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Abstract

Mitochondrial changes such as tight coupling of the mitochondria have facilitated sustained

oxygen and respiratory activity in haemoglobin-less icefish of the Channichthyidae family.

We aimed to characterise features in the sequence and structure of the proteins directly

involved in proton transport, which have potential physiological implications. ATP synthase

subunit a (ATP6) and subunit 8 (ATP8) are proteins that function as part of the F0 compo-

nent (proton pump) of the F0F1complex. Both proteins are encoded by the mitochondrial

genome and involved in oxidative phosphorylation. To explore mitochondrial sequence vari-

ation for ATP6 and ATP8 we analysed sequences from C. gunnari and C. rastrospinosus

and compared them with their closely related red-blooded species and eight other verte-

brate species. Our comparison of the amino acid sequence of these proteins reveals impor-

tant differences that could underlie aspects of the unique physiology of the icefish. In this

study we find that changes in the sequence of subunit a of the icefish C. gunnari at position

35 where there is a hydrophobic alanine which is not seen in the other notothenioids we ana-

lysed. An amino acid change of this type is significant since it may have a structural impact.

The biology of the haemoglobin-less icefish is necessarily unique and any insights about

these animals will help to generate a better overall understanding of important physiological

pathways.

Introduction

The oceans which surround Antarctica, and their sub-zero temperatures provide a home to

fish of the suborder Notothenioidei—a prime example of a marine species flock.

Notothenioids are renowned for their physiological adaptations to cold temperatures. This

includes the ability to synthesise antifreeze glycoproteins (AFGP) and antifreeze-potentiating

proteins (AFPP) [1]. The capacity to synthesise antifreeze glycopeptides (AFGPs) is a biochem-

ical adaptation that enabled the Notothenioidei to colonize and thrive in the extreme polar

environment [2]. These proteins are largely composed of a Thr-Ala-Ala repeat with a
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conjugated disaccharide via the hydroxyl group of the Thr residue and reduce the freezing

point of the animals internal fluids [3,4].

Channichthyidae, contained within the Notothenioid suborder, are remarkable due to the

absence of haemoglobin and, in some species, myoglobin too [5–7]. The sub-zero tempera-

tures of the water they inhabit allow the highest levels of oxygen solubility, which is suggested

to facilitate their survival despite the loss of globin proteins [7].

Myoglobin is absent in the oxidative skeletal muscle in all icefish, but the absence of myo-

globin in cardiac muscle has been reported in only six of the species of the Channichthyinae

[8,9]. While the molecular genetics of how myoglobin expression has been lost have been stud-

ied, the physiological differences between those that express and those that do not express

myoglobin are not fully understood. Small intracellular diffusion distances to mitochondria

and a greater percentage of cell volume occupied by mitochondria are two evolutionary adap-

tations that might compensate for the absence of myoglobin [10,11]. In the particular case of

Champsocephalus gunnari, the mRNA transcript of myoglobin is present in the cardiac tissue

but a 5-bp frameshift insertion hinders the synthesis of protein from the mRNA transcript

[8,12].

Notothenioidei have high densities of mitochondria in muscle cells, versatility in mitochon-

drial biogenesis and a unique lipidomic profile [13–15]. These features have also been

hypothesised to facilitate sustained oxygen consumption and respiratory activity in the

absence of haemoglobin and myoglobin.

Complex V of the electron transport chain, ATP synthase, is responsible for the production

of intracellular ATP from ADP and inorganic phosphate. Composed of an F0 and F1 compo-

nent, the F0 component is responsible for channelling protons from the intermembrane space

across the inner mitochondrial membrane and into the mitochondrial matrix [16–18]. The

rotation of the c-ring in F0, and with this the γ-subunit of the central stalk, facilitates the trans-

location of protons across the inner mitochondrial membrane that ultimately drives the cata-

lytic mechanism of the F1 component [19,20].

