EGU GA 2021 – 29.4.2021 – AS1.11

Origin of Tropospheric Air Masses in the Tropical West Pacific and related transport processes inferred from balloon-borne Ozone and Water Vapour observations from Palau

StratoClim

Katrin Müller, Ingo Wohltmann, Peter von der Gathen, Ralph Lehmann, and Markus Rex

Contact: Katrin.Mueller@awi.de PhD thesis + 2 Manuscripts Tropospheric O₃ variability

> Transport athways and Processes

lake Away Messages (V)

More Info

/Back

funded by the EU

ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR-UND MEERESFORSCHUNG

Main Menu

Chapters 🜟

(I) Motivation

Why the Tropical West Pacific (TWP)?

PALAU

7°N 134° E

Major source region for stratospheric air in

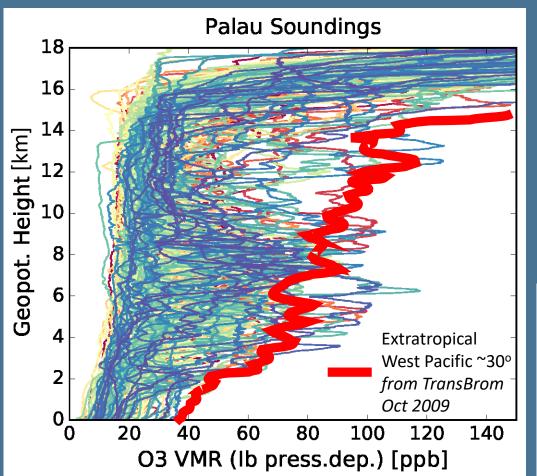
Origin and transit region

boreal winter

of corresponding air masses in boundary layer and troposphere (Rex et al. 2014) Persistent tropospheric **Ozone minimum**

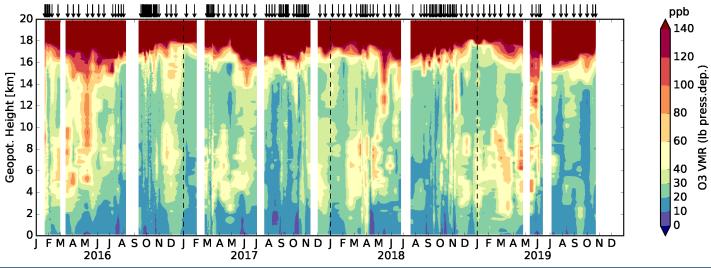
Corresponding OH minimum clean air of various chemical species

Important region for supply of chemical species to the stratosphere *


Key feature of the clean TWP troposphere: close coupling of the O_3 concentration and oxidizing capacity (OH), influencing overall transport of chemical species to the stratosphere.

To improve the limited availability of tropospheric O₃ observations from this key region, the Palau ***** Atmospheric Observatory was established in 2016 as part of the EU-project StratoClim.

Need for monitoring of air composition and understanding of underlying processes and transport pathways to TWP


(I) O₃ Dataset

Tropospheric profiles with altitude: 145 sondes, 01/2016-10/2019

First characterization of tropospheric O_3 seasonality in the TWP with a multi-year continuous time series from ECC ozonesonde measurements every two weeks or in intensive campaigns (SPC 6A, Vaisala RS92/41). \rightarrow Müller 2020

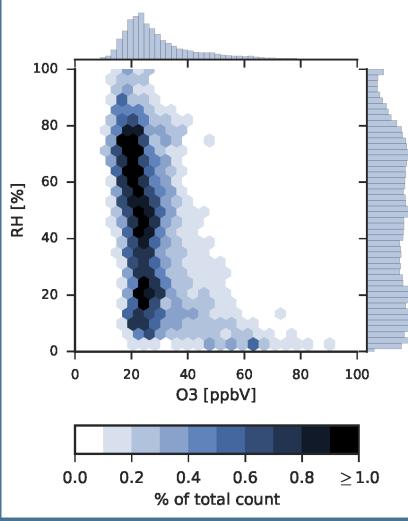
Special focus on quality issues of tropical soundings due to controversy around near-zero O3 observations in the TWP (*e.g. Voemel and Diaz 2010, Rex et al. 2014, Thompson et al. 2019*)

Time-height-cross-section

(I) Why O_3 ? As a chemical tracer...

Free-tropospheric O₃/RH distribution of all observations

Palau (3-14km, 01/2016-10/2019)


...for **local convective activity** in clean maritime air: "low" O_3 (e.g. Folkins, 2002; Folkins et al., 1999; Kley et al., 1996; Paulik and Birner, 2012; Solomon et al., 2005) and

... for **long range transport** processes to the region, either related to air pollution or stratospheric intrusions: **"high"** O₃ (*e.g. Andersen et al., 2016; Browell et al., 2001; Randel et al., 2016; Tao et al. 2018; Thouret et al., 2000; Pan et al. 2015*).

