 2016).  477 

Our models performed well when predicting to the same data that the models were trained with, but the 478 

models had challenges when predicting to new data. The predictive performance of our ensemble 479 

predictions was comparable to (annual GPP and ER) or less than (growing season GPP, ER, NEE, and annual 480 

NEE) that of in other global and regional upscaling studies (Ichii et al., 2017; Natali et al., 2019; Peltola et 481 

al., 2019; Tramontana et al., 2016; Ueyama, Ichii, et al., 2013). However, comparisons of cross-validation 482 

results are hampered by different cross-validation techniques used in studies, with some of the studies 483 

including observations from the same site both in the model training and validation data, therefore 484 

providing overly optimistic accuracy estimates based on non-independent data. Moreover, these other 485 

studies primarily focused on a smaller area and/or shorter time period (with the exception of Tramontana 486 

et al., 2016), and used a different set of predictors, further complicating this comparison. In these other 487 

studies, the correlation (r) between observed and predicted fluxes (derived with cross validation), 488 

measured mostly throughout the year as daily-to-monthly fluxes, was roughly 0.65–0.7 for NEE and 0.7–0.8 489 

for GPP and ER. There are several reasons for why some of our models performed more poorly than these 490 

previous studies, which we explain below. 491 

The lower quantity of measurements and weaker comparability of fluxes derived with EC and chamber 492 

techniques and with variable measurement lengths might explain the lower predictive performance in our 493 

study compared to the other upscaling studies. As we used aggregated fluxes over the growing season and 494 

annual time scales, the sample size in our models was smaller than in other efforts which all used daily or 495 

monthly fluxes (a few hundred observations versus thousands of observations). A larger sample size usually 496 

increases the predictive performance of the models, particularly when these measurements cover variable 497 



17 
 

environmental conditions that can be captured by the predictors. For example, FLUXCOM models (Jung et 498 

al., 2017, 2020; Tramontana et al., 2016) might have had a higher predictive performance than our models 499 

because they use a global FLUXNET database (Pastorello et al., 2020), which covers broad environmental 500 

gradients. However, FLUXNET data originates mostly from lower latitudes (e.g., only five sites from the 501 

Arctic and 34 from the boreal out of 224 global sites in total used in Tramontana et al., 2016). This could 502 

explain the larger net sink strength in FLUXCOM compared to our predictions. The higher predictive 503 

performance of FLUXCOM compared to our prediction might also be explained by the fact that FLUXNET is 504 

based on a single flux measurement technique (EC) with standardized filtering, gap-filling, and partitioning 505 

procedures. Although the inclusion of chambers in this study was crucial for adequate environmental 506 

coverage, using both chamber and EC measurements, and different partitioning methods for EC, increased 507 

the number of different flux measurement techniques and study designs, and may have made the 508 

comparison of fluxes across sites more uncertain (Fox et al., 2008; Tramontana et al., 2016). Further, the 509 

lower predictive performance of growing season models compared to annual models was potentially 510 

related to the variable growing season measurement periods used across the studies. We accepted this 511 

variability because our goal was to use as many published fluxes as possible to improve the geographical 512 

and environmental coverage of sites.  513 

The accuracy of our ensemble predictions varied depending on the flux, with the predictive performance 514 

being lowest for NEE models (r=0.21–0.27). The predictive performance of our GPP and ER models was 515 

much higher (r=0.53–0.73) and is comparable to past efforts (Ichii et al., 2017; Natali et al., 2019; 516 

Tramontana et al., 2016; Ueyama, Ichii, et al., 2013) because these fluxes better represent the biophysical 517 

processes describing carbon uptake and loss. GPP and ER also already included some information about 518 

variables that we used as predictors in our statistical models, which may introduce some circularity and 519 

artificially inflate the model performance. Our NEE models over- and underestimated low and high (i.e., 520 

large negative and positive) values, respectively, by approximately 100–200 g C m-2 yr–1, which has also 521 

been demonstrated with NEE and other fluxes in previous upscaling studies (Ichii et al., 2017; Tramontana 522 

et al., 2016; Warner et al., 2019). These extreme values were often from disturbed sites experiencing for 523 

example, permafrost thaw or extreme forest management practices, or an observation that was notably 524 

different from the site mean. Based on the cross validation results of the individually-modeled annual NEE, 525 

