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Abstract

CA1 pyramidal neurons of the hippocampus express various types of serotonin (5-HT) receptors, such as 5-HT1A, 5-HT4 and
5-HT7 receptors, which couple to Gai or Gas proteins and operate on different intracellular signalling pathways. In the present

paper we verify such differential serotonergic modulation for the hyperpolarization-activated current Ih. Activation of 5-HT1A

receptors induced an augmentation of current-induced hyperpolarization responses, while the responses declined after 5-HT4

receptors were activated. The resting potential of neurons hyperpolarized (±2.3 6 0.7 mV) after 5-HT1A receptor activation,

activation of 5-HT4 receptors depolarized neurons (+3.3 6 1.4 mV). Direct activation of adenylyl cyclase (AC) by forskolin also

produced a depolarization. In voltage clamp, the Ih current was identi®ed by its characteristic voltage- and time-dependency and

by blockade with CsCl or ZD7288. Activation of 5-HT1A receptors reduced Ih and shifted the activation curve to a more negative
voltage by ±5 mV at half-maximal activation. Activation of 5-HT4 and 5-HT7 receptors increased Ih and shifted the activation

curve to the right by +5 mV. Speci®c activation of 5-HT4 receptors by BIMU8 increased membrane conductance and showed an

increase in Ih in a subset of cells, but did not induce a signi®cant alteration in the activation curve. In order to verify spatial
differences, we applied BIMU8 selectively to the soma and to the dendrites. Only somatic application induced receptor activation.

These data are con®rmed by immuno¯uorescence stainings with an antibody against the 5-HT4A receptor, revealing receptor

expression at the somata of the CA1 region. A similar expression pattern was found with a new antibody against 5-HT7 receptors
which reveals immuno¯uorescence staining on the cell bodies of pyramidal neurons.

Introduction

Serotonin (5-HT) is a ubiquitous transmitter and neuromodulator

which interacts with at least 14 different receptor isoforms in the

brain (for review see Barnes & Sharp, 1999). So far, seven subgroups

of 5-HT receptors have been classi®ed: 5-HT1 receptors are

negatively coupled to adenylyl cyclases (ACs), 5-HT2 receptors are

coupled to phospholipase C, 5-HT3 receptors form an ion channel and

5-HT4 receptors are coupled positively to ACs via Gas proteins

(Dumuis et al., 1988; Bockaert et al., 1998; Ponimaskin et al., 2001;

Heine et al., 2002). 5-HT6 and 5-HT7 receptors are also Gas-coupled

receptors and increase the production of 3¢,5¢-cyclic adenosine

monophosphate (cAMP). The function of 5-HT5 receptors remains

as yet unclear.

In the hippocampus, the mRNAs of 10 of these 14 receptor

isoforms have been identi®ed using in situ hybridization (for review

see Andrade, 1998; Heidmann et al., 1998). A clear electrophysio-

logical function of 5-HT1A and 5-HT4 receptors has been demon-

strated for CA1 pyramidal neurons, while GABAergic interneurons

are modulated by 5-HT1, 5-HT2 and 5-HT3 receptors (Andrade &

Nicoll, 1987; Roychowdhury et al., 1994; Freund & Buzsaki, 1996;

Schmitz et al., 1998; Barnes & Sharp, 1999). 5-HT1A receptors

hyperpolarize neurons either through direct activation of potassium

conductances by the bg subunits of the Gai complex (Ehrengruber

et al., 1997; Luscher et al., 1997) or indirectly by the Gai±AC

pathway (Karschin, 1999). The 5-HT4 receptors induce a depolariza-

tion of CA1 neurons via an as yet unidenti®ed cationic conductance

(Andrade, 1998) and induce a reduction of afterhyperpolarizations

following action potentials (Torres et al., 1996). The physiological

role of 5-HT7 receptors in hippocampal neurons remains to be

investigated. In thalamic neurons, however, 5-HT7 receptors modu-

late the hyperpolarization-activated current Ih (Chapin & Andrade,

2001).

