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Abstract 
Marine dissolved organic matter (DOM) comprises a vast and unexplored molecular space. Most of it resided in the 
oceans for thousands of years. It is among the most diverse molecular mixtures known, consisting of millions of indi-
vidual compounds. More than 1 Eg of this material exists on the planet. As such, it comprises a formidable source of 
natural products promising significant potential for new biotechnological purposes. Great emphasis has been placed 
on understanding the role of DOM in biogeochemical cycles and climate attenuation, its lifespan, interaction with 
microorganisms, as well as its molecular composition. Yet, probing DOM bioactivities is in its infancy, largely because 
it is technically challenging due to the chemical complexity of the material. It is of considerable interest to develop 
technologies capable to better discern DOM bioactivities. Modern screening technologies are opening new avenues 
allowing accelerated identification of bioactivities for small molecules from natural products. These methods diminish 
a priori the need for laborious chemical fractionation. We examine here the application of untargeted metabolomics and 
multiplexed high-throughput molecular-phenotypic screening techniques that are providing first insights on previously 
undetectable DOM bioactivities.
Key points  
• Marine DOM is a vast, unexplored biotechnological resource.
• Untargeted bioscreening approaches are emerging for natural product screening.
• Perspectives for developing bioscreening platforms for marine DOM are discussed.

Keywords Marine dissolved organic matter (DOM) · Untargeted metabolomics · Ultrahigh-resolution mass spectrometry · 
High content screening · Cytological profiling

Introduction

Natural products (NPs) from plants have been used in 
various branches of traditional medicine for millennia 
(Chassagne et al. 2019) and, according to the World Health 
Organization (WHO), comprise primary health care therapy 
for ca. 80% of the population in developing countries (Farns-
worth et al. 1985). Accordingly, for three decades, phar-
maceutical companies have turned drug discovery efforts 
toward screening chemical libraries containing pure active 
compounds isolated from “medicinal” plants (Strebhardt and 
Ullrich 2008). As such the single “magic bullet” paradigm 
has dominated in the form of industrialized target-based 
drug-discovery screening campaigns trawling through ever 
larger chemical libraries (i.e., > 2 M compounds). How-
ever, such efforts have suffered high attrition rates, yield-
ing limited success toward discovery of new first-in-class 
drugs (Chassagne et al. 2019). In this scenario, searching 
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the potential of NPs is made difficult by technical con-
straints, for example the need to detect biological activities 
and isolate the active compounds responsible. Accordingly, 
novel screening strategies are actively sought (Horvath et al. 
2016).

In comparison with chemical scaffolds from known drugs, 
NPs span a wider and different chemical space than syn-
thetic derivatives (Feher and Schmidt 2002; Ganesan 2008; 
Grabowski and Schneider 2007), and still fewer than 20% of 
NP core structures and scaffolds are represented in commercial 
compound libraries (Hert et al. 2009). In this sense, NP chemi-
cal diversity, structural complexity, and their biological selec-
tivity present both an opportunity and a technical challenge for 
the development of novel drugs (Atanasov et al. 2015; Clardy 
and Walsh 2004). It is striking that while most NPs come from 
plants, many of today’s most useful medicines come from 
bacterial sources (Bérdy 2005). Most bacterial metabolites 
are laboratory isolated, with only a small subset being under-
stood at the level of the biological chemistry underlying their 
natural production (Davies 2006; Ueda 2021). Understanding 
how microbe interactions and micro-environment influence 
metabolite production and NP biosynthesis is an active area 
of research (Burgess et al. 1999; Patin et al. 2018; Traxler 
et al. 2013; Trischman et al. 2004), especially in the context of 
marine sediments (Tuttle et al. 2019). This is because marine 
NPs harbor the largest part of our planet’s natural biodiver-
sity (Mora et al. 2011) and has resulted in a long tradition of 
searching for new bioactive compounds from marine sources 
(Blunt et al. 2014; Gerwick and Moore 2012).

