
Computers & Geosciences 153 (2021) 104791

Available online 24 April 2021
0098-3004/© 2021 Published by Elsevier Ltd.

Harmonizing heterogeneous multi-proxy data from lake systems 

Gregor Pfalz a,b,c,d,*, Bernhard Diekmann a,b, Johann-Christoph Freytag c,d, 
Boris K. Biskaborn a,b,** 

a Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, Telegrafenberg A45, 14473, Potsdam, Germany 
b University of Potsdam, Institute of Geosciences, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany 
c Einstein Center Digital Future, Robert-Koch-Forum, Wilhelmstraße 67, 10117, Berlin, Germany 
d Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany   

A R T I C L E  I N F O   

Keywords: 
Data integration 
Entity-relationship diagram 
Sediment cores 
Conceptual data framework 
Arctic lakes 

A B S T R A C T   

When performing spatial-temporal investigations of multiple lake systems, geoscientists face the challenge of 
dealing with complex and heterogeneous data of different types, structure, and format. To support comparability, 
it is necessary to transform such data into a uniform format that ensures syntactic and semantic comparability. 
This paper presents a data science approach for transforming research data from different lake sediment cores 
into a coherent framework. For this purpose, we collected published and unpublished data from paleolimno-
logical investigations of Arctic lake systems. Our approach adapted methods from the database field, such as 
developing entity-relationship (ER) diagrams, to understand the conceptual structure of the data independently 
of the source. We demonstrated the feasibility of our approach by transforming our ER diagram into a database 
schema for PostgreSQL, a popular database management system (DBMS). We validated our approach by con-
ducting a comparative analysis on a set of acquired data, hereby focusing on the comparison of total organic 
carbon and bromine content in eight selected sediment cores. Still, we encountered serious obstacles in the 
development of the ER model. Heterogeneous structures within collected data made an automatic data inte-
gration impossible. Additionally, we realized that missing error information hampers the development of a 
conceptual model. Despite the strong initial heterogeneity of the original data, our harmonized dataset leads to 
comparable datasets, enabling numerical inter-proxy and inter-lake comparison.   

1. Introduction 

On-going global warming impacts Arctic landscapes through the 
“Arctic amplification” effect, where temperatures in the Arctic exceed 
the average Northern Hemisphere surface air temperature change (Bis-
kaborn et al., 2019b; IPCC, 2014; Miller et al., 2010). Lake systems are 
thereby among the most valuable, but at the same time also the most 
complex climatic archives of the earth as they enshrine various envi-
ronmental information into their sediment (Bradley, 2015; Brauer, 
2004; Cohen, 2003). The regional and global climate as well as 
non-climatic influencing factors both affect the sedimentation process of 
lake systems (Fritz, 2008; Wilke et al., 2016; Zolitschka et al., 2015). 
Understanding them helps to improve our perception of the earth 
system. 

Analytical data derived from determining lake sediment properties, 
also known as proxy data, are essential for reconstructing lake histories, 
as they indicate change of environmental conditions (Bradley, 2015). 
While scientists continue to collect new data from lake systems each 
year, thorough data handling of already existing datasets might help to 
fill remaining knowledge gaps of past changes. The quality of these older 
datasets varies depending on different factors, such as date of creation, 
individual project goals, available laboratory resources, and personnel 
bias (Cai and Zhu, 2015; Heidorn, 2008; Wang et al., 2001). When 
integrating these existing datasets into a coherent framework and 
reporting standard, we can work with higher reliability and reproduc-
ibility thus enabling large-scale synthesis studies. 

The number of repositories containing valuable data for paleo-
limnological studies has increased in recent years (Elger et al., 2016; 
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Latif et al., 2019; Muster, 2018). Various studies using these repositories 
have already shown the effectiveness of multi-proxy, multi-site in-
vestigations through the synthesis of data from various sources (e.g., 
Bouchard et al., 2016; Kaufman et al., 2020; PAGES 2k Consortium, 
2017; Subetto et al., 2017). Khider et al. (2019) recently proposed a 
reporting standard for new and past (‘legacy’) paleoclimate datasets, 
which includes the reporting of metadata information and measured 
data from lake sediments. The positive reception of their proposed 
model shows the consensus within the paleoclimate research commu-
nity in favor of uniform standards for reporting measurement data of 
various kinds. 

