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0Abstract

Computed X-ray Tomography is a non-destructive technique that allows

three-dimensional imaging of soil samples’ internal structures, deter-

mined by their density and atomic composition variations. The objective

of this thesis is to develop an image processing work�ow for the quan-

titative analysis of ice cores using high-resolution CT to determine the

volume fraction and vertical distribution of ice, mineral, gas, and organic

matter in permafrost cores. I analyzed a 164 cm permafrost core taken

from a Yedoma permafrost upland on Kurungnakh Island in the Lena

River Delta (northeast Siberia). The obtained results were evaluated and

compared with the results of detailed but sample-destructive laboratory

analysis. The frozen permafrost core was subjected to a computerized

X-ray imaging procedure with a resolution of 50 micrometers. As a result,

I obtained 37000 images. Image segmentation was made with a multilevel

thresholding method. Threshold values were determined based on the

histograms of the images using Java-based image processing software (Im-

ageJ). In addition, the vertical pro�les were analyzed in 1-2cm intervals.

Bulk densities and volumetric ice content (VIC) were received by freeze-

drying and standard laboratory analysis. Here I show that the CT method

cannot estimate pore ice in the silty permafrost material at the current

resolution but can detect excess ice. CT method allows distinguishing

well between ice-saturated mineral soil and organic matter. Automatic

thresholding methods cannot obtain an accurate result and perform over-

all worse than the manual thresholding method. Comparison between CT

and laboratory results shows that data derived from both methods overall

demonstrate similar patterns but with di�erent magnitudes. The image

processing technique to quantify VIC provides a non-destructive analog

to traditional laboratory analysis that could help increase the vertical

resolution for quantifying mineral, ice, gas, and organic components in
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permafrost cores and enhance the volumetric estimate.

Keywords: computed tomography; image processing; freeze-drying;

CT scanning; processing technique; laboratory analysis; X-Ray; image

processing software; ice content; non-destructive
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0Abstract (German)

Die Röntgen-Computertomographie ist eine Technik, die es ermöglicht

eine dreidimensionale Darstellung, der inneren Strukturen von Bodenpro-

ben anzufertigen, ohne diese zu zerstören. Die innere Struktur wird, durch

die durch die Variationen ihrer Dichte und atomaren Zusammensetzung

bestimmt. Ziel dieser Arbeit soll es sein einen Bildverarbeitungsprozess

für die quantitative Analyse von Eiskernen mit Hilfe hochau�ösender

Computertomographie zu entwickeln, um den Volumenanteil und die

vertikale Verteilung von Eis, Mineralien, Gasen und organischem Material

in Permafrostkernen zu bestimmen. Ich habe einen 164 cm langen Per-

mafrostkern, entnommen von der Insel Kurungnakh im Lena-Flussdelta

(Nordostsibirien) aus dem Permafrosthochland Yedoma. Die gewonne-

nen Ergebnisse wurden mit einer detaillierten, aber stichprobenartigen

Laboranalyse verglichen. Der Permafrostkern wurde einem computer-

gestützten Röntgenbildgebungsverfahren mit einer Au�ösung von 50

Mikrometern unterzogen. Ich erhielt 37000 Bilder. Die Bildsegmentierung

erfolgte mit einer mehrstu�gen Schwellenwertmethode. Die Schwellen-

werte wurden auf Grundlage der Histogramme der Bilder mit einer Java-

basierten Bildverarbeitungssoftware (ImageJ) ermittelt. Zudem wurden

die vertikalen Pro�le in Abständen von 1-2 cm analysiert. Schüttdichte

und volumetrischer Eisgehalt (VIC) wurden durch Gefriertrocknung und

Standard-Laboranalysen ermittelt. Mit dieser Arbeit zeige ich, dass die

CT-Methode das Poreneis nicht im schlammigen Permafrostmaterial bei

der gegebenen Au�ösung nicht abschätzen kann, dafür kann man damit

aber überschüssiges Eis nachweisen. Die CT-Methode ermöglicht eine

gute Entscheidung zwischen dem eisgesättigtem Mineralboden und orga-

nischem Material. Automatische Schwellenwertverfahren können keine

genauen Ergebnisse erzielen und schneiden insgesamt schlechter ab als

das manuelle Schwellenwertverfahren. Der Vergleich zwischen CT- und
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Laborergebnissen zeigt, dass die mit beiden Methoden gewonnenen Daten

insgesamt ähnliche Muster aufweisen, wenn auch in unterschiedlichem

Ausmaß. Die Bildverarbeitungstechnik zur Quanti�zierung von VIC bietet

ein zerstörungsfreies Pendant zur traditionellen Laboranalyse, das dazu

beitragen könnte, die vertikale Au�ösung für die Quanti�zierung von

Mineral-, Eis-, Gas- und organischen Komponenten in Permafrostkernen

zu erhöhen und die volumetrische Schätzung zu verbessern.

Stichworte: Computertomographie; Bildverarbeitung; Gefriertrocknung;

CT-Scan; Verarbeitungstechnik; Laboranalyse; Röntgen; Bildverarbei-

tungssoftware; Eisgehalt; zerstörungsfrei
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1 Introduction

Due to a warming climate in the Arctic region, abrupt thawing of ice-

and carbon-rich permafrost is expected. Permafrost is a part of the cry-

olithozone characterized by seasonal freeze and thaw of the upper layer.

It is temperature-de�ned, so any ground that remains below 0°C for two

consecutive years is considered permafrost (Harris, 1988 [1]). The extent

of the permafrost region is around 21 million km
2
, designating 22% of

the entire Northern Hemisphere’s exposed land surface (Obu, 2021 [2])

and primarily distributed in the north of Alaska, Canada, Siberia, and

Greenland. Northern hemisphere permafrost soils contain 1460-1600 Pg

terrestrial organic carbon, which is equivalent to about twice the carbon

currently in the atmosphere (Tarnocai, 2009 [3]; Hugelius, 2014 [4]). It is

also known that permafrost thawing is going to accelerate because the

Arctic temperatures are expected to increase at about twice the global rate

(IPCC, 2019 [5]). Thawing permafrost releases methane (CH4) and carbon

dioxide (CO2) into the atmosphere, contributing to additional warming

(Richter-Menge, 2009 [6]; Schaedel, 2016 [7]). The release of greenhouse

gases from permafrost is a consequence of and a driver for global warm-

ing. Further global warming may increase mobilization of ancient organic

carbon, posing positive feedback on global warming. In addition to the

emission of gases, the thawing of permafrost brings with it many di�erent

adverse consequences: both on a large scale - global climate, economics,

and small scale - local biodiversity, people, water supply, infrastructure

(Boike, 2012 [8]; Schneider von Deimling, 2020 [9]). Studying thawing

permafrost is particularly important because once it is thawed, the ground

loses volume, and subsidence occurs, which causes further destabilization.

Besides destabilization, when permafrost thaws, the ground ice distributed

in the soil causes a massive in�uence on erosion processes, hydrology,
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Chapter 1 Introduction

and development of landforms (van Huissteden, 2020 [10]). Availability of

vast amounts of ground ice directly increases the susceptibility of soils to

erosion and subsidence (van Huissteden, 2020 [10]). However, there are

still considerable uncertainties in the carbon pool estimates for Yedoma

deposits due to limited �eld data concerning ground ice, organic carbon

content and distribution, and bulk density (Tarnocai, 2009 [3]; Schirrmeis-

ter, 2011 [11]). The permafrost core analyzed in this thesis was sampled

from an ice-rich Yedoma permafrost upland on Kurungnakh Island, Lena

River Delta, northeast Siberia (72°21’N; 126°16’E; Fig. 1.1). Yedoma is

an organic-rich (about 2% carbon by mass) Pleistocene-age permafrost

with ice content by volume of 50–90% (Zimov, 1997 [12]). This region

is considered to be understudied, with a lack of knowledge regarding

the vulnerability and feedback in a changing climate (Grosse, 2013 [13]).

Kurungnakh Island is the easternmost portion of the structurally elevated

western delta and rises up to 55 m above sea level (Morgenstern, 2011

[14]). The core was drilled by expedition members of Alfred Wegener

Institute (AWI) and is 1.84 cm long (including the active layer), and has a

diameter of 7.5 cm.

Despite the importance of permafrost landscapes globally, we lack an

understanding of processes that lead to the thawing of permafrost, timing,

and magnitude of the permafrost carbon feedback on the climate system

(Schuur, 2013 [15]; Turetsky, 2019 [16]). In accordance with global climate

models, permafrost degradation will a�ect almost �fty percent of all

current permafrost in the northern hemisphere by 2100 (Boike, 2012 [8]).

Although all permafrost is a�ected by warming and thawing, the thawing

of ice-rich permafrost causes robust feedbacks to ground surface stability,

hydrology, ecosystem functionality, and topography (Rowland, 2010 [17]).

Exploration and analysis of the subsurface variability will enhance the

prediction of the role of these landscapes in a warming climate (Sieweert,

2021 [18]). Further analysis of permafrost cores’ physical, thermal, and

geotechnical properties and ground ice distribution will help predict thaw

processes and parameterize numerical climate models more accurately.