The motor unit F0, embedded in the inner membrane of mitochondria, is composed of sub-

units b, OSCP (oligomycin sensitivity conferring protein), d, e, f, g, h, i/j, k which are encoded

by nuclear genes and subunits a (ATP6) and 8 (ATP8), which are encoded by mitochondrial

genes [21]. Despite the structure of the complex having been first resolved decades ago, and

hypotheses of the chemical mechanism were developed over half a century ago, significant

breakthroughs continue to be made in our understanding of both the structure and function

of the enzyme and its F0 component [22–25].

Both ATP synthase subunit a (ATP6) and subunit 8 (ATP8) are proteins that function as

part of the F0 component of ATP synthase, encoded by genes that overlap within the mito-

chondrial genome [26]. This overlap is over a short, but variable between species, base pair

sequence where the translation initiation site of subunit 8 is contained within the coding

region of subunit 6.

The peripheral stalk is a crucial component of the F0 component forming a physical con-

nection between the membrane sector of the complex and the catalytic core. It provides flexi-

bility, aids in the assembly and stability of the complex, and forms the dimerization interface

between ATP synthase pairs [27]. ATP8 is an integral transmembrane component of the

peripheral stalk, serving an important role in the assembly of the complex [28]. The C-termi-

nus of ATP8 extends 70 Å from the surface of the makes contacts with subunits b, d and F6,

while the N-terminus has been reported to make connections with subunits b, f and 6 in the

intermembrane space [29,30]. Subunit 8 is also known to play a role in the activity of the

enzyme complex [31].
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ATP6 is an α-helical protein embedded within the inner mitochondrial membrane and it

interacts closely with the c-ring of F0, providing aqueous half-channels that shuttle protons to

and from the rotating c-ring [17,32]. It has previously been reported that ATP6 has at least five

hydrophobic transmembrane spanning α helices domain, where two of the helices h4 and h5

are well conserved across many species [33].

Proteins coded by mitochondrial DNA (mtDNA) are involved in oxidative phosphorylation

and can directly influence the metabolic performance of this pathway. Evaluating the selective

pressures acting on these proteins can provide insights in their evolution, where mutations in

the mtDNA can be favourable, neutral, or harmful. The amino acid changes can cause ineffi-

ciencies in the electron transfer chain, causing oxidative damage by excess production of reac-

tive oxygen species and eventually interrupting the production of mitochondrial energy. Due

to the tight coupling of icefish mitochondria relative to their red-blooded relatives, any

changes in the structure of ATP Synthase subunits, particularly those directly involved in the

transport of protons across the membrane, could result in significant physiological outcomes

[34].

In this work, we combine sequence analyses and secondary structure prediction analyses to

explore mitochondrial genetic variation for ATP6 and ATP8 in the Notothenioidei suborder

species as well as other vertebrate species. The species considered include Champsocephalus
gunnari, Chionodraco rastrospinosus and Chaenocephalus aceratus from the Channichthyidae

family, Notothenia coriiceps and Trematomus bernacchii from the Nototheniidae family and

the sub-Antarctic Eleginops maclovinus from family Eleginopsidae, all the broader Notothe-

nioidei suborder. The species of suborder Notothenioidei are further compared with the fol-

lowing eight vertebrates: Homo sapiens (family: Hominidae), Nothobranchius furzeri (family:

Nothobranchiidae), Danio rerio (family: Cyprinidae), Anolis carolinensis (family: Dactyloidae),

Cavia porcellus (family: Caviidae), Balaena mysticetus (family: Balaenidae), Heterocephalus gla-
ber (family: Heterocephalidae), and Lasiurus borealis (family: Vespertilionidae) to shed light

on the changes of these proteins in the notothenioid species by comparing them to better char-

acterised diverse vertebrate species. These species choices help us decipher amino acid changes

specific to notothenioids and those that are potentially species specific (S1 Fig).

Methodology

Extraction of gene and protein sequences of ATP8 and ATP6 suborder

Notothenioidei and other vertebrates

The list of complete coding sequences (CDS) and protein sequences of the proteins were

obtained from the National Centre for Biotechnology Information (NCBI) protein database

search, we chose only the Refseq (provides a comprehensive, integrated, non-redundant, well-

annotated set of sequences, including genomic DNA, transcripts, and proteins) sequence que-

ries (https://www.ncbi.nlm.nih.gov/ lMSast searched:17th August 2020). Though these

sequences have been taken from highly reliable Refseq database [35] validated by different

sources it is important to recognise they could still be prone to error.

