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The past decade has seen growing support for the critical brain hypothesis, i.e., the

possibility that the brain could operate at or very near a critical state between two different

dynamical regimes. Such critical states are well-studied in different disciplines, therefore

there is potential for a continued transfer of knowledge. Here, I revisit foundations of

bifurcation theory, the mathematical theory of transitions. While the mathematics is

well-known it’s transfer to neural dynamics leads to new insights and hypothesis.
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1. INTRODUCTION

The critical brain hypothesis states that the brain operates in a state that is situated at or very near
to a transition between qualitatively different dynamical regimes. Such “critical” states are thought
to convey advantageous computational properties such as optimal information retention, signal
detection and processing performance (Chialvo, 2010; Hesse and Gross, 2014; Zimmern, 2020).

The criticality hypothesis was first formulated based on the computational desirability of critical
states (Chialvo, 2010) and a mathematical analogy between neural and earthquake dynamics (Herz
and Hopfield, 1994). Subsequent works gradually build support for the hypothesis. For example
Bornholdt and Rohlf (2000) showed that self-organized criticality can emerge from simple local
rules, which was later confirmed in a more realistic models (Meisel and Gross, 2009; Kossio et al.,
2018; Das and Levina, 2019). Beggs and Plenz (2004) provided early experimental evidence by
demonstrating that in-vitro cultures of neurons sustain critical cascades of activity. Linkenkaer-
Hansen et al. (2001), Kitzbichler et al. (2009), and Meisel et al. (2012) found signatures of criticality
in MRI, MEG, and EEG recordings. More recently, Timme et al. (2016) confirmed the prediction
that criticality maximizes information theoretic complexity and del Papa et al. (2017) shows that
also learning behavior in recurrent neural networks leads to a state of criticality.

It has also been argued that brain could operate slightly below criticality. This is based on the
analysis of experimental result on spike cascades (Priesemann et al., 2014) and is consistent with
mathematical constraints on adaptive self-organization (Gross and Blasius, 2007; Kuehn, 2012;
Droste et al., 2013). It has been argued that such an operation near critical states could allow
the brain to control the desired degree of criticality (Wilting and Priesemann, 2014, 2018, 2019).
Furthermore, in networks critical-like dynamics may be expected also in the neighborhood of the
critical state in a so-called Griffith phase (Moretti and Munoz, 2013).

In the discussion of theoretical aspects of criticality many current authors resort to the toolkit of
physics and its terminology and models, such as branching processes, correlation functions, critical
exponents and the Ising model (Yaghoubi et al., 2018; Fontenele et al., 2019). However, critical
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Gross Many Critical States

phenomena can also be studied from the perspective of
dynamical systems theory, which offers a complementary
perspective to physical theory. Dynamical systems theory is the
mathematical theory of transitions between dynamical regimes.
Phase transitions then appear as so-called bifurcations of system-
level dynamical variables. In neuroscience bifurcation-based
methods are widely used in the study of smaller-scale neural
networks but are not often deeply discussed in the context of
neural criticality (although, see Meisel and Gross, 2009; Kuehn,
2012; Droste et al., 2013).

In this paper I present a mathematical view of neural
criticality, The mathematics is relatively elementary and much of
the material presented here can be found in introductory
textbooks to bifurcation theory, e.g., Kuznetsov, 2004.
However, several insights that can be gained by leveraging
this angle are, to my knowledge, presently not utilized
in the study of brain criticality. Thus it is worthwhile
to bridge the gap between the neural and mathematical
literature. Below I have tried to provide a simple and
accessible introduction to the most relevant parts of
bifurcation theory.

One particular benefit of mathematics is that it deals gracefully
with unknowns. As this ability extends to working with unknown
models, the use of mathematics allows the researcher to make
statements about criticality that hold irrespective of the specific
model under consideration.

Some highlight are as follows: In section 2.1, we revisit the
origin of power law behavior and critical slowing down that
gives critical states the ability to retain memory of perturbations.
Thereafter in section 2.2, we illustrate why critical states can
be super sensitive to parameter change. In section 2.3, we
take a closer look at super-sensitivity and find that remaining
close to a super-sensitive state places strong constraints on the
dynamics. This is further explored in the subsequent section,
starting with section 2.4, where we discuss the transcritical
bifurcation (the criticality of the SIS model). While we find
that it may play some role in neural systems, it provides
less benefits than other bifurcations. This lends weight to the
hypothesis that the criticality observed in-vitro may be of a
different form than the criticality observed in-vivo (Kanders
et al., 2017). In section 2.5, I show that pitchfork bifurcations
(the criticality of the Ising model), is an unlikely scenario for
neural criticality as it requires a specific symmetry. By contrast, in
section 2.6, we discover that the Hopf bifurcation (the criticality
of the Kuramoto model) has several advantageous properties that
make it a particularly attractive scenario for neural criticality.
In this type of bifurcation, information would be encoded
by the presence or absence of oscillations in populations of
neurons, which agrees well with empirical evidence. Finally in
section 2.7, I discuss that high-dimensional parameter spaces
have on criticality. This points to some radical perspectives:
Critical states of the brain are likely not isolated points but part
of a large high-dimensional subset of parameter space, which
could allow the brain to explore different parameter regions
while remaining critical. It could also lead to multi-critical states,
corresponding to bifurcations of high codimension, where the
brain is critical in many different ways.