Another reason for permafrost cores to be of interest is that ground

2



Introduction Chapter 1

ice therein can be stored for an extended period, creating an enduring

palaeoenvironmental archive.

Figure 1.1: Study area (a) showing the core sampling site (image based on

GeoEye-1); on (b) Kurungnakh Island in the eastern Lena delta; in (c) north-

eastern Siberia. Panels (b) and (c) based on ESRI World Imagery. Sources: Esri,

DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid,

IGN, IGP, swisstopo, and the GIS User Community

The National Snow and Ice Data Center (NSIDC) de�nes ground ice as

a general term that refers to all types of ice contained in freezing and

frozen ground. In this thesis, I di�erentiate between two types of ice -

excess ice and pore ice. Excess ice (sometimes referred to as ground ice)

is sited in amounts exceeding soil porosity in the forms of ice wedges

and ice lenses. The amount of excess ice is vital since it can slow down
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Chapter 1 Introduction

permafrost thaw (Lee, 2014 [19]). It is estimated that the presence of

excess ice slows permafrost thaw with around a ten-year delay at 3 m

depth at most high excess ice locations (Lee, 2014 [19]). Pore ice, in turn,

is more subtle and amounts to less volume than excess ice, as it is ice that

is occurring in the pores of soils and rocks. The ground becomes frozen

ground when water situated in pores rocks, pebbles, soil - freezes. This

frozen water is called pore ice. The di�erence between these two types of

ice is related to the water content of the soil (Mackay, 1972 [20]). Once

pore ice thawed, soil, bound together by pore ice, does not receive excess

water, and therefore, thawing of pore ice causes no subsidence of the

ground. On the contrary, with excess ice, the consequences of thawing

are the opposite, and soil receives supernatant water (Mackay, 1972 [20]).

For the analysis of permafrost cores, they need to be drilled out (sampled),

which is one of the most signi�cant challenges in�eld practice for per-

mafrost scientists (Calmels, 2005 [21]). Drilling into the permafrost and

obtaining undisturbed and uncontaminated core samples is a nontrivial

task because it may be di�cult at higher latitudes in the continuous per-

mafrost zone. This task requires a certain level of preparation, equipment,

and skills. Being such a laborious job, it is quite understandable that these

data are available from relatively few sites and do not represent the whole

area. Considering the size of the territory and its inaccessibility, both

from geographical and economical point of view, up to the present time,

most researchers use not a volumetric but gravimetric ice content since

they do not have cores or volumetric containers. This shortage is also

related to di�cult access to the currently perennially frozen soil layers

(Zubrzyscki, 2012 [22]). It is particularly true for permafrost samples from

a depth of more than 0.5 m (Zubrzyscki, 2012 [22]). After the sampling,

the permafrost core was scanned by members of Helmholtz-Centre for

Environmental Research - UFZ.

Further analysis of permafrost cores may include Computed Tomogra-

phy scanning. The use of CT in geoscience in general, and in particular,

to examine permafrost sediments, is rapidly gaining pace (Mees, 2003
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[23]; Calmels, 2010 [24]; Cnudde, 2013 [25]). CT analysis has already

established itself as a fast, reliable, non-destructible, and precise method

that may also work both with macro and microstructures. This technol-

ogy has been actively used for geoscienti�c needs since the early 1980s

and has initially been principally developed for medical applications. As

with any other method, CT scanning is not infallible. However, most

possible errors are known and can usually be �xed during the image pre-

processing step. Within the CT method, it is also possible to characterize

soil cryostratigraphy. Classifying and identi�cation of both cryotexture

and cryostructure can explain the thermal history and origin of the sub-

strate by which permafrost was formed and developed (Gilbert, 2016

[26]) because morphology, preservation, and formation of ground ice are

all in�uenced by various environmental, climatic, and geologic factors

(Katasonov, 2009 [27]; Murton, 2013 [28]). CT images obtained through

scanning contain four easily distinguished fractions. I hypothesize that

the image processing method should be able to segment the permafrost

core into four constituents and quantify them. The image processing

method has been subsequently strengthened with a statistical analysis

method based on CT and laboratory data.

This thesis aims to contribute to a better understanding of the engagement

between classical laboratory and CT methods. By discussing various

physical and methodological approaches, the thesis aims to uncover both

methods’ advantages and limitations. Thus, the objectives set for the

thesis:

• To estimate volumetric ground ice/water, mineral, gas, and organic

matter content in permafrost sediment core using CT

• To compare the results of CT and laboratory analyses and evaluate

physical and statistical di�erences between them

• Investigate the results and di�erences of various image processing

techniques and settings

This research is based on an analysis of one permafrost core. However,
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Chapter 1 Introduction

once the results are validated, the work�ow could be used on the one

hand for permafrost cores at other sites and, on the other hand, may

contribute to discarding the unnecessary steps.

The thesis is structured as follows. Chapter 2 describes the whole method-

ology behind the analysis. Starting from sampling and scanning, it intro-

duces the laboratory analyses work�ow, image preprocessing and seg-

mentation processes, and implementation of statistical approach. Chapter

3 presents the research results acquired in this study. Chapter 4 discusses

the implications of the study results. Chapter 5 summarizes the �nal

results and suggests possibilities for future research on the topic.
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2 Methods

2.1 Sampling
In September 2017, during the �eld campaign, the permafrost core was

mechanically drilled by members of the AWI expedition. Figure 2.1a shows

the beginning of the sampling procedure with two scientists working with

STIHL BT 121 by Andreas Stihl AG and a Sipre coring auger. Fig. 2.1b

shows a part of the sampled core, from 20 cm to 102 cm approximately.

The permafrost core analyzed in this thesis was taken from a plateau.

The active layer thickness on the plateau was about 20 cm, which makes

the total permafrost core length at about 1.64 cm. The diameter of the

permafrost core was 7.5 cm. After the drilling, the permafrost core was

transported under frozen conditions to the AWI Potsdam ice laboratory.

Figure 2.1: (a) Sampling coring with STIHL BT 121 in action; (b) The result of

the sampling with visible transition from mixed phase into pure ice. Depth of

the core part on a photo is approximately 20 cm to 103 cm. Photos: Julia Boike
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Chapter 2 Methods

2.2 Scanning
The permafrost core was scanned in February 2019 in the Helmholtz

Center for Environmental Research. The scanning was performed with

an X-ray microtomography system (XT H 225, Nikon Metrology (nikon-

metrology.com)). The photo of the system and typical scanning material

are presented in Fig. 2.2. The reconstruction of three-dimensional im-

ages was made with CT Pro 3D software (Nikon Metrology) at a spatial

resolution of 50 µm and 8-bit grayscale resolution. An entire scan com-

prised 2000 projections. The total number of obtained images amounted

to 37091.

Figure 2.2: Overview of scanning procedure (a) CT Nikon XT H 225 (nikon-

metrology.com); (b) One of the cores inside the Nikon XT H 225 before scanning.

Photo: Julia Boike

Computed X-ray tomography is a non-destructive (preserving sample

integrity) technique that allows three-dimensional imaging of internal

structures of the body, determined by variations in their density and

atomic composition. CT scans are widely used for medical, geological,

8



Scanning Section 2.3

industrial, and cultural needs. X-ray computed tomography uses X-rays

and an electronic detector on the opposite side of the body to record a

pattern of densities. The brightness of any part of an image is directly

proportional to the attenuation of X-rays that pass through. The X-ray

beam rotates around the object and takes multiple measurements to

produce cross-sectional images of the body. The rotation distinguishes a

CT scanner from a conventional X-ray that uses a �xed X-ray tube. As

the X-rays leave the permafrost core, they are caught by the detectors

and transferred to a computer (Fig. 2.3). Thus, the internal structure of

the body can be reconstructed without destruction. After each completed

turn, the computer reconstructs a 2D image slice. The reconstruction step

has a signi�cant impact on image quality (Lifeng Yu, 2016 [29]). However,

users of CT scanners have �nite control over the internal procedure of

reconstruction. This control is limited to adjusting various parameters.

In general, there is always a tradeo� between spatial resolution and noise

for each kernel.

Figure 2.3: Schematic diagram of X-ray microtomography system. Image source:

Tan, 2015 [30]

9



Chapter 2 Methods

2.3 Laboratory analyses
In August 2020, the frozen core was cut into 1-2 cm pieces in the frozen

laboratory of AWI Potsdam by members of the SPARC AWI team (Figure

2.4). Before the cutting procedure, all surfaces and saw blades were

cleaned with ethanol. All members of the cutting team used sterile gloves

all the time. A total of 66 samples were obtained.

Figure 2.4: Work in the frozen laboratory. (A) one of the 164 cm core’s parts

in the laboratory; (b) cutting procedure performed by AWI member with chain

saw blade; (c) sample example, the diameter is 7.5 cm. Photos: Julia Boike

We started cutting with a higher resolution. The average thickness of

the �rst 12 samples was 0.9 cm, and the average volume of a sample was

39.9 cm
2
. However, later we have changed the strategy and cut the rest

coarser. The average thickness of the rest 54 samples was 1.9 cm, and the

average volume of a sample was 85.8 cm
2
. The diameter of all samples

was the same - 7.5 cm. Each permafrost core sample was photographed

from both sides, measured, weighed, and labeled. Table A1 in Appendix
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Laboratory analyses Section 2.3

provides detailed information regarding depth (start and end), thickness,

diameter, and volume for all samples. Plastic bags were weighed and

labeled as well. After the cutting procedure, all samples were stored in

the freezer at a temperature of –15 °C.