RH as a tracer for **vertical displacement**: High humidity due to convection, dryness due to large scale descent (*e.g. Hayashi et al., 2008; Andersen et al., 2016; Cau et al. , 2007; Dessler and Minschwaner, 2007*)

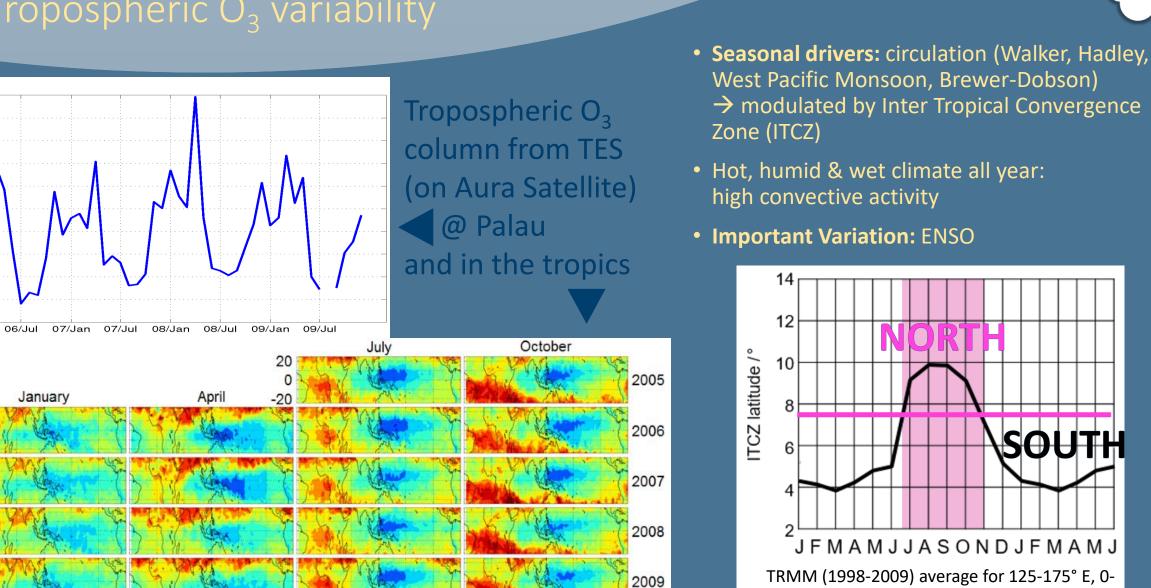
Central Question:

Can we identify air mass origin and its seasonality with the observed O_3/RH relation?

unique for Palau compared to stations of the tropical SHADOZ ozonesonde network

(II) Tropospheric O₃ variability

-20 20


-20 20

-20

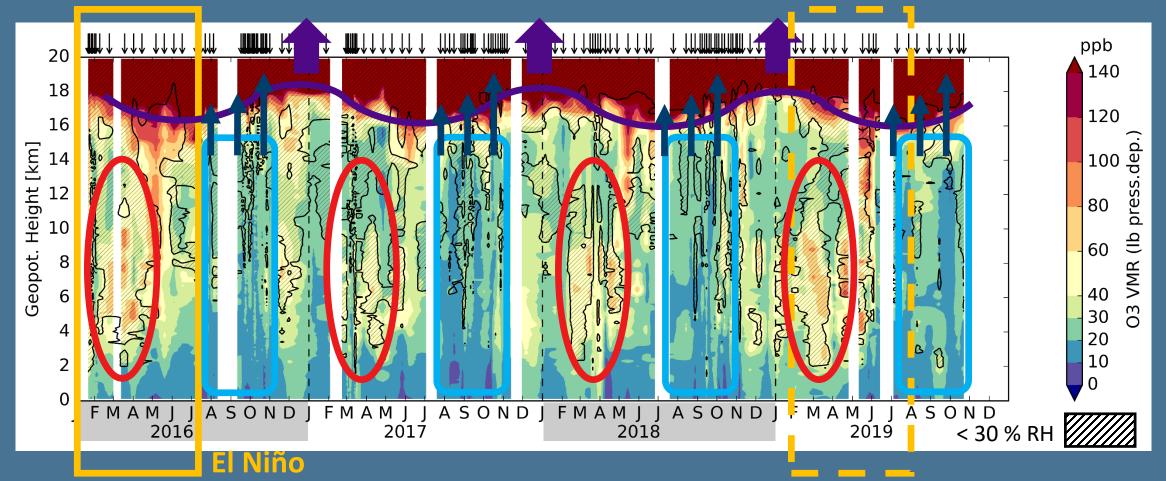
Rex et al. 2014

Latitude [deg N]

06/Jan

20 10

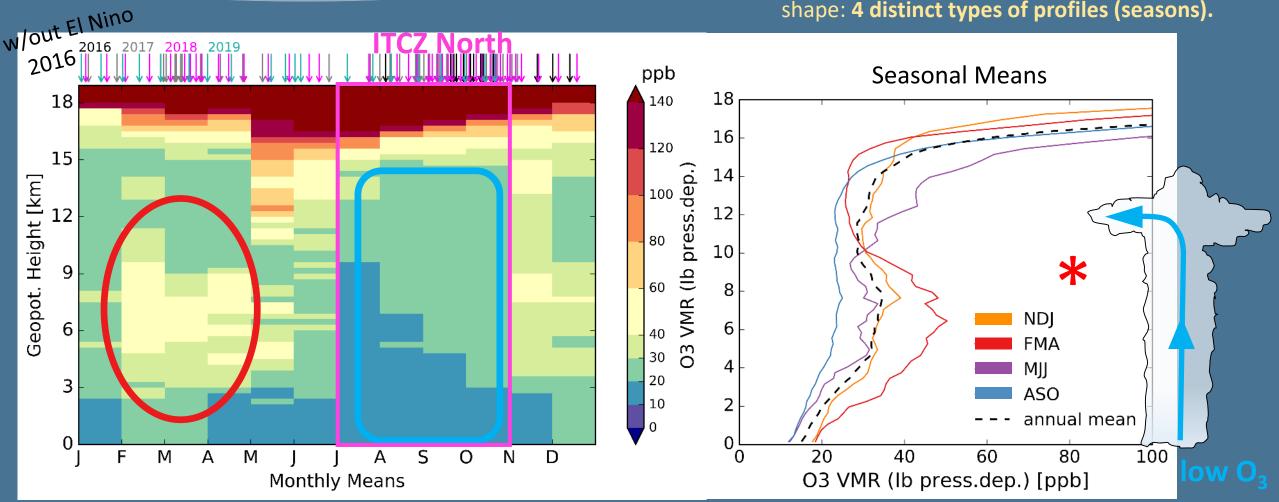
[DU]