2. RESULTS

To gain insights it is useful to study a series of simple but general
models. By keeping the models simple we make sure that the
results we seek are easy to compute and intuitive to understand.
By keeping them general we make sure that they are widely
applicable and do not hinge on specific assumptions.
Consider a generic dynamical system of the form

ẋ = f (x, p), (1)

where x is a dynamical variable and p is a parameter. For example
we can imagine x to be the overall level of activity in the brain
and p to be the average excitability. The dot on the left hand side
denotes a time derivative. So, the change of excitation in time is
described by some function f of the current excitation x and the
parameter p. In the following we will explore what properties of f
would be advantageous for information processing.

Let us assume that over some time (and in absence of external
stimuli) the excitation will approach a steady homeostatic level,
which we will call x∗. By definition a system that is in the steady
state remains there indefinitely unless parameters are changed or
it is subject to an external perturbation. That means in the state
x∗ there is no further change of x, which we can express as

f (x∗, p) = 0. (2)

Although the model is very minimal, we can use it to study
how dynamical systems respond to perturbations. Consider what
happens after some external force pushes the variable x out of the
steady state x∗, such that

x = x∗ + δ, (3)

where δ is the deviation from the steady state caused by the
perturbation. We assume that this deviation is initially small, but
grows or diminishes in time according to the dynamics of the
system. Substituting Equation (3) into Equation (1) we can write

d

dt
(x∗ + δ) = f (x∗ + δ, p), (4)

where we have indicated the time derivative as d/dt instead of
using the dot. Because the steady state x∗ is constant in time,
its time derivative vanishes, allowing us to return to the simpler
notation,

δ̇ = f (x∗ + δ, p). (5)

To make further progress we need one mathematical tool: The
Taylor expansion (James, 2015). The idea of a Taylor expansion is
that we can approximate the function f by

f (x∗ + δ, p) = f (x∗, p)+ δfx(x
∗, p)+

1

2
δ2fxx(x

∗, p)+ . . . (6)

where we used roman indices to indicate derivatives. So fx is the
derivative of f with respect to x and fxx is the second derivative of
f with respect to x.
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Gross Many Critical States

While the Taylor expansion formula has an infinite number
of terms on the right hand side, these terms include higher
and higher powers of δ. If δ is a small number, say 0.01 then
δ2 = 0.0001 is even smaller, and δ3 = 0.000001 is smaller yet.
Hence, the terms in the Taylor formula represent smaller and
smaller corrections.

If δ is sufficiently small then we can get an arbitrarily precise
approximation by ignoring all but the first non-zero Taylor term.
The first term f (x∗, p) is always zero by virtue of Equation (2),
hence in general the second term δfrmx(x

∗, p) is the one we need
to keep. We are left with

f (x∗ + δ, p) = f (x∗, p)
︸ ︷︷ ︸

=0

+δfx(x
∗, p)+

1

2
δ2fxx(x

∗, p)+ . . .

︸ ︷︷ ︸

≈0

. (7)

Substituting the remaining term into Equation (5) we find

δ̇ = δfx(x
∗, p). (8)

This equation tells us that the speed at which the deviation
changes is proportional to the size of the current deviation. If fx is
less than zero, the change counteracts the current deviation such
that we return to the steady state. By contrast if fx is greater zero
then the deviation grows over time.

Equation (8) is a so-called separable differential equation and
thus can be solved by the method of separation of variables
(James, 2015). The result is the size of the perturbation as a
function of time

δ(t) = δ(0) exp fxt. (9)

Here we have omitted the argument (x∗, p) behind the fx for
simplicity. The solution shows that starting from the initial
perturbation, δ(0), the deviation of system from the steady state
grows or declines exponentially in time. Specifically, we observe
an exponential growth if fx > 0 and an exponential decline if
fx < 0. In the former case, the system is fundamentally unstable;
any small perturbation launches it into dynamics that lead away
from the steady state, so finding the system in this state at all
seems implausible. In the latter case the state is stable, but the
exponential return after a perturbation means that the memory
of the perturbation is lost from the system exponentially fast.

The reasoning above illustrates a fundamental dilemma. The
system cannot operate in an unstable state, because the very
instability of the state precludes it from remaining there. By
contrast the system can be in a stable state indefinitely, but the
very stability of this state means that any information received
is quickly lost from the system because the system returns to its
previous state exponentially fast.

2.1. Origin of Power Laws and Critical
Slowing Down
Let’s explore what happens just at the boundary between stability
and instability, i.e., in a critical state. In such a state we have
fx = 0. This means that the second term in the Taylor expansion

FIGURE 1 | Critical states retain memory of perturbations. Curves show the

return to the homeostatic state after a perturbation for a non-critical state

(solid gray) and for a critical state (dashed black). The distance δ from the

homeostatic level declines significantly slower for the critical state. Parameters

have been chosen such that the curves start from the same initial perturbation

with identical slope Exponential. Exponential return: exp (−t) (cf. Equation 9).