a substantial fraction (54 %) of annual source observations were predicted to be sinks (similar to the 526 

pattern observed in Ichii et al., (2017) Fig. 3b), but some sink observations (24 %) were also predicted as 527 

sources. We also discovered that the observed average annual NEE was often larger (more positive) than 528 

the individually-predicted average NEE, which was either a result of the model not being able to predict 529 

sources accurately, or of the distribution of flux sites being biased towards environments with larger CO2 530 

source observations than the entire region on average (see the large number of sites with source 531 
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observations originating primarily only from Alaska in Fig. 1). These results demonstrate that the predictors 532 

included in our analyses did not fully represent the spatial gradients and dynamic temporal variability in 533 

environmental conditions that influence carbon cycle processes, and particularly the high and low NEE 534 

conditions. Further research should explore improvements offered by other current and potential future 535 

predictors related to the disturbance and permafrost conditions, snow cover duration and snow depth, soil 536 

moisture and nutrient availability, and phenology, root properties, and microbial communities (Illeris et al., 537 

2003; Järveoja et al., 2018; Nobrega and Grogan, 2007).  538 

Even though the geographical and environmental coverage of the flux sites was improved in our study 539 

compared to previous efforts, our models included only ca. 10 sites from heavily disturbed conditions (see 540 

Section 2.1.1). Consequently, our sites did not cover the full range of disturbance and post-disturbance 541 

conditions and the associated impacts on CO2 fluxes. For example, rapidly thawing permafrost and burned 542 

landscapes remained largely under-sampled across Siberia. These disturbances have a substantial impact 543 

on carbon cycling in high-latitude ecosystems (Abbott et al., 2016; Walker et al., 2019), including direct 544 

emissions from the disturbance (not estimated with our models) and typically increased net CO2 emissions 545 

for several years to decades after the disturbance (Coursolle et al., 2012; Lund, Raundrup, et al., 2017; 546 

Turetsky et al., 2020) which should ideally be captured by our models. The lack of flux data representing 547 

disturbed conditions likely leads to underestimations in net ecosystem CO2 emissions, and is generally 548 

thought as one of the key limitations in statistical upscaling efforts (Jung et al., 2020; Zscheischler et al., 549 

2017). 550 

4.3 Terrestrial ecosystem CO2 budget and its uncertainty 551 
Although our models may be biased towards sinks, our results suggested that high-latitude terrestrial 552 

ecosystems were on average an annual net CO2 sink during 1990–2015. The uncertainty of this budget was 553 

high, as demonstrated by the low predictive performance of the annual NEE model, and the fact that 554 

budgets derived from different predictions (individual NEE predictions and ER-GPP predictions) differed by 555 

ca. 500 Tg C yr–1 – the latter most likely being linked to the different numbers of observations and sites 556 

available for each flux and model (Fig. 1). Nevertheless, the annual NEE budget was of similar magnitude to 557 

the one estimated by CMIP5 models and larger (less negative) than the one estimated by FLUXCOM 558 

(Supplementary Table 4). The boreal biome was responsible for most of this sink strength (–406 Tg C yr–1 , 559 

from–499 to –239 Tg C yr–1; 13.9 x 106 km2), whereas the tundra biome was on average a small sink (–13 Tg 560 

C yr–1 , from –81 to +62 Tg C yr–1; 6.7 x 106 km2) or a small source (+10 g C m–2 yr-1), based on our average 561 

predictions and observations. This suggests that the tundra biome was on average close to CO2 neutral, 562 

suggesting that the strong CO2 sink strength, indicated by the large soil organic carbon stocks of this region 563 

(Hugelius et al., 2014), might be declining, demonstrating the sensitivity of the tundra carbon cycle to 564 

climate change (IPCC, 2019). Our tundra budget is within the range (though on average more positive, 565 
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indicating stronger source) of the one comprising process and inversion models, and field-based estimates 566 

by McGuire et al., (2012) (−103 Tg C yr–1, from −297 to +89 Tg C yr–1). However, it differs from the source 567 

budget (+462 Tg C yr–1, from +94 to +840 Tg C yr–1; 10.5 x 106 km2; wetlands not included) estimated by 568 