Marine NPs are extracted from marine organisms, such as 
bacteria (Baran et al. 2011; Mansson et al. 2011; Shin et al. 
2010; Wienhausen et al. 2017; Wietz et al. 2010), microalgae 
or macroalgae (La Barre et al. 2010; Parrot et al. 2019; Payo 
et al. 2011), fungi (Capon et al. 2003; Elnaggar et al. 2016; 
Höller et al. 2000; Kim et al. 2016; Klemke et al. 2004; Lang 
et al. 2007; Li et al. 2010; Luo et al. 2004), or animals (Alvarez 
et al. 2010; Connor and Gracey 2012; Ivanešivic et al. 2011; 
Karakash et al. 2009; Sarma et al. 2009; Schock et al. 2010; 
Soanes et al. 2011; Utermann et al. 2018). In recent years, the 
search for new marine NPs has strongly shifted from mac-
roorganisms to microorganisms, whereby 57% of new marine 
NPs reported came from marine microbial sources (Carroll 
et al. 2019). In this context, marine dissolved organic matter 
(DOM) represents a new paradigm shift in the blue biotech-
nological field. Marine DOM consists a large degree of small 
organic acids with amphiphilic properties that can be extracted 
from seawater through adsorption onto hydrophobic resins and 
promises a yet unexploited potential for blue biotechnology 
(Catalá et al. 2020; Müller et al. 2020). However, studying 
the biotechnological potential of DOM requires a variety of 
technical challenges to be addressed, and chemometric analyti-
cal fractionation is necessary to identify and isolate specific 
bioactivities therein.

Marine DOM: a plethora of chemicals

Marine DOM is one of the largest reservoirs of reduced 
organic carbon on the planet’s surface. The average liter 
of seawater contains < 1 mg of DOM, but considering the 
vast volume of the oceans, this adds up to a global reser-
voir exceeding 1 Eg of DOM (662 ± 32 Pg carbon; Hansell 
et al. 2009). As such, DOM contains a similar amount of 
carbon as atmospheric  CO2 (860 Pg carbon; Friedlingstein 
et al. 2019) and holds > 200 times the carbon inventory 
of the total marine biomass (Hansell et al. 2009). DOM 
is continuously released by all organisms in the ocean 
while they live and upon death. In addition, water-soluble 
decomposition products from vascular plants are carried 
by rivers into the ocean. Most DOM quickly turns over by 
marine microorganisms, but a minor fraction turns over 
very slowly and has accumulated over several millennia to 
the observable pool of DOM. Marine DOM contains mil-
lions of different compounds of low molecular mass and, 
therefore, is unarguably one of the most complex chemical 
mixtures on Earth (Dittmar 2015), comprising extremely 
low concentrations of diverse chemical constituents 
(Arrieta et al. 2015; Zark et al. 2017). Many of the DOM 
compounds are alicyclic, organic acids with amphiphilic 
properties (Dittmar and Kattner 2003; Hertkorn et al. 2006; 
Zark et al. 2017), and are similar in structure regardless of 
the aquatic origin (Zark and Dittmar 2018). While these 
general structural features are known, the full structure of 
only a very minor fraction of the compounds residing in 
DOM is known (Dittmar and Stubbins 2014) (Fig. 1).

Marine DOM: state‑of‑the‑art analytical 
methods for bioactivity detection

Ironically, the chemical complexity that makes marine DOM 
so fascinating as a potentially rich source of bioactive mol-
ecules makes marine DOM so intractable to conventional 
chemoanalytical fractionation and characterization. Interest 
in natural extracts stems primarily from their potential as 
a source for new chemical scaffolds that might yield new 
first-in-class drugs. Thus, useful characterization of a natu-
ral extract requires the identification of constituent chemis-
try, and therein the associated corresponding bioactivities 
of interest, and ultimately, the isolation of the molecules 
involved, ideally with insight on their mechanism of action 
(MoA). Inasmuch as the complex mixtures of deep-sea DOM 
may contain millions of yet unknown chemical entities, it 
is a major challenge to efficiently distinguish the constitu-
ent bioactivity properties. However, recently, this challenge 
begins to yield in face of a convergence of technologies and 
methods underlying new analytical strategies for detection 
and deconvolution of bioactivities.
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Marine DOM: sample preparation 
and extraction