40

Longitude [deg E]

TRMM (1998-2009) average for 125-175° E, 0-20°N, adapted from Shonk et al. 2018 **Movement of the ITCZ**

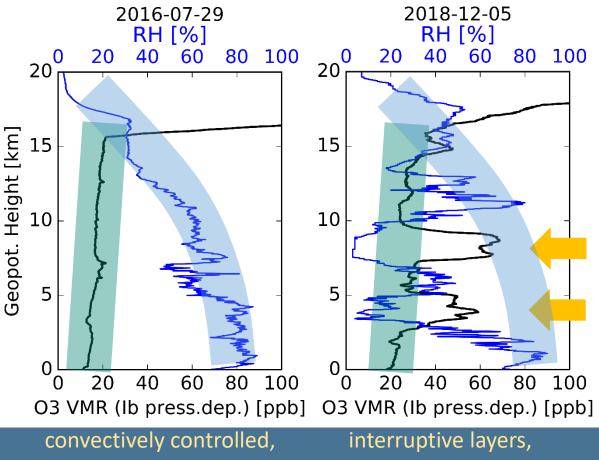
(II) Tropospheric O₃ variability



Mid-troposphere: O₃ minimum from July-October, layers of enhanced O₃ from February-April, often anti-correlate

(II) Tropospheric O₃ variability

Annual mean: typical (tropical) "S-Shape", monthly means grouped according to similar shape: **4 distinct types of profiles (seasons).**



Monthly means highlight annual cycles, O₃ minimum corresponds with the ITCZ located North of Palau. **Deep convective detrainment** can explain upper dent in the "S" (10-14 km); between 5-10 km or the belly of the "S": weak cloud-mass divergence, greatest anomalies from annual mean in ASO and FMA.

(III) Air mass definition

Example tropospheric O₃ and RH profiles

convectively controlled, well-mixed **background:** LOCAL mode

interruptive layers, controlled by transport: NON LOCAL mode

Underlying processes:

Local boundary layer air masses lacking pollution $(\rightarrow low in O_3)$ are lifted locally by convection (humid), creating a uniform profile.

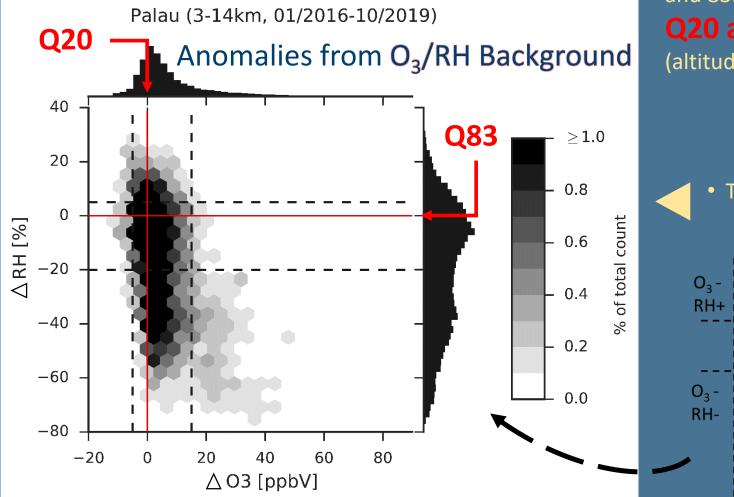
No known mechanism for in situ production of high O₃ or dehydration in the mid-troposphere origin either transport from the (extratropical) stratosphere or non-local ground pollution, lifted convectively in the area of origin then undergoing dehydration during transport, e.g. via large-scale descent and radiative cooling. (*compare Dessler and Minschwaner, 2007; Andersen et al., 2016*)

Layered structures and respective background are hidden in **the belly of the "S"** of mean profiles!

NON LOCAL

LOCAI

З


00

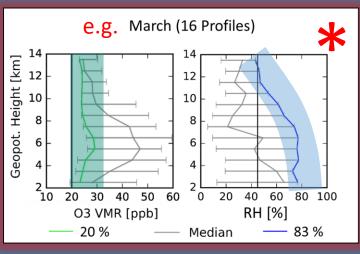
(III) Air mass definition

• First step: define **background profiles** for both tracers

• Second step: determine anomalies against this background

Background profiles: the monthly 20th (O₃) and 83rd (RH) quantile, Q20 and Q83 (altitude dependent)