Multiple protein sequence alignment (MSA)

(-/-) indicates absence of both haemoglobin and myoglobin genes, whereas (-/+) indicate

absence of haemoglobin but presence of myoglobin. The sequences for the Notothenioidei

suborder species C. gunnari (-/-), C. rastrospinosus (-/+), C. aceratus (-/-), N. coriiceps (+/+), T.

bernacchii, E. maclovinus (+/+), and eight other vertebrate species, N. furzeri, D. rerio, A. caro-
linensis, C. porcellus, B. mysticetus, H. glaber, L. borealis, H. sapiens were aligned using Clustal
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omega [36] to prepare the initial alignment of ATP6 protein under the criteria of the presence

and the absence of haemoglobin and myoglobin proteins in the species, the alignments were

also verified using the other two progressive methods, MAFFT [37] and MUSCLE [36]. The

same method was applied for protein ATP8. The MSA was visualised and edited using JAL-

VIEW [38]. The eight vertebrate species were selected as well known and sequenced represen-

tative of different groups under vertebrate: fish (N. furzeri and D. rerio), reptiles (A.

carolinesis), mammals (C. porcellus, H. glaber, L. borealis, H. sapiens, B. mysticetus). H.sapiens
sequences have been included in our analyses since much of what is known about these pro-

teins has previously been characterised in humans. The selection of these different species

shows the conservation of these mitochondrial proteins across vertebrate species, including H.

sapiens.

Codon alignment

Complete nucleotide coding sequences for genes ATP6 and ATP8 from the fourteen vertebrate

species were retrieved from NCBI GenBank database (see Table 1). The sequences were

aligned using Clustal omega [36] and were manually edited and visualised as codons using

MATLAB version R2018b (9.5.0).

Comparison of properties of amino acids among the sequence from the

above-mentioned species

Using the ExPASy [39] tool ProtScale [40], different amino acid properties such as the molecu-

lar weight of amino acids across the sequence, hydrophobicity trend of amino acids, α—helix

forming amino acids, average flexibility trend and mutability for the protein ATP6 were com-

pared graphically among the seven fish species (5 Antarctic, 1 sub-Antarctic, D. rerio and N.

furzeri) (https://web.expasy.org/protscale/).

Structure prediction for protein sequences

The MSA was structurally validated using the structure prediction tool I-TASSER [41] (Itera-

tive Threading ASSEmbly Refinement) a hierarchical approach to protein structure and func-

tion prediction, to generate the protein structure for AT6 from different species (https://

zhanglab.ccmb.med.umich.edu/I-TASSER/). The structures were validated using SAVES v6.0

(https://saves.mbi.ucla.edu/), using ERRAT [42], PROCHECK [43,44] and ProSA-web [45].

(Figures in supplementary files).

Figures

Protein structure images were produced with PyMOL v. 2.3.2. (The PyMOL Molecular Graph-

ics System, Version 2.0 Schrödinger, LLC.) Graphs were produced with MATLAB version

R2018b (9.5.0). Sequence logos were created using the webserver WebLogo using alignment of

5947 vertebrate (NCBI:txid7742) protein sequences for the protein ATP6 (http://weblogo.

threeplusone.com/). Using RefSeq sequences with custom range of sequence length of 224–

231 to obtain full sequences only (searched: 3rd May 2021).

Results

Codon alignment

MSA of all the sequences of ATP8 (see Fig 1) and ATP6 (see Fig 2) from the different verte-

brate species (see Table 1) for both nucleotide (codon) and proteins identified several
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conserved codons and amino acid residues. The sequence knowledge was gathered from

curated entries in RefSeq which nevertheless could be subject to error.