Still, there are non-digitalized, unprocessed or unpublished data 
hidden on local storage devices, old field and lab books as well as in 
hand-written documents (Curry and Moosdorf, 2019; Heidorn, 2008). 
Some ‘legacy’ datasets might not meet the requirements of such a 
standard as proposed by Khider et al. (2019). This prevents older data 
from being included in any multi-site investigations. However, these 
datasets are potentially invaluable sources of almost forgotten knowl-
edge (Muster, 2018). 

In this paper, we present a conceptual integration approach to enable 
a comprehensive comparison of datasets of varying quality from labo-
ratory analysis of lake sediment. The specific objectives of this paper are 
(I) to provide a conceptual entity-relationship (ER) model for merging 
heterogeneous multi-proxy data into a common framework from a 
database-centric perspective, and (II) to translate the conceptual model 
into a reference implementation using the PostgreSQL database man-
agement system (DBMS) to perform a comparative analysis on acquired 
and transformed data. Our approach will allow scientists to perform 
their data analysis on the integrated data with less effort compared to an 
analysis using the raw (original) data. 

2. Methods 

2.1. Data collection 

For the cleansing and integration process presented in this paper, we 
used a collection of published and unpublished laboratory data and 
corresponding metadata from lake sediment cores. The majority of data 
came from online data repositories (e.g., Pangaea, GFZ Data Service) or 
institute-internal data sources of the Alfred Wegener Institute (e.g., 
expedition reports, personal communication). For the purpose of 
reproducibility and tracking, we collected and stored (meta) data about 
the sources of the collected data. This data is accessible in the re-
positories mentioned in the ‘Code and data availability’ section. 

We manually curated the laboratory data by using different data 
validation approaches (Pannekoek et al., 2013; Sun et al., 2011). We 
assessed both laboratory data and metadata hereby on their complete-
ness, consistency, accuracy, and precision (Batini et al., 2009; Batini and 
Scannapieca, 2006; Sebastian-Coleman, 2013). In a first step, we per-
formed type checking, as laboratory data is known to be primarily 
numeric. We substituted unsuitable characters by numeric values using 
the Python package ‘pandas’ (Reback et al., 2020). A physical range 
check followed the previous check to ensure that values do not exceed 
physical ranges (Sun et al., 2011). If values exceed their logical physical 
range, we then removed them from the dataset. We standardized names 
of common proxies (e.g., ‘Aluminum’ to elemental symbol ‘Al’) or 
associated units (e.g., core lengths from centimeters to meters) to ensure 
consistent naming across all datasets. We logged all cleaning actions 
carried out during the entire validation process for provenance reasons. 
If possible, we examined original files from measuring instruments as 
well as original publications to avoid any conversion errors. We con-
sulted the corresponding responsible scientist for any clarification when 
needed. 

We selected the following information as minimum requirements for 
metadata information to be included in our study:  

• unique core identifier (‘CoreID’),  
• geographical information (latitude, longitude),  
• information about the field campaign (name, year),  
• site name,  
• lake type,  
• water depth at coring location, and  
• composite (i.e. cumulative) core length, derived from overlapping 

core segments. 

The proposed preselection helped us to distinguish clearly unique 
entries of lake sediment cores from other entries. If the meta data was 
not included in the acquired dataset, then we searched in related liter-
ature to determine the uniqueness of the core. We generated unique 
identifiers for the cores using the pattern ‘{FirstAuthorLastName} 
{LakeID} {ExpeditionYear} {CoreNumber}‘, when no unique identifier 
was available. CoreIDs, names of field campaign, and sites are stored in 
English using the Latin alphabet. The information about latitude and 
longitude is recorded as decimal degrees (minimum precision: three 
decimal places), while water depth and core length are given in meters 
(precision: two decimal places). Besides using the geographical location 
to validate the uniqueness of a sediment core, we further used the co-
ordinates in ArcGIS, Google Earth, and HydroLAKES database (Messager 
et al., 2016; Meyer et al., 2020) to check that the scientists correctly 
placed and assigned site names to cores. 