 O_2 +


i RH+

 $0_{3}+$

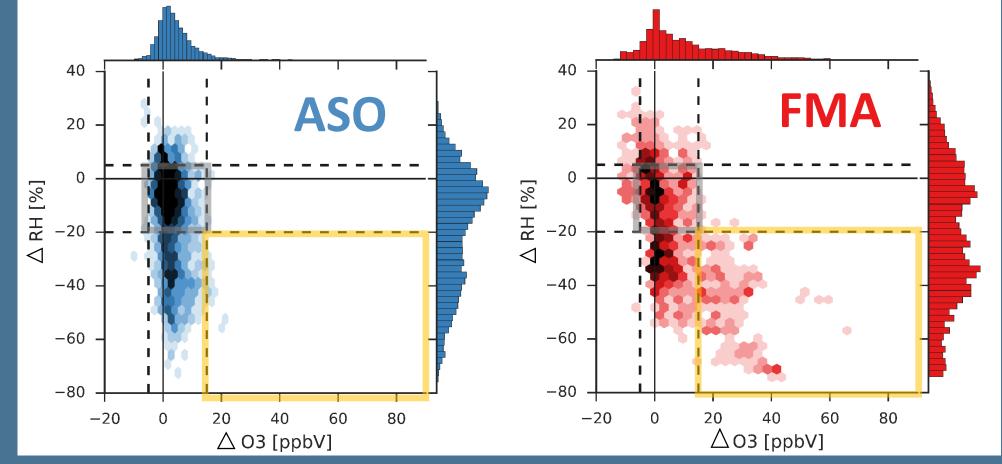
RH-

030

RHo !

 Third step: bimodality in RH anomalies motivates classification in O₃RH groups

ightarrow air mass definition


Classification in a 3x3 grid (dashed lines), with respect to the distributions, focus in the following on central background group (O₃O RHO) and dry O₃-rich anomaly (O₃+RH-)

(III) Seasonal Air Mass Occurence

10

O₃oRHo: humid, O₃-poor background, present year-round (!), but dominates **ASO**

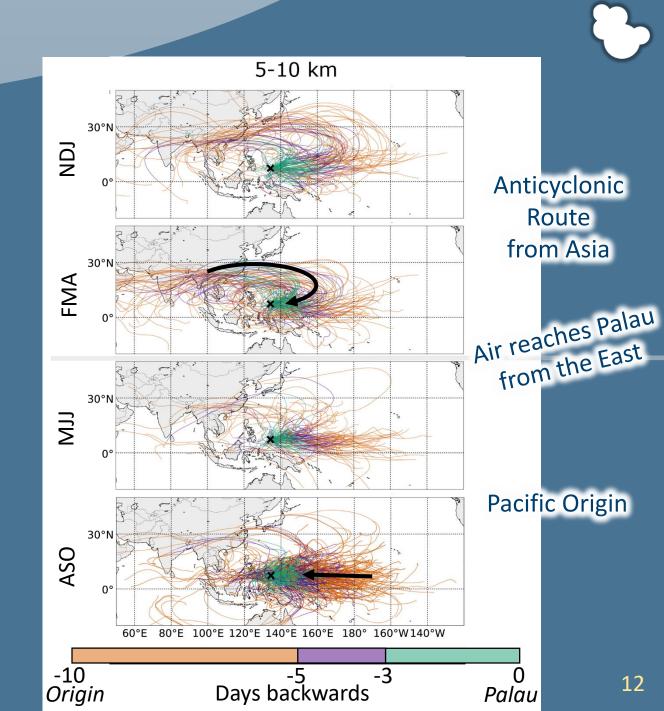
O₃+RH- : dry, O₃-rich, most frequent in **FMA**

For more detailed statistics on all O3/RH anomaly groups, click HERE

(IV) Transport Pathways and Processes

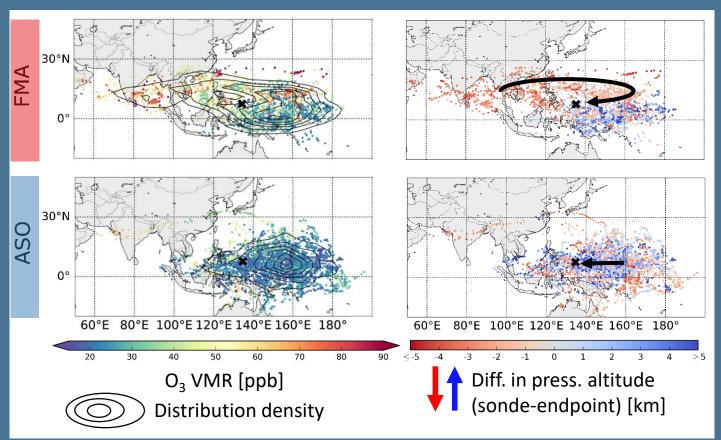
With our process understanding, we identified major transport pathways related to the O_3 RH relation observed in Palau:

(IV) Backward Trajectories


Transport module of Langrangian Chemistry and Transport Model ATLAS (Wohltmann et al. 2010)

Setup:

- driven by ERA5 reanalysis data, no diffusion, no convective model parameterization, 10-min time steps
- initialized from ozone sounding data, 01/2016-10/2019, 2-14 km, every 10th measurement
 → focus on 5-10 km altitude range


Assumptions:

- 10-day-backtrajectories for dynamical footprint
- Due to typical lifetime of marine boundary layer O₃:
 5-day-backtrajectory ending points
 - = origin of air mass composition

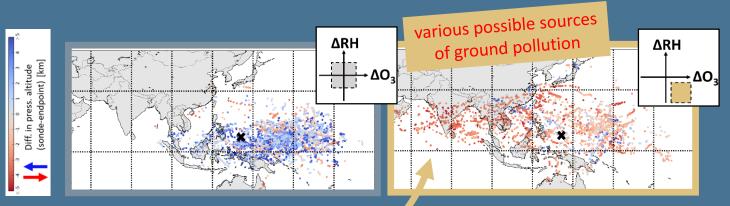
(IV) Origin of Air Masses

5-days-back trajectory ending points ≡ origin, trajectory start @ 5-10 km in Palau **x**