Five of the six Antarctic fish species have twelve nucleotides (four codons) at the 5’ end of

the gene sequence which are not found in the other eight vertebrate species. The codon align-

ment ATP6 for species E. maclovinus, N. coriiceps, C. rastrospinosus and C. aceratus show that

GTG codes for methionine, as the start codon for the protein. GTG which is originally known

for coding the amino acid valine has been accepted as a mitochondrion start codon for inverte-

brate mitogenomes [46–48]. A common feature with the species that have GTG as a start

codon is that N. coriiceps, E. maclovinus, C. rastrospinosus have genes coding for myoglobin,

where the latter is devoid of haemoglobin. C. aceratus do not express myoglobin due to a 15 bp

sequence insertion, other than that difference, their myoglobin gene sequence is identical to

that of C. rastrospinosus [9]. The only exception to this is the red-blooded species T. bernacchii,
but this may be attributed to the unverified source of its sequence submission.

Another trend that has been observed through sequence alignment is that the species that

are more similar and have the same amino acid for a particular position also have codons with

the same nucleotide (nt) at the third position. ‘TGA’ codons or ‘stop codons’ are found within

the translated sequence, here these code for tryptophan, as seen in human and yeast mitochon-

dria [49]. A variation in the length of the sequences was observed, with an average length for

ATP6 nt sequence of 683 and 74 nt for ATP8 gene sequences. The ATP6 sequence ends with a

TAA stop codon in all species except the two red blooded Antarctic fish species, N. coriiceps
and E. maclovinus.

Overlapping genes

The overlap between genes is encoded on the same strand (Table 1). The length of overlap was

22 nt in ATP8-ATP6 for the five of the six species of Notothenioidei suborder, that is excluding

Fig 1. Multiple sequence alignment for nucleotide sequences of ATP synthase subunit 8. Multiple codon alignment

of nucleotide sequences of ATP synthase subunit 8 was created using the Clustal omega alignment of nucleotides we

screened five Antarctic and one sub-Antarctic fish species and eight vertebrate outgroups same as ATP6 MSA (See Fig

1 for colour key). The highlighted boxes show the overlap of the ATP8 and ATP6 sequences for different species where

different colour of the boxes correspond to the different lengths of overlap.

https://doi.org/10.1371/journal.pone.0245822.g001
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icefish C. gunnari where the overlap was of 10nt. Species H. sapiens, H. glaber, L. borealis and

C. porcellus had an overlap of 43nt between ATP6 and ATP8. The shortest overlap between the

two genes were observed in the species A. carolinesis has an overlap of 10nt and N. furzeri and

D. rerio, have an overlap of 7nts.

Protein alignment and structural changes in ATP6

The complete amino acid sequences for ATP8 and ATP6 were aligned separately for the four-

teen vertebrate species (see Figs 3 & 4). Protein sequence alignment showed conserved residues

across the species based on identity and similarity. Four Antarctic fish species, N. coriiceps, T.

bernacchii, C. rastrospinosus, C. aceratus and the sub-Antarctic E. maclovinus have four amino

acids at the N-terminal with a total of 231 residues. As previously mentioned, the only excep-

tion to this, is the species C. gunnari with 227 residues similar to that of other fish species, N.

furzeri and D. rerio. Species H. sapiens, A. carolinesis, L. borealis, H. glaber and C. porcellus
have 226 residues and B. mysticetus has 225 residues. The protein ATP6 in vertebrates is

known to have 226–228 residues. In humans, four point mutations in the ATP6 gene account

for 82% of disease associated with this gene, suggesting point mutations could have physiologi-

cal relevance [50,51]. Common features in all fourteen species were as follows: (1) several

hydrophobic amino acids (light pink) were observed to be conserved across the sequences in

Fig 2. (a-d) Multiple sequence alignment for nucleotide sequences of ATP synthase subunit 6. Multiple codon alignment of nucleotide sequences of

ATP synthase subunit 6 was created using the Clustal omega alignment of nucleotides for five Antarctic and one sub-Antarctic fish species and eight

vertebrate outgroups and visualised) using MATLAB. The colour of the codon boxes corresponds to the respective amino acid (See colour key).

https://doi.org/10.1371/journal.pone.0245822.g002
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the species, (2) insertions and deletions of amino acids occurred more frequently near N-ter-

mini, and (3) the C-terminal of the protein sequence is hydrophilic. Dashes in the amino acid

sequence represent gaps which may be an insertion or deletion of a residue. The gap in the

alignment is observed for the species H. sapiens, L. borealis, C. porcellus, B. mysticetus and H.

glaber at position 35, and at the C-terminal end for A. carolinesis and B. mysticetus, at position

226 and 225 respectively.