Geometric Return: 2/(2+ 2t) (Equation 12).

(Equation 7) vanishes, so we can no longer argue that the third
term is negligible by comparison. Instead we keep the third term,

f (x∗ + δ, p) = f (x∗, p)
︸ ︷︷ ︸

=0

+ δfx(x
∗, p)

︸ ︷︷ ︸

=0

+
1

2
δ2fxx(x

∗, p)+ . . .
︸︷︷︸

≈0

. (10)

Substituting the remaining term into Equation (1) gives us

δ̇ =
δ2fxx

2
(11)

Now the speed at which the deviation changes is proportional
to the square of the current size of the deviation. Solving the
equation with separation of variables yields

δ(t) =
2

2
δ(0)

− fxxt
(12)

The term fxxt in the denominator increases linearly in time, so
after a sufficiently long time it will be much greater than δ(0).
This means in the long run the δ(0) in the equation becomes
negligible and the system behaves like 1/t. Instead of rapid
exponential decline we now have a much slower geometric return
to the stationary state (Figure 1). Hence, information about the
perturbation is retained much longer in the system, and thus
potentially long enough for slower, higher-order mechanisms of
information retention to be set in motion.
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The geometric return observed in the critical state is the cause
of the widely-discussed phenomenon of critical slowing down
(van Nes and Scheffer, 2007): Picture a system which is subject to
small perturbations from time to time. We start our system in the
stable regime, where it returns to the steady state exponentially
fast after a perturbation. If we change the parameter we may
observe that the exponential return gets slower and slower until
eventually it becomes a geometric return at the point were
stability is lost. So the recovery from perturbations slows down
as we approach criticality.

Physically speaking δ(t) ∼ 1/t is a power-law, although
the power is 1 in this case. This power-law in the response to
perturbations is the root cause of some of the power-laws that
are often observed at criticality. For example if there is some
noise present that causes repeated small perturbations the 1/t
responses to each of the perturbations add up to a power-law in
the systems power spectrum.

This is a nice result but there is still a problem: The system will
only return the to the steady state after perturbations in a certain
direction. All is well if δ(0) and fxx have opposite signs. However
if fxx and δ(0) have the same sign then there will be a time when
the denominator in Equation (12) is zero and as we approach this
point the deviation becomes arbitrarily large. Of course we won’t
expect infinite excitation to occur in the real world; after all, our
model is only valid for small deviations from the steady state.
Nevertheless the result shows that certain perturbation lead to a
dramatic departure from the steady state, so the state is unstable.

Below we describe two ways out of this stability-sensitivity
dilemma in sections 2.4, 2.6, respectively.

2.2. Sensitivity to Parameters
So far we have presented inputs into the system as short
perturbations of the system, an ecologist would call this a
pulse perturbation. There is however also another way in which
information may enter a system, the press perturbation, a
sustained change of the environment that we can model as a
change in parameters.

For example think of the parameter p as a sustained input into
the system and ask how sensitive our steady state x∗ is to this
input. We can measure this in terms of the derivative

d

dp
x∗ (13)

The straight-d derivative that appears here denotes a
differentiation where indirect effects are taken into account.
By contrast the round-d partial derivative denotes a derivative
where indirect effects are ignored.

A well-known trick to find this derivative is to differentiate the
defining equation of the steady state Equation (2),

0 = f (x∗, p) (14)

d

dp
0 =

d

dp
f (x∗, p) (15)

0 =
∂

∂p
f (x∗, p)+

(
∂

∂x∗
f (x∗, p)

) (
d

dp
x∗

)

(16)

The differentiation of f in the second step results in two terms:
The first captures the direct effect of change of p on f , whereas
the second captures the indirect effect induced by the resulting
change in x∗. This second term is the product of the actual change
in x∗ and the response of f to a change in x∗. Hence the derivative
of x∗ that we are looking for appears in the equation. Solving for
it we obtain

dx∗

dp
= −

fp

fx
(17)

where we have again used roman indices to denote the partial
(round-d) derivatives.

Now consider what happens to Equation (17) if we consider
the critical state from the previous section. Above we found that
this state is characterized by fx = 0, so that we have a infinitely
sharp response to parameter change unless also fp = 0. In
the following we call this phenomenon super-sensitivity of the
critical state.

Super-sensitivity is another attractive property of critical
states: While systems normally responds proportionally to
parameter change, a critical system can, at least potentially, show
an abrupt out-of-proportion response. To understand when such
a response is observed we have to examine the actual transitions
more closely which we do in the next section.

