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Z U S A M M E N FA S S U N G

Seit Jahrzehnten wird das Ziel verfolgt, durch ein optimiertes De-
sign Resonanz zu vermeiden, was für viele technische Bereiche von
großem Interesse ist. Vor allem Leichtbaustrukturen zeigen eine ho-
he Anfälligkeit gegenüber Schwingungen. Ein Ansatz hierbei ist die
Erhöhung (Maximierung) der Struktureigenfrequenzen bzw. die „Ver-
stimmung“ des Systems.

In dieser Arbeit wird eine detaillierte Literaturübersicht zu techni-
schen Leichtbaustrukturen und Strukturoptimierung mit Fokus auf
Schwingungseigenschaften gegeben. Anschließend untersuchen ver-
schiedene Studien die Anwendung biologisch inspirierter Strukturen
und Methoden zur Erhöhung von Eigenfrequenzen.

In den Schalen von Diatomeen ist eine Verformung nach den Eigen-
moden nachgewiesen worden, was zu der Annahme einer Schwin-
gungsoptimierung in den Schalenstrukturen führt. Inspiriert von die-
ser Tatsache werden in Axialrichtung verformungsbehinderte Balken
(1D) und Platten (2D) nach ihren Eigenmoden vorverformt, was zu
enormen Eigenfrequenzerhöhungen bei konstanter Masse führt. Eben-
so lassen sich mehrere Eigenfrequenzen gleichzeitig erhöhen. Die Er-
gebnisse werden mit Optimierungen basierend auf der Evolutions-
strategie und – im Fall der Platte – mit Topographieoptimierungen
verglichen. Die Optimierungen unter Verwendung kommerziell er-
hältlicher Optimierer führen zur Erhöhung der gewünschten Eigen-
frequenzen. Während die Frequenzerhöhung einzelner Eigenfrequen-
zen jedoch geringer als bei der Strukturvorverformung nach den Ei-
genmoden ist, führen die Evolutionsstrategie-Optimierungen zu bes-
seren Ergebnissen für die Optimierung mehrerer Eigenfrequenzen.

Im Hinblick auf komplexe Waben- und Gitterstrukturen, die in
aquatischen Planktonorganismen zu finden sind, wird der Einfluss
der Strukturkomplexität auf die Eigenfrequenzen untersucht. Die ers-
te Eigenfrequenz einer 2D Wabenplatte erhöht sich signifikant durch
die Nutzung unregelmäßiger Strukturen. Darüber hinaus führt die
anschließende Vorverformung nach dem Eigenmode zu einer wei-
teren Frequenzerhöhung. Auch bezüglich der Gitterstrukturen kann
eine starke Erhöhung der ersten Eigenfrequenz durch zunehmende
Strukturkomplexität erreicht werden. Zusätzliche Einschränkungen
im Design erlauben die Entwicklung von schwingungsoptimierten
Gitterstrukturen, die ohne den Einsatz von Stützstrukturen additiv
gefertigt werden können.

Als ein Anwendungsbeispiel für biologisch inspirierte Schwin-
gungsoptimierung wird ein in einer Synchrotronstrahlungsquelle ein-
gesetzter Magnetträger untersucht, der für die Stabilität des Teilchen-
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strahls von großer Bedeutung ist. Es handelt sich um eine Trägerstruk-
tur der aktuell geplanten Aufrüstung der Synchrotronstrahlungsquel-
le PETRA IV bei DESY (Deutsches Elektronen-Synchrotron, Ham-
burg, Deutschland). Eine Parameterstudie untersucht den Einfluss
verschiedener Randbedingungen wie veränderliche Lasten, Lagerde-
finitionen und Materialeigenschaften des Trägers und der Stützen,
auf den Magnetträgeraufbau. Im Anschluss wird ein Entwicklungs-
prozess für eine Trägerstruktur einer Synchrotronstahlungsquelle ent-
wickelt. Basierend auf dem Ergebnis einer Topologieoptimierung lässt
sich ein parametrisches Balken-Schalen-Modell erstellen, in das bio-
logisch inspirierte Strukturen integriert werden. Die darauffolgende
Querschnittsoptimierung unter Verwendung der Evolutionsstrategie
führt zu einer optimierten Trägerstruktur. Die Eigenfrequenzmessun-
gen der gegossenen Trägerstruktur erlauben eine Validierung der nu-
merigen Ergebnisse. Zukünftige Änderungen in den technischen Vor-
gaben können in den Entwicklungsprozess eingepflegt werden, um
eine angepasste Trägerstruktur zu erhalten.

Schlagwörter: Bionik, Gitter, Magnetträgerstruktur, Maximierung von
Eigenfrequenzen, Strukturanpassung nach Eigenmo-
den, Strukturoptimierung, Strukturunregelmäßigkeiten,
Wabenplatten
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A B S T R A C T

Finding the optimal structural design to avoid resonance has been
a goal for decades as it is of high interest in many technical areas.
Lightweight design structures, in particular, show a high susceptibil-
ity to vibration. One approach is to increase (maximise) the structural
eigenfrequencies, i.e., to ’detune’ the system.

In this work, a detailed literature review on technical lightweight
structures and structural optimisations focusing on vibration char-
acteristics is presented. Subsequently, different studies investigate
the application of biologically inspired structures and methods to in-
crease eigenfrequencies.

It has been observed that diatom shells are shaped according to
their vibration mode shapes, which leads to the assumption that
these structures are optimised for vibratory loads. Applying this
mode shape adaptation strategy to axially constrained beams (1D)
and plates (2D) results in strong eigenfrequency increases at constant
mass. In addition, the increase of multiple eigenfrequencies is possi-
ble. The mode shape adaptation results are compared to evolutionary
strategic optimisations and, in the case of the plate, also to topogra-
phy optimisations. The optimisations using commercially available
optimisers successfully increase the targeted eigenfrequencies. How-
ever, the single eigenfrequency increases are generally lower than
those generated by the mode shape adaptation method, while the
evolutionary strategic optimisations lead to higher multiple eigenfre-
quency increases.

With regard to the complex honeycomb and lattice structures found
in aquatic plankton organisms, the impact of the structural complex-
ity on the eigenfrequencies is studied. The 1st eigenfrequency of a
2D cellular plate significantly rises using irregular structures. In ad-
dition, the application of the mode shape method to the studied cellu-
lar plates raises the 1st eigenfrequency even further. Regarding lattice
structures, a strong 1st eigenfrequency increase with rising structural
complexity is obtained likewise. Additional design constraints allow
the development of vibration optimised lattices that can be additive
manufactured without support structures.

As an example of biologically inspired vibration optimisation, a
girder used in synchrotron radiation facilities to support the mag-
nets and to assure a stable particle beam is studied. It is focused
on the girder design for the currently planned synchrotron radiation
facility upgrade PETRA IV at DESY (German Electron Synchrotron,
Hamburg, Germany). In a parametric study, the impact of different
boundary conditions on the magnet-girder assembly is investigated,
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involving varying loading conditions, girder support definitions, and
material properties of the girder and bases. Afterwards, a develop-
ment process for a girder structure installed in a synchrotron radia-
tion facility is generated. Based on a topology optimisation, a para-
metric beam-shell model including biologically inspired structures
is created. The subsequent cross section optimisation using evolu-
tionary strategic optimisation reveals an optimum girder structure.
Vibration experiments of the casted girder structure validated the nu-
merical results. Future changes in the specifications can be imple-
mented in the development process to obtain further adapted girder
structures.

Keywords: Biomimetics, cellular plates, eigenfrequency maximisation,
lattices, magnet-girder design, mode shape adaptation, struc-
tural irregularities, structural optimisation
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P R E FA C E

The purpose of this work is to contribute to the complex and large re-
search field of structural vibrations. In particular, it is focused on
different methods to raise eigenfrequencies in structural parts for
improved vibration properties. The here proposed approaches and
methods are very interdisciplinary, including a glance into nature for
inspiration in solving vibration problems.
The work is organised into five parts, each composed of different
chapters:
Part 1 describes the motivation for this work and introduces the field
of lightweight design structures, biomimetics, and different structural
optimisation techniques. Relevant published studies are reviewed,
in particular those dealing with vibration characteristics, before the
objectives and the outline of the work are stated.
Part 2 summarises the theoretical background information on which
the following studies are based. It focuses on mechanical vibrations
and the finite element method.
In Part 3, different methods to increase eigenfrequencies inspired
by biological structures and phenomena are studied. The methods
include structural adaptations according to mode shapes, evolution-
ary strategic optimisations, and the impact of structural irregularities
on the eigenfrequencies. The latter is applied to honeycomb plates
and lattice structures. Finally, all methods are compared among each
other and to other published approaches aiming at an eigenfrequency
increase.
Regarding the application of biologically inspired vibration optimisa-
tion to a technical component, the design of a girder structure, which
supports magnets in a synchrotron radiation facility, is generated in
Part 4. After an introduction into synchrotron radiation facilities and
the importance of girder structures, a parametric study focuses on
the impact of different components and boundary conditions on the
eigenfrequencies of a magnet-girder assembly. The last chapter devel-
ops a biologically inspired girder design. The design process includes
different findings from Part 3, namely the implementation of biologi-
cally inspired structures and the conduction of evolutionary strategic
optimisations. Finally, vibration experiments are conducted to vali-
date the numerical results.
The last Part 5 summarises the work.
This dissertation contains studies, which combine different research
and knowledge fields including mechanical engineering and mechan-
ical vibrations, numerical simulations, biomimetics and biological in-
spiration, and synchrotron radiation facilities. The author hopes that
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this work will create interest for this interdisciplinary research field
and that the findings might contribute to different investigations that
build on the here presented findings.