The amino acid at position 35 has predominantly hydrophilic residues except in the two

species C. gunnari and N. furzeri, where it is substituted with alanine or leucine respectively.

Fig 4. Multiple sequence alignment for protein sequences of ATP synthase F0 subunit 6. The ATP6 protein

sequences were aligned using Clustal omega and edited using zappo colour scheme.

https://doi.org/10.1371/journal.pone.0245822.g004

Fig 3. Multiple sequence alignment of ATP8 protein sequences. The ATP8 protein sequences were aligned using

Clustal omega and edited using zappo colour scheme in JalView. Notothenioidei are grouped together in blue; all

species are displayed to the colour corresponding to their phylogenetic closeness. (Colours according to physio-

chemical properties of amino acids; Aliphatic/hydrophobic-A, I, L, M, V- light pink; Aromatic-F, W, Y- mustard;

Conformationally special- Glycine, P- magenta; C-yellow; Hydrophilic- N, Q, S, Q, T- light green; Negatively charged/

D,E-Red; Positively charged/R,H,K-Blue) in jalview. The bar-graphs below represent a quantitative measure of

conservation at each position. The figure was created using JalView.

https://doi.org/10.1371/journal.pone.0245822.g003
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All the Antarctic species except C. gunnari, the sub-Antarctic species, E. maclovinus and sur-

prisingly H. sapiens from the mammalian species have a serine at this position. When we look

at the codon alignment of the ATP6 gene, serine is encoded by codon TCT predominantly at

position 39 for all the species except T. bernacchii and H. sapiens and the alanine for the species

C. gunnari is encoded by GCT (see Fig 2).

The logo (see Fig 5) displays the conserved amino acids in the protein ATP6 for a particular

position for 5947 vertebrate species. The protein is overall very conserved in the vertebrates,

and position 38–39 show conservation for amino acids serine and threonine as also seen in the

Antarctic species (except C. gunnari) and E. maclovinus.
A similar pattern was found in the amino acid alignment of ATP8, where the species, H.

sapiens, B. mysticetus, H. glaber, C. porcellus and L. borealis, that showed a gap in the previous

alignment have hydrophilic residues whereas the other species have a gap at the position 47.

This observation could be attributed to the overlapping nature of the nucleotide sequences

coding for the two proteins. The protein sequence of ATP6 was observed to be more conserved

than ATP8. The amino acid sequences at the N- terminal are more diverse, and the methionine

residues are usually followed by amino acids with short polar side chains [52]. Alanine is a

non-polar amino acid whereas serine is a polar amino acid. The hydrophobicity plot, average

flexibility, mutability, and coil prediction across the sequences has shown that T. bernacchii
and E. maclovinus show similar trends in their physico-chemical properties across the

sequence. Notothenia coriiceps, C. aceratus and C. rastrospinosus follow this trend. Champsoce-
phalus gunnari is the only species out of the seven fish species compared, that is different from

the others (see Fig 6).

Protein structure differences were predicted at position 38–39 for species C. gunnari (ice-

fish), N. furzeri, D. rerio and A. carolinesis, where a strand-strand structure is found at that

position. All other species have coil structures at those positions (see Fig 7). For species T. ber-
nacchii and E. maclovinus there is also a prediction for a strand structure at positions 42–43.