2.3. A Closer Look at Super-Sensitivity
Critical states lie on the edges been qualitatively different types
of behavior (phases) of a system. In the language of dynamical
systems the transition between phases that takes place at the
critical state typically corresponds to a bifurcation, a qualitative
transition in the dynamics of the system. To get a better
understanding of the transition we need to explore what happens
in the bifurcations in more detail. Instead of just considering a
perturbation of the state of the system x, we now consider also a
small perturbation ρ of the parameter, such that

p = p∗ + ρ (18)

where p∗ is the bifurcation point, i.e., the critical parameter value
where the bifurcation occurs.

To make progress we start again with our general system and
Taylor expand with respect to both x and p:

ẋ = f (x, p) (19)

= f (x∗, p∗)+ fx(x
∗, p∗)x+ fp(x

∗, p∗)p+ . . . (20)

= fxδ + fpρ (21)

In the second step we have used f (x∗, p∗) = 0 and omitted the
arguments (x∗, p∗) for clarity.

The equation so far assumes that the two leading terms fp, fx
are non-zero such that we can neglect further terms (. . .) which
contain higher powers of δ and ρ by comparison. While this is
true in general, we are particularly interested in critical states
where fx = 0. This means the first term vanishes and we have
to add some higher terms of the Taylor expansion instead

ẋ = fpρ + fxxδ
2/2 (22)
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FIGURE 2 | Fold bifurcation. As parameter p is changed two steady states

(red solid, blue dashed) collide and annihilate (cf. Equation 26). At the

bifurcation point, where the steady states meet the system is supersensitive to

parameter change. But due to the instability of the bifurcation point and the

lack of states beyond the bifurcation point, it seems implausible that the brain

could remain in such a state.

where the 2 appears due to the mechanics of the Taylor
procedure. This expansion of the dynamical system is valid if

1. x∗ is a steady state: f (x∗, p∗) = 0
2. The steady state is critical at p∗: fx(x

∗, p∗) = 0
3. We can neglect higher order terms if δ an ρ are small: fp 6= 0,

fxx 6= 0

The three conditions are of a very different nature. To satisfy the
first two, the stationarity condition and the bifurcation condition,
we must chose x and p exactly right to be in a steady state and to
be at a bifurcation. The third condition is a genericity conditions,
it will typically be met except in special cases.

To understand what happens in the bifurcation we can now
solve the expanded equation for the steady state, i.e.,

0 = ẋ (23)

0 = fpρ + fxxδ
2/2 (24)

δ = ±

√

−
fpρ

fxx
(25)

The result δ, shows us how much the steady state changes when
we move the parameter p out of the critical point by an amount
ρ. Equivalently we can write

x∗(p) = x∗(p∗)±

√

−
fp

fxx
(p− p∗) (26)

The exact shape of the branches x∗(p) depends on the values of the
derivatives under the square root, but unless we are in a special
case we always observe qualitatively the same picture. In the
critical state two branches of steady states collide and annihilate
each other (Figure 2).

At the point of collision the branches become vertical, which
explains the super-sensitivity. One can show that for systems with
one variable, one of the colliding steady states is stable whereas
the other is unstable. Beyond the bifurcation both of the steady
states involved have vanished, which means typically that the
system departs the vicinity of the former steady states.

The bifurcation from Figure 2 is known under many names
including fold bifurcation, saddle-node bifurcation, and turning
point, among others. It depicts the generic behavior that we
expect to see whenever we encounter a critical state in a system
with one variable. However, it seems implausible that the brain
would operate at such a bifurcation as the critical point is an
unstable state and a small parameter variation is sufficient to
destroy steady states entirely.

One could imagine that the brain has some mechanisms
to stabilize it’s operating point to a saddle-node bifurcation.
However, if such mechanisms exist they are part of the same
system, and by their presence may change the type of bifurcation
or remove it entirely. Let us therefore instead look at some critical
states in other types of bifurcations.

2.4. Epidemic-Like Criticality
The criticality hypothesis has long been attacked for requiring
that one parameter is tuned exactly right such that the system is at
a bifurcation point. This has become a much smaller concern as
several models have shown that the brain could reliably self-tune
its parameters to this operating point, using widely described
mechanisms of synaptic plasticity (e.g., Bornholdt and Rohlf,
2000; Meisel and Gross, 2009). However, we now make an
additional demand. Not only are the parameters tuned exactly
to the bifurcation point, but also the system is such that we do
not see a generic bifurcation, but a special case. However, there
are some well-known scenarios where fundamental physical
constraints and/or symmetries make sure that a system must
always be in such a special case.

For example in many physical systems some variables cannot
be negative by design. A prominent example is the prevalence
of an epidemic, e.g., described by the SIS model (Anderson and
May, 1979; Keeling et al., 2016). In an epidemic there is typically
a steady state when the number of infected reaches zero, and this
steady state cannot be perturbed in the negative direction as such
a perturbation would be unphysical, leading to a negative number
of infected.