5-HT-induced modulation of CA1 neurons involves Ih channels

(for review see Pape, 1996; Santoro et al., 2000), which are sensitive

to cAMP in a voltage-dependent manner (Larkmann & Kelly, 1997;

Gasparini & DiFrancesco, 1999; Bickmeyer et al., 2000; Chapin &

Andrade, 2001). Ih channels are expressed in the soma as well as in

the dendrites of CA1 neurons (Magee, 1998). The Ih current is

effective at the resting potential and modi®es postsynaptic signal

processing (Magee, 1998; Magee, 1999). In the present paper, we

address two questions, the ®rst about a differential spatial expression

of 5-HT receptors and the second about subtype-speci®c modulation

of the Ih current.

Materials and methods

Electrophysiology

Experiments were performed on 9±14-day-old-mice, which were

killed by decapitation under deep ether narcosis. The brain was

quickly removed and transferred into cold (4 °C) arti®cial cere-
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brospinal ¯uid (ACSF). The hemispheres were separated and their

medial plane ®xed on a tissue slicer (vibro slicer Leica VT1000S;

Solms, Germany) to cut 300-mm transverse slices, which were

transferred into a chamber and superfused with ACSF that was gassed

with carbogen (95% O2 and 5% CO2) at room temperature. A

minimum of 60 min was allowed for recovery from mechanical

trauma. CA1 pyramidal cell were identi®ed by their shape and by

their characteristic discharge pattern in current-clamp experiments

(Freund & Buzsaki, 1996). For electrophysiological measurements,

slices were transferred into the experimental chamber mounted on a

Zeiss Axioskop (Zeiss, GoÈttingen, Germany). ACSF contained (in

mM) NaCl, 125; KCl, 2.5; MgCl2, 1.0; CaCl2, 2; NaH2PO4, 1.3; Na-

Pyruvate, 2; NaHCO3, 24; and D-glucose, 30. We used borosilicate

pipettes to produce patch electrodes with a tip diameter of 1.5±2 mm

and resistances of 4±6 MW. Our standard pipette solution contained

(in mM) K-gluconate, 140; MgCl2, 2; CaCl2, 1; Na-adenosine

FIG. 1. (a) Voltage response to hyperpolarizing current pulses before and after activation of 5-HT1A receptors. I±V curve in current clamp with and without
20 mM 8-OH-DPAT (n = 11). (b) Voltage response to hyperpolarizing current pulses before and after application of 10 mM ZD7288 (n = 3). (c) Voltage
response to hyperpolarizing current pulses with and without activation of 5-HT4 receptors. I±V curve in current clamp before and after application of 20 mM

BIMU8. (n = 8). (d) Forskolin (50 mM) and IBMX (50 mM) evoked a depolarization of membrane potential and changed the voltage response to a
hyperpolarizing current pulse.
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5¢-triphosphate (ATP), 2; ethylene glycol-bis(b-aminoethylether)-

N,N,N¢,N¢-tetraacetic acid (EGTA), 10; (N-[2-hydroxyethyl]piper-

azine-N¢-[2-ethanesulphonicacid]) (HEPES), 10; and guanosine

5¢-triphosphate (GTP), 0.4. EGTA (10 mM) was used to minimize

the in¯uence of free calcium on Ih (LuÈthi & McCormick, 1998). For

selective blockade of Na+, Ca2+ and K+ conductances, but not Ih, in

some voltage-clamp experiments an `isolation buffer' was used

containing 1 mM TTX and (in mM) BaCl2, 2; CdCl2, 0.1;

tetraethylammonium-Cl, 10; 4-aminopyridine, 2; MgCl2, 1; KCl, 3;

NaCl, 110; NaHCO3, 20; and D-glucose, 30.