Fig 5. Sequence logos displaying conservation of residues created for all aligned blocks of the MSA for protein

ATP synthase F0 subunit 6 for 5947 vertebrate species from NCBI using webserver WebLogo (http://weblogo.

threeplusone.com/) the y axis represents probability of the residue occurring at that position from the MSA.

https://doi.org/10.1371/journal.pone.0245822.g005
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Discussion

We present our analyses highlighting differences in sequence and structure observed in the

two proteins of complex V, ATP8 and ATP6, encoded by mtDNA between the red- and white

blooded species of suborder Notothenioidei. Our analyses are based on the current genome

annotation available which is subject to change as more information becomes available. We

have only selected RefSeq sequences as these are reviewed by NCBI and represent a compila-

tion of the current knowledge of a gene and protein products and is synthesised using infor-

mation integrated from multiple sources. RefSeq is used as a reference standard for a variety of

purposes such as genome annotation and reporting locations of sequence variation. It is

important to acknowledge however that database information is regularly updated and may

change. Currently, the RefSeq and GenBank entries available for a ATP6 sequences for the

Antarctic/sub-Antarctic fish, NC_015653.1, AP006021.1 (N. coriiceps), NC_039543.1,

MF622064.1 (C. rastrospinosus), NC_033386.1, KY038381.1 (E. maclovinus), NC_015654.1,

YP_004581502.1 (C. aceratus), which are submitted by different authors, have the start codon

as GTG for the five species of Notothenioidei suborder. The protein length of ATP6 has been

consistent in all the entries, 231 amino acids.

It has previously been shown that mitochondria from icefish are more tightly coupled than

those of their red-blooded counterparts [34]. Mitochondria that are tightly coupled usually

have competent membranes and protons can only get into the matrix by passing through com-

plex V. The red-blooded species N. coriiceps, E. maclovinus, T. bernacchii, the two icefish C.

rastrospinosus (devoid of hb, have mb), C. aceratus (devoid of hb, do not express mb but have

a nearly identical gene to that of C. rastrospinosus for mb), have an additional 12 nucleotides

at the N-terminal. The only exception to this is the icefish C. gunnari which is completely

devoid of both hb and mb. Since C. gunnari is the extreme of all the species of Notothenioidei

suborder in question in terms of loss of globins, the change observed could be an altered varia-

tion for the gene.

Fig 6. Primary sequence features of ATP Synthase F0 subunit 6 in species C. gunnari (red), C. rastrospinosus, C.

aceratus, N. coriiceps, T. bernacchii, E. maclovinus, N. furzeri and D. rerio. Red Box: N-terminal property changes,

Purple Box: Changes in properties observed at 35/39 variation, blue box: Conserved regions 90–170 (Active site 160–

169), Pink Box: C-terminal low hydrophobicity. A difference in the peaks have been observed for different properties

(highlighted) such as molecular weight and hydrophobicity of amino acid residues across the sequence and other

properties such as tendency of amino acid residues towards beta-sheet, bulkiness and flexibility.

https://doi.org/10.1371/journal.pone.0245822.g006
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GTG as an alternative start codon

The biosynthesis of proteins encoded by their respective mRNA requires an initiation codon

for their translation. ATG is the usual initiation codon but GTG has been reported as initiation

codon in some lower organisms, the frequency of annotated alternate codon in higher organ-

isms is found to be less than 1% [53]. An in-vitro study of GTG-mediated translation of

enhanced green fluorescent protein suggested that initiation with GTG codon regulates

expression of lower levels of the protein and a similar observation was made for the protein

endopin 2B-2 [54]. It has also been observed in a few human diseases that a mutation of the

ATG initiation codon to a GTG are associated with diseases such as beta-thalassemia and Nor-

rie disease, where GTG mutation leads to inactivation of the gene [55,56]. Another example is

Fig 7. Representative structures of ATP synthase F0 subunit 6 for the fourteen vertebrate species created using I-TASSER [41] suite and

visualised and edited using PyMOL v. 2.3.2. a) C. gunnari(-/-) residues 38 (valine) and 39 (isoleucine) shows strand structure b) C. aceratus(-/-)

residues 42(valine) and 43 coil (isoleucine), aligning with 38/39 in MSA, show a coil structure c) C. rastrospinosus(-/+) residues 42-Valine and

43-Isoleucine has a coil structure d) T. bernacchii(+/+) residues 42-Valine and 43-Valine show a strand structure e) E. maclovinus (+/+) residues 42