Marine DOM must first be isolated for biotechnological use 
and for molecular characterization. For these purposes, marine 
DOM must be separated from the seawater matrix that con-
tains on average 35 g of inorganic salts, but less than 1 mg 
of DOM. Part of DOM can be extracted after acidification 
(pH 2) from seawater through adsorption onto hydrophobic 
resins (solid-phase extraction (SPE); Fu and Pocklington 
1983). Currently, the most rapid and effective technique for 

this purpose uses a modified styrene divinylbenzene polymer 
type sorbent yielding recovery rates exceeding 60% of bulk 
DOM from marine environments (Dittmar et al. 2008; Green 
et al. 2014). SPE yields salt-free DOM samples that can be 
analyzed by high-resolution analytical technologies like mass 
spectrometry (Benner et al. 1992; Catalá et al. 2020). Com-
pounds of higher molecular mass (> 1 kDa) or larger hydro-
dynamic diameter (> 1 nm) can be extracted from seawater 
via ultrafiltration. Ten to twenty percent of DOM falls into 
this high-molecular mass fraction. A promising, yet largely 
unexplored isolation technique is the combination of reversed 

Fig. 1  A molecular universe 
in the ocean. This illustration 
depicts the molecular complex-
ity of marine DOM. Most of 
this pool is chemically unidenti-
fied (big nebulous), with only 
2–3% of defined chemical 
structures (gray squares). The 
representative structures of 
marine DOM namely carot-
enoids, carboxylic-rich alicyclic 
molecules, and fucose were 
extracted from Arakawa et al. 
(2017), Hertkorn et al. (2006), 
and Repeta (2015), respectively
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osmosis and electrodialysis (RO/ED), which recovers up to 
80% of DOM from oceanic waters (Koprivnjak et al. 2009; 
Vetter et al. 2007).

Molecular characterization of marine DOM 
and chemometrics

Only few compounds can be separated with modern chroma-
tographic techniques from the complex DOM mixture. As 
such, most efforts on molecular characterization of DOM 
rely on techniques that are capable to resolve molecular fea-
tures of individual compounds or structures of complex mix-
tures. Chemometric data processing techniques have been 
developed to disentangle this complex information.

High-resolution mass spectrometry (HR-MS), coupled 
to bioinformatics tools, has gained popularity in non-tar-
geted analyses (Ulrich et al. 2019; Hollender et al. 2017). 
Ultrahigh-resolution Fourier transform ion cyclotron 
resonance mass spectrometry (FT-ICR-MS) is a powerful 
tool specially for analyzing complex mixtures. Because 
of the high mass accuracy and resolution, this method 
detects thousands of molecular formulas in complex mix-
tures without iterative fractionation (Marshall et al. 1998; 
Nikolaev et al. 2016). In marine DOM, more than 10,000 
molecular formulas and basic structural features have been 
identified with FT-ICR-MS (Hertkorn et al. 2013, 2016; 
Riedel and Dittmar 2014) (Fig. 2). FT-Orbitrap MS has 
become a widely available alternative HR-MS method in 
biogeochemical studies (Hawkes et al. 2016). It uses an 
electrostatic field rather than a magnetic field for separa-
tion of accumulated ions (Hu et al. 2005; Makarov 2000). 
Only via these HR-MS techniques, molecular formulas of 
individual compounds in highly complex mixtures such 
as DOM can be determined. However, HR-MS is unable 
to differentiate between structural isomers of a molecular 
formula (Zark et al. 2017; Hawkes et al. 2018).

The isomeric complexity within each molecular formula 
may be addressed via chromatographic separation prior 
to mass spectrometry or by fragmentation within the MS 
(Hawkes et al. 2018; Steen et al. 2020). Chromatography 
and other separation techniques allow the separation of 
DOM fractions, though only few individual compounds 
have been isolated from the complex mixture (Repeta 
2015). Putative structural annotations and detection of 
specific molecular biomarkers in DOM can be achieved 
(McCarthy et al. 1998; Meyers-Schulte and Hedges 1986; 
Petras et al. 2017). Hawkes et al. (2018) used online high-
performance liquid chromatography (HPLC) tandem 
HR-MS to explore the isomeric complexity of DOM. They 
concluded that fragmentation patterns from individual iso-
mers from a molecular mass are indistinguishable, given a 
greater isomeric complexity that previously thought. They 

also concluded that isomeric complexity is a ubiquitous 
feature of DOM in all aquatic systems.