Bremen, 06 August 2021
Simone Andresen
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ẍN Vector of the nodal acceleration m s−2

xy xy plane −
xz xz plane −
X Vibration response m

y Variable, Cartesian coordinate m

yz yz plane −
z Variable, Cartesian coordinate m

α Central arch angle radian

β Interpolation decay factor −
γ Shear strain −
δ Maximum relative pre-deformation −
δmax Maximum pre-deformation m

δd Damping coefficient −
ε Normal strain −
ε Strain tensor −
ζ Damping ratio −
η Angular frequency ratio between the exci-

tatory and the excited vibration
−

κ Shear correction factor −
λ Coefficient; solution of a quadratic equa-

tion
−



List of Symbols xxxv

symbol description unit

λs Slenderness ratio m2

ω Angular eigenfrequency −
ωd Angular eigenfrequency of a damped sys-

tem
−

ωn n-th angular eigenfrequency −
Ω Angular frequency of a harmonic vibra-

tion excitation
−

µ Dynamic viscosity kg m−1 s−1

ν Poisson’s ratio −
ρ Density kg m−3

ρmag Artificial magnet density kg m−3

σ Normal stress N m−2

σx,beam Particle beam size in x direction m

σ Stress tensor N m−2

τ Shear stress N m−2

ϕ Phase angle −
Φ Angular phase difference −





Part I

I N T R O D U C T I O N

Biologically inspired structures, such as irregular honey-
comb and lattice structures, show improved mechanical
properties compared to technical lightweight design struc-
tures. In the following chapters, the motivation for vibra-
tion optimised lightweight design structures is explained.
Technical lightweight structures are presented and the
published studies on this topic are reviewed, before intro-
ducing the field of biomimetics and biologically inspired
structures. After that, a chapter is dedicated to published
work on structural optimisations, before the outline and
the objectives of this work are presented.





1
M O T I VAT I O N

Finding the optimal structural design to avoid resonance has been
a goal for decades as it is of high interest in many technical areas,
e.g., in the car industry to minimise the occurring noise and vibra-
tion during operation or in the space industry to avoid coupling with
the electronic control system [98]. Especially with recent demands
for high performance structures with substantial weight reductions,
the optimum vibration design in consideration of dynamic character-
istics has become extremely important [90]. Also, the global goal to
reduce emission motivates the development of improved lightweight
structures.

The lightweight design technology aims at realising a structure of
minimised mass and a certain service life combined with reliability
considering the defined boundary conditions and load cases. For this,
not only the appropriate construction/design method, but also the
lightweight material, the joining technology, and the fabrication have
to be taken into account. A compromise between technical and eco-
nomic aspects has to be sought out, because the implementation of
lightweight designs often results in increased financial expenses. Nat-
urally, lightweight design will only be applied if the benefits exceed
the costs [82].

With regard to a car, Klein and Gänsicke [82] estimated that a mass
reduction of 100 kg results in a mean consumption reduction of 0.5 l
per 100 km and a CO2 reduction of 12 g per km. They state that cars
still show a potential of mass reduction of about 35%. Thus, there
is a high potential of lightweight structures to improve today’s tech-
nologies. In addition, as the fabrication technology constantly im-
proves a lot, especially in the last years, it is important to investigate
lightweight design structures and further improve their mechanical
properties, for example by optimising the structure.

Lightweight structures are susceptible to vibration because reduced
masses are more easily excited by external influences (such as vibra-
tions and individual shocks) than those of heavy, massive construc-
tions [92]. In other words, lightweight structures tend to ‘rattle’ more
than heavyweight structures. Traditional methods of reducing high
vibration amplitudes include increasing the mass and/or structural
damping [17]. However, this often contradicts the original design
goal of generating lightweight structures. In addition, active damp-
ing systems are weak points of the system and ‘react time-delayed’.

Other investigated passive methods to avoid resonance in technical
structures are the alteration of boundary conditions, the implementa-
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4 Motivation

tion of internal supports, or the implementation of additional systems
to a structure such as masses, springs, or dampers [6]. Also the use of
alternative materials with different properties can generate an eigen-
frequency shift out of the range of external exciting frequencies [7].
Moreover, the application of vibration isolation using springs is pos-
sible [86]. However, in many cases these methods cannot be applied
due to fixed technical specifications. Thus, there is a high demand of
methods to avoid high resonance that (1) are easily applicable, (2) do
not involve adaptations of technical specifications (such as the design
space), (3) are inexpensive, and (4) act passively.

In regard to lightweight structures, the change of a structure’s ge-
ometry to shift its eigenfrequency (i.e., ’detuning’ the system) shows
high potential and has been subject of many studies. A vibrating sys-
tem is defined by the mass, the elastic properties, and the damping
properties. Detuning implies variations of the mass and/or the elastic
properties (i.e., stiffness) to shift the eigenfrequency.

Until now, most published studies have been focusing on structural
optimisations to find an optimum material distribution with the aim
to maximise eigenfrequencies. In this work, however, the studied
methodologies to increase eigenfrequencies are inspired by nature.



2
T E C H N I C A L L I G H T W E I G H T S T R U C T U R E S A N D
T H E I R P R O P E RT I E S

Cellular structures including foams, honeycombs, and regular lattice
structures have been a common subject of current research. They
are usually divided into stochastic (foams) and periodic (honeycombs
and regular lattices) cellular structures. Gibson and Ashby [53] sum-
marised the structural characteristics and properties of different tech-
nical and biological cellular solids. An overview on the properties
of foams and regular lattices was provided by Ashby [19]. Aside
from these structures, non-stochastic irregular cellular structures are
comparatively new and less studied. Besides their lightweight poten-
tial, cellular structures exhibit high energy absorption during com-
pression [88, 209], good heat-dissipation (cooling) performance, and
highly efficient cross-flow heat exchange [46, 179]. Several studies
on periodic and stochastic cellular structures have emphasised the
enhanced performance of periodic structures compared to stochas-
tic structures of the same relative density, e.g., higher stiffness and
strength [39, 46, 180].

Regarding the impact of structural irregularities on mechanical
properties, Silva et al. [157] studied 2D cellular solids and demon-
strated that the elastic properties of honeycombs almost conformed
to those of irregular arranged cell walls of the same density. However,
later studies by Van der Burg et al. [175], Zhu et al. [210], and Zhu
et al. [211] revealed that the Young’s modulus increased significantly
with an increase in the irregularity of the cell arrangement. The po-
tential to use irregular versatile structures for multi-functionality [46]
makes them highly useful in a broad field of applications. The grow-
ing interest regarding cellular structures coincides with the recent
advancements in additive manufacturing, which now allows the fab-
rication of these complex structures using a wide range of materials
[172].

While most research has investigated the static mechanical prop-
erties of complex cellular structures, little is known about their dy-
namic properties, in particular, their vibration properties. Several
studies have been conducted on sandwich beams. Sandwich struc-
tures are likely to have high eigenfrequencies because of their large
bending stiffness per mass [46], which has been confirmed by com-
paring a solid beam with a sandwich beam of the same mass [95].
Ruzzene [144] studied the vibration and acoustic behaviour of sand-
wich beams with honeycomb truss cores. Several investigations
showed that the eigenfrequencies of sandwich beams are sensitive

5



6 Technical Lightweight Structures and Their Properties

to the lattice core design [21] and to other geometric parameters, e.g.,
to an increase in the core thickness of a sandwich beam with a lattice
truss core [95, 96, 197].

Regarding 2D honeycomb structures, Dai et al. [35] studied the
eigenfrequencies and mode shapes depending on different top and
bottom layer thicknesses. An integral method to solve regular honey-
combs under dynamic loads has been proposed by Wang and Stronge
[186]. Sorokin et al. [160] actively shifted the eigenfrequency of a
sandwich plate with a honeycomb core owing to parametric stiffness
modulation by changing the orientation of cell elements. Banerjee
and Bhaskar [20] showed that macroscopic cellular structures can be
abstracted as a homogeneous continuum to calculate low eigenfre-
quencies, which helps to reduce computing effort in obtaining eigen-
frequency values. Sandwich structures with gyroid lattice cores (fig-
ure 2.1a) were investigated regarding the impact of geometrical pa-
rameters (plate thickness, gyroid wall thickness) on the 1st eigenfre-
quency by Simsek et al. [158].

Generally, although Ashby [19] defined a lattice as a connected net-
work of struts, many cellular structures or lattices, which were inves-
tigated in the here reviewed studies, are composed of both struts and
walls or are even based on only walls, e.g., the lattice structures dis-
played in figure 2.1. Helou and Kara [72] gave an overview of studies
conducted on lattice structures focusing on design, analyses and op-
timisations, and manufacturing. The following listed studies mainly
focused on larger-scaled lattices, which cannot be seen as cellular
structures anymore.