All Observations per season:

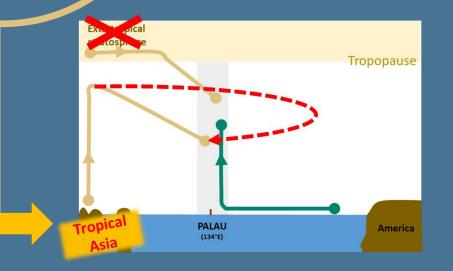
O₃ VMR distributions:

- Center of low O₃ in both seasons, FMA and ASO, East of Palau
- Secondary center of enhanced O₃ in FMA, North of Palau from India to East China


Vertical displacement:

- Mainly in FMA, North of Palau air masses descend towards Palau (anti-cyclonic route), consistent with large-scale descent within the Hadley circulation and subsequent dehydration
- Ascent dominates ASO air masses (Pacific origin), corresponding well with the dominance of convective uplift

(IV) Origin of Air Masses


5-days-back trajectory ending points ≡ origin, trajectory start @ 5-10 km in Palau **x**

All Observations per O_3 /RH group :

Selection of trajectories for air masses identified as humid, O_3 -poor background ($O_3 \circ$ RH \circ) or dry O_3 -rich (O_3 +RH-) anomaly from the background separates air masses according to the processes controlling RH (Convective uplift, ASO; dehydration during descent, FMA) and locates spatially separate source regions

Origin of **dry O₃-rich air** masses in areas of increased air pollution on the ground from industry or bio mass burning, speaking in favor for **a pollution based origin**

No indication for significant contribution of **stratospheric air:**

Potential Vorticitiy analysis for all trajectories (from 4 years, 138 profiles, 5-10 km) revealed essentially **no air mass crossing the 1.5 PVU threshold** for more than a day during 10 days backwards.

V Take home messages

Palau's four-year tropospheric O₃ time series fills the observational gap in this key region of stratospheric entry.

Using the ECC O₃ sounding data set (01/2016-10/1019), seasonal analysis, trajectory modelling and a statistical approach to distinguish air masses by O₃/RH relation, we identified transport processes and pathways to the TWP:

	Humid, O ₃ -poor	Dry, O ₃ -rich							
Processes	Convective background	Large scale descent, pollution							
Origin	Pacific or local	Tropical Asia (anticyclonic route)							
Frequency	Year-round, dominates Aug-Oct	Most frequent in Feb-Apr							

✓ Watch out for the upcoming publications!

References

Katrin Müller, 2020: Characterization of Ozone and the Oxidizing Capacity of the Tropical West Pacific Troposphere, Dissertation, https://doi.org/10.26092/elib/463.

K. Müller, Ingo Wohltmann, Peter von der Gathen, Ralph Lehmann, and Markus Rex (2021): Air mass transport to the Tropical West Pacific inferred from balloon-borne Ozone and Water Vapor Observations in Palau and Trajectory Modelling, in prep.

K. Müller et al. (2021): The Palau Atmospheric Observatory – Introducing the comprehensive setup and the ECC ozone sondes time series, in prep. This PICO is based on an earlier conference submission:

K. Müller. et al. (2020): AGU presentation, Origin of Tropospheric Air Masses in the Tropical West Pacific identified by Balloon-borne Ozone and Water Vapor Measurements from Palau, https://doi.org/10.1002/essoar.10505805.1

I. Folkins. Tropical ozone as an indicator of deep convection. Journal of Geophysical Research, 107(D13):4184, 2002. ISSN 0148-0227. doi: 10.1029/2001JD001178.

I. Folkins, P. Bernath, C. Boone, G. Lesins, N. Livesey, A. M. Thompson, K. Walker, and J. C. Witte. Seasonal cycles of O3, CO, and convective outflow at the tropical troppause. Geophysical Research Letters, 33(16):L16802, 2006. doi: 10.1029/2006GL026602. H. Hayashi, K. Kita, and S. Taguchi. Ozone-enhanced layers in the troposphere over the equatorial Paci c Ocean and the influence of transport of midlatitude UT/LS air. Atmospheric Chemistry and Physics, page 14, 2008.

D. C. Anderson et al. A pervasive role for biomass burning in tropical high ozone/low water structures. Nature Communications, 7(1):10267, April 2016. ISSN 041-1723. doi: 10.1038/ncomms10267.

E. V. Browell et al. Large-scale air mass characteristics observed over the remote tropical Pacific Ocean during March-April 1999: Results from PEM-Tropics B field experiment. Journal of Geophysical Research: Atmospheres, 106(D23):32481–32501, December 2001. doi: 10.1029/2001JD900001.

P. Cau, J. Methven, and B. Hoskins. Origins of Dry Air in the Tropics and Subtropics. Journal of Climate, 20(12):2745–2759, June 2007. doi: 10.1175/JCLI4176.1.

A. E. Dessler and K. Minschwaner. An analysis of the regulation of tropical tropospheric water vapor. Journal of Geophysical Research: Atmospheres, 112(D10), May 2007. doi: 10.1029/2006JD007683.

I. Folkins, M. Loewenstein, J. Podolske, S. J. Oltmans, and M. Proffitt. A barrier to vertical mixing at 14 km in the tropics: Evidence from ozonesondes and aircraft measurements. Journal of Geophysical Research: Atmospheres, 104(D18): 22095–22102, 1999. doi: 10.1029/1999JD900404.