-Valine and 43-Valine show a strand structure f) N. coriiceps(+/+) residues 42 (Valine) 43 (isoleucine) has a coil structure. g) A. carolinesis residues 38

(Leucine) and 39(Valine) show a strand structure h) D. rerio residues 38 (tryptophan) and 39(Isoleucine) show a strand structure i) N. furzeri residues

38 (Tryptophan) and 39 (Leucine) show a strand structure. j) C. porcellus residues 38 (Isoleucine) and 39 (Asparagine) show a coil structure k) B.

mysticetus residues 38 (Isoleucine) and 39 (Asparagine) show a coil structure. l) H. glaber residues 38 (Isoleucine) and 39 (Asparagine) show a coil

structure—m) L. borealis residues 38 (Isoleucine) and 39 (Asparagine) show a coil structure.

https://doi.org/10.1371/journal.pone.0245822.g007
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a disruption caused by GTG as the initiation codon in the gene CYP2C19, which resulted in

poor metabolism of a drug, mephenytoin, when compared to the gene with an ATG initiation

codon [57]. Numerous studies on bacteria and lower organisms show GTG as a start codon,

where the non-methionine codon is initially coded for, however, when they act as a start

codon the initial amino acid is substituted with a methionine [54,58]. There is only a single

report of a vertebrate species, rat, where GTG is the start codon in mtDNA [59]. An ATG to

GTG exchange in human gene FRMD7 (FERM Domain Containing 7) has been found as a

first base transversion of the start codon that accounts for a mutation, causing morphological

changes in the optic nerve head [60]. The level of corresponding protein expression has been

shown to be lower when initiated using an alternative codon such as GTG rather than ATG

[54,61]. GTG was observed as a start codon for ATP8 in fish Philomycus bilineatus, which adds

onto the show GTG as an acceptable start codon [62].

A few but increasing number of mammalian genes have been found to give rise to an alter-

native initiation codon in regulatory proteins such as transcription factors, growth factors and

a few kinases in humans and rats. The finding in all these studies have shown a similar trend of

a lower level of protein production when compared to an ATG start codon [63–65]. It has

been shown that the fish inhabiting colder climates had undergone stronger selective con-

straints in order to avoid deleterious mutations [66,67]. MtDNA coding genes such as ATP6,

could be placed under selective pressures by low environmental temperatures. A larger ratio of

substitution for different sites could indicate proteins undergoing adaptations [68]. A decrease

in ATP6 activity previously reported, shows incomplete ATPase complexes that are capable of

ATP hydrolysis but not ATP synthesis. ATPase complexes completely lacking subunit a, were

capable of maintaining structural interactions between F1 and F0 parts of the enzyme but the

interactions were found to be weaker [69].

The GTG initiation for protein ATP6 in these fish species could suggest a common parallel

evolution of the translation machinery. The favouring of GTG as a start codon could also

mean a higher stability of the protein as GC base pair has higher thermal stability when com-

pared to the AT base pair which is attributed from stronger stacking interaction between GC

bases and a presence of triple bond compared to that of AT double bond [70].

Overlap of ATP8 and ATP6 genes

Protein coding genes ATP8 and ATP6 are located adjacent to each other and are overlapping

on the same strand in humans and other vertebrates, with an overlap of 44 nt (NCBI:

NC_012920.1) observed in the humans for the gene. It has been previously reported that

ATP8-ATP6 overlap is generally of 10 nt in the fish genome [71]. Species T. bernacchii, E.

maclovinus, N. coriiceps, C. rastrospinosus and C. aceratus show an overlap of 22 nts and C.

gunnari has a 10 nt overlap, as reported previously in other fish genomes mentioned above.

The overlap for the four out of six species of suborder Notothenioidei start from the third

nucleotide for codon AAG coding for amino acid lysine whereas for the other two species, T.

bernacchii and C. gunnari, it is encoded by AAA. It is hypothesised that overlaps are a mecha-

nism for reduction of genome size and regulation of gene expression [72,73], which is seen in

the species C. gunnari and the eight vertebrate outgroups.