The measurements of permafrost core samples directly in laboratory

consisted of:

• Depth (start) [cm]

• Depth (end) [cm]

• Thickness [cm]

• Diameter [cm]

After the lab cutting procedure, further analyses were done in sediment

and geochemistry laboratories from September to December 2020. The

frozen soil samples were thawed at 100 °C and homogenized using a 2

mm sieve. After thawing, the meltwater was drained and extracted using

rhizones and used to calculate the water loss. Followed by calculations of

volumetric ice content, volumetric organic content (VOC), and volumetric

mineral content (VMC). The whole laboratory work�ow is depicted in

Fig. 2.5.
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Chapter 2 Methods

Figure 2.5: Flowchart of exploration and laboratory analyses of the samples

2.3.1 Bulk density
Bulk density is a property of soils and other masses of particulate material.

It is the density of a volume of soil as it exists naturally; it includes air

12
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space, organic matter, and soil solids (Mukhopadhyay, 2019 [31]). Unit

of bulk density is the unit of weight over the unit of volume - [g/cm3].

Before thawing the samples, some of their bulk densities were quanti�ed

with the method of water displacement (Froeb, 2011 [32]).

The bulk density of soil, in this thesis, is determined from sampled per-

mafrost core (Fig. 2.1); therefore, the total volume is known. From this

sample, the wet bulk density (d1 (|4C) [g/cm3]) and the dry bulk density

(d1 (3A~) [g/cm3]) can be determined. Wet bulk density consists of solid and

liquid bulk densities. Both wet and dry bulk densities can be calculated as

the weight of the soil particles divided by the total volume. Thus, the vol-

ume should be calculated �rst. Volume [cm3] was calculated accordingly

to the cylinder volume formula:

+ = c · (3/2)2 · C (2.1)

where d is diameter [cm] that is the same for all the samples and equal to

7.5 cm;

t - thickness of the sample [cm];

c - mathematical constant Pi

Wet bulk density was calculated as follows: �rst, I calculated total wet

weight without a bag ("||) [g] as:

"|| = "||1 −"1 (2.2)

where "||1 - wet weight (incl. bag) [g];

"1 - weight of sample bag [g]

Thus, wet bulk density [g/cm3] can be calculated as follow:

d1 (|4C) = "||/+ (2.3)
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Dry bulk density is calculated from wet bulk density [g/cm3], requiring

several calculations. First I found dry weight (incl. bag) ("3|1) [g]:

"3|1 = "||1 −,! (2.4)

where,! is water loss in [g] and is equal to wet weight - dry weight:

,! = "|| −"3| (2.5)

Then I found dry weight without bag ("3|) [g]:

"3| = "3|1 −"1 (2.6)

Thus, dry bulk density [g/cm3] can be found as follows:

d1 (3A~) = "3|/+ (2.7)

2.3.2 Volumetric ice content
Quanti�cation of ground ice is vital for correct interpretation of per-

mafrost systems and degradation modeling (Mollaret, 2020 [33]). However,

until now, + �� is rarely estimated due to di�culties related to retrieving

these data. In this thesis,+ �� was determined both within the CT method

and through laboratory analysis. This subsection focuses on laboratory-

derived results. Volumetric ice content [cm3/cm3] was calculated as water

loss [g] divided by volume [cm3] of the sample divided by ice density (916
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kg/m3 [34]) divided by 1000 in order to convert it to g/cm3:

+ �� =,!/+ /(?8/1000) (2.8)

Similarly, I calculated excess ice content (���) [cm3/cm3] using ,C>? -

water sitting on top of soil water instead of water loss [g]:

��� =,C>?/+ /(?8/1000) (2.9)

Lastly, pore ice content (%��) [cm3/cm3] was calculated simply as the

di�erence between + �� and ���:

%�� = + �� − ��� (2.10)

2.3.3 Volumetric organic content
Permafrost soils and sediments contain a large assortment of organic

materials. Yedoma permafrost is considered to be organic-rich permafrost

soil and contains a considerable amount of currently frozen organic car-

bon (Strauss, 2014 [35]). The carbon in the Yedoma region is preserved

well and available for decomposition after the thaw. In order to calculate

VOC, �rst total organic carbon [wt%] ()$�) should be determined. The

samples were measured two times with a)$� analyzer - Elementar Vario

MAX C, a device with prebuilt inorganic carbon removal (Strauss, 2015

[35]). However, all TOC analyzers actually only measure total carbon

(TC), while the determination of )$� requires calculations regarding

inorganic carbon (IC) that is always there. This step was done with acid-

i�cation of the sample to evolve carbon dioxide and measure it as IC.
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Acidi�cation was performed with 4% Hydrochloric acid.

Organic weight ("> ) [g] was calculated as:

"> = )$�/100 ·"3| (2.11)

Volumetric organic content [cm3/cm3]:

+$� = "3|/+ /(?>/1000) (2.12)

2.3.4 Volumetric mineral content
With permafrost thawing, organic carbon (OC) stored in frozen deposits

is unlocked and released. Simultaneously, mineral elements are unlocking

as well. These elements interact with OC, causing OC stabilization and

regulating methane and carbon dioxide emissions (Monhonval, 2021 [36]).

Moreover, certain mineral elements are limiting the nutrients needed for

the growth of plants and microbial metabolic activity (Monhonval, 2021

[36]). However, it is still unclear how exactly OC-mineral interactions

will evolve, as permafrost will continue to thaw (Opfergelt, 2020 [37]). To

calculate+"� , no new variables need to be introduced, and the work�ow

is similar to calculating +$� .

First, mineral weight ("<) [g] was found as follows:

"< = (1 −)$�/100) ·"3| (2.13)
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Later, VMC [cm3/cm3] was found as:

+"� = "3|/+ /(?</1000) (2.14)

For validation of the results of volumetric contents, it is possible to check

it with the sum of VIC, VOC, and VMC (volumetric fraction of air was

ignored due to negligible volume). The result approaches one.

2.4 Image preprocessing
Image preprocessing is a common term for procedures related to correc-

tion, enhancement, restoration, and compression of raw images. Prepro-

cessing aims to improve the images’ quality and obliterate noise, missing,

false or incomplete values. At the beginning of image preprocessing,

I was working with raw image data, and at the end of this procedure,

I received clean image data. Undoubtedly, image preprocessing alters

the images and changes the �nal result. However, smart application of

image preprocessing can bene�t the outcome while taking care of im-

ages issues (Chaki, 2019 [38]). Preprocessing (along with image analysis

and segmentation) was applied to the whole core length (163.7 cm). The

complete image preprocessing work�ow is shown in Fig. 2.6. Image

preprocessing steps are shown in orange color. All of them were made

on generated cross-sectional images with Java-based image processing

software (ImageJ/FIJI (Schindelin, 2012 [39])).
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Figure 2.6: Image preprocessing steps conducted in this work

Overall, four image preprocessing steps were performed before the image

analysis. The result of these image preprocessing steps is depicted in Fig.

2.7. This plot shows two versions of one random CT image, a raw one

(Fig. 2.7a) and fully preprocessed (Fig. 2.7b).
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Figure 2.7: Overview of image preprocessing result, where (a) depicts random

raw CT scan image and (b) is the same image but fully preprocessed and ready

for the analysis

The �rst step was to choose a proper Region of Interest (ROI). The di-

ameter of the core was 7.50 cm. However, the edges of each core were

raggy and uneven and did not represent a perfect circle. Therefore, indi-

vidual ROI was chosen for each scanned piece (image stack). The main

criteria in ROI selection were to choose the surface as big as possible

but without artifacts that may appear on the edge of the scanned image.

The second image preprocessing step consisted of removing artifacts. A

certain small amount of images have been fully a�ected by artifacts and

were obliterated. These artifacts appeared solely due to drilling/packing

procedures and have a mechanical origin. There were no di�culties with

shadows of the objects and illumination unevenness. During the third

image preprocessing step, overlaps between di�erent scans were removed.

Overlaps appeared since the scanner’s detector was shorter than most

permafrost core pieces. Hence each core was scanned several times, thus

creating overlaps. These overlaps were removed manually in ImageJ. The

last image preprocessing step was a reduction of noise. Cleared images
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were �ltered with a Non-Local Means �lter (noise standard deviation = 6,

smoothing factor = 1). This �ltering method takes a mean of all pixels in

the image but uses only pixels similar to a target pixel.

2.5 Image segmentation
Image segmentation is a generally used technique in digital image process-

ing and analysis. It is based on dividing an image into di�erent regions,

where each region has certain properties. More precisely, each pixel has

certain properties while regions consist of those pixels. There are various

image segmentation techniques, including edge detection segmentation,

region-based segmentation, clustering segmentation, CNN-based segmen-

tation based on weakly-supervised learning in CNN, and others (Yuheng,

2017 [40]). In this thesis, I used thresholding-based segmentation and

located boundaries. The �rst step for the segmentation of images is to

determine the exact number of classes. The number of classes depends on

the number of constituents. The density of any constituent directly a�ects

the attenuation of the X-rays that pass through it. Density also a�ects

the brightness level. Table 2.1 shows densities of permafrost constituents.