Yan et al. [199] conducted compression tests on additively manu-
factured, stainless steel regular lattice structures based on different
unit cells. Their results indicated a Young’s modulus decrease with
an increase in unit cell size. Ozdemir et al. [127] also conducted com-
pression experiments on additive manufactured regular lattice struc-
tures showing that the structures reduced the peak impact stress
by temporally spreading the impact loading. Maskery et al. [104]
found that the cell size of a metal lattice structure has a significant
impact on the failure mechanism under compression. Implement-
ing post-manufacture heat-treatment leads to reduced peak stresses
at the same amount of compressive deformation. The mechanical
properties of different triply periodic lattice structures of the same
mass based on gyroid, diamond, and primitive unit cells (figure 2.1)
were analysed by Maskery et al. [106]. The additive manufactured
structures made out of polymer were tested under tension and com-
pression and were also simulated. They showed that the lattices de-
formed differently depending on their unit cell geometry. Aremu
et al. [18] focused on the design method of lattice structures based
on unit cells, which were characterised by a cross section diameter
grading. Maskery et al. [105] showed that functionally graded reg-
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ular lattice structures lead to far higher energy absorption during
compression than non-graded regular lattice structures of the same
mass. The effect of density and unit cell size grading on the stiffness
and energy absorption in simulations and experiments on additively
manufactured lattices was investigated by Plocher and Panesar [135].
Studies on functionally graded foams [29, 111] and honeycombs [30,
112] also demonstrated improved mechanical properties under com-
pression and an enhanced capability of sound absorption.

(a) (b) (c)

xy
z

(d) (e) (f)

(a) (b) (c)

(d) (e) (f)

xy
z

Figure 2.1: An individual gyroid (a), diamond (b), and primitive (c) cell
as well as regular lattice structures based on 4 x 4 x 4 gyroid
(d), diamond (e), and primitive (f) cells are displayed. The fig-
ure is reprinted from Maskery et al. [106], published under the
CC BY 4.0 license. The characters are replaced by high-resoultion
characters.

In terms of larger-scaled lattice structures, Nourbakhsh et al. [119]
designed an optimised car chassis based on an irregular lattice struc-
ture (also called ‘beam network’) to reduce the overall mass. Also
Hands et al. [65] reduced the mass of a steering arch by applying ir-
regular lattice structures. Ferrari et al. [47] gave a numerical example
of successfully increasing a torsional mode shape frequency by de-
signing a 3D beam made of struts regularly oriented with 45◦ angles.
Du Plessis et al. [45] also showed examples of irregular lattice struc-
tures, however, studies on the mechanical properties are not included.

Very few studies have investigated the vibration characteristics of
lattice structures. Syam et al. [166] studied different regular lattice
structures in vibration isolation applications. They conducted simula-
tions and experiments of additively manufactured lattices and exam-
ined large differences in eigenfrequencies of regular lattice structures
based on different unit cells. However, the masses of their models
differed up to 20%, which might have had a significant impact on
the eigenfrequency results. But also Zhao et al. [208] showed that the
1st eigenfrequency of a regular lattice depends on the unit cell de-
sign. Regarding graded lattice structures, Cheng et al. [32] showed
that the 1st eigenfrequency of a 3D cantilever, a 3D clamped beam,
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and a 3D bracket-like structures composed of cubic lattices can be
increased by 73%, 32%, and 25%, respectively, owing to the imple-
mentation of irregular lattice strut cross section diameters.

Besides the mentioned studies on graded lattice structures, all pub-
lished works dealt with regular (periodic) lattice structures. More-
over, little effort has been made to analyse the vibration properties
of irregular cellular structures or to maximise their eigenfrequencies.
Also larger-scale lattice structures (‘beam networks’) have been rarely
investigated. This work shall contribute to partly filling this knowl-
edge gap by studying the impact of structural irregularities on the
vibration properties, especially on the eigenfrequencies.
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B I O M I M E T I C S - I N S P I R E D B Y N AT U R E

Biomimetics is a scientific discipline that deals systematically with
the technical implementation and application of constructions, pro-
cesses, and development principles of biological systems. Thus, be-
ing a cross-border discipline, biomimetics brings the results of basic
research to a technical application. In doing so, biological models are
not copied, but investigated, understood, and applied to technical
problems [114, 136].

The biomimetic approach is a three-step process involving research,
abstraction, and implementation. While the ‘biology push’ process
stands for the biological discovery based on basic research, which
is applied to technological products, ’technology pull’ is demand-
driven allowing the improvement of a technological product due to
the application of studied biological principles [136].

There are many biological functions that have been investigated
and (partly) transferred to technical solutions, like for example:

• The salvinia effect: The floating leaves of Salvinia molesta are Salvinia molesta
is commonly known
as ’Kariba weed’ or
’Giant salvinia’.

covered with hairs. Their superhydrophobic surface in com-
bination with hydrophilic pins allows the air retention under
water. Artificial surfaces based on this effect could exemplarily
lead to drag reduction of ship coatings [22].

• Self-sharpening teeth: The teeth of a rodent incisor are made Rodents are
mammals that have
a single pair of
continuously
growing incisors in
each of the upper
and lower jaws.

of dentin (bone-like, visco-elastic material) and the teeth front
is covered by a thin layer of enamel (hardest material in living
species). As both materials differ in their abrasive resistance,
the enamel permanently covers the tip of the sharp tooth, which
constantly grows. These principles have been transferred into
industrial tool concepts [140].

• Vault structures: The turtle shell structure is vaulted, which
increases the load-bearing capacity [206]. Following this exam-
ple and furnishing thin sheet metals with repetitively arranged
bulges significantly rises the stiffness and the flexural strength
[110].

For more biomimetics investigations refer to Pohl and Nachtigall
[136]. In addition, Studart [164], and Du Plessis et al. [45] reviewed
biomimetics and biologically-inspired materials and designs in con-
nection with additive manufacturing. In the following, the focus will
be on biologically inspired lightweight design structures.

Most technical lightweight structures, such as typical honeycomb
sandwich constructions, lattice structures or steel girders used for

9
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planes, buildings, or cranes have mainly regular periodic geometries.
However, natural lightweight structures are often complex and show
good mechanical properties, like honeycombs of bees [53], the beak of
toucans (figure 3.1a) [151, 152], cancellous bones (figure 3.1b) [52, 53],
the southern giant horsetail (figure 3.1c) [161], or the shell structures
of plankton organisms [142]. These structures are highly optimised
during the process of evolution and usually fulfil different functions.

[Vol. 85AMERICAN JOURNAL OF BOTANY

(a)

(b) (c)

500 µm

1 cmproximal sagittal distal

1 mm
5 mm

Figure 3.1: Different complex biological lightweight structures are displayed.
A µCT-scan shows the inner foam structure of a Toco Toucan
(Ramphastos toco) beak, reprinted from Seki et al. [151] with per-
mission from Elsevier (a). The figure includes proximal and dis-
tal cross sections and a sagittal view of the mid-region of the
beak. The scanning electron microsopic image of a low den-
sity cancellous bone (part of a femoral head) is composed of an
asymmetric rod-like structure (b). The image is reprinted from
Gibson [52] with permission from Elsevier. The third displayed
biological lightweight structure is the cross section of a stem of
a southern giant horsetail (Equisetum giganteum), reprinted from
Spatz et al. [161] with permission from John Wiley and Sons. The
characters and the scale bar of the three images are replaced to
improve the resolution.
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In particular, plankton organisms with biomineralised cell covers Diatoms are
single-celled algae
worldwide present
in oceans,
waterways, and
soils. The cell is
protected by a stiff
and lightweight
silicate shell (silica:
SiO2).

(such as diatoms and radiolaria, figure 3.2) have developed an ex-

Radiolaria are
single-celled
eukaryotes that have
- similar to diatoms -
a skeleton mostly
composed of silica.
They are part of the
zooplankton present
in oceans.

tremely high diversity of irregular structures. In contrast to technical
production processes (with the exception of 3D printing, to a certain
extent) the natural process of morphogenesis in diatoms and radio-

Morphogenesis is
the generation of
forms.

larians allows the production of almost any form, including irregular
honeycomb and lattice structures [61, 142, 146]. As these organisms
need to float in the nutritious upper water column to survive and,
in particular in the case of diatoms, to also carry out photosynthe-
sis, their silicate shells must be very light. At the same time, high

Although the
density of silicate
is about 2.2 to
2.7g cm−3, diatoms
and radiolaria are
able to float in the
upper water column
(sea water density:
1.03g cm−3).

structural stiffness and stability is essential to stand the attacks by
their predators, the copepods. Thus, the combination of low mass

Copepods are
small crustaceans
present in nearly
every freshwater and
saltwater habitat.

and high stiffness leads to lightweight design principles that can be
observed in these biological structures (figure 3.3) [51, 62–64].