Because the steady state at zero is there for a fundamental
reason (if there are no infected nobody can become infected), the
location of this steady state does not depend on parameters, and
if it undergoes a bifurcation it cannot simply vanish as we would
normally expect. Mathematically, the physical constraints on the
steady state implies fp = 0 and thus, by-virtue of the physics of
the epidemic system, it’s bifurcations at zero must always be of a
special case.
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FIGURE 3 | Transcritical bifurcation. In the transcritical bifurcation two

branches of steady states (red, blue) intersect and exchange their stability. This

type of bifurcation might play a role in the in-vitro neural networks, but several

caveats make it appear as an unlikely operating point for the brain.

For this case the Taylor expansion now reads

ẋ = fpxρδ + fxxδ
2/2 (27)

Note that every term that contains more than one ρ and one δ is
negligible in comparison to fpxρδ, moreover terms that contain
more that two δ (e.g., δ3) are negligible compared to fxxδ

2/2
and all terms that contain no δ are zero due to the physics of
the system.

This expansion is valid if

1. x∗ is a steady state: f (x∗, p∗) = 0
2. The steady state is critical at p∗: fx(x

∗, p∗) = 0
3. A genericity condition of the saddle-node bifurcation is

violated fp = 0 (also fpp = 0, . . . )
4. We can neglect higher order terms if δ an ρ are small: fpx 6= 0,

fxx 6= 0

The third condition plays the role of an additional genericity
condition for this type of bifurcation.

We can solve for the steady state

0 = fpxρδ + fxxδ
2/2, (28)

which gives us two solutions, δ = 0 and

δ = −
fpx

fxx
ρ, (29)

a second branch that crosses the branch at zero in the bifurcation
point. Stability analysis reveals that the branches exchange their

stability in the bifurcation point (Figure 3). This transcritcal
bifurcation is a typical scenario for the onset of epidemics. If
the parameter is low enough, the disease-free state is stable, but
once a threshold is crossed the disease-free state loses stability
as a new steady enters the physical space in which the disease
persists indefinitely.

Because the overall activity appears here as the order
parameter of the bifurcation this is also the dimension in which
computational benefits are reaped. It is therefore reasonable to
expect this bifurcation to play a role when information is coded
in terms of activitiy.

The transcritical bifurcation has some attractive features as
a model for neural criticality. If we are willing to neglect
spontaneous activity we can argue that the system should have
a steady state at zero. Furthermore if the variable x represents a
rate of spikes, we can argue that this variable can not be negative.
Under these assumptions the state at a transcritical bifurcation is
stable if fxx < 0, and thus the system could plausibly remain there
while profiting from the long memory that comes with criticality.

Note that the nature of the bifurcation has implications for
information processing. If we are willing to accept that the brain
operates at a transcritical bifurcation, then this would suggest
that information is coded directly in terms of activity: After a
perturbation causes increased activity, the system remains in
a state of increased activity while slowly decaying back to the
resting state where activity is zero.

There is indeed some evidence that points to transcritical-type
criticality in the brain. The state at the transcritical bifurcation
is characterized by activity cascades with branching ratio 1,
which is in agreements with observations from in-vitro cultures
(Beggs and Plenz, 2004; Hesse and Gross, 2014) and also direct
measurements in life animals (Klaus et al., 2011; Hahn et al.,
2017).

However, there are also some caveat regarding the transcritical
bifurcation. It is subject to structural instability on which we
discus in some more detail below. Additionally this bifurcation
does not create super-sensitivity; because fp = 0 the solution
branches never become vertical (Figure 3). Thus this bifurcation
scenario misses one of the two key features that make criticality
attractive for computation.

In summary the transcritical bifurcation probably plays some
role in systems of neurons. Particularly it is likely that this is the
bifurcation that is encountered when one observed the onset of
activity in neural networks and perhaps also in mature systems
grown in-vitro. Moreover the observation of activity cascades and
power-laws at in experiments supports this hypothesis. However,
both evidence for other forms of information coding, and the
caveats regarding transcritical bifurcations, suggest that other
bifurcation scenarios also play significant and perhaps greater
role for information processing in the brain.

2.5. Ising-Like Criticality
A very popular model system for criticality is the Ising model.
The bifurcation that occurs in this model is the pitchfork
bifurcation, another degenerate form of the fold bifurcation. In
this case the degenerate bifurcation appears because the model
is motivated by a physical system that has a mirror symmetry.
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Due to this symmetry all terms of the Taylor expansion that are
derivatives of even order with respect to x must be zero. This
implies fp = 0 and also fxx = 0 so both genericity conditions
of the fold bifurcation are violated.

In this case the expansion becomes

ẋ = fpxρδ + fxxxδ
3 (30)

which is valid if

1. x∗ is a steady state: f (x∗, p∗) = 0
2. The steady state is critical at p∗: fx(x

∗, p∗) = 0
3. First fold genericity condition is violated: fp = 0 (also fpp =

0, . . . )
4. Second fold genericity condition is violated: fxx = 0
5. We can neglect higher order terms if δ an ρ are small: fpx 6= 0,

fxxx 6= 0

Solving for the steady state in the steady state in this case reveals
three branches: the zero solution δ = 0 and a pair of branches

δ = ±

√

−
fpx

fxxx
ρ (31)

If fpx and fxxx have the same sign these two branches exist only
for ρ < 0, otherwise they exist only for ρ > 0. Furthermore one
can show that if fpx > 0 then the steady state at zero is stable for
ρ < 0 (and vice versa).