Constituent Density [kg/m
3
] Symbol

Air 1.2 (Talay, 1975 [41]) ?0
Ice 916 (Voitkovskii, 1960 [34]) ?8

Organic matter 250 - 1300 (Meijboom, 1995 [42]) ?>
Mineral grains 2650 (De Vries, 1987 [43]) ?<

Table 2.1: Densities of constituents of permafrost core

The organic matter density used for the laboratory analysis in this thesis

was 1300 [kg/m
3
] (Meijboom, 1995 [42]).

Two di�erent techniques were used for the image segmentation step:
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• algorithmic thresholding (K-means, Otsu’s and minimum error

thresholding) made in open source C++ library for scienti�c image

processing QuantIm (www.quantim.ufz.de)

• multilevel histogram shape-based thresholding method made in

Java-based image processing software ImageJ/FIJI

From the CT images, four diverse and distinct phases can be distinguished.

Each phase is characterized by distinctive shades of gray and brightness

level as well as di�erent structural features. Initially, they were called

A, B, C, D. These A, B, C, D constituents are often distributed unevenly

within the core, and in such cases, the histogram does not contain distinct

peaks. While working with thresholding methods, it is crucial to have

information about the intensity characteristics of the objects, their sizes,

and the number of di�erent types of objects appearing in an image (Salem,

2010 [44]). It must be noted that the �nal result of segmentation within

any thresholding method is always open for discussion and revision. In

order to decide if the result of segmentation is correct and trustworthy, it

is crucial to have an independent estimate in the �rst place. In this thesis,

the laboratory measurements serve this purpose.

2.5.1 Automatic image thresholding methods
The �rst attempt to classify the CT images has been made with auto-

matic image thresholding. Image thresholding is a common task in many

computer vision and remote sensing applications. It is an e�ective and

straightforward classi�cation technique that can also be used to classify

CT images. The classi�cation is based on a speci�c characteristic of the

pixels, usually the intensity value. Thresholding is used to extract an

object from its background by assigning intensity value T (threshold) for

each pixel in a way that each pixel is either classi�ed as an object point

or as a background point. This thesis uses three automatic thresholding

methods: Otsu’s, K-means, and minimum error thresholding (MET). Au-

tomatic thresholding for all three methods was made in QuantIm, a free
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C++ library for scienti�c image processing.

Automatic image thresholding methods generally consist of following

steps (di�erent methods usually vary in the third step):

1. Process the input image

2. Get image histogram

3. Compute threshold values T
4. Replace pixels with white in regions, where saturation is greater

than T and with black in regions, where saturation is lower than T

Otsu’s method
The Otsu’s thresholding method is named after its inventor Nobuyuki

Otsu and is used for automatic image thresholding (Otsu, 1979 [45]).

The main idea of the method is to �nd the threshold that minimizes

the weighted within-class variance. Otsu’s thresholding returns a single

intensity threshold that separates pixels into two classes, foreground,

and background. This automatic thresholding method iterates through

all the credible threshold values and calculates the spread for the pixel

levels in the foreground or background. The goal is to determine the

threshold value where the sum of foreground and background spreads is

at its minimum.

Algorithm of the method by Bangare (Bangare, 2015 [46]):

1. Compute histogram for a 2D image

2. Calculate foreground and background variances (measure of spread)

for a single threshold

a) Calculate weight of background pixels and foreground pixels

b) Calculate mean of background pixels and foreground pixels

c) Calculate variance of background pixels and foreground pixels

3. Calculate “within class variance”

The work�ow:

1. Calculate the weight for background and foreground pixels:
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2. Calculate the weight of background pixels and foreground pixels:

, (|486ℎC) =
=∑
8=1

,8/# (2.15)

where weights,8 are the probabilities of two classes separated by

threshold ) ;

# - total number of pixels,

3. Calculate mean:

µ(<40=) = ((ℎ1 ·,1)+(ℎ2 ·,2)+...+(ℎ= ·,=)+(ℎ= ·,=))/
=∑
8=1

(2.16)

where ℎ - histogram value

4. Calculate variance:

+0A = (((ℎ1−µ)2 ·,1) + ((ℎ2−µ)2 ·,2) + ...+ ((ℎ= −µ)2 ·,=))/
=∑
8=1

(2.17)

5. Calculate within class variance:

,�+ =,1 ·+1 +,5 ·+5 (2.18)

K-Means
For the �rst time, K-means as a term was used by James MacQueen in

1967 (MacQueen, 1967 [47]). This method is based on the same criterion

as Otsu’s method and minimizes the within-class variance. However,

usually, K-means is faster than Otsu’s algorithm since the �rst method

is a local optimal method, while Otsu’s method is a computationally ex-

pensive algorithm of searching the optimal global threshold (Liu, 2009

[48]). Furthermore, K-means, unlike Otsu’s, does not compute a gray-level

histogram before running. However, both methods perform similarly in

multilevel thresholding, with K-means being faster (Liu, 2009 [48]).
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The work�ow:

1. Select : points as the initial class centroids

where : is the number of clusters

2. Assign each object to the class with the shortest distance between

the object and the center of that class. The Euclidean distance 3 is

calculated as:

3 = ? (G,~) − 2: (2.19)

where p(x,y) are the input pixels;

2: is the cluster centers

3. When all objects have been assigned, recalculate the positions of

the k centroids as follows:

2: = 1/: ·
∑
~∈2:
·
∑
~∈2:
·? (G,~) (2.20)

4. Repeat second and third steps until the positions of centroids do

not change anymore

5. Find thresholds from the �nal partition

6. Reshape the cluster pixels into image

K-means algorithm is not able to �nd the appropriate number of clusters,

and usually, it is considered to be one of the main disadvantages of that

method (Dhanachandra, 2015 [49]). Fortunately, in my case, I have that

exact number.

Minimum Error Thresholding
The Minimum Error Thresholding method was proposed by J. Kittler

and J. Illingworth in 1984 (Kittler, 1984 [50]). This algorithm assumes

that the histogram consists of two Gaussian normally distributed classes

of pixel intensities. By an iterative process, two normal distribution

curves are de�ned to �t two classes of pixels in the histogram in order

to minimize a speci�ed classi�cation error (O’Gorman, 2018 [51]). The
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optimum threshold value is the threshold intensity ) that minimize the

Kullback-Lieber information distance � (Azhar, 2002 [52]):

� =

C∑
8=1

? (8) log
[
? (8)
5 (8)

]
(2.21)

where ? (8) is the observed probability histogram, and 5 is the unknown

mixture distribution containing two distributions of ℎ1 and ℎ2 with mix-

ture fractions @1 and @2, respectively.

5 (8) = @1ℎ1(8) + @2@2(8) (2.22)

One of the main advantages of MET is that it produces a strong separation

of classes, including cases when one class size is signi�cantly smaller

than the other (O’Gorman, 2018 [51]). It is still possible even when more

minor constituents cannot be visibly noticed from the histogram. At

the same time, MET does not perform well working with noisy images

and histograms that contain many spurious peaks (O’Gorman, 2018 [51]).

However, in my case, the noise was not a signi�cant source of errors.

2.5.2 Manual thresholding
Manual thresholding has been processed within histogram shape-based

technique using ImageJ. However, for speci�c image stacks, some his-

togram peaks were barely noticeable (Fig. 2.8). A bi-modal distribution

(two clear peaks) can be noticed on the depicted histogram of the random

image. This problem mainly occurred with air due to the small size and

small air concentrations in the core. However, it was not a problem for

the manual thresholding method, as the human eye can easily distinguish

di�erent shades of air and ice.
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Figure 2.8: Histogram distribution of a random image with two clearly apparent

peaks

Air has a low density and hence has a small attenuation. It is shown as

a dark (black) color on a CT image (2.7). Ice has a higher density, so its

color is brighter than the air’s color. It is displayed as a dark gray color.

The third constituent was labeled "Phase A" and presented as bright grey

color. The fourth was labeled as "Phase B", and it is displayed as pure

white color. Therefore, the full list of permafrost core constituents is:

• gas/air
• water/ice
• phase A

• phase B

2.6 Statistical method
Air/gas inclusions and pure (excess) ice can be identi�ed with a high

con�dence level. However, there is no prior knowledge about the structure

of the two remaining phases. Now suppose that they consist of saturated

sediment, i.e., a mixture of organic sediment, mineral sediment, and (pore)

ice. This assumption gives the following relations for the composition of

phases A and B:

1 = W�,8 + W�,> + W�,<
1 = W�,8 + W�,> + W�,<
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From the CT method the following variables can be computed:

• Excess ice (\48 )

• Phase A (\�) that consists of pore ice fraction (W�,8 ), organic fraction

(W�,> ) and mineral fraction (W�,<)

• Phase B (\�) that consists of pore ice fraction (W�,8 ), organic fraction

(W�,> ) and mineral fraction (W�,<)

From the laboratory analysis the following independent measurements

can be obtained:

• Volumetric gas content (\6)

• Volumetric ice content (\8 )

– Excess ice fraction (\48 )

– Pore ice fraction (\? )

• Volumetric organic content (\> )

• Volumetric mineral content (\<)

With these laboratory measurements, it is possible to apply regression

analysis to compute such values of W�/�,8/>/< that would give the best

match between the CT analysis and the laboratory measurements. Regres-

sion analysis is a set of statistical methods for estimating relationships

between a dependent variable (the main factor that I am trying to pre-

dict) and one or more independent variables (factors that presumably

impact the dependent variable). In this case the dependent variable is

laboratory measurements (\8/>/<) and independent variables - CT images

measurements (\�/�/48 ). CT measurements were averaged over the same

depth-intervals ( 9 = 1..# 9 ) as the samples from the laboratory.