Although these complex structures follow the same basic construc-
tion principles of technical structures using ribs, lattices, and honey-
combs [62], they are highly multifunctional characterised by a high
permeability [94], mechanical robustness [41], high energy absorption
[64], and vibration optimisation [59]. The diatom shell’s geometri-
cal parameters (pores, layers) significantly influence their mechanical
behaviour [60]. Thus, diatom shells are of high interest for many
technical applications, e.g., improved nano-filtration [200], drug de-
livery systems [170], plastic deformation elements in automobiles
[74], membrane holder for deep sea sample inlet systems [9], and
optical sensing materials [36, 37] have been discussed. In regard to
the good mechanical properties of planktonic shells, their lightweight
design principles serve already as inspiration for lightweight con-
struction and has been successfully applied to structures of different
industrial sectors [71, 100, 101]. In addition, the systematic prod-
uct development process Evolutionary Light Structure Engineering
(ELiSE®), primarily based on the shells of diatoms and radiolaria, in-
spires engineers to improve technological products by applying bi- The

non-dimensional
Reynold’s
number Re is
defined as

Re = ρ u f low L/µ

including the fluid
density ρ, the fluid
flow speed u f low, a
characteristic
lengh L, and the
dynamic viscosity of
the fluid µ. A low
Re value indicates a
laminar flow, a high
Re value a turbulent
flow.

ological lightweight design principles. The biomimetic process has
been invented at the Alfred Wegener Institute Helmholtz Centre of
Polar and Marine Research and is defined as an Industry Standard
by the German Association of Engineers [177]. ELiSE® has been suc-
cessfully applied to different technical areas involving automotive,
aerospace, and space industry, medicine, offshore structures, civil en-
gineering, and industrial housings [136].

Aside from the lightweight design principles observed in diatom
shell structures, a high impact of these irregular structures on the
vibration characteristics is expected, since the copepod’s attacks do
not only involve high point loads, but the predators also hammer
on their prey with Reynold’s numbers of 10−2 to 10−1, or rather, the
feeding tools move at rates of 20 to 80 Hz [83]. Consequently, the cell
cover has to be resilient against vibrational load cases.
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wv

Figure 3.3: Confocal laser scanning microscopic (a-w) and scanning elec-
tron microscopic (x-y) images of lightweight structures and stiff
design principles that can be observed in diatom shells includ-
ing a beam construction (a), corrugated sheet stiffener (b), cam-
ber structures (c), stiffening fins with reinforced edges (d-e),
reinforced edges (f), beam constructions (g-h), beam construc-
tions with frame and fin (i), interlocking connections (j), notch
stress minimising raphe design (k), pore constructions (l-m), frac-
tal hierarchical structure (l), honeycomb with surface layer (m),
multiple rippled and finned surfaces (n-q), stabilised tubes (r-
s), combination of radial and concentric spokes (t), tube–like
spokes as stiffening elements (u), radial curvatures (v), con-
necting interlocking elements (w), notch-stress minimising pore
structure, and sandwich/honeycomb construction (y). The fig-
ure is reprinted from Friedrichs [51] with permission from the
author. The characters have been partly replaced.

However, in vivo experiments to measure the diatom shell eigenfre-
quencies have not been possible up to now. Thus, construction and
simulation of diatom shells are necessary to obtain more information
about their vibration characteristics. First studies were published by
Gutiérrez et al. [59], who performed numerical modal analyses of ab-
stracted diatom shells (figure 3.4), and found that the diatom shell
mode shapes correlated well with deformation patterns that can be
observed in these shells. They stated that although most interactions
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in the environment, in which diatoms live, occur at low Reynold’s
numbers (e.g., the predators’ attacks), dynamic stimulations are pos-
sible at micro- and nano-scale. Therefore, they suggested that the
deformation patterns observed in diatom shells may be the result of
mechanical interactions during morphogenesis. Gutiérrez et al. [59]
estimated the 1st eigenfrequency of a diatom shell surrounded by air
to be in the range of 7 to 10 kHz.

Aside from this, little is known about the purpose of diatom cell
covers as a result of challenges related to acoustic properties. How-
ever, it is obvious that the concept to generate, optimise, and apply
such highly complex irregular structures allows the substantial ma-
nipulation of vibration properties [79].

Figure 3.4: Comparison of deformation patterns of centric diatom shells to
mode shapes obtained in modal analyses. The scanning elec-
tron microscopy images show Cyclotella distinguenda (a), Auliscus
sculptus (c), and Actinoptychus senarius (e) that are compared to
the 1st mode shape (b), the 2nd mode shape (d), and the 3rd mode
shape (f), respectively, obtained by a finite element simulation of
a abstracted centric diatom shell. The figures are reprinted from
Gutiérrez et al. [59] published under the CC BY 3.0 license. The
scale bar is replaced by a high-resoultion line.



4
S T R U C T U R A L O P T I M I S AT I O N T O I M P R O V E
V I B R AT I O N C H A R A C T E R I S T I C S

Structural optimisation implies the development of an optimum struc-
ture, i.e., an optimum material distribution. Sizing, shape, and topol-
ogy optimisation are distinguished (figure 4.1).

Figure 4.1: The three categories of structural optimisation are sizing optimi-
sation (a), shape optimisation (b), and topology optimisation (c).
The initial problems are displayed on the left hand side, while the
optimum solutions are shown at the right. The figure is reprinted
from Bendsøe and Sigmund [25] (page 2) with permission from
Springer Nature.

In sizing optimisations, the optimum shell thickness or truss/beam
cross section distribution of a given structure is searched to fulfil an
objective function like for example minimising the static deflection.
Whereas the design domain is known during this optimisation, the
shape of this domain is the design variable and an optimum shape
is searched for during a shape optimisation [25]. In a topography
optimisation, which is a subset of a shape optimisation, the nodes of
a structure are moved normal to the continuous surface to create an
optimum structure [171]. A topology optimisation problem involves
the determination of the physical size and the shape and connectivity
of a structure, while the boundary conditions, the design space, and
the targeted volume are predetermined [25].

In the following paragraphs, the history of structural optimisation
and its recently published studies are presented, mainly focusing on
vibration issues. The named studies are mostly dealing with 1D and
2D structures, which are also investigated in this work (see chapter 8
to chapter 10).

Numerical sizing optimisations of 1D and 2D structures under cer-
tain static or dynamic loading conditions to optimise specific single
eigenfrequencies have already been studied starting from the 70s, e.g.,

15
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Olhoff [123, 124] conducting cross section optimisation of beams or
Olhoff [121, 122] focussing on thickness optimisation of circular and
rectangular plates. Cheng and Olhoff [31] presented a regularised
mathematical formulation of annular plates with the objective to max-
imise the 1st eigenfrequency. Similarly, but taking dual optimisation
problems into account, Haug et al. [67–69] studied beams, frames, and
plates using a generalised steepest descent method to optimise the
1st eigenfrequency with constraints on the deflection while keeping a
minimum weight and varying the cross section of beams or frames
or the thickness of plates. A summary of literature concerning sizing
optimisation to increase frequencies of different 1D and 2D structures
was given by Grandhi [56].

Next to the sizing optimisation, most focus has been put on topol-
ogy optimisation that was first considered by Díaz and Kikuchi [40]
using the homogenisation design method with focus on increasing
the 1st eigenfrequency of plates. The work was extended by Tenek
and Hagiwara [169] focusing on single and multiple eigenfrequencies
as well as isotropic and composite plates. Regarding other utilised op-
timisation methods, the Solid Isotropic Micro structures with Penal-
isation (SIMP) method was used by Pedersen [130] to increase single
eigenfrequencies or by Tsai and Cheng [173] to create desired eigen-
modes of plates. Du and Olhoff [44] applied the SIMP method on
beams and plates to maximise the 1st and also higher-order single
eigenfrequencies, and to create eigenfrequency gaps. A topology op-
timisation method to increase the 1st eigenfrequency by considering
casting constraints was proposed by Xu et al. [196].

Single eigenfrequencies were also maximised by using evolutionary
structural optimisation on beams and plates [195, 207] or bidirectional
evolutionary structural optimisation on beams [73] and plates [73,
212]. Also Ma et al. [98] and Yaghoobi and Hassani [198] conducted
topology optimisations to increase single eigenfrequencies of beams.
In addition, Stanford et al. [163] used topology optimisation to design
stiffening-structures targeting at a 1st eigenfrequency increase. This
study was extended by multiple biologically inspired algorithms, e.g.,
Ding and Yamazaki [42], introducing the bionic growth method based
on a growing and branching tree model. All mentioned topology opti-
misations included multi-optimisation problems, mainly minimising
mass or volume while maximising the targeted eigenfrequency.