Liquid chromatography tandem mass spectrometry 
(LC–MS/MS) has become standard for compound iden-
tification in natural substances research, and recently, 
an untargeted approach has been developed for identify-
ing putative library matches of specific molecular DOM 
compounds (Petras et al. 2017). LC can reduce sample 
complexity by separation molecules into fractions of dif-
ferent physical or chemical properties. In addition, MS/
MS fragmentation provides additional information for 
structural elucidation and allows comparison with data-
banks, if available (Wang et  al. 2016). When aligned 
LC–MS/MS spectra are used with molecular networking 
approaches (Aron et al. 2020; Petras et al. 2021), hun-
dreds of unique molecular features can be classified at 
the compound level (Kujawinski et al. 2017; Petras et al. 
2017). The online coupling of LC to HR-MS has also been 
introduced as an alternative to direct infusion HR-MS or to 
offline LC-HR-MS techniques, which have been the tradi-
tional biogeochemical approaches (Patriarca et al. 2018). 
Untargeted LC–MS/MS has been used to evaluate influ-
ences of microbial activities on the DOM composition. 
For instance, relevant lipids produced by diatoms were 
found in one of the first marine DOM studies to use this 
approach ( Kujawinski et al. 2017). Other studies proposed 
that putative amino acid–like and other compound classes 
were modified by bacterioplankton (Stephens et al. 2020), 
significant release of peptides by viral lysis of Synechococ-
cus (Ma et al. 2018), and an association between elevated 
microbial community richness and DOM composition of 
temperate lake DOM (Muscarella et al. 2019). Further-
more, via such metabolite profiling, dozens of metabolites 
(e.g., guanine, glutamic acid, phenylalanine, and ectoine) 
have also been determined in a variety of marine samples 
and as intracellular metabolites within marine microorgan-
isms (Johnson et al. 2020; Longnecker et al. 2018; Long-
necker and Kujawinski 2020).

It is important to note that some compound classes of 
DOM escape mass spectrometric detection because they do 
not ionize efficiently (Patriarca et al. 2020). Another con-
ceptual drawback of HR-MS via FT-ICR-MS or the Orbitrap 
technique is the long acquisition time. At highest resolu-
tion, a scan rate of 0.5 Hz or higher is required, which pre-
cludes coupling of fast separation techniques (such as GC) to 
HR-MS for the analysis of DOM. Time-of-flight mass spec-
trometers allow much faster scan rates, but largely because 
of their lower mass accuracy and resolution, application for 
the structural analysis of DOM has been scarcely developed 
(Lu et al. 2018, 2021).

Two-dimensional gas chromatography (GCxGC) coupled 
to MS was also used for the molecular-level identification of 
DOM compounds, such as terpenoids (Arakawa et al. 2017). 
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Fig. 2  More than ten thou-
sand molecular formulas and 
structural units have been 
identified in marine DOM. a A 
mass spectrum measured via 
ultrahigh-resolution mass spec-
trometry (15 T Fourier transform 
ion cyclotron resonance mass 
spectrometry, FT-ICR-MS) of the 
North Pacific Equatorial Interme-
diate Water with single asterisk 
indicating exemplary nominal 
mass (297 Da). b An HPLC–MS/
MS scan of isomeric mixture 
peaks from Nordic Reservoir 
natural organic matter (NRNOM) 
reference material, depicting the 
inability to distinguish fragmen-
tation patterns from individual 
isomers from a molecular mass 
(adapted from Hawkes et al. 
2018). c An example of an 
assigned structure (C22H18O12) 
based on a riverine DOM MS/
MS spectra and the METLIN 
database (adapted from Lu and 
Liu 2019). d The structural units 
identified by multidimensional 
nuclear magnetic resonance 
(NMR), in which each dot 
represents one structural feature 
(Hertkorn et al. 2012)
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This latter study proposed for the first time the abundance of 
isopropenoid structures in marine DOM. However, to sepa-
rate the DOM components by modern GCxGC, chemical 
reduction from oxygen-containing functional groups into 
their respective hydrocarbon backbones or derivatization is 
required.