The gene coding ATP8 ends with the stop codon TAG for all species of suborder Notothe-

nioidei and TAA for the other vertebrate species, a single exception to this was H. glaber that

ends with a TAG stop codon. It has been previously hypothesised that TAG is a sub-optimal

stop codon which is less likely to be selected. A study showed that the protein encoding genes

that end with TAA stop codons are, on average more abundant than those with genes ending

with TGA or TAG and further shows that a switch of stop codon TAG from TGA might pass
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through the mutational path of TAA stop codon which could be subject to positive selection in

several groups [74].

Protein alignment and structural changes in ATP6

The four Antarctic fish species, N. coriiceps, T. bernacchii, C. rastrospinosus, C. aceratus and the

sub-Antarctic E. maclovinus have four amino acids at the N-terminal of ATP6 and a total of 231

residues. As previously mentioned, the only exception to this is the species C. gunnari with 227

residues similar to N. furzeri and D. rerio. N-terminal addition of amino acids can influence the

properties of the protein, as it can change the molecular weight of the protein, the charge,

hydrophobicity, and this has been seen in the yeast meta-caspase prion protein Mca1 [75].

Amino acid position 35 is populated with predominantly hydrophilic residues, apart for the

two species C. gunnari and N. furzeri, where respectively, alanine and leucine are found. All

the other Antarctic fish species and E. maclovinus have a serine at this position. When we look

at the codon alignment of the ATP6 gene, serine is encoded by codon TCT at position 39 for

all the species except T. bernacchii (encoded by TCC) and the alanine for the species C. gunnari
is encoded by GCT. Serine is the only amino acid that is encoded by two codon sets. A com-

mon example of a missense mutation is where the single base pair can alter the corresponding

codon to a different amino acid. This base substitution even though affecting a single codon

can still have a significant effect on the protein production. It has been recently discovered that

serine at a highly conserved position is more often encoded in TCN fashion and will tend to

substitute non-synonymously to proline and alanine, which shows that codon for which serine

is coded indicate different types of selection for amino acid and its acceptable substitutions

[76]. This may be suggested as a reason for the presence of hydrophobic alanine observed in C.

gunnari at position 35.

The weblogo for protein ATP6 shows overall conservation across the sequence for the ver-

tebrates where the C-terminal of the protein is more conserved than the N-terminal. High con-

servation is observed from residues 85–112 and 165–185, as also seen in our MSA for the

fourteen species. The position 35 is seen to be conserved preferably for threonine or serine as

in the weblogo (Fig 5).

The hydrophobicity plot, average flexibility, mutability, and coil prediction across the

sequences highlights differences in the physiochemical properties across the sequence of pro-

tein ATP6 in the species C. gunnari.
The secondary structure of a protein is the way in which protein molecules are coiled and

folded in a certain way according to the primary sequence. Beta-strands give stability to the

structure of a protein, its intrinsic flexibility can sometimes return it to coil configuration in

order for the protein to perform other functions. Structural changes were observed at position

38–39 for species C. gunnari, N. furzeri, D. rerio and A. carolinesis, where strand-strand struc-

ture was predicted at that position. All other species are predicted to have coil structures at

those positions (Figs 6 & 7). Species T. bernacchii and E. maclovinus are predicted to have

strand structures at positions 42–43.

Protein structure, dynamics and function are all interlinked and it is vital to understand the

structure of a protein in relation to function to comprehend molecular processes [77]. We

have used the unique biology of the icefish to gain a better understanding of the variability of

ATP6 and ATP8 sequence and structure which has importance for mitochondrial function.

Conclusions

In this study we suggest that mitochondrial encoded protein ATP6 has an alternative start

codon GTG in the species of suborder Notothenioidei except for the hb-less C. gunnari. This
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could be related to a higher thermal stability with altered expression of this protein. Another

striking difference observed only in C. gunnari for the protein, was a substitution of hydro-

philic amino acid serine (TCT) to hydrophobic amino acid alanine (GCT). This could be a

base substitution for thymine to guanine at N1 position of the codon that might have a struc-

tural impact on the protein. Our predictions based on the available curated sequence data now

point to the need for targeted experimentation to understand the full physiological impact of

our findings.
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