The four �t parameters x1-x4 stand for:

• x1 (W�,> ) - organic fraction of phase A

• x2 (W�,<) - mineral fraction of phase A

• x3 (W�,> ) - organic fraction of phase B
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• x4 (W�,<) - mineral fraction of phase B

Once we obtain coe�cient values (x1, x2, x3, x4) it is possible to calculate

ice fractions for phase A and phase B as follows:

W�,8 = 1 − W�,> + W�,< (2.23)

W�,8 = 1 − W�,> + W�,< (2.24)

Now using the values obtained through the CT analysis (\�/� (I 9 )) and the

composition of the phases (W�/�,8/>/<), it is possible to calculate predicted

values:

\8−?A43 (I 9 ) = \� (I 9 ) · (1−W�,<−W�,>) +\� (I 9 ) · (1−W�,<−W�,>) +\48 (2.25)

\>−?A43 (I 9 ) = \� (I 9 ) ∗ W�,> + \� (I 9 ) · W�,> (2.26)

\<−?A43 (I 9 ) = \� (I 9 ) ∗ W�,< + \� (I 9 ) · W�,< (2.27)

Since laboratory estimates of the partitioning of the ice phase into pore

ice and excess ice are avialable, they can be used to estimate pore ice

content \?8 :

\?8 = \� (I 9 ) · (1 − W�,< − W�,>) + \?8 (I 9 ) · (1 − W�,< − W�,>) (2.28)

In a similar way it is possible to calculate high resolution predicted values,

the only di�erence is the number of data-points. Previously I used data

from 53 core samples (lab data), now I am using the data from CT images

(31275 data-points):

• Phase A (\�,ℎA )

• Phase B (\�,ℎA )
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• Excess ice (\48,ℎA )

The calculations of high-resolution predicted values:

\<,?A43−ℎA (I 9 ) = \�,ℎA (I 9 ) ∗ W�,< + \�,ℎA (I 9 ) · W�,< (2.29)

\>,?A43−ℎA (I 9 ) = \�,ℎA (I 9 ) ∗ W�,> + \�,ℎA (I 9 ) · W�,> (2.30)

\8,?A43−ℎA (I 9 ) = \�,ℎA (I 9 ) · (1−W�,<−W�,>) +\�,ℎA (I 9 ) · (1−W�,<−W�,>) +\48,ℎA
(2.31)

Additionally, R squared values were calculated for each phase. R-squared

is the measurement of how much of the independent variable is explained

by changes in our dependent variables. In a nutshell, the value represents

how well the regression line �ts the data. The maximum value and also

theoretically best value is 1. R squared have been calculated as follows

(formulas are for organic fraction, mineral and ice fractions are calculated

similarly):

The sum of squares of residuals:

((_A4B =
∑
(\> − \>−?A43)2 (2.32)

The total sum of squares:

((_C>C =
∑
(\> − \>−0{6)2 (2.33)

R squared:

'2 = 1 − ((_A4B/((_C>C (2.34)

All statistical analyses were performed in Python within the Jupyter

Notebook, an open-source web application (Kluyver, 2016 [53]).
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3 Results

3.1 Thresholding methods
All CT images used for the analysis were processed without previous

knowledge regarding the exact type of constituents. Although, the num-

ber of these constituents (classes) - four, have been chosen in advance.

The image analysis algorithms were applied to the whole length of the

core (163.7 cm). However, a random CT image has been chosen and visu-

alized for a clearer understanding of the performance of varying image

techniques and their di�erences. That image is situated at a depth of 56.6

cm and is shown in Fig. 3.1.

Figure 3.1: Segment of the permafrost core (20.3 - 102.0 cm) immediately after

sampling. Red line represents the approximate position (56.6 cm) of CT image

analyzed and visualized in Fig. 3.2 and Fig. 3.5

3.1.1 Automatic thresholding
Automatic thresholding was made with three methods - Otsu’s, K-means,

and MET. Fig. 3.2 provides an overall visual performance comparison for

these three methods as well as for the manual thresholding method.
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Figure 3.2: Comparison of performance of four thresholding segmentation

methods on a random CT image taken from 56.6 cm depth. (A) CT image; (b)
Otsu’s; (c) K-means; (d) MET; (e) Manual
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The four methods segmented CT image from Fig. 3.1. Determination of

threshold values has been done with ImageJ preinstalled modules. Visu-

alization was made in Python within the OpenCV library (Open Source

Computer Vision Library (Bradski, 2008 [54]). Fig. 3.2a shows a randomly

chosen CT image. Fig. 3.2(b, c, d, e) show the same image segmented by

Otsu’s, K-means, MET, and manual thresholding method, respectively.

The obtained results di�er considerably. The image segmented by Otsu’s

method (Fig. 3.2b) is covered at least by half with air. Which cannot be

true according to a simple visual check of the CT image. The image seg-

mented by MET method (Fig. 3.2d) is dominated by Phase A constituent.

Meanwhile, images segmented by K-means (Fig. 3.2c) and Manual method

(Fig. 3.2e) provide relatively similar result.

The previous �gure (Fig. 3.2) shows segmentation results only for one

particular image. However, it is bene�cial to focus on a more signi�cant

core part for more excessive analysis. Fig. 3.3 shows the results for three

di�erent automatic thresholding methods (Fig. 3.3a, b, c) in comparison

with the manual thresholding method (Fig. 3.3d) for 43.2 - 71.84 cm part

of the permafrost core. That �gure was created in Python using Plotly

Python Open Source Graphing Library (Perkel, 2018 [55]). The segment

shown in that �gure, comprised of four pieces scanned individually. Al-

though all pieces were scanned likewise, they still may have a di�erent

level of luminosity, and it directly a�ects the �nal composition result.

This luminosity is expressed not in a sudden �ash in a certain part of the

certain image but a di�erent overall brightness level between di�erent

scanned pieces (image stacks). This brightness level di�erence explains

sudden abrupt arti�cial increase and decrease of constituents.
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Figure 3.3: Partial (43.2 - 71.84 cm) segmentation results of four thresholding

techniques (a) K Means; (b) MET; (c) Otsu’s and (d) Manual thresholding method.

The vertical black dotted line represents a CT image depicted in Fig. 3.2
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Fig. 3.4 is a fraction of Fig. 3.3 and shows two apparent errors at two

di�erent spots of the previous �gure. As described in the Methods part

of the thesis, the core could not entirely �t into the CT system. Thus

overlaps have been created. That overlap cannot be noticed in Fig. 3.4b

that was made by manual thresholding method but can be clearly seen

in in Fig. 3.4a made by K-means algorithm. In the right panel, another

artifact can be seen. In this case, Fig. 3.4c was made with Otsu’s method,

and Fig. 3.4d with manual thresholding. There is a clear error in Fig. 3.4c

where air and excess ice (blue and green lines) are mixed up, while Fig.

3.4d does not contain such a mistake. These errors happen because every

image stack has di�erent brightness levels and density occurrences are

sample-speci�c. Therefore, their histograms vary greatly. Consequently,

they are segmented di�erently.

Overall, automatic thresholding methods have explicit problems dealing

with soil cores. That happens due to heterogeneous structure and uneven

distribution of the constituents along with the core. The primary source

of the errors for automatic methods is that the object area was often too

small compared to the background area. Therefore, the image histogram is

dominated by an extensive background area, increasing the probability of

any pixel belonging to the background. Moreover, automatic thresholding

methods are global. They are less suitable for obtaining the maximum

information from the grayscale images (Iassonov, 2009 [56]).
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Figure 3.4: Examples of inconsistency and errors created within automatic

thresholding by the case of Fig. 3.4 as well as results of manual thresholding

free of these errors. Left panel (a) shows a wrong arti�cial abrupt increase (or

decrease) of segmentation values made by K means algorithm, and (b) shows

a segmentation result of the same spot made by manual thresholding, where

such surges cannot be seen. The right panel (c) shows the error made by Otsu’s

method, air, and excess ice and mixed up, (d) shows the same spot free from that

error
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3.1.2 Manual thresholding
Fig. 3.5 serves to visualization purposes of the manual thresholding

method and shows the segmentation result of the CT image from Fig. 3.2,

its histogram, the laboratory sample the image belongs to, and laboratory

analysis of that sample.