Beside topology optimisation, also shape optimisation has been fre-
quently used. Afonso and Hinton [1] changed the shape or thickness
of various plates and shells to maximise their natural frequency, while
using a structural optimisation algorithm with sequential quadratic
programming and a constant volume. The parameter-free shape opti-
misation method based on the H gradient method (traction method)
has been utilised by Liu and Shimoda [90] in order to optimise the vi-
bration design of stiffened thin-walled shell structures, while both the
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stiffeners as well as the basic plate were optimised. The maximisation
of an eigenvalue or the achievement of a specified eigenvalue was set
as objective. Parametric investigations regarding topography optimi-
sation have been applied by Alshabatat and Naghshineh [6] examin-
ing the optimal distribution of spherical dimples or cylindrical beads
to optimise the natural frequency of plate-like structures. A genetic al-
gorithm, which is a stochastic optimisation method, was used to per-
form the optimisation. Pedersen and Pedersen [132] conducted shape
optimisations to increase single eigenfrequencies of plate membranes,
whereas Meske et al. [107] also defined constraints on the volume.
Shimoda and Liu [155] increased plate eigenfrequencies vía shell op-
timisation as well. Pedersen [131] optimised the shape of holes in
plates to maximise eigenfrequencies or to obtain a specific eigenfre-
quency value. An optimum bead orientation was first investigated
by Yang et al. [201] for the maximisation of the first five eigenfrequen-
cies of a cantilever plate and continued by Luo and Gea [97] aiming
at a 1st eigenfrequency increase of 3D shell/plate structures by im-
plementing an energy-based method. An optimum distribution of si-
nusoidal and trapezoidal corrugations was studied by Alshabatat [4]
utilising a genetic algorithm in order to shift the 1st eigenfrequency to
maximum values. Park et al. [129] used surface-grooving to increase
the 1st eigenfrequency of L-shaped plates and hard disk drive covers.
Applying topography optimisation to a bracket, Wang and Liao [181]
optimised an automotive bracket increasing the 1st eigenfrequency
by 30% using the commercially available optimiser OptiStruct. War-
wick et al. [189] studied the impact of a stiffener layout on the modal
parameters of a bulkhead. Afterwards, topology optimisations were
performed to increase the 1st eigenfrequency of the pre-stiffened bulk-
head using Altair HyperWorks [190].

While most of the mentioned work focused on maximising single
eigenfrequencies, other studies investigated the maximisation of mul-
tiple plate eigenfrequencies [84, 169, 201] and the creation of desired
eigenfrequency values (beams: [34, 98], plates: [99, 115]) or desired
plate eigenmodes [99, 115, 173]. Another important topic has been
the creation of eigenfrequency gaps to avoid resonance frequencies
in the range of external, exciting frequencies (beams: [44, 93, 98, 125],
plates: [6, 44, 77]). Moreover, Nakasone and Silva [115], Ansari et
al. [16], Alshabatat et al. [5], and Shimoda and Liu [155] focused on
the minimisation of vibration amplitudes of plates or shell structures.
Other investigations dealt with the design of supports to increase
specific single eigenfrequencies (beams: [3, 78, 182, 183], plates: [78,
183]). Also the design of stiffeners (beads, dimples, ribs, embossing)
to increase eigenfrequencies has been part of passive structural dy-
namics modifications (plates: [4, 6, 42, 97, 201], other 2D structures:
[90, 129, 163], 3D structures: [49, 181, 190]. Finally, the concurrent
(two-scale) optimisation of cellular material composed of macro- and
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micro-structures, as exemplarily displayed in figure 4.2, has also been
studied to maximise the 1st eigenfrequencies [32, 118, 213] or to min-
imise the frequency response [178].

Macro structure

Periodic
material

Micro
structure

Figure 4.2: The arbitrary macro structure is composed of a regular micro
structure. The image is reprinted from Zuo et al. [213] with
permission from Elsevier. Some lines and the characters are re-
placed to improve the resolution.

Also other studies combined topology optimisations with lattice
structures (also called ‘lattice structure topology optimisation’) to im-
prove mechanical properties. Panesar et al. [128] compared uniform
lattice structures to lattice structures derived from topology optimi-
sation results and showed an up to 50% higher specific stiffness for
the latter. Simsek et al. [158] integrated a homogenisation-based ma-
terial penalisation formula into the SIMP algorithm to directly map
the relative densities obtained from the topology optimisation in or-
der to obtain functionally graded lattice structures. The application
to a cantilever beam increased the eigenfrequencies. Wu et al. [193]
studied irregular, porous infills for additive manufactured structures
inspired by cancellous bones. They showed that the porous infills
were 1.5 times stiffer than honeycomb structures and 1.1 times stiffer
than optimised rhombic structures.

Altogether, the numerous published work regarding the vibration
issue shows the relevance of this topic. As an increase in eigenfre-
quency can substantially reduce the dynamic response of a
structure [156], an eigenfrequency maximisation is of great interest
for many technical applications.
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O B J E C T I V E S A N D O U T L I N E

Numerous studies on structural optimisations to improve the vibra-
tion characteristics of structures have been published, as presented
in chapter 4. However, structural optimisations often require high
computational effort, which is why efficient methods to significantly
manipulate the vibration characteristics are in great demand. Regard-
ing the use of cellular and lattice structures as efficient lightweight
structures, many investigations highlighted the improved mechanical
properties of those complex structures over solid (and often simple)
geometries, which have been reviewed in chapter 2. Though, little
is known regarding the impact of in particular irregular cellular and
lattice structures on the vibration characteristics.

This work contributes to research on especially lightweight struc-
tures with improved vibration characteristics studying the impact of
biologically inspired methods and structures on the vibration charac-
teristics. Due to the large variety of methodological approaches that
were considered, a thorough theoretical analysis on each of them was
not practicable in the framework of this work. In addition, the stud-
ies included the development and testing of a prototype with a high
potential for real application. As a consequence of these conditions,
this work focused on a systematic empirical approach to get a com-
prehensive overview on biologically inspired methods to manipulate
eigenfrequencies efficiently. Based on this approach, it was possible
to apply and verify some of the results successfully by developing
and testing a girder structure for the future synchrotron radiation fa-
cility Positron-Elektron-Tandem-Ring-Anlage (Positron Electron Tan-
dem Ring Facility) (PETRA) IV at the Deutsches Elektronen-Synchro-
tron (German Electron Synchrotron) (DESY).

At first, theoretical background information is given in Part II fo-
cusing on mechanical (technical) vibrations (chapter 6) and the finite
element method (chapter 7).

In the following broad and empirical approach (Part III), different
methods inspired by nature to improve the vibration characteristics
of structures were studied and compared among each other. The aim
was to explore whether the different biologically inspired approaches
result in a significant structural eigenfrequency maximisation. The
investigated methods comprised

− the shape adaptation of a structure according to specific mode
shapes, which can be observed in diatoms (chapter 8)

− the conduction of strategic optimisations following the princi-
ples of evolution (chapter 9)

19
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− the application of complex and irregular cellular structures, also
combined with the shape adaptation method studied in chap-
ter 8 (chapter 10), and

− the application of complex and irregular lattice structures (chap-
ter 11).

In chapter 12, the studied methods were compared among each other
and to other published methods.

Based on the conducted studies, an optimised biologically inspired
girder design for the synchrotron radiation facility PETRA IV was de-
veloped in Part IV of this work. This design process considered sev-
eral findings of the investigated methods that were inspired by nature
and included

− a general introduction into the topic and the problem defini-
tion including the technical specifications and the design space
(chapter 13),

− a parametric study investigating the impact of different com-
ponents and boundary conditions on the eigenfrequencies of a
magnet-girder assembly (chapter 14), and

− the girder design process comprising a topology optimisation to
indicate an optimum material distribution, an abstraction pro-
cess and a cross section optimisation, the implementation of bi-
ologically inspired design principles, the manufacturing of the
designed structure, and the eigenfrequency measurements to
assess the numerical results (chapter 15).

Finally, the results of this work were summarised in Part V (chap-
ter 16). Supplemental material is given in the appendix A. The outline
of the whole work is displayed in figure 5.1.

To conduct the following studies, the software Rhinoceros (ver-
sion 6 SR10, Robert McNeel & Associates) with its plug-In Grasshopper

(version 1.0.0007, Robert McNeel & Associates) were used to gener-
ate parametric and algorithm-based constructions. The Grasshopper-
based module ELISE (version 1.0.38, www.elise.de) provided algo-
rithms to design biologically inspired structures and allowed the con-
struction of the entire design and simulation process involving tech-
nical specifications, pre- and post-processing, and the connection to
the external solver OptiStruct (version 2017, Altair Engineering Inc.).
All topology and topography optimisations were performed using
HyperMesh (version 2017, Altair Engineering Inc.) in combination with
the solver OptiStruct. The result evaluation was based on HyperView

as well as on Excel (Microsoft Office Standard 2013, Microsoft Cor-
poration). Most figures were generated utilising Inkscape (version
0.92, www.inkscape.org). The dissertation was typesetted using LaTeX,

www.elise.de
www.inkscape.org
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based on a layout from André Miede, and the integrated writing en-
vironment TeXstudio (version 3.0.4, Benito van der Zander, Jan Sunder-
meyer, Daniel Braun, and Tim Hoffmann).