In the subcritical form of the pitchfork bifurcation fxxx < 0
the non-zero branches are unstable. In the bifurcation point they
collide with the stable branch at zero and vanish as the zero
becomes unstable. This leads to a catastrophic bifurcation after
which no stable steady state is left. By contrast in the supercritical
from of the pitchfork bifurcation fxxx the steady state at zero
becomes unstable as two stable non-zero branches emerge.

The supercritical pitchfork bifurcation is in principle an
attractive model for neuroscience as the critical state is stable
and has the desirable characteristics of long-term memory of
perturbations and super sensitivity to parameter change.

The major problem with this sort of bifurcation is that it is
hard to motivate why such dynamics should occur in the brain.
The bifurcation requires a perfect mirror symmetry which is easy
to motivate for the physical Ising model (spin up and spin down
states are thought to be exactly symmetrical) but is hard to justify
in a biological system.

All degenerate bifurcations, including transcritical and
pitchfork suffer from structural instability (Figure 5). For
example including even a low level of spontaneous activity
destroys the transcritical bifurcation in SIS-type models model
entirely. However, for multiple reasons we should not disregard
degenerate bifurcations altogether. Also the transcritical
bifurcation vanishes from the SIS model if spontaneous activity
is included. However, it is replace by a region where the solution
branch bends quickly, through not abruptly. This region of rapid
change will retain some semblance to a critical state.

Moreover higher-level mechanisms may exist that drive the
brain to degenerate bifurcations in a very similar way that
to proposed primary self-organization to critical states (Seung,

1996; Feudel et al., 2018). For example Seung (1996) describes
how neurons can approximate a degenerate line attractor, but
also notes some caveats.

Even in absence of mechanisms that create degenerate
situations over a broad range of operating conditions, the
pitchfork bifurcation may play a role in information processing
in decision making. Making decisions is only a challenge
when different options appear almost exactly equally desirable.
However, this equal desirability creates exactly the symmetry
needed for pitchfork bifurcations.

For example the occurrence of a pitchfork bifurcation has been
well-documented in collective decision making in fish faced with
a binary choice task (Couzin et al., 2011).

The pitchfork-in-decision scenario is interesting because we
get criticality on demand. The need for a decision, creates
a situation in which the prerequisite symmetry for pitchfork
criticality exists. The system can then be critical and profit from
the super-sensitivity that this entails. Once the decision has been
make the symmetry is broken, potentially leaving the system
non-critical in this respect. This on-demand criticality is possible
due to the difference between the slow timescale on which the
need for the decision arises and the fast timescale of decision
making processes.

2.6. Criticality at the Onset of Oscillations
In the previous sections, we have gone on a fairly exhaustive
trawl of bifurcations of systems with one variable, but from the
perspective of neuroscience none of the bifurcations scenarios
we found was completely satisfactory. Of course there are other,
even more degenerate bifurcations that we haven’t discussed.
For example there could be a transcritical-like bifurcation where
three branches intersect or a pitchfork-like bifurcation where one
branch splits into five. But essentially these are variations on a
theme. If we want super sensitivity andmemory in a stable critical
state in a system we so far need to impose mirror symmetry.

An elegant way out of the dilemma is to consider systems
with more than one variable. All the bifurcations that occur in
systems with one variable (fold, transcritical, pitchfork,...) also
occur in two-variable systems. Moreover, another type of long-
term behavior is possible: sustained oscillations. The geometrical
object in variable space on which such oscillations take place, a
cycle, can undergo the same bifurcation as a steady state in one-
variable systems, hence there can be a fold bifurcation of cycles,
in which a stable and an unstable cycle collide and annihilate.
However, all of these bifurcations present us with the same
dilemma as the bifurcations in one-variable systems.

A genuinely new bifurcation of two-variable systems that
does not have an equivalent in one-variable systems is the Hopf
bifurcation. In this bifurcation a cycle emerges from (or is
destroyed upon collision with) a steady state. The mathematical
analysis of this bifurcation is slightly more complicated, hence I
omit the expansion here (it can be found in Kuznetsov, 2004),
but the key idea in this analysis is that one can transform the two
variables of the system (say, x, y) near the bifurcation to obtain an
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FIGURE 4 | Pitchfork bifurcation. In this bifurcation a steady state (red) loses stability as either two additional branches of steady states (blue dashed) are destroyed

(subcritical case, left) or two branches of stable steady states (blue solid) emerge (supercritical, right). A system could plausibly operate at a supercritical pitchfork

and profit from persistent memory and super-sensitivity that this bifurcation conveys. However, the pitchfork bifurcation requires a special symmetry that is hard to

motivate for the brain, it therefore is an unlikely candidate for the operating point of neural criticality.