Nuclear magnetic resonance (NMR) spectroscopy is 
standard to determine molecular structures of DOM. NMR 
and fragmentation approaches combined with ultrahigh-
resolution mass spectrometry have been applied to eluci-
date the structural diversity of DOM (Hertkorn et al. 2016; 
Kujawinski et al. 2016; Zark et al. 2017) (Fig. 2). NMR 
detects the resonance of NMR-active nuclei (i.e., 13C, 
1H, 15 N, 31P) in the presence of a strong magnetic field 
(Steen et al. 2020). Chemical shifts from multiple nuclei 
are measured in two-dimensional (2D) NMR spectroscopy 
techniques, which allow resolution of overlapping peaks, 
verification of the interpretation of the chemical shifts, 
and identification of specific structures. 1H and 13C NMR 
spectroscopy revealed high structural diversity of DOM 
(Hertkorn et al. 2016) (Fig. 2) and resolved specific struc-
tural subunits, including carbohydrates and carboxy-rich 
alicyclic moieties, along with a minor amount of aromatic 
compounds, including N-heterocycles (Repeta 2015). The 
alliance of NMR and ultrahigh-resolution mass spectrometry 
to provide insights into the sources of refractory DOM com-
ponents is on the rise (Abdulla et al. 2013; Aluwihare and 
Meador 2008; Hertkorn et al. 2006). Chemometric statistical 
methods allow combining NMR data with mass spectrom-
etry data using multivariate statistics, for example to identify 
structural components and pathways of metabolic perturba-
tions or to determine the biotransformation of metabolites 
on short timescales (Jaeger and Aspers 2014).

Complex datasets generated in targeted and untargeted 
metabolomics require novel tools for data analysis (Steen 
et al. 2020). Molecular networking and fragmentation tree 
algorithms have become key methods to visualize and anno-
tate the chemical space in non-targeted mass spectrometry 
data. Metabolomics analysis software infrastructures, such 
as METLIN (Smith et al. 2005), mzCloud (https:// www. 
mzclo ud. org/), MetaboLights (Haug et al. 2020), or Metabo-
Analyst (Chong et al. 2018), focus on search, annotation, and 
store of MS/MS spectra. However, neither of those allows 
free download of its reference library and enables searching 
a single MS/MS spectrum for identical or analogous MS/
MS spectra in public data repositories (Wang et al. 2020). 
MZMine 2 (Pluskal et al. 2010) and XCMS (Smith et al. 
2006) are processing methods that support both targeted 
and non-targeted analyses. SIRIUS 4 (Dührkop et al. 2019), 
ClassyFire (Feunang et al. 2016), and MetFrag (Ruttkies 
et al. 2019) also facilitate the ability to identify unknown 
compounds. Offering an assembly of all crucial data pro-
cessing steps in combination with diagnostic tools for each 

critical step, the open access server-based tool ICBM-
OCEAN offers an all-in-one tool applicable to any complex 
organic mixtures, including marine DOM (Merder et al. 
2020).

Faced with the rapid growth in MS data availability and 
the deposition of untargeted MS data in the public domain 
(Haug et al. 2020; Perez-Riverol et al. 2019; Sud et al. 
2016), the Global Natural Product Social Molecular Net-
working (GNPS) was developed to connect all public data 
(Wang et al. 2016). GNPS provides public dataset deposition 
and/or retrieval through the Mass Spectrometry Interactive 
Virtual Environment (MassIVE) data repository (Wang et al. 
2016), the feature-based molecular networking (FBMN) as 
an analysis method (Nothias et al. 2020), and the web-based 
system MASST to search the public data repository part 
of the GNPS/MassIVE (Wang et al. 2020). Recently, the 
web-based GNPS Dashboard was also integrated to facili-
tate inspection, visualization, analysis, and sharing of pri-
vate and public mass spectrometry data remotely (Aron et al. 
2020; Petras et al. 2021). A first large-scale application of 
FBMN for the analysis of marine organic matter composi-
tion has been recently done (Petras et al. 2021). Other stud-
ies have used GNPS to get access to the complexity of DOM 
molecules at a more precise level of molecular annotation 
(Petras et al. 2017) or to create a molecular network and 
to search against GNPS spectral libraries (Stephens et al. 
2020). These approaches consider the annotated features to 
be “putative” identifications that have not yet been verified 
by reference standards, but are based on spectral similarity to 
data from public or commercial libraries (Longnecker et al. 
2015;Kujawinski et al. 2017).