Local drug application was performed by pressure ejection

(PDES2l NPI, Tamm, Germany) through a patch pipette with a

tip diameter of 3±4 mm. There was no detectable leak of drugs

out of the pipette. This was veri®ed with different dyes such as

methylene blue. We never observed any drug effect before onset

of pressure application. Voltage- and current-clamp measurements

were performed with a SEC05 discontinuous single-electrode

voltage-clamp ampli®er (NPI; Tamm, Germany) or an EPC9 patch

clamp ampli®er (HEKA, Lambrecht, Germany). A liquid junction

potential of 4 mV was measured according to Neher (1992), but

data were not corrected. Statistical evaluation was performed with

Graphpad Prism software using Student's t-test. Data are

presented as means 6 SEM. The measurements were unlikely to

have been seriously affected by washout of cellular components

during whole-cell recordings because drug effects were at least

partially reversible.

Immuno¯uorescence

We developed a new antibody from rabbits immunized with a

synthetic peptide with the sequence CKHERKNISSFKREQK (amino

acid positions: 348±363). This corresponds to a sequence of the third

intracellular loop of the mouse 5-HT7 receptor (see Vanhoenacker

et al., 2000). For detection of the 5-HT4A receptor, we used the

antibody AS9459 as described by Ponimaskin et al. (2001) and Heine

et al. (2002), which is directed against a characteristic sequence close

to the C-terminus of the receptor. After ®xation in 4% paraformalde-

hyde in 0.1 M phosphate-buffered saline (PBS), brains were

cryoprotected in 30% sucrose, frozen at ±24 °C and cut into 30-mm

slices by a cryoslicer (Reichert-Jung, Wetzlar, Germany). Cells were

permeabilized with 0.5% Triton X-100 and nonspeci®c binding was

blocked with 2% bovine serum albumin (BSA) and 10% goat serum

in PBS. Slices were incubated overnight in PBS containing the

primary antibody at 1 : 400 dilution. After washing and blocking

with 2% BSA, 2% goat serum in PBS, Alexa 488 was used as second

¯uorescent antibody (Molecular Probes, Leiden, Netherlands) in a

concentration of 1 : 200 in 2% goat serum in PBS. Incubation in the

dark was done for 1 h at room temperature. Immuno¯uorescence

analysis was performed using a laser scanning confocal microscope

(LSM 510; Zeiss, GoÈttingen, Germany). As a negative control, we

used the preimmune serum of the rabbit processed as described

above. Staining of cell nuclei was achieved with a nuclear acid

staining with propidium iodide in a ®nal concentration of 25 mg/mL.

ELISA testing did not reveal cross-reactivity between the peptides

used for immunization against 5-HT4a and 5-HT7 receptors.

For Western blots we used nitrocellulose transfer membranes

(PVDF; Amersham, Braunschweig, Germany) and probed for 5-HT7

peptides with a polyclonal rabbit antiserum (1 : 1000 dilution) and

antirabbit IgG antibody coupled to peroxidase (1 : 2000 dilution;

Sigma). Detection was performed with an enhanced chemolumines-

cence kit (ECL Plus; Amersham). Film exposure times ranged

between 1 and 30 s.

Chemicals

BIMU8 [4-ethylphenylamino-1,2-dimethyl-6-((endo-N-8-methyl-8-

azabicyclo[3.2.1]oct-3-yl)-2,3-dehydro-2-oxo-3-(prop-2-yl)-ICH-

benzimid-azole-1-carboxamide)] was kindly provided by Boehringer

Ingelheim (Ingelheim, Rhineland-Pallatinate, Germany), GR113808

({1-[2-(methylsulphonylamino)ethyl]-4-piperidinyl}methyl-1-methyl-

1-H-indol-3-carboxylate, maleate salt) was a gift from Glaxo-

Wellcome (Herts, UK) and other chemicals were purchased from

Biotrend (Cologne, North Rhine±Westphalia, Sigma (Taufkirchen,

Bavaria, Germany), Merck (Darmstadt, Hesse, Germany) or

MoBiTec (GoÈttingen, Lower Saxony, Germany). The company

Bioscience (GoÈttingen, Lower Saxony, Germany) helped us to

produce the antibodies.