Belshe et al., (2013). The divergence of average annual NEE across our and Belshe et al. (2013) study is 569 

likely explained by our inclusion of fluxes from wetlands, which were on average annual net ecosystem CO2 570 

sinks (Table 1). The discrepancy between our and the McGuire et al., (2012) study can be explained by a 50 571 

% increase in new annual tundra source observations in our data set (see e.g., Celis et al., 2017; Euskirchen 572 

et al., 2014), which were not included in the McGuire et al. (2012) analysis. Further, there are some 573 

differences in the study domain boundaries (e.g., Belshe et al., 2013 included alpine tundra across the 574 

globe to their aerial estimate of 10.5 x 106 km2) which might explain some of the discrepancies between 575 

these studies, although the general patterns of these boundaries were rather similar (see e.g. Fig 1. in 576 

McGuire et al., 2012 vs. our tundra domain in Fig. 1).  577 

Our findings suggest that both the boreal and tundra biomes were strong CO2 sinks during the growing 578 

season. Our growing season CO2 budgets estimated for the same seasons as in previous studies (see Section 579 

2.2.1), derived both by predicting NEE as well as subtracting GPP from ER suggest that the growing season 580 

net uptake is stronger than or similar to the estimates in Belshe et al., (2013) and Natali et al., (2019). The 581 

growing season NEE budget calculated for 100 days in the tundra was –296 Tg C yr–1 in this study, 582 

compared to –137 +- 80 Tg C yr–1 in Belshe et al., (2013). The growing season NEE budget estimated for 153 583 

days in the northern permafrost region in this study was –1,122 Tg C yr–1, whereas the process model 584 

estimates varied between –687 and –1,647 Tg C yr–1 in Natali et al., (2019). Further, the observed daily 585 

average growing season NEE in tundra demonstrated a stronger sink strength than the average growing 586 

season NEE reported in McGuire et al., (2012) and Belshe et al., (2013) (–0.6, –0.2, and –0.3 g C m–2, 587 

respectively). Even though we acknowledge that some plant uptake and CO2 emissions occur outside of our 588 

defined growing season (i.e., our growing season estimates did not capture the spring and autumn 589 

seasons), our results demonstrate that growing season CO2 uptake might be larger than previously thought. 590 

4.4. Summary and next steps in high-latitude CO2 flux upscaling 591 
Overall, our findings suggest that statistical predictions aimed at describing high-latitude CO2 flux patterns 592 

provide new insights into the understanding of broad GPP and ER patterns but require caution when 593 

attempting to directly estimate NEE. Furthermore, this study demonstrates that machine learning models 594 

are a robust and accurate empirical approach to predicting high-latitude terrestrial CO2 fluxes, and that, at 595 

least in our case, no individual machine learning model definitively outperformed the others. This therefore 596 

supports the use of ensemble predictions to reduce uncertainties associated with a single method and to 597 

produce more robust predictions. Nevertheless, the building of better models with improved data remains 598 

the highest research priority. Our results suggest that the next steps for future high-latitude upscaling 599 
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efforts are to 1) measure fluxes over the entire year in as many sites as possible, 2) establish new sites in 600 

data-poor regions and regions where CO2 predictions were most uncertain, such as in European Russia, 601 

Siberia, eastern Canada, and Canadian Arctic Archipelago, and specifically in disturbed and high-Arctic 602 

conditions, 3) develop better geospatial predictors (e.g., describing soil moisture and nutrients or 603 

permafrost thaw) to explain fluxes, 4) conduct detailed sensitivity tests of the importance of the flux 604 

measurement method, data distribution, and different predictor data sets influencing the budgets, and 5) 605 

build models at a finer temporal resolution than annual and growing season, to capture rapidly changing 606 

transition periods and bypass issues associated with temporal aggregation and varying definitions of 607 

seasons. High-latitude specific models are needed to more accurately monitor current emissions and 608 

improve understanding of the role of high-latitude regions in the global carbon cycle, as large changes in 609 

carbon cycling are likely in the near future.  610 
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Figure 1.  Measured median annual (a-c) and growing season (d-f) fluxes of GPP (gross primary production), 
ER (ecosystem respiration), and NEE (net ecosystem exchange) in the study domain (>45 °N).  The color of 
the point defines the median flux of the site (i.e., a sampling location), and the size of the point the number 
of observations that was measured (i.e., number of years). The background map represents the high-
latitude region (dark gray = boreal biome, light gray = tundra biome). In all panels, sites that had only eddy 
covariance measurements are shown with black outline color around the point, and chamber 
measurements are without outline. One site had both eddy covariance and chamber measurements, but 
this is shown with black outline color. Positive numbers for NEE indicate net ecosystem CO2 loss to the 
atmosphere (i.e. CO2 source) and negative numbers indicate net ecosystem CO2 gain (i.e. CO2 sink).  