Figure 3.5: At a glance overview of manual thresholding segmentation of a CT

image with brief analysis, histogram of the image, sample from laboratory which

consists that CT image and laboratory analysis of that sample

The results of manual thresholding (Fig. 3.6) were visualized the same

way as Fig. 3.2, within Python and Plotly library. Fig. 3.6 shows the result

of classi�cation with the manual thresholding method. This �gure also

displays results obtained by laboratory analyses for comparison. The

length of each horizontal line represents the thickness of the permafrost

core sample used to get the laboratory data.
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Figure 3.6: Compilation of segmentation results obtained by manual thresh-

olding method and laboratory analyses method. With focuses on (a) 40-60 cm;

(b) 75-95 cm. Laboratory derived data is visualised with horizontal line, where

the length of the each horizontal line represents the depth and thickness of the

corresponding permafrost core sample
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Two areas of Fig. 3.6 are highlighted. The �rst area (Fig. 3.6a) was chosen

because it demonstrates four well distinct ice peaks. Second (Fig. 3.6b) is

the transition area between the upper part (20.3 - 86.4 cm, mix of air, ice,

organic, mineral parts) and the bottom part (86.4 - 184.0 cm, mostly ice

with a low fraction of air, with little or no fractions of organic and mineral

parts). It should be noted that the laboratory data over ice peaks is �at.

The manual thresholding technique allows to distinguish and measure

air and excess ice with a high con�dence level. However, comparing CT

data and laboratory data has shown that this image processing method

cannot detect pore ice fractions.

Summary of numerical results of manual thresholding for upper and

lower parts of the core was combined in Table 3.1. According to mean

values, through its length (20.3 - 86.4 cm), the upper core consists of

three phases in almost equal proportions and a gas fraction of about one

percent. The heterogeneous structure of the upper core can be observed

through drastically various minimum and maximum values. Due to its

homogeneous structure, the lower core demonstrates a di�erent pattern,

with min-mean-max values being relatively stable through the core. At

the same time, a fraction of air has increased roughly to 2.5%.

Table 3.1: Ordinary least squares regression results

Since the CT method could not display pore ice but could detect excess

ice, it is of particular interest to compare CT excess ice with laboratory-

measured excess ice values. Fig. 3.7 consists of three lines showing a

compilation of excess and pore ice results. Excess ice obtained by CT is

compared with excess ice and pore ice results derived through laboratory
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data. Excess ice CT and lab, overall, have a high level of match. The sum

of values of excess ice (lab) and pore ice (lab) is equal to VIC from Fig. 3.6.

Figure 3.7: Excess ice CT segmentation result is depicted together with excess

ice and pore ice results obtained through laboratory analyses

Fig. 3.8 shows high-resolution composition of the whole permafrost core.

Fig. 3.8a is a compilation of �eld photos of the permafrost core analyzed

in this thesis. Fig. 3.8b is CT scan as XZ plane compilation. Fig. 3.8c

shows a compilation of segmented CT images and Fig. 3.8d shows an area

graph with the area below the line �lled in with a certain colour according

to the constituent. Small gaps in Fig. 3.8a are caused by shortcomings

during the sampling procedure. Bigger gaps in Fig. 3.8(b, c, d) are due to

the fact that some parts of the have not been scanned by CT because they

were either destroyed or too small to get an adequate result.
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Figure 3.8: High resolution composition of the whole permafrost core analyzed

in this thesis. (a) Photos of permafrost core; (b) CT scanning images (XZ plane);

(c) Manual thresholding segmentation results; (d) Stacked area chart
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Fig. 3.6 depicted drastic and abrupt change of constituents fractions

between the upper part of the core and the bottom part of the core. The

latter consists almost exclusively of excess ice and air. It is known that

with increasing depth, the ice density increases due to settling and packing,

while porosity is decreasing due to overburden pressure (Bender, 1997

[57]). Therefore, considering the relatively small depth, it is interesting

to observe if the acquired result agrees with this expected trend. Fig. 3.9

shows correlations between gas and excess ice for the upper (Fig. 3.9a)

and bottom (Fig. 3.9b) parts of the permafrost core. There is no signi�cant

correlation in the upper part of the core. Although, there is a strong

correlation in the bottom part of the core. This happens since the bottom

part of the core consists almost exclusively of air and ice. Therefore, if

there is a bigger fraction of excess ice, there is less air and vice versa.
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Figure 3.9: Correlation between excess ice and gas contents for (a) upper part

of the core (20-86 cm) and (b) bottom part of the core (86-184 cm)
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3.2 Statistical method
Apart from the CT method, a di�erent approach to working with derived

data has been implemented in this thesis. More precisely, a statistical mod-

eling and regression analysis as a part of that modeling. The results of the

regression analysis have been acquired through Python and Statsmodels

module. That module provides functions for the computation of varying

statistical models, tests, and data exploration. The regression analysis has

been done with the ordinary least squares (OLS) method. OLS compares

the di�erence between individual points in the data set and the predicted

best �t line to measure the error produced. It is the most common method

to estimate the linear regression equation. The summary of the model is

depicted in Table 3.2.

Dep. Variable: y, stands for dependent variable. The dependent variable is

laboratory measurements (\8/>/<) and independent variables - CT images

measurements (\�/�/48 ).

No. Observations: 159. This number has resulted as 53 · 3. In the labo-

ratory, the permafrost core was cut into 66 samples. However, only 53

samples were used in regression analysis because some core parts were

not scanned with a CT scanner. Df Residuals: 155, it is calculated as No.
Observations - number of predicting variables - 1.

Covariance Type: nonrobust. It is a measure of how two variables are con-

nected in a positive or negative manner. Robust covariance is calculated

in such a way as to diminish or remove variables, which is not the case

in this calculation.

R-squared: 0.945. It measures how much of the independent variable is

explained by changes in our dependent variables. The result of 0.945

means that the model explains 94.5% of the change in the dependent

variable. In theory, it is an excellent result, close to a perfect possible

result, which is 1. However, a high R-squared value is not necessarily
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good as a biased model can have a high R-squared value as well (Frost,

2019 [58]). The general opinion among statisticians, that there is no good

R-squared score. Although, the acquired result, considering the �eld of

science, is acceptable.

Adj. R-squared which stands for adjusted R-squared. It calculates R square

only using variables whose addition to the model is signi�cant. It also

penalizes excessive use of variables and is always smaller than R-squared.

The value of adjusted R-squared is more important than R-squared since

my model contains more than one independent variable. However, since

both numbers are very close, it can be concluded that all used independent

variables are important and bene�cial to the model.

Table 3.2: Ordinary least squares regression results

The �rst column in the Table 3.2 is coef that stand for coe�cients. It is the

measurement of how a change in that variable a�ects the independent

variable. There are no negative coe�cients; therefore, there are no inverse

relationships. As one rises, the other increases as well.

• x1 = W�,> , the organic fraction of phase A

• x2 = W�,< , the mineral fraction of phase A
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• x3 = W�,> , the organic fraction of phase B

• x4 = W�,< , the mineral fraction of phase B

Once we obtain coe�cient values (x1, x2, x3, x4) it is possible to calculate

ice fractions for phase A and phase B as follows:

W�,8 = 1 − W�,> + W�,< = 0.692 (3.1)

W�,8 = 1 − W�,> + W�,< = 0.436 (3.2)

The result means that what was earlier identi�ed as organic phase is 10.2%

organic, 20.5% mineral, 69.2% ice. What earlier was identi�ed as mineral
phase is actually 4.1% organic, 52.1% mineral, 43.6% ice.

The second column in the Table 3.2 is std err, it is a probabilistic correction

of the standard deviation (i.e., how dispersed the data is concerning the

mean) of the coe�cients that take into account the sample size. The

results of standard deviation can be considered low, which means data

are clustered around the mean.

The third column in the Table 3.2 is t which is a measurement with which

precision the coe�cient was measured. A low std error within a high

coe�cient produces a high t-statistic, which indicates a high signi�cance

for a certain coe�cient. It is the case with the mineral fraction of phase

B.

The fourth column in the Table 3.2 is P > | t |. It uses the t-statistic to

produce the p-value, a measurement of how likely the coe�cient is mea-

sured through the model by chance. The p-value of 0.295 for the organic

fraction of phase B means a 29.5% chance that the organic fraction of

phase B does not a�ect the dependent variable, and a result is produced

by chance. Similarly, the p-value of the organic fraction of phase A is 3.4%.

As for the mineral fraction of phase A and the mineral fraction of phase
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B, the p-value is not equal to zero, as the p-value cannot be equal to zero.

However, it is very close to zero, and it means that these results are signif-

icant. A coe�cient considered statistically signi�cant, if its p-value < 0.05.

At last, the �fth and sixth columns [0.025 and 0.975] are both measure-

ments of values of coe�cients within 95% of the data. Outside of these

values can be considered outliers.

Fig. 3.10 shows the relationships between the predicted values and lab-

oratory values, as well as R-squared values for each phase. R-squared

is computed without centering (uncentered) since the model does not

contain a constant. The regression model of the excess ice (Fig. 3.10a),

accounts for 73% of the variance. For Phase B (Fig. 3.10b) the result is even

higher - 89%. For Phase A (Fig. 3.10c) the R-squared result is relatively

low - 22%.