FIGURE 5 | Structural instability. The pitchfork (left) and transcritical (right) bifurcations are degenerate bifurcations: To observed their characteristic bifurcation

diagrams (thick gray lines) special cases particular symmetries must exist in a model. If we break these symmetries, e.g., by adding a low level of spontaneous activity,

then the degenerate bifurcation revert back to the generic fold bifurcation, or no bifurcation at all (red lines).

angle and radius variable,

r =

√

(x− x∗)2 + (y− y∗)2 (32)

φ = arctan((y− y∗)/(x− x∗)) (33)

so r denotes the distance from the original steady state and the φ

denotes the angle between the state of the system and the steady
state. In these new variables the dynamical equations close to the
bifurcation are captured by an expansion of the form

φ̇ = a (34)

ṙ = brρ + cr3 (35)

where a, b, and c are constants that arise from derivatives
of the dynamical equations (similarly to fx etc.) and ρ is
again our control parameter that measures the distance to
the bifurcation point. Considering these equations we can see
that the angle changes with a continuous angular velocity

a. The equation for the radius is more interesting: The

radius equation always has a stationary solution at r =

0. Even in this state the angle is constantly changing,

but because the radius is 0 our original variables x, y
remain stationary–this solution is our initial steady state.
Stability analysis shows that it is stable if bρ ≤ 0 and
unstable otherwise.
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FIGURE 6 | Hopf bifurcation. The Hopf bifurcation marks the onset of at least transient oscillation in a dynamical system. It is in many ways similar to a pitchfork

bifurcation and shares many of its attractive features. In contrast to the pitchfork, a stable cycle is created in the Hopf bifurcation (supercritical case, right) or an

unstable cycle vanishes (subcritical case, left). Moreover, the Hopf bifurcation is a generic bifurcations and thus does not require hard-to-justify assumptions. These

properties make it very attractive as an potential operating point for the brain (thin blue lines indicate some examples of the cycle, coming out of the plane of the paper).

Looking closely at the equation for r we note that this equation
has the same form as the expansion of the pitchfork bifurcation,
so at ρ = 0, where the initial steady state loses its stability, two
new stationary solutions of r emerge. One is at negative radius
and hence unphysical, whereas the other is at a positive radius.
Due to the constant progression of the angle φ this stationary
point of r is a cycle in the x, y coordinates (Figure 6).

The Hopf bifurcation inherits many properties from the
pitchfork bifurcation. Like the pitchfork it has a subcritical and
a supercritical form. In the supercritical case a stable limit cycle
emerges as the initial steady state loses stability. The existence
of stable dynamics on both sides of the bifurcation allows a
system to operate in the vicinity of the bifurcation. Moreover,
like the pitchfork, the Hopf bifurcation offers long memory of
perturbations (perturbations create long-lasting oscillations) and
super sensitivity to parameter change (quick rise of oscillation
amplitude when the bifurcation point is crossed).

In contrast to the pitchfork, the Hopf bifurcation is a generic
bifurcation. Thus we don’t have to introduce hard-to-justify
assumptions to observe this bifurcation.

In a complex system Hopf bifurcations typically occur
when the microscopic parts of the system synchronize. At
this point preexisting oscillations on the micro-level transition
from oscillating asynchronously to a synchronous mutually
reinforcing state such that detectable system-level oscillations are
produced. Such a scenario is very plausible for the brain as the
individual neurons already have oscillatory characteristics and
have been illustrated in models (Brunel, 2000).

In this case the variables x and y typically relate to the
microscopic variables of the individual oscillators. For example
in a model x could be the number of neurons that are just spiking
whereas y is the number of neurons that are currently refractory.

Seen in this light the Hopf bifurcation becomes an order-
disorder transition in which disordered phases of oscillators
become organized. It has been pointed out that systems can
self-organized robustly using simple local rules (Droste et al.,

2013). Moreover, spike-timing dependent plasticity observed in
neurons is a rule that has the right characteristic to drive the
system to such a transition (Meisel and Gross, 2009).

The assumption that the brain (or parts of the brain) operate
at a Hopf bifurcation is consistent with information coding in
terms of synchrony. The experimental evidence for this type of
information coding (e.g., de Charms and Merzenich, 1996) thus
lends further weight to this hypothesis.

Among all conceivable bifurcation scenarios on stationary
states, and cycles the Hopf bifurcation is the only scenario that
offers a stable operating point, super-sensitivity and structural
stability. These properties make it extremely attractive for the use
in computational systems.

Operating at a Hopf bifurcation point provides the
advantageous properties of long information retention and
super-sensitivity to parameter change. At the same time very
plausible mechanism exist by which the brain could self-
organize to this bifurcation and remain there indefinitely. These
advantageous features highlight models of synchronization, such
as networks of Kuramoto oscillators as promising conceptual
models for neural dynamics.

2.7. The Critical Hypersurface
So far we have only studied bifurcations in diagrams with one
parameter axis. The same is true for almost all papers that discuss
bifurcations in the context of neural criticality. However, let’s
break this convention and consider what happens in systems with
two or more parameters.