Results

Current-clamp analysis of receptor-speci®c effects

To activate 5-HT1A and 5HT4 receptors we used BIMU8 as a

selective 5-HT4 receptor agonist (Eglen et al., 1995) and 8-OH-

DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] as a 5-HT1A recep-

tor activator.

The resting membrane potential of CA1 neurons was ±60.7 6
1.4 mV. During application of 20 mM 8-OH-DPAT, neurons slightly

hyperpolarized by ±2.3 6 0.7 mV (P < 0.01, n = 25). After 20 mM

BIMU8 was applied, they depolarized by +3.3 6 1.1 mV (P < 0.01,

n = 23; Fig. 1). During 5-HT1A receptor activation with 8-OH-

DPAT, hyperpolarizing responses to negative current pulses were

augmented. The steady state I±V curves (measured 1 s after

beginning of a stimulus) showed a signi®cant shift towards more

negative potentials (Fig. 1a). This increase in the voltage responses

originated from a reduction in conductances, which involves Ih. The

voltage change induced by Ih produced a characteristic decay after an

initial peak (`sag') as shown in Fig. 1a and b. The voltage decay

FIG. 2. Blockade of Ih with 3 mM CsCl and 10 mM ZD7288.
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induced by Ih shifted signi®cantly to negative voltages at all points of

the I±V curve (P < 0.05, n = 11). Such ®ndings suggest that

activation of 5-HT1A receptors induced a negative shift in Ih

activation and/or a reduction in a `leakage' current.

To demonstrate the in¯uence of the Ih current we blocked it with

10 mM methylaminopyrimidiumchloride (ZD7288). A similar change

in voltage responses in comparison to activation of 5-HT1A receptors

was actually seen when the Ih current was partially blocked by

0.5 mM Cs (data not shown).

Bath application of the 5-HT4 agonist BIMU8 (20 mM) produced

an opposite effect, i.e. there was a shift of the voltage response

towards more positive values (Fig. 1c). The changes were signi®cant

(P < 0.05, n = 8) at every potential value along the I±V curve. A

similar change in voltage responses was seen when cAMP levels were

FIG. 3. (a) The 5-HT effect on holding current close to resting membrane potential (» ±60 mV). The 5-HT (50 mM)-induced inward current was blocked by
the 5-HT4 receptor antagonist GR113808 (10 mM). (b) The 5-HT effect was mimicked by 50 mM forskolin. (c) Forskolin (50 mM)-induced inward current was
not fully blocked by 3 mM CsCl. (d) 5-HT4 receptor-induced inward current in the presence of 3 mM CsCl. (e) 25 mM ZD7288 blocked Ih and therefore
induced a net outward current. 50 mM BIMU8 in the presence of 25 mM ZD7288 induced an inward current.
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increased by forskolin (50 mM) application in the bath and/or

isobutylmethylxanthine (IBMX) (50 mM) applied via the pipette

(Fig. 1). During this receptor-independent elevation of cAMP by

forskolin and IBMX, other channel types are modulated in addition to

Ih (see below).

Voltage-clamp analysis of receptor-speci®c effects

We performed voltage-clamp experiments to measure the Ih current

directly. The current was pharmacologically identi®ed as Ih due to its

blockade by 10±25 mM ZD7288 and 3 mM CsCl and because it

persisted in Ih isolation buffer (Fig. 2).

Activation of 5-HT4 receptors by BIMU8 (20 mM) induced an

inward current of ±21 6 5.5 pA (n = 11) when measured close to

the membrane resting potential. A similar inward current became

visible after application of BIMU8 (20 mM, ±16 6 5.8 pA) even

at a voltage of ±50 mV in Ih isolation buffer (n = 10). This effect

is consistent with the depolarization of neurons as measured in

current clamp. A comparable effect was seen after elevation of

cAMP with forskolin, which induced an inward current of ±

40 6 14.5 pA (n = 5).