Even though molecular networking, spectral and struc-
tural databases, statistical significance estimation, and in 
silico and community-based annotation criteria have signif-
icantly improved the annotation of MS/MS spectra (Horai 
et al. 2010; Wang et al. 2016; Watrous et al. 2012), the 
annotation of compounds that are not covered by spectral 
libraries remains as major challenges (Petras et al. 2021). 
This is particularly evident in marine DOM, as its molecular 
diversity exceeds that of any characterizable metabolome.

Biological activity of marine DOM: 
phenotypic screening

Biological activity involves both molecular characteriza-
tion and bioactivity assays. In face of this challenge, high-
throughput molecular-phenotypic screening technologies 
combined with machine learning and statistical compu-
tational methods are emerging at the cutting edge. High-
content screening (HCS) methods using image-based mor-
phological analyses or “phenotypic screening” are showing 
unique promise as the technology tools for addressing the 
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major challenges associated with screening natural product 
libraries and extracts, especially in the area of antibiotic dis-
covery and infectious disease, notably cytological profiling.

Cytological profiling found its inspiration from next-gen-
eration concepts originally developed by early HCS studies 
using image-based phenotypic analysis in higher eukary-
otic cells (Mayer et al. 1999; Mitchison 2005; Perlman et al. 
2004). Specifically, milestone studies describing systematic 
multidimensional drug profiling by automated microscopy 
based on the premise that “…large sets of unbiased meas-
urements might serve as high-dimensional cytological pro-
files analogous to transcriptional profiles” (Perlman et al. 
2004). This experimental framework asserts that the cel-
lular morphological phenotype may be considered albeit as 
a complex readout providing insight on the underlying bio-
chemical, molecular, and ultimately genomic disposition of 
a response to perturbagen. This hypothesis encapsulates the 
postulate that the structural morphology of a cell visualized 
by means of optical microscopy comprises albeit convolved 
image features characteristic to specific epigenetic states. 
This profound yet intuitively self-evident idea has provoked 
considerable efforts to establish systematic means detect 
and quantify such characteristic features using a variety of 
innovative imaging methods. For a host of reasons, these 
efforts have emerged in the field of high-content screening 
for drug discovery where it has led to exciting developments 
aimed at enhancing phenotypic screening. For example, Cell 
Painting combines the powerful utility of subcellular orga-
nelle targeting fluorescent probes with machine learning to 
quantify literally thousands of image-based features per cell 
and, in turn, quantify specific morphological response pat-
terns characteristic of chemogenomic perturbagens in higher 
eukaryotes (i.e., drugs, mutagenesis, disease states) (Bray 
et al. 2016, 2017; Bray and Carpenter 2018; Scheeder et al. 
2018; Woehrmann et al. 2013). The utility of such meas-
urements has even extended to providing insight on natu-
ral product libraries using single-cell phenotypic analysis 
in higher eukaryotic cells, for example HeLa cells (Kremb 
and Voolstra 2017), including “function first mode of action 
profiling” (Schulze et al. 2013), and “compound activity 
mapping” (Kurita et al. 2015).

Of special note are the cytological profiling studies 
reported by Nonejuie et al. (2013) and Woehrmann et al. 
(2013) because they pioneered the arguably more challeng-
ing imaging approach performed directly in bacterial cells 
rather than higher eukaryotic cells. Seminal work has dem-
onstrated the value of cytological profiling and cluster-based 
analyses (e.g., principal component analysis (PCA), random 
forest (RF), etc.) in bacterial models to successfully iden-
tify candidate antibiotic molecules, and their correspond-
ing mechanisms of action from natural product extracts and 
bacterial isolate libraries (Nonejuie et al. 2016; Wong et al. 
2012). Indeed, these works have proven value demonstrating 

how phenotypic screens allow analyses of subtle submaxi-
mal doses of chemical perturbagens directly in bacteria 
based on the quantification of changes in bacterial cell fea-
tures revealed by specific fluorescent stains for membranes, 
DNA, and membrane permeability. As reviewed recently, 
Genilloud (2019) observed: “The integration of this strat-
egy in a multiparametric, high-content screening approach 
based on monitoring the lowest effective dose determining 
a phenotypic change has permitted the investigation of low 
potency hits from industrial collections and the identification 
of novel antibacterial compounds with differential modes 
of action at concentrations below the Minimum Inhibitory 
Concentration (MIC).”