In total, there were 70 metadata information entries for unique core 
sediments. Fig. 1 illustrates the geographical distribution of this meta-
data compilation. It shows that the availability of information with high 
latitude values (50◦ N to 90◦ N) dominates the spread. The dominance of 
the latitude values in this range is due to the clear research focus by the 
Alfred Wegener Institute and its partners on the Arctic. 

2.2. Conceptual approach 

During data collection, we encountered variety of structures and 
inconsistent data, which makes data of different sources incomparable. 
In order to facilitate a better integration of those heterogeneous datasets 
into a database, we decided to design a unified scheme based on the 
existing structures to store all base values. We defined as base values all 
values, which cannot be derived from any other data values in any of the 
data source. Under this assumption, the first step within the (conceptual) 
schema design approach was to develop generic concepts, which should 
resemble aspects of limnological studies. We followed the principles of 
database design for a redundant free data representation. As such, a 
(conceptual) data model describes all aspects of the real world by 
identifying relevant entities and the relationships among them in the 
domain of discourse (Codd, 1970; Elmasri and Navathe, 2009; Teorey 
et al., 2008). 

Both, entities and relationships are associated with specific attri-
butes, i.e. descriptive properties that are inherent for each of them in the 
real world. For instance, researchers conduct a core drilling at a specific 
geographical location (described by latitude and longitude) and water 
depth with a particular drilling device. The resulting core has a unique 
core identifier (e.g., ‘International GeoSample Number’ (Conze et al., 
2017), or simply ‘CoreID’) and a composite core length. Therefore, we 
reduced this process to one core-specific entity Drilling with five attri-
butes (see Fig. 2), while one attribute is a composite attribute (‘Geo-
information’) and another is the key attribute (‘CoreID’) of this entity. 

Naturally, entities have an interdependency with other entities. 
Teorey et al. (2008) provides guidance for how to design entities and 
their relationships. As an example for paleolimnological studies: It is 
only possible to conduct a core drilling at one location at any given time; 
hence, there is a one-to-one relationship between the entities Drilling and 
Lake. Other binary data modeling cardinalities are one-to-many or 
many-to-many relationships (Garcia-Molina et al., 2002; Teorey et al., 
2008). In general, entity-relationship diagrams, also known as ‘ER dia-
grams’ (Figs. 2 and 3), or alternatively, diagrams using the Unified 
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Modeling Language (UML) (Fig. 4, Fig. 5), allow us to visualize entities 
together with their relationships (Chen, 1975; Garcia-Molina et al., 
2002; Teorey et al., 2008). This visual representation accelerates the 
implementation of the developed concept in a database management 
system (DBMS). 

In our case of paleolimnological studies, we identified two groups of 
entities: measurement-specific and core-specific entities. Measurement- 
specific entities represent individual laboratory measurements for proxy 
determination. Core-specific entities do not only characterize the core 
retrieval, but also operational metadata describing the drilling. The 
operational data includes data about the surveyed lake, field campaign/ 

expedition, responsible scientist, and publications. This allocation 
further supports initiatives for optimal metadata management and 
investigating for possible systematic errors, i.e. data trustworthiness 
(Batini et al., 2009; Bertino and Lim, 2010). 

Besides the superordinate entity Drilling in the group of core-specific 
entities (Fig. 2), we split the field campaign into the entities Lake, 
Expedition, and Scientist. Lake describes further details about the lake at 
which the drilling took place. The Lake entity also relates to the entities 
ClimateClassification, VegetationClassification, and LakeClassfication en-
tity, which describe the climate, vegetation and lake origin at time of 
core retrieval to the lake, respectively. For operational data about the 

Fig. 1. Geographical distribution of lake sediment cores used for the study design (triangles, n = 70). Red triangles (n = 8) indicate lake sediment cores used for the 
comparative analysis of total organic carbon (TOC) and bromine (Br) content shown in this study. ArcGIS Basemap: GEBCO Grid 2014 modified by AWI. The outer 
ring in the graphic corresponds to 45◦ N. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. Entity-relationship diagram of nine core-specific entities (rectangular boxes) with their attributes (boxes with rounded corners) connected through re-
lationships (diamond-shaped objects). The core-specific entities refer to information about core retrieval and associated information. Entity ‘Measurement’ in the 
right upper corner establishes the connection between both entity groups. 
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field campaigns in relation to the drillings, we designed both Expedition 
and Scientist entities for temporal attribution and contact details. Publi-
cation consists of the important publications relating to each drilling, 
while Source gives information about the files used to produce the 
measurement-specific entities and therefore allows us to reproduce them 
with higher precision. 