When 50 mM 5-HT was applied in the presence of 1 mM (N-[-(4-[2-

Methoxyphenyl]-1-piperazinyl)ethyl]-N-2-pyridinylcyclohexanecarb-

oxamide) (WAY 100635) to activate 5-HT receptors other than

5-HT1A receptors, an inward current was induced that was blocked by

the 5-HT4 receptor antagonist GR113808 (10 mM, n = 3, Fig. 3). The

shift in baseline to positive values after application of GR113808

(10 mM) might be explained by a high constitutive activity of the

5-HT4 receptor which is blocked by GR113808 (Ponimaskin et al.,

2002). 5-HT4 receptors show a strong desensitization after 5-HT has

been applied in a heterologous expression system (Heine et al., 2002).

Therefore a second 5-HT application did not reveal a response (data

not shown). However, it is important to note that the inward currents

that were induced by either 50 mM BIMU8 or 50 mM forskolin were

not fully blocked even by high concentrations of Cs (3 mM; Fig. 3).

This indicates that another conductance was activated besides Ih.

Additional experiments with 25 mM ZD7288 in the bath solution and

application of 50 mM BIMU8 revealed an increase in an inward

current in two out of four experiments (Fig. 3), which was partially

reversible.

I±V relationship of BIMU8- and 8-OH-DPAT-induced
membrane currents

The BIMU8-induced increase of the net inward current did not seem

to originate just from an activation of Ih, but also from coactivation of

FIG. 4. Normalized I±V curves after activation of 5-HT1A receptors and 5-HT4 receptors. (Left) Activation of 5-HT1A (20 mM 8-OH-DPAT) receptors mainly
decreased the fully activated Ih current (2 ± 1) and not the instantaneous current (1) (n = 3). (Right) Activation of 5-HT4 receptors (20 mM BIMU8) increases
the instantaneous current (1) as well as the fully activated Ih current (2 ± 1) (n = 3).
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an as yet unidenti®ed inward current (Fig. 4) which is insensitive to

3 mM CsCl as well as to 25 mM ZD7288 and to Ih isolation buffer.

There was a difference between the currents measured at the very

beginning of the voltage step, which ranged from ±50 to ±130 mV

before and after application of BIMU8. This difference indicated a

leakage current. To separate this leakage current from Ih, we

determined the differences in current amplitudes measured at the very

beginning of the voltage step and of the fully activated current at the

FIG. 5. (a) Family of currents before (grey traces) and after (black traces) application of 5-HT1A receptor agonist 20 mM 8-OH-DPAT. (b) During blockade of
5-HT1A receptors, 50 mM 5-HT increased Ih (black traces). (c) Family of currents before (grey) and after (black) application of 5-HT4 receptor agonist BIMU8
(20 mM). (d) Normalized tail current amplitudes plotted against the membrane voltage. The V1/2 of a Boltzmann ®t to controls and after application of 20 mM

BIMU8 (n = 7) was nearly unchanged; 20 mM 8-OH-DPAT shifted the V1/2 of the activation curve ±5 mV to the left (n = 6), whereas 50 mM 5-HT (without
activation of 5-HT1A receptors) shifted the V1/2 5 mV to the right (n = 8). Control curve represents data for both sets of experiments. Student's t-test was
performed for each set of control data separately (*P < 0.05 at indicated voltages).
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end of a hyperpolarizing voltage pulse. The resulting I±V curves for

the corrected Ih revealed that Ih increased with application of the

5-HT4 agonist BIMU8 (20 mM). The 20 mM BIMU8 also increased

the leakage current but, in contrast to what is typical for Ih, the

leakage current did not reveal any signi®cant voltage dependence

(Fig. 4). Activation of 5-HT4 receptors increased inward currents

signi®cantly at potentials lower than ±50 mV (n = 10, P < 0.05).