Cytological profiling HCS methods are opening the way 
as a powerful means to investigate perturbagens displaying 
weak potency of inducing bacterial cell death or inhibiting 
bacterial growth under general screening conditions, making 
these methods ideal for identifying bioactivities in complex 
natural extracts and their fractions therein. As such, pheno-
typic strategies using cytological profiling could provide a 
new approach for detecting bioactivities in marine DOM.

Combining data from multiple technologies 
opens new ways to analyze marine DOM 
bioactivities

Combining multiple data streams from different assays and/
or screening technologies can provide powerful experimen-
tal recourse for describing biological states (sometimes 
referred to as “multiplexed” analyses). In this manner, 
image-based cytological profiling data combined with tran-
scriptional expression can offer powerful complementarity 
for screening compound libraries. For example, Zoffmann 
et al. (2019) screened antibacterial activity of 1.5 million 
compounds from the Roche compound library against 
selected gram-negative pathogenic bacteria (Acinetobacter 
baumannii, Escherichia coli, Klebsiella pneumoniae, and 
Pseudomonas aeruginosa) using combined multiparametric 
HCS imaging and transcriptomics (gene expression). For 
each perturbagen, semi-automated image analysis provided 
a quantitative bacterial response profile: the “bacterial phe-
notypic fingerprint” (BPF) that when correlated with gene 
expression revealed prospective MoA. The manifold supe-
riority of this approach stems from its capacity to detect 
subtle continuous effects compared with binary readouts 
common to conventional assays (i.e., bacterial growth or 
live/dead measurements). In this context, low-potency, weak 
antibacterial hits can, in fact, be exploited as leads to guide 
chemical structure activity relationship optimization toward 
antibiotic development.

It would be interesting to see how such multiplexed 
screening might help characterize marine DOM samples. 
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Notably, an unresolved paradox is addressed in this review, 
namely why does bioactive DOM accumulate in the ocean? 
It was recently demonstrated that extreme substrate dilution 
limits the turnover of DOM in the ocean (Arrieta et al. 2015). 
According to this dilution theory, the individual components 
in DOM are simply too dilute in seawater to be reactive. 
Marine DOM is among the most complex molecular mix-
tures on Earth, and ten thousands of different molecular for-
mulae and thousands of structural units (Fig. 2) have already 
been identified in this mixture to date (Hertkorn et al. 2006; 
Riedel and Dittmar 2014). Accordingly, the concentration 
of each compound is very low. The dilution theory implies 
that when sufficiently high concentrations are reached, most 
DOM becomes reactive. In fact, antioxidant potential and 
a clear microbial response were induced by increasing the 
marine DOM concentration (Arrieta et al. 2015; Catalá 
et al. 2020). As a classification tool, it could be potentially 
applied to screen for antibacterial compound leads, yielding 
simultaneously possible MoA, and hence might increase the 
chance to home in on previously unknown antibiotic (bioac-
tive) chemical space.

Recently, a multiplexed screening strategy combined 
analysis using cytological profiling and metabolomics 
yielding bioactivity characterization termed “metabolic fin-
gerprints of entire ecosystems” (Müller et al. 2020). First, 
untargeted ultrahigh-resolution mass spectrometry was used 
to capture the chemical space of 305 aquatic ecosystem sam-
ples collected across five continents (Europe, Africa, Aus-
tralia, North America, and Antarctica). The “metabolome 
of entire ecosystems” (MeE) was defined as the entirety 
of small (< 1 kDa) molecules in these complex extracts. 
The MeE of all samples was then correlated according to 