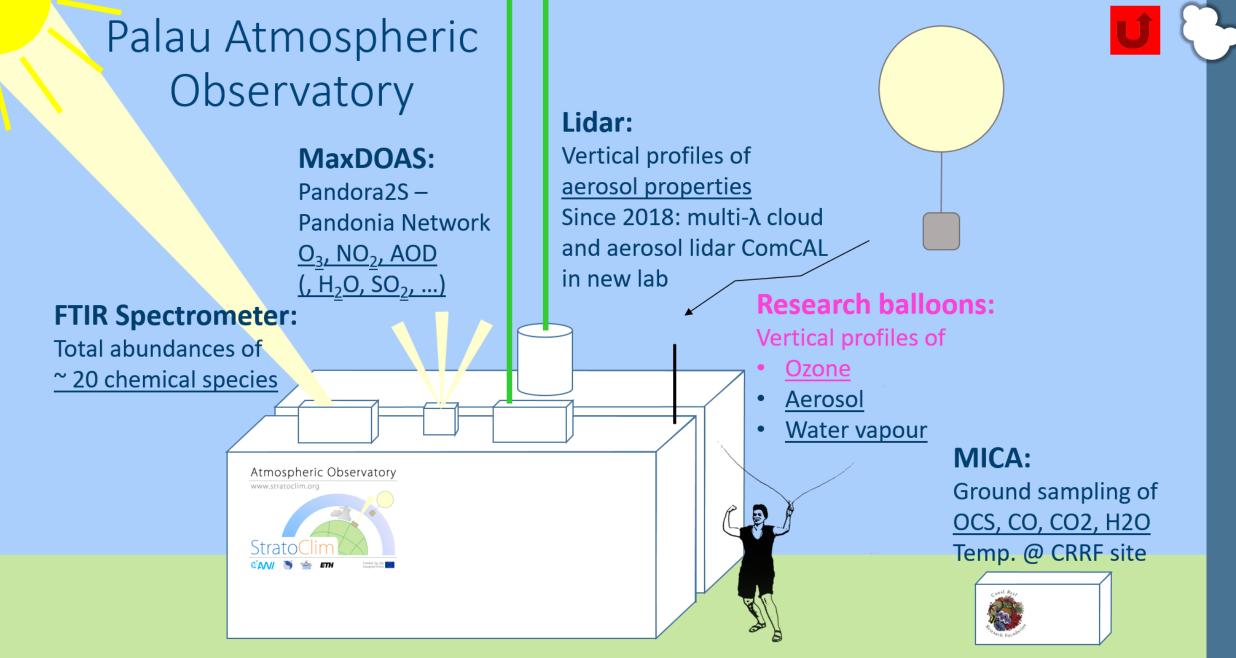
D. Kley, P. J. Crutzen, H. G. J. Smit, H. Vomel, S. J. Oltmans, H. Grassl, and V. Ramanathan. Observations of Near-Zero Ozone Concentrations Over the Convective Pacific: Effects on Air Chemistry. Science, 274(5285):230–233, October 1996. doi: 10.1126/science.274.5285.230. L. L. Pan et al. Bimodal distribution of free tropospheric ozone over the tropical western Pacific revealed by airborne observations. Geophysical Research Letters, 42(18):7844–7851, September 2015. doi: 10.1002/2015GL065562.

L. C. Paulik and T. Birner. Quantifying the deep convective temperature signal within the tropical tropopause layer (TTL). Atmospheric Chemistry and Physics, 12(24): 12183–12195, December 2012. doi: 10.5194/acp-12-12183-2012.

W. J. Randel, M. Park, F. Wu, and N. Livesey. A Large Annual Cycle in Ozone above the Tropical Tropopause Linked to the Brewe-Dobson Circulation. Journal of the Atmospheric Sciences, 64(12):4479[4488, December 2007. doi: 10.1175/2007JAS2409.1.

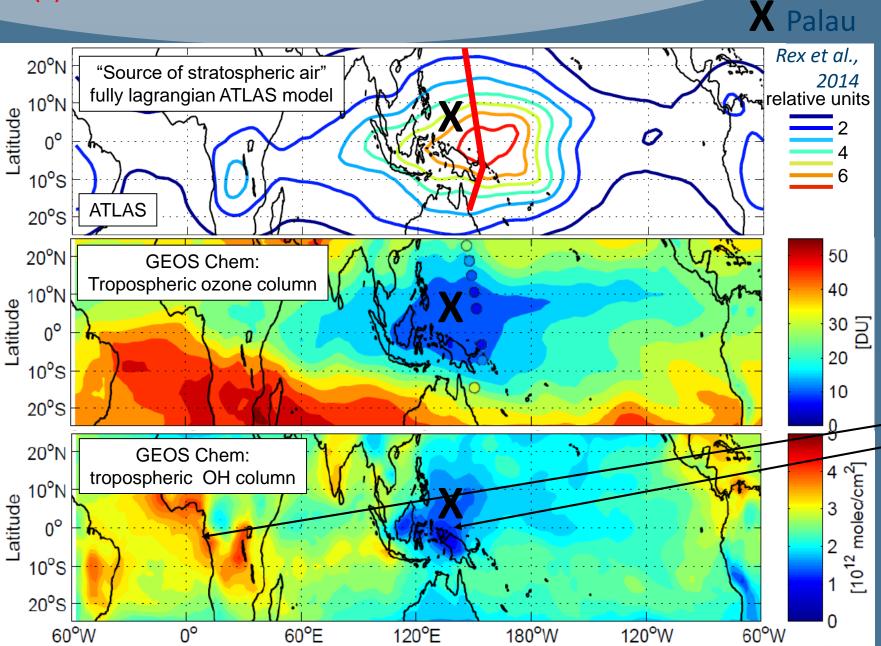
M. Rex, I. Wohltmann, T. Ridder, R. Lehmann, K. Rosenlof, P. Wennberg, D. Weisenstein, J. Notholt, K. Kruger, V. Mohr, and S. Tegtmeier. A tropical West Pacific OH minimum and implications for stratospheric composition. Atmospheric Chemistry and Physics, 14(9):4827{4841, May 2014. doi: 10.5194/acp-14-4827-2014.