For the measurement-specific entities (Fig. 3), the attributes describe 
measured quantities of the individual laboratory measurements. It was 
therefore vital for us to gain an understanding of the different laboratory 
methods used to analyze proxies. Based on the available data, we 
determined eleven proxies that were analyzed frequently in the datasets 
(Table 1). We examined each related study closely on its applied 

Fig. 3. Entity-relationship diagram of ten measurement-specific entities (rectangular boxes) with their attributes (boxes with rounded corners) connected through 
relationships (diamond-shaped object). Measurement-specific entities are consistent with the measured laboratory data of sediment cores. 

Fig. 4. Unified Modeling Language (UML) diagram of core-specific entities for the reference implementation. Entities (rectangular boxes) consist of their name, 
attributes and their PostgreSQL data type in tabular form, and an indication whether the attributes are primary keys (PK), foreign keys (FK), or both. The entities are 
connected by a relationship (solid line) to another entity. The numbers on the solid line indicate the cardinality of that relationship. This figure includes the entity 
‘measurement’ to show connection to the other derived measurement-specific entity group. List S1 in the supplementary material further describes each entity. 
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methodology to determine said proxies. While most studies followed the 
same methodological approach, we found variations for three proxies, 
namely for elements, grain size, and Total Organic Carbon (TOC) 
(Fig. S1 in the supplementary material provides a pictorial representa-
tion). In our design, we decided to focus on one approach as a repre-
sentative for both TOC and grain size. For the elemental proxy we kept 
the method selection optional. 

Regarding the attributes for measurement-specific entities, we 
decided for the lowest common denominator to avoid artificial inflation. 
For instance, for a measurement independent abstraction of elemental 
data, the reduction leads to one entity Element with two attributes for (i) 
the name or symbol of the element, and (ii) the associated value at a 
specific depth inside the core. To place an emphasis on the applied 
method, we appended the unit of the measurement to the element 
symbol in the attribute ‘Element_Name’, e.g., Aluminum measured in 
parts-per-million as ‘Al_ppm’. This strategy is only possible for elemental 
data, as the unit of measurement does not change and values from 
different methods for this proxy are not directly comparable. 

Ultimately, we derived nine core-specific (Fig. 2) and ten 
measurement-specific (Fig. 3) essential entities from the acquired data. 
The entities Measurement and Drilling establish the linkage between the 
two entity groups. When analyzing sediment cores, scientists extract 
multiple proxy measurements from a specific depth along the core’s 
length (one-to-many relationship). Hence, unique identifiers in Mea-
surement contain a composite attribute consisting of the composite depth 
and the corresponding core identifier. As the core identifier ‘CoreID’ is 
also the key attribute of the Drilling entity, it enables us to extract 
additional operational information belonging to the measurement. 

In the second step of our conceptual approach, we had to ensure that 
a comparison between different datasets is feasible. Harmonizing labo-
ratory data from geographically dispersed cores necessitates finding a 
common anchor point between those datasets. The sampling scheme of 
the individual proxies strongly depends on the depth within the sedi-
ment core, which itself depends on the research questions posed. Lab-
oratory measurements could therefore be taken very frequently (i.e. 
every one to 2 mm), less frequently (i.e. every five to 10 cm), or where 
distinctive changes within the sediment core are visible. The time axis is 
the only constantly running physical quantity and common denominator 
on which we can place all measurements. For this conversion, one might 
use existing age-depth modeling software. 