The leakage current was not as sensitive as Ih to 8-OH-DPAT

(20 mM), while the separated Ih current (see above) revealed a clear

dependency on 8-OH-DPAT (Fig. 4). Activation of 5-HT1A receptors

by 8-OH-DPAT reduced the amplitude of Ih signi®cantly at potentials

lower than ±90 mV (n = 9, P < 0.05).

Receptor-speci®c modulation of tail current activation curves

To verify our current-clamp data for the 8-OH-DPAT-evoked shift in

Ih activation towards negative voltages, we determined the Ih

activation curve by plotting normalized tail currents as measured at

±60 mV against varying voltage prepulses (Fig. 5). The activation

curve was ®tted by a Boltzmann equation. This revealed that 20 mM

8-OH-DPAT actually induced a shift towards negative voltages. The

voltage of half-maximal current activation (V1/2) changed from

±94 mV (slope 12.5 mV±1) to ±99 mV (slope 11.4 mV±1).

Applying 50 mM 5-HT during blockade of 5-HT1A receptors by

1 mM WAY 100635, the V1/2 of the activation curve was shifted from

±94 mV (slope 12.5 mV±1) towards more depolarized potentials of

±89 mV (slope 13.9 mV±1). Activation of 5-HT4 receptors with

20 mM BIMU8 alone did not induce a signi®cant alteration of the

activation curve (V1/2 ±95 mV, slope 9.3 mV±1 to V1/2 ±93 mV, slope

10.1 mV±1; t-test; Fig. 5d), but increased membrane conductance.

After blockade of 5-HT1A receptors, the 5-HT effect therefore was

most probably due to an activation of 5-HT7 receptors. This

interpretation was con®rmed by the ®nding that 5-HT increased Ih,

although 5-HT4 receptors were blocked by 10 mM GR113808 and

5HT1A receptors by 1 mM WAY 100635. The membrane conductance

at ±50 mV was unchanged.

Considered for a long time to be 5-HT1A receptor speci®c, 8-OH-

DPAT is now known to (in high concentrations) coactivate 5-HT7

receptors, which are Gas-coupled (Lovenberg et al., 1993;

Vanhoenacker et al., 2000). We veri®ed this action of 8-OH-DPAT

by blocking 5-HT1A receptors with the antagonist WAY 100635

(1 mM), which allowed separation of the 8-OH-DPAT-induced

coactivation of 5-HT7 receptors. Indeed, we observed that 50 mM 8-

OH-DPAT increased Ih in all four cells tested. These ®ndings reveal

effective blockade of 5-HT1A receptors by 1 mM WAY 100635 and

the presence of 5-HT7 receptors in CA1 pyramidal neurons.

Localization of 5-HT7 receptors: immunohistochemistry

The primary antibody (1 : 400) against a sequence of the third

intracellular loop of the mouse 5-HT7 receptor intensively labelled

somata and, in some cases, parts of the proximal dendrites of CA1

pyramidal neurons (Fig. 6a). Controls with preimmune serum did not

reveal any speci®c staining. Cell nuclei were stained with propidium

iodide (25 mg/mL) to also localize those cells that were not labelled

with the primary antibody. These controls clearly revealed that cells

in the stratum radiatum, closely neighbouring CA1 pyramidal cells,

were not labelled by the antibody and probably represent interneurons

or glial cells not expressing any 5-HT7 immunoreactivity (Fig. 6b).

To test for the speci®city of the antibody, we performed Western

blots using standard procedures with brain homogenate and found a

single band close to 48 kDa, which corresponds to the molecular

weight of the receptor protein indicating receptor speci®city

(Fig. 6c).