I introduction

1. Motivation
2. Technical Lightweight Structures and Their Properties
3. Biomimetics - Inspired by Nature
4. Structural Optimisation to Improve Vibration Characteristics
5. Objectives and Outline

II theoretical background information

6. Mechanical Vibrations
7. Finite Element Method

III eigenfrequency increase inspired by nature

8. Shape Adaptation According to Mode Shapes
9. Shape Adaptation Based on Evolutionary Strategic Optimisations
10. Regular and Irregular Honeycomb Plates
11. Regular and Irregular Lattice Structures
12. Comparison of Different Methods to Increase Eigenfrequencies

IV girder design for petra iv

13. Highly Brilliant PETRA IV Synchrotron Radiation Source
14. Parametric Study on Components and Boundary Conditions
15. Development of a Biologically Inspired Girder Design

V summary

16. Summary

Figure 5.1: Outline of this work composed of five main parts (dark grey)
that include 16 chapters (light grey).





Part II

T H E O R E T I C A L B A C K G R O U N D I N F O R M AT I O N

This part summarises theoretical background information
relevant to the studies described within this work. First,
it is focussed on technical/mechanical vibrations of single
and multiple degree of freedom systems. Subsequently,
the fundamental equations of the finite element analysis
extensively applied in this work are given.





6
M E C H A N I C A L V I B R AT I O N S

6.1 introduction

Mechanical vibrations refer to the oscillating response of an elastic
body to disturbances, which take the body off its equilibrium position.
In general, all bodies having a mass and a finite stiffness are capable
of vibrating. The studied parameters (e.g., displacement) change over
time, so that certain characterics (e.g., specific displacement value)
recur.[28, 147]

Vibration is the periodic exchange of stored (i.e., potential) energy
and energy of motion (i.e., kinetic energy). All real, vibrating sys-
tems show damping, e.g., due to friction between moving elements,
leading to energy dissipation by converting the potential and kinetic
energy into heat. Thus, during vibration, there is a periodic transfor-
mation of kinetic and potential energy until all energy is lost because
of damping. Based on the nature of the vibration excitation and the
resulting motion and according to Schmitz and Smith [147], mechani-
cal vibrations can be divided into the following three categories:

− Free vibration:
Perturbating a body from its equilibrium position results in a
free vibration characterised by an exponentially decaying, peri-
odic response to the initial conditions. The body oscillates at its
characteristic eigenfrequency (also called ’natural frequency’),
until it is brought to a stop due to damping.

− Forced vibration:
A body is excited by a continuing, periodic force. As a result,
the body oscillates at the forcing frequency. If the exciting fre-
quency corresponds to the body’s eigenfrequency, a large vibra-
tion amplitude ocurrs. This phenomenon is called ’resonance’.

− Self-excited vibration:
When a steady input force is modulated into vibration at a fre-
quency close to the body’s eigenfrequency, self-exciting vibra-
tion occurs. In contrast to free vibrations, the vibration ampli-
tude can increase over time owing to the external force.

Each body can be characterised by its eigenfrequencies and mode
shapes (also called ’eigenmodes’ or ’eigenvectors’). Mode shapes are
the characteristic relative motion of the individual degrees of freedom
of a body. They are usually normalised to one of the degrees of free-
dom, because they only contain the ratio of the vibration amplitude

25



26 Mechanical Vibrations

between coordinates. Each mode shape is associated with a specific
eigenfrequency. Modal analyses (see chapter 6.3.2) allow the deter-
mination of eigenfrequencies and mode shapes, which are ordered
in ascending eigenfrequency values. Thus, if eigenfrequencies shift
due to structural adaptation, the mode shapes can change their order,
which is called ’mode switching’.[28, 147]

6.2 vibration of structures with one degree of free-
dom

This chapter presents the free damped and undamped vibration of a
Single Degree Of Freedom (SDOF) system. In addition, the equation of
motion for a forced damped vibration is solved. Afterwards, the fre-
quency response function is derived and different measurement tech-
niques are presented. The information is mostly based on Schmitz
and Smith [147] and Gross et al. [58] with additional information ac-
cording to Beards [24], Petyt [133], Freymann [50], and Brommundt
and Sachau [28].

6.2.1 Free Damped Vibration

A spring-mass-damper model (figure 6.1) is analysed, in which the
spring force kx with the stiffness k and the damping force dẋ with the
viscous damping coefficient d act on the SDOF mass m. The applica-
tion of Newton’s 2nd law of motion leads to the equation of motion:Newton’s 2nd law

of motion states
that the time rate of

change of the
momentum of a body
is proportional to the

sum of all forces
acting on that body.

The momentum is
defined as the

product of the body
mass and the

velocity.

↓: mẍ = −dẋ− kx → mẍ + dẋ + kx = 0 (6.1)

(a)

x(t)

k d

m

(b)

x(t)

kx dẋ

m

Figure 6.1: Spring-mass-damper model for a single degree of freedom vibra-
tion (a) and the corresponding free body diagram (b).

x, ẋ, and ẍ denote the displacement, the velocity, and the accelera-
tion, respectively.

All structures or systems are able to dissipate energy. As math-
ematical expressions for the energy dissipation are quite complex,



6.2 Vibration of Structures With One Degree of Freedom 27

simplified models are usually utilised that involve viscous damping,
structural damping, and internal damping.[137] Equation 6.1 consid-
ers viscous damping.

Inserting the equations:

2δd =
d
m

(6.2)

and:

ω =

√
k
m

(6.3)

into equation 6.1 leads to:

ẍ + 2δd ẋ + ω2x = 0 (6.4)

δd is the damping coefficient and ω is the angular eigenfrequency of
the undamped SDOF system. The general solution of this differential
equation with constant coefficients is:

x(t) = B1eλt (6.5)

with the time t and the unknown coefficients B1 and λ resulting in
the characteristic equation:

λ2 + 2δdλ + ω2 = 0 (6.6)

This quadratic equation has two solutions:

λ1,2 = −δd ±
√

δd
2 −ω2 → λ1,2 = −δd ±ω

√
1− ζ2 (6.7)

with the damping ratio ζ defined as:

ζ =
δd

ω
(6.8)

Thus, the solution of equation 6.4 depends on the damping ratio:

1. ζ > 1: Overdamped System

The solution of equation 6.4 is a linear combination of the two
partial solutions in equation 6.7:

x(t) = B1eλ1t + B2eλ2t (6.9)

The two coefficients B1 and B2 can be obtained from the initial
conditions x(0) = x0 and ẋ(0) = ẋ0 with x0 and ẋ0 denoting the
displacement and the velocity at t = 0, respectively.
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2. ζ = 1: Critical Damping

In the case of critical damping, λ1 and λ2 are both equal to −δd.
Thus, the solution of equation 6.4 is:

x(t) = B1eλ1t + B2eλ2t = (B1 + B2t) e−δdt (6.10)

3. ζ < 1: Underdamped System

The radicand in equation 6.7 is negativ. λ1 and λ2 are defined
as:

λ1,2 = −δd ± iω
√

1− ζ2 = −δd ± iωd (6.11)

with:

ωd = ω
√

1− ζ2 (6.12)

Note that the angular eigenfrequency of the damped system ωd
is smaller than the angular eigenfrequency of the undamped
system.

The solution of equation 6.4 is:

x(t) = B1eλ1t + B2eλ2t = e−δdt
(

B1eiωdt + B2e−iωdt
)

(6.13)

Inserting the relation:

e±iωdt = cos ωdt± i sin ωdt (6.14)

into equation 6.13 leads to:

x(t) = e−δdt [(B1 + B2) cos ωdt + i (B1 − B2) sin ωdt] (6.15)

Equation 6.15 can also be rewritten as:

x(t) = B3e−δdt cos (ωdt− ϕ) (6.16)

Both new coefficient B3 and the phase angle ϕ can be obtained
from the initial conditions.

Figure 6.2 shows a vibration decay of an underdamped system.
Td denotes the period of the damped oscillation.

6.2.2 Free Undamped Vibration

All real structures dissipate energy while they vibrate, which is why
undamped vibrations do not exist. However, the energy dissipation is
often small. Thus, the equations of an undamped systems presented
in this sub-chapter do sometimes apply. Moreover, in many engi-
neering structures the damping ratio is equal to or less than 0.02.[24]
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x

t

B3 cos ϕ

B3e−δdt

−B3e−δdt

Td = 2π/ωd

x(t)
x(t + Td)

Figure 6.2: Vibration decay of an underdamped system.

Consequently, considering equation 6.12, the angular eigenfrequency
of the undamped system corresponds to that of the damped system.
In addition, as the majority of the studies within this work do not
consider damping, the following equations for undamped vibrations
are important to mention.

Figure 6.3 shows a spring-mass model composed of a SDOF mass
that is affected by a spring force. The equation of motion results from
Newton’s 2nd law of motion:

→: mẍ = −kx → mẍ + kx = 0 (6.17)

(a) x(t)

k
m

(b) x(t)

kx
m

Figure 6.3: Spring-mass model for a single degree of freedom vibration (a)
and the corresponding free body diagram (b).