While users can set defined depth resolutions for the age-depth 
relationship within the modeling software to match varying proxy res-
olutions, a complete conversion of the proxies from individual depth- 
dependent to joint age-dependent will leave blanks. Logical approxi-
mations or interpolations of the individual proxy have to fill those 
vacant time slices when seeking comparable multi-site investigations 
(Birks and Birks, 2006). There are various well-established techniques 
available, such as in-filling techniques, spline interpolation or 
machine-learning based interpolation (Birks, 2012). 

At first, we define the proxy with the lowest age resolution as the base 
proxy after the conversion from depth-dependent to age-dependent. We 

Fig. 5. Unified Modeling Language (UML) diagram of measurement-specific entities for the reference implementation. Entities (rectangular boxes) consist of their 
name, attributes and their PostgreSQL data type in tabular form, and an indication whether the attributes are primary keys (PK), foreign keys (FK), or both. The 
entities are connected by a relationship (solid line) to another entity. The numbers on the solid line indicate the cardinality of that relationship. This figure includes 
the entity ‘drilling to show connection to the other derived core-specific entity group. List S1 in the supplementary material further describes each entity. 

Table 1 
Selection of proxies, which were frequently determined in the acquired 
laboratory datasets.  

Abiotic proxies Biotic proxies 

Elements    Diatoms 

Minerals Chironomids 
Grain size Pollen 

Water content δ13C  
Total organic carbon (TOC)  

Total carbon (TC)  
Total nitrogen (TN)  
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then match other proxies with a higher resolution (desired proxies) to the 
base proxy. That is to say, we select values of the desired proxy at the 
time slices equal to the time slices of the base proxy. If the value of the 
desired proxy is not available at the exact time slice of the base proxy, 
we perform an interpolation of the desired proxy. We hereby follow the 
advice by Blaauw (2012) to avoid the use of overfitted values which 
could potentially result in misinterpretations. If we were to excessively 
interpolate values of a proxy with a lower resolution in order to fit the 
curve of proxies with a higher resolution, we would increase the likeli-
hood of a misinterpretation. Additionally, internal lake dynamics in-
fluence biological activity within lake systems, which means that a 
higher or lower abundance of biological proxies within a sediment core 
might be an indication for a specific event (Biskaborn et al., 2019a). It is 
therefore debatable, whether an interpolation of biological proxy is 
reasonable, or we should use Bayesian modeling approaches instead 
(Huntley, 2012). For simplicity, we assume in our study that interpo-
lation is feasible for the proxies involved in this study. 

To synchronize values between sediment cores, we use binning to 
create equally spaced bins of time. We calculate the optimal bin size 
using the mean of the maximum proxy age resolution for the base proxy 
across all sediment cores. We then select the interpolated central valu es 
for each proxy measurement at the same interval as the bin size. We use 
all remaining values within an age bin to calculate the minimum and 
maximum value range for each proxy. 

2.3. Comparative analysis 

To set up for our comparative analysis, we implemented the devel-
oped ER data model as a database schema for a PostgreSQL database 
system (Version 11.2; PostgreSQL Global Development Group, 2018). 
For the implementation, we used the open-source software tool DBeaver 
(Version 7.0; DBeaver Community, 2020). Figs. 4 and 5 provide a visual 
representation of the reference implementation as UML diagram. List S1 
in the supplementary material shows the individual entities with their 
attributes, a short explanation, the PostgreSQL data type, and an 
example. 

After implementing the schema in PostgreSQL, we had to transform 
the available (raw) data to fit the proposed schema. Therefore, we set up 
a spreadsheet template with the same schema as the database to support 
the integration process. We show an example spreadsheet template for 
our reference implementation in the repository mentioned in the ‘Code 
and data availability’ section of this paper. The standardized data was 
then inserted into the database using a Jupyter notebook (Kluyver et al., 
2016) using the package ‘SQLAlchemy’ (Bayer, 2012). 