J. K. P. Shonk, E. Guilyardi, T. Toniazzo, S. J. Woolnough, and T. Stockdale. Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts. Climate Dynamics, 50(3-4):939–954, February 2018. doi: 10.1007/s00382-017-3650-9.

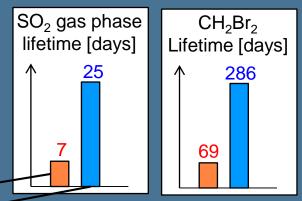

S. Solomon, D. W. J. Thompson, R. W. Portmann, S. J. Oltmans, and A. M. Thompson. On the distribution and variability of ozone in the tropical upper troposphere: Implications for tropical deep convection and chemical-dynamical coupling. Geophysical Research Letters, 32(23):L23813, 2005. doi: 10.1029/2005GL024323.

M. Tao, L. L. Pan, P. Konopka, S. B. Honomichl, D. E. Kinnison, and E. C. Apel. A Lagrangian Model Diagnosis of Stratospheric Contributions to Tropical Midtropospheric Air. Journal of Geophysical Research: Atmospheres, 123(17):9764–9785, September 2018. doi: 10.1029/2018JD028696.

A. M. Thompson et al. Ozonesonde Quality Assurance: The JOSIE–SHADOZ (2017) Experience. Bulletin of the American Meteorological Society, 100(1):155–171, January 2019. doi: 10.1175/BAMS-D-17-0311.1.


V. Thouret, J. Y. N. Cho, R. E. Newell, A. Marenco, and H. G. J. Smit. General characteristics of tropospheric trace constituent layers observed in the MOZAIC program. Journal of Geophysical Research: Atmospheres, 105(D13):17379–17392, 2000. doi: 10.1029/2000JD900238. H. Voemel and K. Diaz. Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere. Atmospheric Measurement Techniques, 3(2):495–505, April 2010. doi: 10.5194/amt-3-495-2010. I. Wohltmann, R. Lehmann, and M. Rex. The Lagrangian chemistry and transport model ATLAS: simulation and validation of stratospheric chemistry and ozone loss in the winter 1999/2000. Geoscienti c Model Development, 3(2):585{601, November 2010. doi: 10.5194/gmd-3-585-2010.