Localization of 5-HT4 receptors: electrophysiology and
immunohistochemistry

In order to test for a differential expression of 5-HT4 receptor

isoforms, we compared the effects of local and systemic bath

application of the receptor-speci®c agonist BIMU8 (20 mM). We

locally ejected 20 mM BIMU8 through a patch pipette directly on the

cell body of CA1 neurons, while the ¯ow of the bath solution was

directed towards the axonal compartment, i.e. away from the remote

dendritic compartments of the CA1 neurons in stratum radiatum. The

5-HT4 receptor-induced effects were similar, regardless of whether

the drug was applied at 20 mM in the bath or directly to the cell body

FIG. 6. (a) Fluorescence staining of the hippocampus. The 5-HT7 antibody binds to the cell bodies and proximal dendrites. (b) Fluorescence staining of the
stratum pyramidale of the CA1 region using the 5-HT7 antibody (1 : 400) and propidium iodide (25 mg/mL) staining of cell nuclei in this area. Many cells
are stained with propidium iodide but unstained by the antibody, indicating the absence of 5-HT7 receptors from interneurons. (c) Immunoblot: test of activity
of the polyclonal anti-5-HT7 antibody. Cytosolic fraction (1) and membrane fraction (2) from lysed brain with anti 5-HT7 antibody. Lines represent each
1.2 mL of fraction.
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in the same concentration. The inward current was 64 6 21 pA

(n = 5) during somatic application and 40 6 19 pA (n = 9) when

applied in the bath. The slight differences are probably due to

experimentally induced differences in receptor desensitization.

Application of 20 mM BIMU8 to remote dendrites showed no effect

(n = 3, Fig. 7b). These data point to a preferential location of 5-HT4

receptors on the cell bodies of CA1 pyramidal neurons.

The primary antibody AS9459 (Ponimaskin et al., 2001; Heine

et al., 2002; Ponimaskin et al., 2002) directed against the C-terminus

of the 5-HT4A receptor revealed a similar staining of pyramidal cells

in the CA1 region. This indicates that 5-HT4 receptors are

coexpressed with 5-HT7 receptors on the cell bodies of CA1 neurons.

This ®nding con®rms our electrophysiological data (Fig. 7).

Discussion

5-HT is a very potent neuromodulator of the hippocampal circuitry,

although speci®c serotonergic synapses have been identi®ed only on

GABAergic interneurons (Freund & Buszaki, 1996; Vizi & Kiss,

1998) but not on pyramidal cells. 5-HT acts presynaptically to

modulate transmitter release (Schmitz et al., 1998) and postsynaptic-

ally to modify neuronal excitability of pyramidal CA1 cells

(Andrade, 1998; Barnes & Sharp, 1999). Serotonin activates various

5-HT receptor isoforms that couple to different intracellular

signalling pathways, e.g. Gai, Gas (for review, see Barnes &

Sharp, 1999). It is therefore necessary to analyse pyramidal CA1

neurons for the expression pattern of receptor isoforms and their

spatial distribution.

FIG. 7. (a) Immunoblot: test of activity of the polyclonal anti-5-HT4 antibody (1 : 400) indicated as in Fig. 6c. (b) Fluorescence staining of the hippocampus.
The 5-HT4 receptor antibody bound to somata in the CA1 region. (c) Current-clamp recordings during local application of the 5-HT4 receptor agonist 20 mM

BIMU8.
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In order to test for the functional signi®cance of serotonergic

modulation (Larkmann & Kelly, 1997; Gasparini & DiFrancesco,

1999), the hyperpolarization-activated nonselective ion channel

generating the Ih (Pape, 1996) is an adequate test tool because it is

differentially modulated by 5-HT signal pathways (Bickmeyer et al.,

2000). Ih channels are expressed in dendrites and somata of CA1

neurons and contribute to the resting membrane potential and

modulation of temporal summation of synaptic signals (Magee,

1998; Magee, 1999).