We performed the comparative analysis in a separate Jupyter note-
book – for more information on the code we refer to section ‘Code and 
data availability’. We selected total organic carbon (TOC) content and X- 
ray fluorescence (XRF) measured bromine (Br) content to showcase the 
basic functionality of our approach. Previous studies conducted by 
Biskaborn et al. (2016) and Kalugin et al. (2007) showed that bromine is 
a good indicator for changes of organic content in lake sediment and 
should therefore agree well with the TOC content (Rothwell and Crou-
dace, 2015). Both proxies were measured in eight sediment cores within 
our database. First, we converted the measurement depths to the median 
ages from the corresponding age-depth model. To allow a transparent 
and comprehensible (re-)modeling of already existing age-depth re-
lationships, we gathered all information regarding laboratory age 
analysis with its associated uncertainty. For a better reproduction of the 
age-depth relationship, we stored further information regarding the age 
determination. This information included the description of the dated 
material, involved laboratory, pretreatment methods, and thickness of 
the dated sediment layer, if bulk sediment was dated. 

For age-depth modeling, we used the existing open-source MATLAB 
software package ‘Undatable’ (Lougheed and Obrochta, 2019) with the 
improved IntCal20 calibration curve (Reimer et al., 2020). We imple-
mented an additional script to access all eight sediment cores from the 

database and then computes age-depth models in bulk (Undatable set-
tings: nsim = 105, bootpc = 30, xfactor = 0.1). This recalculation re-
duces potential biases introduced by the authors and possible differences 
between modeling software output (Trachsel and Telford, 2017; Wright 
et al., 2017). Age-depth relationships produced during our harmoniza-
tion process are no replacement for the original relationships identified 
by the contributing authors (cf. McKay and Kaufman, 2014). We stored 
the resulting output created by the modeling software as ‘ModelOutput’ 
in the database using an additional script. 

We determined our base proxy for our comparative analysis using the 
mean proxy age resolution. We also considered the impact the higher 
resolution proxy had on the data, if we were to use the proxy with higher 
resolution as the base proxy. To enable a synchronized comparison of 
TOC and bromine, we used interpolation to replace missing values by 
approximated values. We applied a piecewise polynomial interpolation 
for existing gaps using the Python package ‘SciPy’ (Virtanen et al., 
2020). We assessed all cores on their maximum proxy age resolution for 
the base proxy to determine the optimal bin size. Ultimately, we binned 
each measurement into its respective age bin and determined from all 
measurements the minimum and maximum value ranges within each 
bin. 

3. Results and discussion 

Using research data from external sources always contains the risk 
that undocumented transformations (knowingly or unknowingly) 
changed the data after a laboratory analysis. This might lead to erro-
neous and incomprehensible data. Therefore, we contacted the respon-
sible scientists for further inquiries regarding the data handling to avoid 
propagating possible errors. If there were inconsistencies between 
different approaches, then we documented this circumstance for trace-
ability. Due to the design of the data model, we provide data, which 
allows a scientist to retrieve the original data files and publication for 
each proxy dataset. Such reference supports the important concept of 
lineage thus providing an improved contextualizing of the data, which 
might be important for further use of the data. We claim that good data 
cleansing can foster an interoperability amongst geoscientist and the use 
of automated data integration tools. However, the biggest challenge 
during the harmonization process of our collected dataset was the 
handling of varying data qualities. The most noticeable inconsistency 
was the heterogeneous structure within the data. While almost all data 
from online repositories followed syntactic rules, data from other 
sources did not stay within a coherent framework. Therefore, over the 
course of our investigation, we had to exclude the possibility of auto-
mated data integration. If future datasets follow the FAIR principle 
(Findable, Accessible, Interoperable, Reusable), we are convinced that 
automated data integration becomes possible (Latif et al., 2019; Stall 
et al., 2018; Wilkinson et al., 2016). 

The use of a database management system (DBMS) for the compar-
ative analysis has clear advantages over loosely connected, personal 
spreadsheets without the ability for integration. Currently, measure-
ment data exists in different labs on different computer without the 
ability for a common usage and understanding. Our approach presents 
first steps towards a data-driven integration of such data. There are 
multiple reasons for using database techniques in the context of data 
transformation and integration resulting in set of homogenized data for 
further analysis Once the data are in a standardized format, the database 
provides high availability, high flexibility, synchronization, error re-
covery, and great efficiency. Integrated datasets further support data 
integrity within the database. Despite new developments in database 
research, relational database management systems (RDBMSs) still pro-
vide the best fit for laboratory data from paleolimnological studies as 
most of data generated by measuring instruments can be stored and 
accessed in a tabular form. Other geoscientific databases, such as Neo-
toma, Pangaea, or GTN-P, proved the reliability of RDBMSs (Biskaborn 
et al., 2015; Diepenbroek et al., 2002; Williams et al., 2018). 
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Additionally, most database management systems provide interfaces 
(APIs) to a series of programming languages, which makes it easier to 
retrieve and to analyze the stored data efficiently and effectively (cf. 
Elmasri and Navathe, 2009; Teorey et al., 2008). 