Fig. 3.11 shows the results of regression analysis for predicted samples

line (53 data-points), high-resolution line (31275 data-points), laboratory

data, and CT images classi�cation result. It can be noticed that the predic-

tion sampling line and high-resolution prediction line are systematically

higher than laboratory data. Although, both prediction lines and lab-

oratory data are following the same trends. Also, the high resolution

predicted line is always lower than the sampling prediction line whenever

lines are going down. It happens due to the higher resolution of the �rst

line. It is noticeable that two prediction lines and laboratory data are

better aligned over the range of 20-60 cm, while the di�erence is more

prominent in 60-90 cm. This may be due to di�erent types of soil. Grain

size distribution analysis could bene�t in order to �gure that out.

Each part of Fig. 3.11 consist of four lines:

• blue (a - VIC, b - VMC, c - VOC) - data obtained through laboratory

analysis

• green (Predicted (samples)) - 53 data-points
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• purple (High res predicted) - high resolution predicted, 31275 data-

points

• red (a - Excess ice, b - Phase B, c - Phase A)) - data obtained through

manual thresholding

Figure 3.10: Relation between laboratory measured and statistically obtained

values for the entire length of the core for sampled data (a) Excess ice; (b) Phase

B; (c) Phase A
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Figure 3.11: Compilation of laboratory-measured volumetric contents, statis-

tically obtained results, high-resolution statistically obtained results and CT

measured results over depth for (a) Excess ice; (b) Phase B; (c) Phase A. Y-scale

is di�erent for each of the subplot
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Ultimately, since I obtained the results for the RA model, it is possible

to calculate and merge it into a table for comparison. Table 3.3 shows

mean, minimum and maximum values of results obtained within RA, both

samples method and high-resolution method, as well as results derived

through the laboratory analyses. Gas content values were acquired as

subtraction of other contents from 100%.

Table 3.3: Calculated results of laboratory analysis, predicted (samples) and high

resolution predicted values, summarising minimum (min), mean and maximum

(max) values of IC, OC, and MC. Gas content values were acquired as subtraction

of other contents from 100%
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4 Discussion

4.1 Estimation of physical properties of
sediment core taken from Yedoma
deposits in the Lena River delta in
northern Siberia

Computed Tomography provides an e�cient, relatively fast, and inde-

structible method of analysis of permafrost cores. It is especially e�cient

in dealing with large numbers of samples of permafrost core. Although,

currently, the CT scanning method is still in a stage of development for

soil science use (Iassonov, 2009 [56]). Estimation of volumetric contents

of permafrost core assists in analyzing the structure and improves under-

standing of permafrost processes. Although, this operation requires a big

e�ort at each step, starting with core sampling and ending with images

analysis. The latter is especially challenging because the complicated

structure of the images directly a�ects the segmentation procedure and

complexi�es it. Qualitative image segmentation is crucial for subsequent

quantitative analysis of CT images (Iassonov, 2009 [56]). Di�erent studies

on permafrost cores and computed tomography deal with segmentation

within varying thresholding techniques. These techniques, in turn, are

always working with histograms. Using local spatial information within

the manual thresholding method bene�ts the quality of segmentation

results (Iassonov, 2009 [56]; Hagenmuller, 2013 [59]). However, there

is always some subjectivity involved in choosing correct threshold val-

ues (Iassonov, 2009 [56]; Schlueter, 2010 [60]). Most studies focus on

three main components - gas/air, ice, and sediment, both organic and

inorganic (Calmels, 2010 [24]). In this thesis, after careful consideration
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of segmentation results, a di�erent approach towards four components

of permafrost core was adopted - gas, excess ice, and two phases, each

consisting of some fraction of pore ice, organic, and mineral components.

Gases in permafrost are of interest due to their potential contribution

to enhanced climate warming. Previous studies (Calmels, 2010 [24]; Ro-

manenko, 2017 [61]) have reported that it is possible to acquire accurate

results in measuring gas content with CT. My experience can con�rm

that. Overall, I can state that segmentation of gas fraction is the most

straightforward and most precise due to its low density and consequently

dark color, which could be segmented surely. Ice content is another vital

component as it may be used to determine ground settling induced by

permafrost degradation (Calmels, 2010 [24]). However, currently, there

are no landscape-scale studies of permafrost ground ice volumes using

the CT. There are some ground ice content models (Couture, 2017 [62])

and some cryostratigraphy content models (Kanevskiy, 2014 [63]) but

no vertical high resolution analyzed images that may be used for accu-

rate detection of short-term changes. Segmentation of the ice part of

the core is more challenging than the gas content but still signi�cantly

more straightforward than the other two fractions. Similar to Calmels

(2004 [64]), who reported no signi�cant correlation between gas and ice

contents in the core, my results are in agreement. Fig. 3.9 shows no no-

table correlation in the upper part of the core. Pearson correlation of 0.55

proves that both contents are independent of each other. The importance

of organic content is rising in parallel with climate change. Global warm-

ing in the Arctic and Yedoma region causes signi�cant changes, including

permafrost erosion and increased active layer thickness. These processes

may a�ect OC releasing rates. Even though, general understanding of

ground IC and OC release is improving (Tanski, 2021 [65] unpublished

paper), there are still knowledge gaps regarding OC release rates and

mechanisms on a landscape scale.

In this thesis, I did not intend to analyze cryostructures and cryotextures,

however, it is another option for studying permafrost processes within
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the CT method. Since classifying and identi�cation of both cryotexture

and cryostructure can explain the thermal history and origin of the sub-

strate by which permafrost was formed and developed (Gilbert, 2016

[26]). Moreover, it would be almost impossible without CT to distinguish

between di�erent kinds of cryostructures (Calmels, 2008 [66]). Also, CT

allows monitoring changes in con�gurations of air and ice in the course of

various processes, as well as to carry out direct observations of di�erent

cryogenic processes in time (Romanenko, 2017 [61]).

4.2 CT and laboratory results comparison
Previous studies concluded that the CT method could estimate the ground-

ice content of permafrost core (Delisle, 2003 [67]; Calmels, 2004 [64]).

However, these studies did not correlate the CT results with laboratory

results. In this thesis, I used CT scans of permafrost core and image

processing algorithm for segmentation and quanti�cation of permafrost

core constituents. Laboratory data have been used only for comparison

with CT results and as additional information for statistical analysis. It

should also be noted that volume results are received directly within the

CT scanning method, while for laboratory analyses, weight data was

obtained �rst, and then the volume was calculated. The laboratory analy-

ses were used for validation of CT results and estimation of possible errors.

I found out that the image processing technique adopted in this thesis pro-

vides segmentation results of permafrost core constituents with di�erent

con�dence levels. The visualized comparison between CT and labora-

tory results (Fig. 3.6) shows that data derived from both methods overall

demonstrate similar patterns but with di�erent magnitudes. Moreover,

CT scanning is the only method for direct determination of void and gas

content in permafrost (Calmels, 2004 [64]). Comparing the segmentation

results of ice fraction with laboratory-derived results has shown that the

CT method can quantify only excess ice. One of the main reasons for that
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is that the current CT scan resolution (50 µm) was insu�cient to observe

pore (interstitial) ice in the silty permafrost material. Other researchers

also faced that problem (Calmels, 2004 [64]; Lapalme, 2017 [68]). Since

pore ice is undetectable, CT analysis can directly measure excess ice but

cannot measure total ice. Nevertheless, there is a potential for improved

detection of VIC via the CT method, which primarily lies in di�erent CT

systems and higher pixel resolution (Lapalme, 2017 [68]).

The values of air quanti�ed through the CT scanning method are ranging

from almost zero to 7.9%, which is a maximum value in the upper part of

the core (Table 3.1). The average gas content value for the upper core is

1.2%, and the bottom part is two times higher - 2.4%. Similar results were

obtained by Calmels (2004 [64]) for a core located in discontinuous per-

mafrost in northern Quebec with an average of 2.3% and values varying

from 1% to 4%.

According to CT results (Table 3.1), the upper part of the core consists

of excess ice and two fractions (phase A and phase B) in roughly equal

proportions. However, the bottom part of the core is comprised almost

entirely of ice - 97.3%.

Organic matter in the frozen ground often contains large pores �lled with

ice. Moreover, the voxels with values that fall within the ice density value

or the other way around, some ice mixed with a large amount of peat can

fall into the peat density value range. VOC value in Yedoma permafrost

cores has been earlier evaluated by Windirsch (2020 [69]) and Wetterich

(2020, [70]). Windirsch (2020 [69]) analyzed a 3 meters long Yedoma

upland permafrost core from central Yakutia and reported a mean VOC

value as 0.42% and a maximum of 1.4%. Wetterich (2020, [70]) analyzed

two cryostratigraphic units: Unit A, dated from ca. 52 to 28 cal kyr BP and

Unit B, dated from ca. 28 to 15 cal kyr BP. Both units are from Yedoma Ice

Complex in the eastern Lena delta on Sobo-Sise Island. Wetterich (2020,

[70]) reported VOC values for Unit A as 1.7%, 4.5%, and 15.1% for min,

mean, and max, respectively. VOC values for Unit B were 0.5%, 2.1%, 5.1%
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for min, mean, and max, respectively. I received similar VOC values for

a plateau-situated permafrost core that was analyzed in this thesis. The

results are depicted in the tables 3.1 (CT method) and 3.3 (laboratory and

statistical methods).

