

Heavily disturbed seafloor shows recolonization by Paleodictyon nodosum within 26 years

Lilian Boehringer^{1,2}, Autun Purser¹, Yann Marcon³, Antje Boetius¹

¹Alfred-Wegener-Institute Helmoltz Center for Polar and Marine Research, Bremerhaven, Germany ²University of Bremen (Faculty 2, Biology/Chemistry), Bremen, Germany ³MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany

Timeline

1989 DISCOL experiment

Disturbance 26 yrs ago First visit of the DEA (DISCOL Experimental Area) Disturbance by plough-harrow

Polymetallic nodules

- Occur on abyssal plains as lumps of aggregated minerals rendering their collection under commercial consideration
- Provide hard substrate for sessile fauna and influence distribution of local infauna and bacterial communities¹

DISCOL experiment

Dis-turbance and Re-Col-onization (DISCOL) experiment in the Peru Basin in 1989 to assess environmental impact of nodule removal²

2015 Revisit of DEA

Disturbance 6 weeks ago August Disturbance by Epi-Benthic Sledge

2015 Revisit of DEA

September Survey

Recolonization survey with

advanced camera system (Ocean Floor Observation System – OFOS)

Disturbance 6 weeks ago

- Nodules were buried into the sediments or pushed to the sides of the tracks using a plough-harrow
- Additional disturbance by Epi-benthic Sledge and recolonization survey 26 years later

Paleodictyon nodosum

- Strikingly hexagonal hole arrays on sediment surface
- Holes penetrate into the sediment where they interconnect with a horizontal tube network³
- The responsible organism and its

Background

- Regular and irregular Paleodictyon traces were found on all three substrate categories
- On substrate disturbed 26 yrs ago the density was significantly less compared to undisturbed substrate
- Maximum density of Paleodictyon traces on undisturbed substrate was much lower compared to other regions (e.g. Clarion-Clipperton Zone)⁴

formation process was never identified

Conclusions

- Paleodictyon nodosum can colonize disturbed habitat
- P. nodosum can produce the regular ٠ seafloor trace in less than 6 weeks
- However, after 26 years P. nodosum abundances have not recovered to predisturbance levels
- Paleodictyon traces on undisturbed substrate adjacent to disturbed areas may have been covered by resuspended sediments following disturbance
- The lifeform responsible for *Paleodictyon* traces is prone to disturbance
- > Inhabiting fauna in areas adjacent to the disturbance might still suffer from sediment accumulation
- Crucial to gather more knowledge about nodule ecosystem functioning and inhabiting fauna

References

Density of *Paleodictyon* traces per m²

0.010

0.005

0.000

Undisturbed

Paleodictyon nodosum

Disturbance

6 weeks ago

¹Vonnahme TR, Molari M, Janssen F, Wenzhöfer F, Haeckel M, Titschack J, Boetius A (2020) Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years. Science Advances 6

²Thiel H, Schriever G (1990) Deep-Sea Mining, Environmental Impact and the DISCOL Project. Ambio 19:245-250.

Disturbance

26 yrs ago

Irregular Paleodictyon

³Rona PA, Seilacher A, de Vargas C, et al (2009) Paleodictyon nodosum: A living fossil on the deep-sea floor. Deep Res II 56:1700-1712

⁴Durden JM, Simon-Lledó E, Gooday AJ, Jones DOB (2017) Abundance and morphology of *Paleodictyon nodosum*, observed at the Clarion-Clipperton Zone. Mar Biodivers 47:265-269