Considering the definition of the angular eigenfrequency in equa-
tion 6.3 leads to:

ẍ + ω2x = 0 (6.18)

The general solution of this linear and homogeneous differential
equation of 2nd order is:

x(t) = B1 cos ωt + B2 sin ωt (6.19)

Based on the initial conditions x(0) = x0 and ẋ(0) = ẋ0, the un-
known coefficients B1 and B2 are determined:

B1 = x0 and : B2 =
ẋ0

ω
(6.20)
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The eigenfrequency f can be considered with the following relation:

f =
ω

2π
=

1
2π

√
k
m

(6.21)

6.2.3 Forced Damped Vibration

Many real structures are affected by periodic excitation. Only some
periodic forces are harmonic. However, as non-harmonic periodic
forces can be described as a series of harmonic functions applying
Fourier analysis techniques [24], harmonic vibration excitation is pre-
sented in this sub-chapter.

Applying Newton’s 2nd law of motion to a SDOF spring-mass-dam-
per model subjected to harmonic excitation (figure 6.4) leads to the
corresponding equation of motion:

↑: mẍ = −dẋ− kx + F cos Ωt → mẍ + dẋ + kx = F cos Ωt (6.22)

Ω is the angular frequency of the harmonic vibration excitation.

(a)
Finput = F cos Ωt

x(t)

k d

m

(b)
Finput = F cos Ωt

x(t)

kx dẋ

m

Figure 6.4: Spring-mass-damper model for a single degree of freedom vi-
bration with harmonic excitation (a) and the corresponding free
body diagram (b).

Considering the relation

xs =
F
k

(6.23)

in which xs denotes the static displacement of the spring due to the
constant force F, and the equations 6.2 and 6.3, results in the following
inhomogeneous differential equation:

ẍ + 2δd ẋ + ω2x = ω2xs cos Ωt (6.24)

Dividing the equation by ω2 and inserting equation 6.8 leads to:

1
ω2 ẍ + 2

ζ

ω
ẋ + x = xs cos Ωt (6.25)
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The solution of this differential equation is composed of the general
solution of the homogeneous (or transient) differential equation xh
and the particular (or steady-state) solution of the inhomogeneous
differential equation xp.

x(t) = xh(t) + xp(t) (6.26)

The homogeneous differential equation 1
ω2 ẍ + 2 ζ

ω ẋ + x = 0 decays
rapidly for damped systems. Its solution has been presented in chap-
ter 6.2.1. The particular solution is defined as:

xp(t) = xsH cos (Ωt−Φ) (6.27)

H is the dynamic amplification factor (cf., equation 6.36) and Φ is
the angular phase shift between the excitation and the response (cf.,
equation 6.34). Equation 6.27 can be rewritten to:

xp(t) = xsH (cos Ωt cos Φ + sin Ωt sin Φ) (6.28)

Differenting equation 6.28 twice and inserting it into equation 6.25
leads to:

xsH
Ω2

ω2 (− cos Ωt cos Φ− sin Ωt sin Φ)

+2ζxsH
Ω
ω

(− sin Ωt cos Φ + cos Ωt sin Φ)

+xsH (cos Ωt cos Φ + sin Ωt sin Φ) = xs cos Ωt

(6.29)

Dividing equation 6.29 by xs, organising the items of the equation,
and considering the angular frequency ratio between the excitatory
and the excited vibration η defined as:

η =
Ω
ω

(6.30)

results in:[
H
(
−η2 cos Φ + 2ζη sin Φ + cos Φ

)
− 1
]

cos Ωt

+
[
H
(
−η2 sin Φ− 2ζη cos Φ + sin Φ

)]
sin Ωt = 0

(6.31)

Equation 6.31 is only satisfied for all t, if the expressions in both
brackets are equal to 0:

H
(
−η2 cos Φ + 2ζη sin Φ + cos Φ

)
= 1 (6.32)

and:

H
(
−η2 sin Φ− 2ζη cos Φ + sin Φ

)
= 0

→ −η2 sin Φ− 2ζη cos Φ + sin Φ = 0
(6.33)
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Equation 6.33 allows the calculation of the angular phase shift:

tan Φ =
2ζη

1− η2 (6.34)

Based on equation 6.32 and considering the relations:

sin Φ =
tan Φ√

1 + tan2 Φ
and : cos Φ =

1√
1 + tan2 Φ

(6.35)

the dynamic amplification factor can be determined:

H =
1√

(1− η2)2 + 4ζ2η2
=

xd

xs
(6.36)

with : ζ ≤
√

0.5 → Hmax = H
(√

1− ζ2

)
=

1
2ζ
√

1− ζ2

ζ << 1 → Hmax ≈ H (1) =
1

2ζ

Thus, the dynamic amplification factor H can be calculated from
the damping ratio ζ and the frequency ratio η. In addition, it is de-
fined as the ratio between the dynamic amplitude xd and the static
displacement due to a constant force xs. This ratio is also called ’re-
ceptance’ [133].

Figure 6.5 shows how the dynamic amplification factor varies with
the frequency ratio. The frequency ratio, at which the dynamic ampli-
fication factor reaches its maximum Hmax, depends on the damping
ratio (cf., equation 6.36). For small damping ratios, which are very
common, the dynamic amplification factor is maximised at ηmax ≈ 1,
which means that the excitatory frequency (nearly) matches the eigen-

η0 1 √
2 2 3

H

2

1

0

ζ increasing

Figure 6.5: Dynamic amplification factor H depending on the ratio of the
excitatory frequency and the eigenfrequency of the system η for
different damping ratios ζ (based on Beards [24]).
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frequency of the excited system. This phenomenon is called ’reso-
nance’ (cf., chapter 6.4).

6.2.4 Frequency Response Function

In the previous chapter 6.2.3, a SDOF mass is subjected to harmonic
excitation. Here, the excitatory force is defined as a complex expo-
nential equation in order to obtain the definition of the complex fre-
quency response funtion according to Schmitz and Smith [147]: Note that complex

exponential
functions can
represent sine and
cosine functions
(cf. equation 6.14):
eix = cos(x)+i sin(x)

= Re(eix) + i Im (eix);
with the real part Re,
the imaginary unit
i2 = −1, and the
imaginary part Im.
[50]

Finput = FeiΩt (6.37)

Thus, the equation of motion for a SDOF spring-mass-damper model
(cf., equation 6.22) is changed to:

mẍ + dẋ + kx = FeiΩt (6.38)

As already been discussed in chapter 6.2.3, only the inhomoge-
neous part of equation 6.38 is further analysed. Its solution in form
of a complex exponential function is based on the forcing function.
Thus, if the above defined input force Finput acts on the system, the
steady-state response x is

x(t) = XeiΩt (6.39)

The velocity and the acceleration can be obtained by differentiating
the response. Inserting these terms into the equation 6.38 results in:(

−mΩ2 + iΩd + k
)

XeiΩt = FeiΩt (6.40)

After eliminating eiΩt and rewriting the equation, the Frequency
Response Function (FRF) is obtained:

X
F
(Ω) =

1
−mΩ2 + iΩd + k

(6.41)

Here, the response to an excitation is considered in the frequency
domain, as the time t does no longer appear in the equation. The
ratio of the output (vibration X) and the input (force F) depends on
the mass, the stiffness, and the damping coefficient of the system as
well as on the amplitude and the frequency of the excitation.

The eigenfrequencies of a system can be obtained by FRF measure-
ments. In these experiments, the system is excited by a force based
on a fixed frequency sine wave, a random signal, or an impulse:

− Fixed frequency sine wave:
During this sine sweep test, the FRF is obtained one frequency
at a time. The sinusoidal force is generated by a shaker and
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applied to the studied structure at each frequency of a defined
bandwidth.

− Random signal:
A random frequency signal, either a broad-band (white noise)
or limited range (pink noise), is generated by a shaker and ap-
plied to the analysed structure. Consequently, all frequencies
within a specified bandwidth are excited in a single test.

− Impulse:
A short duration impact excites the structure to measure the
FRF. As for the random signal excitation, a broad range of fre-
quencies are excited in a single test. The impact testing involves
an impact hammer, which is used to hit the analysed structure.
Thus, the input energy depends on the hammer mass.

Transducers with the required frequency bandwidth (e.g., ac-
celerometers) record the vibration of the structure and other com-
ponents that have to be taken into account (e.g., base plate to which
the analysed structure is fixed). The analog signals are amplified
and converted into digital signals using an analog-to-digital converter.
Fourier transformation is utilised to convert these time-domain force
and vibration signals to the frequency domain to be able to obtain the
FRF.

6.3 vibration of structures with multiple degrees of
freedom

6.3.1 Free Vibration of an Undamped Structure With More Than Two De-
grees of Freedom

The SDOF system presented in chapter 6.2 allows a basic understand-
ing of where the eigenfrequencies are derived from. However, struc-
tures do normally show numeros degrees of freedom, which is why
subsequently, the procedure will be applied to a Multi Degree Of
Freedom (MDOF) system. It may be noted that the number of eigen-
frequencies and eigenmodes of a system is equal to the number of
degrees of freedom. The eigenfrequencies and eigenmodes of large
MDOF systems (number of degrees of freedom n> 2) can usually only
be obtained numerically.[50, 75, 147]

Figure 6.6 displays a vibration chain-type model for an undamped
system with n degrees of freedom.