4.3 Impact of di�erent image processing
approach and se�ings

The novelty of this thesis stems from the high spatial resolution (50 µm)

of CT images. Compared with many previous studies, this resolution

is higher than the spatial resolution used in some highly cited papers,

such as (Schlueter, 2016 [71]) with 61 `< spatial resolution, (Calmels,

2004 [64]) - 100 `<, (Calmels, 2010 [24]) - 350 `<, (Lapalme, 2017 [68]) -

400 `<. The spatial resolution itself, for the most part, depends on the

X-ray instrument used for scanning. Overall, it is possible to observe

features such as ice lenses or gas bubbles already at the 100 `< scale

(Calmels, 2010 [24]), but higher resolution allows to work with more

detailed images. Resolution is one of the most critical characteristics of

CT scanning that characterize the quality of the received images. There

are three types of CT resolution, spatial, temporal, and contrast. In this

thesis, the temporal resolution is of little importance since the imaged

structure has no motion. The contrast resolution is not intrinsically high

and inferior to MRI and PET (Lin, 2009 [72]). Finally, spatial resolution is

of great importance because it de�nes the quality of the CT images and

the ability to analyze and interpret the content. However, it should be

noted that the scanning procedure depends not wholly on the resolution

but it is also sensitive to varying scanning and reconstruction settings.

Segmentation was the most complicated part of this thesis. It resulted

from the heterogeneous structure of the permafrost core and the un-

even distribution of its constituents. The most complicated image stacks

were the ones with two material densities close to each other or when
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some constituents have sizes smaller than the spatial resolution of the

CT system. My results have shown that manual thresholding performed

signi�cantly better than the automatic thresholding methods. Latter, in

many cases, not only produced a less reliable result than manual but in

several cases made apparent mistakes. Mostly these mistakes occurred be-

tween di�erent image stacks. Another common problem in segmentation

is noise and blur on CT images (Hagenmuller, 2016 [73]). However, in this

work, this particular problem did not occur. In general, working with any

kind of segmentation and with di�erent thresholding techniques, there

is always a problem of the absence of ground truth (Iassonov, 2009 [56],

Hagenmuller 2013 [59]). It is impossible to know if the binarization result

is optimal. The truth will always be, to some degree, within the eye of a

researcher, and the �nal result will be a�ected by empirically collected

information. Higher CT scanning resolution, prior knowledge of the core

structure, features, and the intensity characteristics of the objects are

bene�cial.

With the development of CT technologies and its growing popularity, the

question arises if CT can complement laboratory analysis or replace it.

Despite the system’s attenuation and throughput improvements, CT still

has apparent limitations regarding segmentation uncertainties. Concern-

ing limitations of the CT, any researcher working with CT images and

deriving results through image analysis must remember that all images

have been altered. Some CT image data is inevitably lost during the

preprocessing phase. Moreover, some data is already lost or changed even

before the scanning procedure as permafrost cores have been already

altered. Because from the moment when the core has left the ground, it

begins to deteriorate due to change in temperature (Calmels, 2004 [64]).

It is also thawing partly and releasing included gases which may a�ect

its phase composition. Another not obvious downside of the imaging

approach is the time required to collect and process the data. However,

this is comparable to the conventional laboratory method as the majority

of time is spent allowing the sample to equilibrate (Tracy, 2014 [74]).

It is, therefore, essential for researchers to direct e�orts towards com-
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bining CT with other complementary methods to enhance cutting-edge

research while industrial work on improvement of the technology contin-

ues. (Mao, 2016 [75]). The result of Computed Tomography scanning can

be enhanced in combination with other techniques. Previously, several

researchers have already combined the CT method with other techniques

for varying study objectives. Anderson (1989 [76]) and Metzner (2015

[77]) used a combination of CT and Magnetic resonance imaging (MRI).

Arias (2010 [78]) and Hapca (2011 [79]) used CT and Scanning Electron

Microscopy (SEM). Goethals (2009 [80]) used CT and Positron emission

tomography (PET). In this thesis, I used a combination of CT scanning

and linear regression analysis together with classical laboratory anal-

ysis. Even though the CT scanning method has demonstrated certain

advantages over the classical method, it is still too early to obliterate

the classical analysis. Moreover, the best results are usually achieved by

combining CT with other complementary methods (Calmels, 2010 [24];

Hagenmuller, 2013 [59]; Mao, 2016 [75]). Improvements in speed, spatial

resolution, and reconstruction time are expected within the next decade

(Pelc, 2014 [81]).

Apart from the CT scanning method and laboratory analyses, I have also

implemented a statistical approach. The idea for that appeared due to

particular segmentation and detecting problems with the CT scanning

method. Linear regression analysis revealed overall good correlations

between laboratory-measured and statistically obtained values for Excess

ice and Phase B (pure white color on CT images) with R-squared results

of 0.73 and 0.89, respectively (Fig. 3.10). However, it also showed that

Phase A underestimated measured VOC (R-squared is 0.22). The statis-

tical method has shown promising results. However, there is room for

improvement in regression analysis results. The results could be even

more precise if samples were given di�erent weights accordingly to their

thickness. Also, in this case, it would be bene�cial to use Weighted Least

Squares (WLS) instead of OLS.

It is important to mention a signi�cant application that has not been
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addressed in the thesis - Deep Learning (DL). This method is considered

to be more advanced and outperformed classical machine learning models

and signal processing approaches (Bengio, 2013 [82]). IN DL, each pixel

gets a label, and pixels with the same label are connected in regards to

some visual or semantic property. Nowadays, image segmentation models

that are based on DL often become the most precise through popular

benchmarks (e.g., ScanNet Benchmark, Berkeley Segmentation Benchmark).

Another advantage of DL is that it can deal with nonlinearities, unlike the

regression method dealing with linear dependencies. Therefore, if the data

have nonlinear dependencies, neural networks should perform better than

regression. However, the RA also has several particular vital advantages in

comparison with DL. Within R-squared/adjusted R-squared, it is possible

to comprehend the strength of relationships between variables and see

how much of the total variability in the data is explained by the model.

Also, RA allows seeing which features are statistically signi�cant and

which are not. RA is more straightforward, versatile and allows to have a

comparison between di�erent models.
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5 Conclusions

This thesis aims to estimate the volumetric content of a Yedoma per-

mafrost core. By performing image analysis of CT images of a permafrost

core, this thesis shows that computerized X-ray tomography for the seg-

mentation of permafrost constituents is able to provide a result compara-

ble with sample-destructive laboratory analysis. The obtained segmenta-

tion results clearly illustrate the bene�ts of working with high-resolution

CT imagery and show the limitations that may still occur with such de-

tailed images. An additional de�ciency of this thesis can be attributed to

the image processing algorithm. As the used algorithm was a compila-

tion of di�erent methods and no readily available algorithm was adopted

entirely. Despite the popularity of the CT method in soil science, there is

still no standard work�ow model for working with soil images. Di�erent

researchers use varying image processing techniques and software (Im-

ageJ, VGSTUDIO MAX, Avizo, PORE3D, MORPHO+, and others), having

di�erent con�gurations and e�ectiveness in quantitative, qualitative, and

statistical data analysis. Moreover, new techniques and software are being

produced. That means CT scanning most likely will continue to develop

in the near future and may �nd further applications and techniques due

to the constant development of the scanning systems. Another limitation

of that work is that only one permafrost core has been analyzed. Thus no

comparison is possible between di�erent cores. Notwithstanding these

limitations, this thesis contributes to reducing the research gap of Yedoma

permafrost structure, thaw process, and organic content.

Yedoma permafrost is rapidly changing, and Arctic permafrost is changing

along with it. This region is thawing faster than other parts of the world

due to the impacts of increasing global warming and expanding human

activity. Climate change is a common topic for mass media, and its impor-
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tance and in�uence cannot be overestimated. In 2021, changing climate

is a reason for thousands of young people to protest in the streets and

demand action. One of the ongoing campaigns is "FightFor1Point5", show-

ing that these minors are already familiar with an IPCC special report

regarding the impacts of global warming of 1.5 °C above pre-industrial

levels at such a young age. However, even with all this attention, there

are still gaps in our knowledge regarding permafrost thaw and degra-

dation on the pan-Arctic scale. At the moment, articles and reports are

appealing to researchers from various disciplines to unite to investigate

the processes, timespan, and consequences of permafrost thaw to the

global climate to avert a possible disaster. Focus areas of future researches

that are designed to improve our understanding may include ground ice

content characteristics, organic content emissions, extended modeling

of permafrost carbon feedbacks, and evaluation of the vulnerability of

organic carbon pools in the Earth system.

The possibly boundless life expectancy of CT information makes them

valuable to the researchers who made the beginning check and future

analysts who may inquire questions that the initial researcher would

never have considered. Therefore, an appropriate and convenient way of

storing, sharing, and licensing CT information and datasets would bene�t

future researchers.
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5A) Permafrost core samples characteristics
Table A1: Physical characteristics of cut permafrost core samples measured and

written in the frozen laboratory
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