Immuno¯uorescence staining clearly demonstrated that 5-HT4 and

5-HT7 receptors are expressed in CA1 cells and preferentially

localized on the cell body, while 5-HT1A receptors are located

preferentially on dendrites, but also on the cell body (Azmitia et al.,

1996; Kia et al., 1996). This corresponds to a speci®c subcellular

distribution and differential modulation of Ih currents by 5-HT1A,

5-HT4 and 5-HT7 receptors as determined electrophysiologically in

the present paper. Such differential modulation of Ih by 5-HT receptor

isoforms was veri®ed by demonstrating that activation of 5-HT1A

receptors induces a negative shift in the activation curve, while

activation of 5-HT4 and 5-HT7 (5-HT application with blocked

5-HT1A receptors) induces a positive shift in the activation curve.

5-HT4 receptors also increase another as yet unidenti®ed conductance

that obviously contributes to this effect (Cardenas et al., 1999). This

conductance was insensitive to 10 mM tetraethylammonium, 2 mM

4-aminopyridine, 3 mM Cs and low doses of Cd (0.1 mM) and

appears as an inward current at the resting membrane potential in

physiological buffer (ACSF) using standard pipette solution. It is

therefore not a potassium conductance. We assume that it derives

from a cyclic nucleotide-gated (CNG) channel, which obviously is

expressed in CA1 cells (Bradley et al., 1997). CNG channels show a

voltage-independent conductance increase by cAMP in the micro-

molar range and are permeable to monovalent and divalent cations.

In addition, we veri®ed that 5-HT1A receptors depress the

persistently active Ih, which induces an increase in the electrotonic

length of dendritic segments and therefore increases EPSP time

constants (Magee, 1999). However, cell bodies and proximal

dendrites are equipped with 5-HT4 and 5-HT7 receptors, which

couple to Gas to increase Ih, leading to augmentation of the inward

currents to depolarize neurons and facilitate action potential

discharge.

In conclusion, the Ih current is active at the resting membrane

potential of CA1 neurons and thus is capable of modifying temporal

integration of synaptic currents (Magee, 1998) and thus differential

adjustment of EPSP amplitudes arising at dendrites and/or the soma

(Magee, 1999). Ih also plays a functional role in cellular bursting of

thalamic neurons (McCormick & Pape, 1990; Pape, 1996) and

respiratory neurons (Mironov et al., 2000; Thoby-Bresson et al.,

2000), where Ih contributes in varying degrees to rhythm generation.

Therefore, we assume that serotonergic modulation also exerts a

differential control on periodic bursting behaviour of CA1 neurons.

Variability of responses

It seems worthwhile to mention that not all CA1 pyramidal neurons

responded uniformly to 5-HT. After application of 8-OH-DPAT

(20 mM), 83% of neurons responded with a reduction in Ih, 11%

showed no response and 6% even showed a slight increase. This

might indicate an interference with other 5-HT receptor isoforms, e.g.

5-HT7 receptors (Vanhoenacker et al., 2000). Application of the

5-HT4 receptor agonist BIMU8 (20 mM) resulted in a current increase

in 64% of neurons; 36% showed no clear response. One might

speculate therefore that not all CA1 neurons express this 5-HT

receptor isoform. Another explanation might be the high constitutive

activity (Clayesen et al., 1999; Ponimaskin et al., 2002) of the 5-HT4

receptor, which is so high in some neurons as to mask the effect of an

agonist. Additionally, 5-HT might be spontaneously released in brain

slices, leading to rapid desensitization of 5-HT4 receptors, which

reduces the effect of 5-HT4 receptor agonists as shown in a

heterologous expression system (Heine et al., 2002).

In conclusion, 5-HT1A, 5-HT4 and 5-HT7 receptor subtypes are

differentially expressed in CA1 neurons, which allows space-speci®c

modulation of the Ih current, which is known to adjust synaptic

integration and repetitive discharge behaviour of CA1 neurons of the

hippocampus.
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