 

Figure 2. Observed and predicted annual fluxes of GPP (gross primary production; a & d), ER (ecosystem 
respiration; b & e), and NEE (net ecosystem exchange; c & f) based on model fit (a-c) and predictive 
performance (d-e). Model fit was evaluated by predicting fluxes over the entire model training data, while 
predictive performance was assessed using a leave-one-site-out cross validation scheme in which each site 
was iteratively left out from the data set, and the remaining data were used to predict fluxes for the 
excluded site. Model fit and predictive performance statistics (r = Pearson’s correlation between observed 
and predicted fluxes, g; Bias = mean absolute bias, h; RMSE = root mean square error, i) across annual 
fluxes and five modeling methods (GLM = generalized linear model, GAM = generalized additive model, 
GBM = generalized boosted regression tree, RF = random forest, SVM = support vector machine) and their 
median ensemble (ENS) are shown in subfigures g-i. The black line indicates a 1:1 relationship. 

 



 

Figure 3. Average predictions of annual CO2 fluxes at 1 km2 resolution over 1990–2015. Annual predictions 
(a-c), associated uncertainties (d-f) and mean fluxes and uncertainties along latitudes (g-i) of GPP (gross 
primary production), ER (ecosystem respiration), and NEE (net ecosystem exchange) of the statistical model 



ensembles over 1990–2015. The uncertainty (prediction interval, PI; 90 % uncertainty range) is quantified 
as the variability of predictions over a random subset of pixels (n = 10 000) interpolated across the study 
domain based on a repeated (n = 200) bootstrap sampling procedure. It demonstrates how robust the 
relationships in the models are and how differences in model training data influence the predictions. The 
gray lines in a-f represent the borders of northern countries and points in g-i site locations.  

 

 

 

Figure 4. Variable importance for annual and growing season fluxes of GPP (gross primary production), ER 
(ecosystem respiration), and NEE (net ecosystem exchange). Explanatory variables are GDD3 (growing 
degree days), FDD (freezing degree days), WAB (water balance), NDVI (normalized difference vegetation 
index), TWI (topographic wetness index), RAD (potential incoming direct annual radiation), SOC (soil 
organic carbon stocks up to 2 m), pH (topsoil pH), CLAY (topsoil clay content), and LC (land cover). Variable 
importance was calculated by assessing how a randomly permuted predictor influences the predictions 
across all five statistical models. Values close to 0 and 1 indicate low and high importance of the predictor 
variable, respectively. The box corresponds to the 25th and 75th percentiles. The lines denote the 1.5 IQR of 
the lower and higher quartile, where IQR is the inter-quartile range, or distance between the first and third 
quartiles. 

 



 
   

 

Figure 5.  Complementing annual NEE predictions averaged over 1990–2015. Mean annual NEE derived by 
subtracting annual ER (ecosystem respiration) from GPP (gross primary production) in this study (a), from a 
global upscaling product FLUXCOM (b), and from a process model ensemble CMIP5 (Coupled Model 
Intercomparison Project Phase 5; c), and the standard deviation of these and the annual NEE developed in 
in this study (visualized in Fig. 3c) (d). A regional-scale example of the spatial variation of annual NEE in our 
prediction in northern Alaska, with black outlines depicting the size of the pixel in one of the highest 
resolution (smallest pixel size) models in the CMIP5 ensemble (1.92 x 1.5 °; e).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 1. Summary statistics of observed and predicted (using the average ensemble prediction) annual and 
growing season GPP (gross primary productivity), ER (ecosystem respiration), and NEE (net ecosystem 
exchange) fluxes (g C m–2 yr–1 for annual and g C m–2 period–1 for growing season fluxes) in different 
environments across the high-latitude region over 1990–2015. Positive numbers for NEE indicate net CO2 