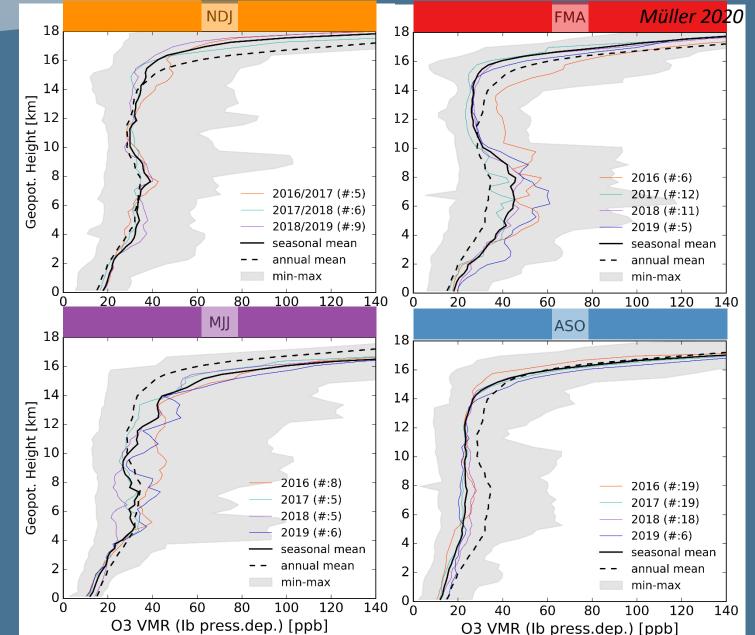
* EXTRA SLIDES



Müller 2020

(I) Motivation - TransBrom

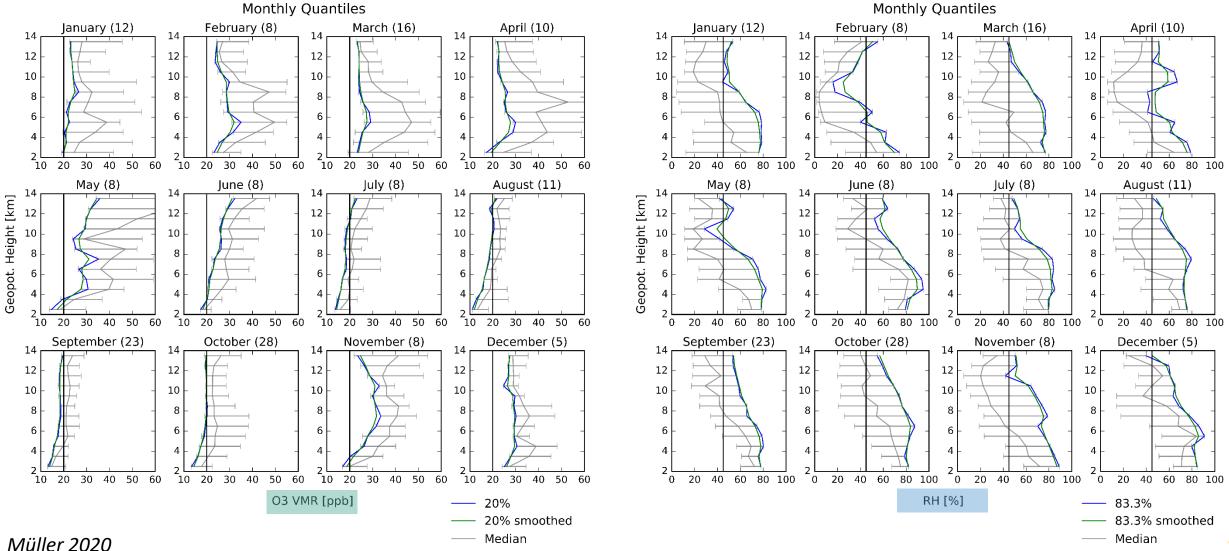
Density distribution function of the horizontal positions of the trajectories between boundary layer and Lagrangian Cold Points; red thick line: TransBrom Cruise 2009; filled circles: from ozonesonde measurements



Lifetime comparison for tropical Atlantic and West Pacific (values for midtroposphere- 500 hPa at the equator for typical conditions)

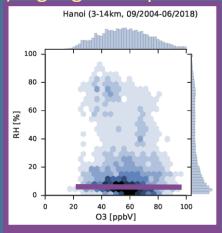
(II) Seasons

 November-January: NDJ, February-April: FMA, ..., chosen due to similar profile shapes

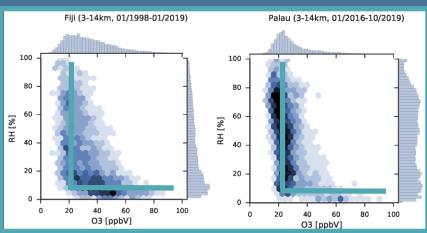

- Low O₃ (<25ppb) and enhanced mid-trop. O₃ (>50 ppb) observed in all seasons
- greatest anomalies from the annual mean: FMA & ASO
- Air masses deviating from a low O₃ background signal occur as filaments or layers, predominantly in the 5-10 km layer, disguised in the averaged belly of the ,S'

20

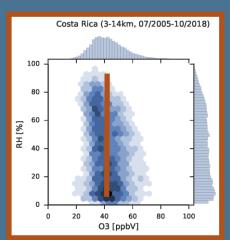
Background Definition

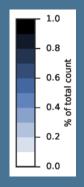

21

O₃/RH Comparison with SHADOZ

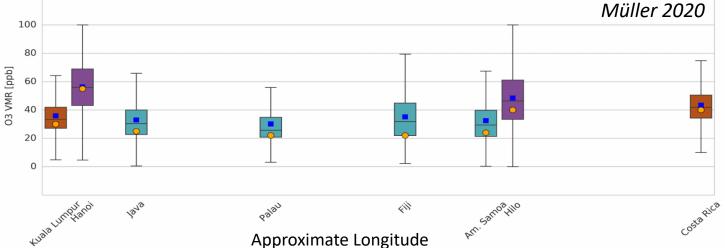


100 80 D3 VMR [ppb] 60 40 20 Λ ζŝÌ


Analyses of 7 selected SHADOZ stations reveals **3** types of free-tropospheric O₃/RH distributions (see Müller 2020). Seasonal distributions (not shown here) highlight uniqueness of Palau



Predominantly dry air over a wider range of O₃ VMR



",L"-shaped: low O₃ over whole RH range + tail towards higher O₃ corresponding to low RH

Gaussian distribution of O_3 + evenly distributed RH

Seasonal Occurrence of O₃/RH groups

Heatmaps for the seasonal occurrence of air masses for all nine anomaly groups, full time series, between 5-10 km altitude

	O ₃	-		O ₃	0		0 ₃ ·	+		C)3	-		O ₃	0	\sim	O ₃ ·	+		
c	D3-RH. 0.	3-RH0 03	RH+	BORH. 03	ORHO O30	ORH+	03. *RH.	O3, RHO	RHX	O3.RA	0 <u>3</u> K	-RH0 03.	RH+	ORH. O3	O30 PRHO	O3 RH+	037 *RH-	CO3,	RHX	
NDJ (#24)	- 8	12	12	79	79	54	62	25	12 -	NDJ (#2375) -	4	1	1	28	24	16	24	1	1 -	-
FMA (#31)	- 0	19	23	71	74	48	71	42	26 -	FMA (#3022) -	0	3	4	23	16	8	40	4	3 -	-
MJJ (#24)	- 8	17	21	71	88	46	54	50	21 -	MJJ (#2438) –	0	2	2	32	29	12	16	5	3 -	-
ASO (#59)	- 5	5	3	86	88	54	25	10	3 -	ASO (#5728) -	1	1	1	40	34	14	9	1	0 -	-
									_										-	-
					10		60	70	20		1	8	12	16	20	24	28	32	36 4	
0 10 20 30 40 50 60 70 80 <i>Müller 2020</i> seasonal occurence [% of (total # of seasonal profiles)]								0	0 4 8 12 16 20 24 28 32 36 40 seasonal occurence [% of (total # of seasonal datapoints)]											
Example: O3+RH- air masses occur in 25% of all Example: O3+RH- air masses make up for 40% of ASO profiles.											of 2	.3								