Fig. 6 (A) shows the untransformed output from the reference 
implementation, where TOC and bromine content are dependent on the 
depth within each sediment core. We then transformed all values from 
depth-dependent to age-dependent (Fig. 6 B). Fig. 6 (B) illustrates the 
TOC and bromine values against their corresponding median age 
derived from the age-depth modeling software ‘Undatable’ (Lougheed 
and Obrochta, 2019). What stands out in Fig. 6 is the variability of 
consecutive measurements along the X-axis. Still, we determined 
elemental and TOC measurements to have the highest and third highest 
age resolution in our reference implementation, respectively (see 
Table 2). The resolution depends highly on the level of automation and 
treatment processes for each proxy. We can measure elemental data 
from non-destructive X-ray fluorescence (XRF) core scanning without 
any pretreatment at a depth resolution of 2 to 5 mm. Other proxy groups 

such as diatoms, chironomids, or pollen require time-consuming pre-
treatment and microscope-based analyses performed by individual sci-
entists. Scientists accommodate the additional preparation by 
commonly taking fewer samples. 

Based on these results, we selected TOC as our base proxy for the 
comparison of TOC and bromine. Fig. 7 compares the results from using 
(A) TOC and (B) bromine as base proxy for the matching process. Panel 
A is following our approach of choosing the proxy with the lower res-
olution as the appropriate base proxy and generating corresponding 
interpolated bromine values for each TOC value, if needed. In panel B we 
show that using the higher resolution proxy as base proxy instead, leads 
to an overestimation of specific events due to necessity of excessive 
interpolation. With the results from panel A we started to calculate 
optimal bin size and minimum and maximum value ranges for each bin. 
We determined 700-year bins to be the optimal bin size for our 
comparative analysis. Fig. 8 illustrates bromine and TOC values for all 
sediment cores binned into 700-year bins with their minimum and 
maximum value ranges. Through this approach we are able to transform 

Fig. 6. Comparison of total organic carbon (TOC) and bromine (Br) content for eight selected sediment cores within the reference implementation and after being 
age-transformed. Panel A shows TOC and bromine measurements against the individual composite depth in centimeter of each sediment core, as existent in the 
reference implementation. In panel B, same measurements are transformed from composite depth to the corresponding calibrated median ages. The X-axis in panel B 
is based on calibrated median ages (calibrated years Before Present, cal yr BP) derived from age-depth modeling software Undatable (Lougheed and Obrochta, 2019) 
using the IntCal20 calibration curve (Reimer et al., 2020). Color codes are consistent over all measurements and plots for each sediment core. Circles markers 
represent TOC measurements in percent and cross markers indicate bromine measurements in counts per seconds (cps) using X-ray fluorescence (XRF). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Table 2 
Statistics of proxy sampling and proxy age resolution for each proxy in reference implementation. Q25, Q50, and Q75 correspond to the 25% quantile, median, and 75% 
quantile within each proxy resolution, respectively. Note: Total organic carbon (TOC) and Total nitrogen (TN) were measured together, hence the resolution and 
number of data points are the same.  