loss to the atmosphere (i.e., CO2 source) and negative numbers indicate net CO2 gain (i.e., CO2 sink). The 
time-series of the sites were averaged prior calculating the observed mean flux (i.e., one flux value from 
one site was used when the regional averages were calculated). Note that ER and GPP do not sum up to 
NEE as different numbers of observations and sites were available for each flux and model. Moreover, 
some plant uptake occurs outside of our defined growing season, and consequently growing season GPP 
and annual GPP do not equal to each other. The average fluxes were calculated based on the extent of the 
high-latitude tundra and boreal biomes (Dinerstein et al., 2017), permafrost zones (Brown et al., 2002), and 
land cover (i.e. wetlands, and everything else is upland; ESA, 2017). The confidence intervals for the 
observed fluxes and the uncertainty ranges for the predicted fluxes can be found in the Supplementary 
Table 5. 

 

 Category 
Annual 
GPP 

Annual 
ER 

Annual 
NEE 

Growing 
season 
GPP 

Growing 
season 
ER 

Growing 
season 
NEE 

Observed mean flux             
 High-latitude 482 456 -17 317 262 -63 

 Boreal  624 605 -46 420 347 -87 
 Tundra 250 259 10 232 192 -44 
 Boreal upland 676 647 -47 432 350 -84 
 Boreal wetland 406 381 -38 347 330 -102 
 Tundra upland 250 259 16 232 192 -37 
 Tundra wetland   -24   -115 
 No permafrost 831 773 -90 405 370 -37 
 Permafrost 342 350 6 302 241 -67 

Predicted mean flux             
 High-latitude 554 508 -20 343 283 -50 

 Boreal 638 594 -29 396 327 -52 
 Tundra 378 326 -2 230 192 -46 
 Boreal upland 653 604 -30 399 328 -51 
 Boreal wetland 437 458 -18 358 303 -64 
 Tundra upland 378 326 -1 229 191 -45 
 Tundra wetland 367 347 -29 281 242 -71 
 No permafrost 805 736 -56 447 375 -53 
 Permafrost 489 448 -11 315 259 -49 

 

 

 

 

 

  



Table 2. Annual and growing season average GPP, ER, and NEE budgets (Tg C yr–1) over 1990–2015 across 
the environments and the spatial extent of each environmental category when permanent water bodies, 
urban areas, and croplands were masked away. The NEE budgets are based on upscaled NEE data and 
include an uncertainty range derived by bootstrapping. The budgets were calculated based on the extent of 
the high-latitude tundra and boreal biomes (Dinerstein et al., 2017), permafrost zones (Brown et al., 2002), 
and land cover (i.e. wetlands, and everything non-wetland is upland; ESA, 2017). Our area estimate of the 
permafrost region lacks a small permafrost region in the southeastern Asia, which did not belong to the 
tundra and boreal biomes. For the non-growing season CO2 budgets estimated based on annual and 
growing season budgets, see Supplementary Table 4. 

 

Category 
Annual 
GPP Annual ER Annual NEE 

Growing 
season 
GPP 

Growing 
season ER 

Growing season 
NEE 

Area 
x 106 
km2 

High-latitude 11,344 10,397 
-419 (-559 - -
189) 7,016 5,800 

-1,018  
(-1,332 –  
-455)  20.6 

Boreal  8,850  8,241 
-406 (-499 - -
239) 5,496 4,531 

  -715  
(-1,037 –  
-224) 13.9 

Tundra  2,495  2,156  -13 (-81 - 62) 1,520 1,269 

  -303  
(-338 –  
-224) 6.7 

Boreal upland 8,437 7,808 
-389 (-475 - -
226) 5,158 4,245 

-655 (-973 - -
196) 

12.9 
 

Boreal wetland 412 433 -17 (-28 - -10) 338 287 -60 (-70 - -29) 
0.9 
 

Tundra upland 2,451 2,115 -9 (-78 – 66) 1,486 1,240 
-294 (-330 - -
218) 

6.6 
 

Tundra wetland 44 41 -4 (-3 - -1) 34 29 -8 (-9 - -6) 0.1 

No permafrost  3,407  3,116 
-238 (-288 - -
185) 1,895 1,587 

  -223  
(-353 -   
-45) 4.2 

Permafrost  7,924  7,269 -181 (-305 -   32) 5,114 4,207 

  -793  
(-1000 –  
-414) 16.3 
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