screening results using a cell-based full-replication HIV-1 
assay (EASY-HIT) (Kremb et al. 2010), uncovering sam-
ples capable of “strong” to “very potent” HIV-1 inhibition. 
Supervised machine learning extrapolated the highest statis-
tical power for differentiation of anti-HIV activity, yielding 
ten molecular formula candidates of most potent anti-HIV 
characteristics. Following the assessment of antiviral activ-
ity, the complex extracts were subjected to a further com-
prehensive HCS approach: Cell Painting. Specifically, fluo-
rescent dyes targeting 11 cellular structures (nucleus, actin, 
tubulin, mitochondria, whole cell, endoplasmic reticulum, 
lysosomes, membranes, NF-kB, caspase-9, p53) yielded 
134 cellular measures and therein a characteristic cytologi-
cal profile. Screening ecosystems containing at least one 
antiviral sample cytological profile were cross-referenced 
to cytological profiles obtained by the same method from 
a library of 720 bioactive reference compounds (Bray et al. 
2017; Pennisi 2016). Orthogonal analyses using cytologi-
cal profiling revealed HIV-inhibitory MeE samples in four 
major clusters. Remarkably, one of these was comprised 
from entirely unique characteristics indicating the pres-
ence of chemistry linked to a new MoA. Thus, performed 
on minimally processed complex mixtures, this study dem-
onstrated how relatively low-cost multiplexed analyses can 
help mitigate risk associated with the decision to commit 
heavier resources (Schmitt et al. 1996, 1997; Woods et al. 
2010, 2011), which are required for isolation of chemistry 
pursuant of worthwhile bioactivity.

Concluding remarks and future directions

Among the most compelling characteristics of DOM is the 
high chemical complexity that may provide a rich source of 
both previously unknown chemical scaffolds and new drug-
gable targets. This same complexity raises challenges too; 
for example, chemical separation is made difficult, obfuscat-
ing isolation of specific molecules underlying specific MoA 
or biological activities of interest. Evidently, preliminary 
screening methods capable to assess bioactivity without 
chemical fractionation are a powerful asset to prospect-
ing DOM samples. In this review, we have highlighted the 
emerging potential of both ultrahigh-resolution analytical 
techniques and phenotypic HCS methods that both appear to 
lend themselves as cutting-edge tools to help address these 
challenges. We propose interplaying technology workflows 
and integrating phenotypic HCS with ultrahigh-resolution 
MS, providing a guide to enhance conventional chemical 
separation and fractionation methods (Fig. 3).

Bioactivity research on DOM raises other intriguing 
questions, for example whether the bioactivity detected 
in complex organic mixtures is an effect of the spe-
cific activity of individual constituents, or an emergent 

Fig. 3  Emerging bioactivity screening paradigm targeting complex 
mixtures. a Sample acquisition via solid-phase extraction. b First-
step fractionation. c Molecular characterization of complex mix-
tures via ultrahigh-resolution mass spectrometry (left), tandem mass 
spectrometry (middle), and molecular networks (right) to character-
ize chemomolecular fingerprints of natural extracts. d High-content 
phenotypic analyses: specific inhibition of cellular processes and/
or bioactivity or function (e.g., cell growth/death; cell image–based 
profiling; gene expression/functional analysis (transcriptomics, pro-
teomics, metabolomics), immune/inflammatory signal analyses, 
cytokines) and effect on infectious process (pathogen). e Next-gener-
ation analyses (e.g., multivariate statistical analyses, machine learn-
ing, neural networks, deep learning). f Iterative fraction-by-fraction 
comparative analyses and selection (positive, negative, and new 
activities, i.e., revealed or enhanced after fractionation). g Iterative 
specialization process with bioactive samples. Here, analyses can be 
developed beyond outright binary growth inhibition/cell death–type 
readouts and nuanced with more sensitive/sophisticated combinato-
rial and/or orthogonal readouts combining, for example, cytological 
characteristics, and/or more subtle molecular phenotypic readouts. 
Single asterisk, Petras et  al. (2017); double asterisks, Merder et  al. 
(2020); triple asterisks, Aulner et al. (2019)

◂
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poly-pharmacological property arising from the molecu-
lar diversity of the complex natural mixture. Multiplexed 
screening workflows like that shown in Fig. 3 using phe-
notypic cell-based assays are capable to provide empirical 
evidence of such emergent properties.

With the recent and general resurgent interest in natu-
ral extracts, bioactivities detected by empirical screening 
analyses, may not necessarily require chemical isolation 
in order to be legally subject to regulatory standardization. 
Distinct biological activities detected in samples collected 
from diverse ecosystems is burgeoning interest in DOM for 
a variety of biotechnological, pharmaceutical, and “cos-
meceutical” applications (Catalá et al. 2020; Müller et al. 
2020; Zhernov et al. 2016). Innovative combined technolo-
gies screening for bioactivities using untargeted biological 
models and chemical analysis are certainly helping dive 
deeper into characterization of the biotechnological poten-
tial of marine DOM.
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