Proxy Number of data points Proxy age resolution [yr] Proxy sampling resolution [cm] 

Mean Q25 Q50 Q75 Mean Q25 Q50 Q75 

Element 8388 33.38 9.00 13.71 30.00 3.97 0.50 1.00 1.02 
TOC/TN 2130 187.65 22.67 72.00 158.00 5.99 1.95 4.75 9.65 
TC 1169 181.92 37.75 73.75 125.15 3.88 1.95 2.02 5.29 
δ13C 1166 163.24 16.67 55.00 152.00 6.86 1.78 6.24 9.94 
Pollen 760 217.07 51.00 126.00 185.00 8.84 3.28 8.78 10.93 
Grain Size 462 312.61 76.50 134.00 355.00 15.51 2.06 7.93 18.99 
Diatom 437 372.99 82.88 173.75 356.75 9.88 4.63 9.67 12.74 
Mineral 418 295.37 77.00 119.50 232.50 12.22 4.77 5.87 9.48 
Chironomid 152 472.87 126.87 236.50 566.75 14.08 12.41 15.01 16.68  

Fig. 7. Difference in interpolation approaches to synchronize measurements from total organic carbon (TOC) and bromine (Br). Panel A shows bromine values being 
synchronized to measurements of base proxy TOC. Panel B displays TOC values being resampled to match measurements in higher resolution of the base proxy 
bromine. In the case that the exact value of the desired proxy was not present at the specific age of the base proxy, we applied a piecewise polynomial interpolation to 
the desired proxy. Panel B therefore demonstrates a case were harmonization would result in a strong bias of resulting interpolated values. Color codes are consistent 
over all measurements and plots for each sediment core. Circles markers represent TOC measurements in percent and cross markers indicate bromine measurements 
in counts per seconds (cps) using X-ray fluorescence (XRF). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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both high and low resolution data into one single matrix containing a 
minimum amount of null values. By defining value ranges for each bin, 
we quantify the uncertainty of interpolated values at the center of each 
bin. We claim that through our approach, sediment cores are now 
comparable on both a temporal scale and an inter-proxy level. 

However, natural systems hold some degree of uncertainty, as the 
analysis of proxies itself inhibits inevitable uncertainties (Amrhein, 
2019; Goswami, 2014; Reschke et al., 2019). Therefore, it is the re-
sponsibility of scientists to handle and to report the uncertainties with 
their data measurements. By default, manufacturers of measuring de-
vices usually report error intervals for their devices. The laboratory staff 
on-site refine the accuracy of these devices through the implementation 
of improved calibration methods. In many cases, however, the inac-
curacy/deviation of results is not reported, visible in publications, or 
stated in any supplementary material. This situation is a serious obstacle 
in a multi-site investigation, especially when minor alterations in the 
data can determine distinct points of change. As a result, we omit static 
uncertainties and error information from our conceptual model and 
reference implementation in favor of dynamical error adjustment in the 
comparative analysis and appraisal of the comparable multi-proxy 
results. 

While we designed our approach with the clear research focus on 
Arctic lake systems, we believe that our conceptual approach could be 
applicable to other research areas, such as long-term based in-situ data 
record (Su et al., 2018; Zeng et al., 2019). The practical implementation 
depends on the deliberate selection of the reference frame, i.e. universe 
of discourse (Elmasri and Navathe, 2009), and choosing the appropriate 
entities and relationships for the abstracted aspects of the real world. 
Further on, it is crucial to consider the specific domain knowledge and 
long-term scientific goals of the harmonization, when converting our 
conceptual approach into another domain. 

4. Conclusions 

The goal of this study was to provide paleolimnologists with a con-
ceptual framework to integrated heterogeneous multi-proxy data from 
lake systems. The conceptual data model allows scientists to integrate 
heterogeneous data into a common database for further comparative 
analyses. We presented additional steps to prepare datasets for multi-site 
statistical investigation. We found that heterogeneous structures within 
the data, differing methods for determining proxy values, and missing 
error information still pose major challenges in developing a compre-
hensive data model. However, we concluded that despite strong initial 
heterogeneity our harmonized dataset still leads to comparable values, 
enabling numerical inter-proxy and inter-lake comparison. 

Code and data availability 

This study used multiple Python scripts for visualization, database 
connection, calculation and interpolation. The codes are available at 
GitHub (https://github.com/GPawi/MAYHEM). A SQL script to create a 
blank database following the introduced conceptual data model is pro-
vided in the same repository. Likewise, further files containing acces-
sible links to the used datasets and contact details for unpublished data 
can be found there. Contact details comprise name of research group and 
personal communication address of working group leader. 
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