The bifurcations that we discussed so far are so-called
bifurcations of codimension 1. This means that the bifurcations
have a single bifurcation condition. To find the bifurcation we
must change the parameters until we find a parameter set where
the bifurcation condition is met. If we change one parameter we
might eventually meet the condition and observe the bifurcation
at a specific parameter value.
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Mathematically speaking we can say if we have a one-
dimensional parameter space (i.e., a parameter axis) then
codimension-1 bifurcations occur in a zero-dimensional subset
(i.e., specific points in parameter space).

Now suppose we have two parameters p1, p2. In the two-
dimensional parameter space the bifurcation condition becomes
a function of both parameters. Because we only have only one
bifurcation condition we can (in general) satisfy it already by
setting one of the parameters, say p1 to the right value. That
means (in a typical scenario) that for every value of p2 we can
find the bifurcation at some value of p1: The bifurcation points
fill a curve in the two-dimensional parameter plane.

The existence of this curves of critical point allows the system
to move around in parameter space, while remaining at criticality
all the time.

A system that has at least two parameters could self-organize
to criticality and then start to drift on a curve of critical states. As
we drift on the curve we can even encounter further bifurcations,
so-called codimension-2 bifurcation points. In such a point the
system is then critical in two different ways. For example it is
conceivable that we reach a point where a Hopf and a transcritical
bifurcation happen at the same time (a degenerate Takens-
Bogdanov bifurcation). In a neural system that could be a point
where we observe an onset of spontaneous activity (trancritical
bif.) and at the same time the onset of synchronization of
this activity (Hopf). Likewise we could imagine a higher-
codimension bifurcation where the onset of oscillations takes
place at the same time as changes in the number of synchronized
clusters. Such higher a bifurcation would be very attractive for
information processing.

In the real world much more than two parameters could be
relevant. If our system has d parameters the bifurcation points of
a codimension-1 bifurcation completely fill a (d−1)-dimensional
subspace. We can say that the form hyper-surfaces. In a high-
dimensional parameter space the existence of these hypersurfaces
gives a self-organizing system potentially a huge parameter space
to move around in while staying critical.

It is interesting to ask how many parameters exist in the
brain. So far there are only partial answers to this question.
On the one hand we might go down the list of network
properties that are known to affect network dynamics: The
include average connectivity, it’s second moment, the spectral
radius, the clustering coefficient and various other motif counts.
While it is not clear that all of these affect the network dynamics
independently we can say that there are at least several of these
topological parameters are commonly found to affect dynamical
processes on networks.

On the other hand, we could ask how many parameters are
necessary to characterize the network structure of the brain
completely. In this case the answer is at least one per synapse,
which means the effective dimensionality d of the parameter
space could be as high as the number of synapses.

So the best of the author’s knowledge we can say that the
effective dimensionality of the parameter space of the brain
is somewhere between tens and billions of parameters. Any
answer in this range means that the brain is not confined to a
single critical point in parameter space, but has in-fact a huge
high-dimensional space to explore, in which it could plausibly

sit at the threshold of many different bifurcations at the same
time. A particularly intriguing picture is to imagine the brain
poised at the critical points of a large number of different Hopf
bifurcations, each corresponding to the synchronization of a
different community of neurons.

In summary the potentially very high effective dimensionality
of the brain opens up some startling perspectives. We should
not think of the brain as a system that sits stationarily in
one point where a certain codimension-1 bifurcation happens.
Instead the brain might be at some very high-codimension that is
critical in many (and potentially very many) ways at the same
time. Alternatively, mechanism of plasticity could take it on a
self-organized journey that explores a high-dimensional critical
hyper-surface. In the authors opinion, the most likely scenario
is that both of these phenomena, drift on a critical manifold
and high-codimension multi-criticality occur simultaneously in
the brain.

3. CONCLUSIONS

In this paper I have reviewed some relatively basic and
well-known dynamical systems theory, which nevertheless has
profound implications for neural dynamics. Along the way we
have discussed some side attractions (stability constraints, origins
of power laws and critical slowing down, absence of super
sensitivity in the transcritical bifurcation). However, perhaps the
two most important messages are the ones that are hinted at in
the title. There are many critical states in at least two ways:

1. There are many different types of bifurcations that can occur
at critical points. And potentially all of the ones discussed
here play some role in neural information processing. At the
same time the supercritical Hopf bifurcation seems uniquely
attractive for cortical information processing because it is
the only scenario that allows criticality in a stable steady
state, while providing super-sensitivity without requiring a
specific degeneracy.

2. Even for a specific type of bifurcation, one should not think
of the critical point as an isolated point in parameter space.
In a high dimensional parameter space the critical points
fill an almost equally high-dimensional hyper-surface. This
means that mechanisms of self-organization can explore a
large parameter space while maintaining criticality. It also
means that the system can reach high-codimension points
where the system is simultaneously critical in several, and
potential many, different ways.

Particularly the second point highlights the need for future
theoretical work to explore how self-organized critical systems
drift on critical manifolds and assess the consequences of multi-
criticality for information processing. So far such dynamics in
high-dimensional parameter spaces remains largely unexplored.
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