Based on equation 6.17 for the SDOF system, the following equations
of motion can be stated for the n degrees of freedom system:

Mẍ + Kx = 0 (6.42)
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with : M =


m1 0 ... 0

0 m2 ... 0

... ... ... 0

0 0 ... mn

 ;

K =


k1 + k2 −k2 ... 0

−k2 k2 + k3 ... 0

... ... ... −kn

0 0 ... kn + kn+1


M and K denote the mass matrix and the stiffness matrix, respec-

tively. x is the displacement vector and ẍ represents the acceleration
vector.

The exact solution, in which x̂ symbolises the vibration amplitude
vector and ωn the n-th angular eigenfrequency, is:

x(t) = x̂ sin (ωnt) ; n = 1, 2, 3, ... (6.43)

Inserting equation 6.43 in equation 6.42 leads to:

M
[
−ω2

n x̂ sin (ωnt)
]
+ K x̂ sin (ωnt) = 0 ; n = 1, 2, 3, ... (6.44)

Equation 6.44 can be rewritten in form of the eigenvalue problem:(
−ω2

n M + K
)

x̂ = 0 ; n = 1, 2, 3, ... (6.45)

The roots of this equation are the eigenvalues. In order to deter-
mine those eigenvalues of the MDOF system, the determinant of the
matrix form for the equations of motion is set equal to 0 (non-trivial
solutions):

det
(
−ω2

n M + K
)
= 0 ; n = 1, 2, 3, ... (6.46)

(a)

(b)

k1
m1 k2

m2 k3 kn
mn kn+1

x1 x2 xn

...

m1 m2 mn

F1 F2 F2 F3 Fn Fn+1

Figure 6.6: Vibration chain-type model for an undamped system with n de-
grees of freedom (a) and the corresponding free body dia-
gram (b).
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The resulting characteristic equation is a n-th degree polynomial,
whose roots ω1, ω2, ..., ωn are the angular eigenfrequencies:

an
(
ω2

n
)n

+ an−1
(
ω2

n−1
)n−1

+ ...+ a1
(
ω2

1
)
+ a0 = 0 ; n = 1, 2, 3, ...

(6.47)

To sum up, the characteristic equation 6.47 is derived from the equa-
tions of motion 6.42 and its roots are the eigenvalues ω2

n, which iden-
tify the body’s angular eigenfrequencies ωn.

The eigenvectors (mode shapes) can be determined by substituting
the eigenvalues back into the eigenvalue problem (cf., equation 6.45).
Here, an undamped MDOF system was analysed. However, regarding
a damped MDOF system, the mode shapes are always derived from
the homogeneous solution presented here.

Both the eigenfrequencies and the mode shapes can be obtained
from modal analyses (chapter 6.3.2).

6.3.2 Modal Analysis

The modal analysis approach involves a transformation of the local
(i.e., model) coordinates into modal coordinates, in which the equa-
tions of motion are uncoupled. Thus, the MDOF system is ’decoupled’
into separate SDOF systems.

According to Schmitz and Smith [147], figure 6.7 illustrates the con-
cept of modal coordinates. The local coordinates show a dependency
of the response of x1 and x2 illustrated by the non-zero off-diagonal
terms in the stiffness matrix. In regard to the modal coordinates p1

and p2, the modal stiffness matrix is uncoupled and two separate
SDOF systems are obtained. Thus, vibration solutions can be individ-
ually applied to each SDOF system (figure 6.1). Afterwards, the results
obtained in modal coordinates are transformed back to local coordi-
nates.

(a) (b)

k1

m1

k2

m2

x1

x2

kp1 kp2

mp1 mp2p1 p2k1 + k2 −k2

−k2 k2

kp1 0

0 kp2

Figure 6.7: Comparison of the local (a) and modal (b) coordinates of a two
degree of freedom system. The subscripts p1 and p2 symbolise
the modal coordinates. For both coordinates, the corresponding
stiffness matrices are given.
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A modal matrix (squared matrix) is used to transform the local
coordinates into the modal coordinates and vice versa. The columns
of the modal matrix are the ordered model’s eigenvectors.

It may be noted that the modal analysis approach works because
the eigenvectors are orthogonal with respect to themselves. In addi-
tion, modal analysis considers proportional damping, which means
physically that the individual mode shapes reach their maximum val-
ues at the same time. This allows the damping matrix to be written
as a linear combination of the mass and stiffness matrices. However,
the modal analyses conducted within this work primarily aimed at
determing the eigenfrequencies and mode shapes, hence, damping
was neglected in all performed modal analyses.

6.4 resonance phenomena and how to prevent them

Resonance occurs when the exciting frequency conforms to the eigen-
frequency of the system (cf., figure 6.5), which means that the system
is excited at its eigenfrequency.[28, 50, 147]

For many technical applications, it is crucial to avoid resonance
phenomena, as they lead to undesirable and large vibration ampli-
tudes and – in the worst case - to structural failure. There are dif-
ferent ways to prevent high vibration amplitudes of an oscillating
system including

− Isolation:

By isolating a system from the vibration source (e.g., by us-
ing springs), the transmission of energy from the source to the
system is prevented. For example, it is possible to position
a strongly vibrating machine on springs, so that the high vi-
bration amplitudes of the machine are not transmitted to the
ground.

− Damping:

Vibration energy dissipates due to damping. Additional damp-
ing devices can be implemented to increase the energy that is
detracted from the system. Consequently, the vibration ampli-
tudes decrease more rapidly. Damping can be applied either
passively (e.g., using materials with high damping ratios) or ac-
tively. It is also possible to implement tuned mass dampers,
which are additional components that adopt the vibration en-
ergy of the system.

− Detuning the system:

The structural eigenfrequencies depend on the stiffness and the
mass. Increasing the stiffness results in an eigenfrequency shift.
Thus, if the system’s eigenfrequencies do no longer coincide
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with the external exciting frequencies and resonance can be pre-
vented.

Generally, a higher damping ratio or stiffness to mass ratio leads
to a smaller response amplitude. In this work, it is mainly focused
on raising the stiffness at a constant mass by changing the structure.
A stiffness increase does not only reduce the vibration amplitude
for any vibration forcing function, but it also increases the eigenfre-
quency, i.e., it detunes the system. Thus, as mentioned above, the
forcing function does no longer conform with the system’s eigenfre-
quency. Regarding a SDOF system, for example, a stiffness increase of
∆k leads to a new angular frequency equal to ω =

√
(k + ∆k) /m (cf.,

equation 6.3).
Structural optimisations with the aim to maximise eigenfrequen-

cies (cf., chapter 4) mainly focus on increasing the 1st (fundamen-
tal) eigenfrequency of a system above external exciting frequencies.
Although structural adaptations certainly affect all eigenfrequencies
and mode shapes, the objective to maximise the 1st eigenfrequency
typically leads to the best result.

A small example is given: the 2nd eigenfrequency of a system coin-
cides with the external exciting frequency. An optimisation to max-
imise the 2nd eigenfrequency is carried out, which also raises the
1st eigenfrequency, so that it matches the exciting frequency. Thus,
the resonance phenomeno is not solved. A structural optimisation to
increase the 1st eigenfrequency, however, might have increased both
the 1st and the 2nd (and also higher-order) eigenfrequencies above the
exciting frequency. Hence, the maximisation of the 1st eigenfrequency
is widely-used as an optimisation objective.

Regarding the magnet carrier structure (girder) of a synchrotron
radiation facility, which is analysed in the chapters 14 and 15, another
reason for the performed optimisations to increase the 1st eigenfre-
quency is that the ground vibration amplitudes decline with increas-
ing frequency. Thus, all systems’ eigenfrequencies should be as high
as possible, and the most efficient ways to increase all eigenfrequen-
cies is to raise the 1st eigenfrequency, because all higher-order fre-
quencies will also be increased.

In summary, finding the optimal structural design to avoid reso-
nance is of high interest in many technical areas. In this work, it is
focused on the eigenfrequency shift of a system owing to structural
adaptations.
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F I N I T E E L E M E N T M E T H O D

7.1 introduction

The majority of structures are very complex, which is why analyses
via analytical techniques are not possible. In these cases, numerical
analyses are widely used, especially the Finite Element Method (FEM).
The FEM is a very useful and accurate method to solve large-scale
structural problems involving a high complexity of geometries, load
conditions, boundary conditions, material properties, and geometri-
cal and material non-linearity.[137]

The FEM divides a geometric continuum into a finite number of
smaller regions (i.e., finite elements) often characterised by simpler
geometries than the original structure. Each element is described by
a number of points (i.e., nodes), based on which the displacement
within an element can be approximated. The approximation results
from a linear combination of polynomial functions that have to be dif-
ferentiated. Thus, as the displacement of an element depends on that
of the nodes, only a finite number of differential equations of motion
have to been written and solved.[137] The approximate solution of
the differential equations of motion can be obtained using the virtual
work principle as described below.

It is important to consider that the accuracy of numerical results us-
ing the FEM depends on the discretisation of the structural problem:
the smaller the finite elements (i.e., the finer the FEM mesh), the higher
the accuracy. However, a fine mesh involves a large number of alge-
braic equations that have to be solved and thus a high computational
effort. Usually, mesh studies are carried out to obtain the sufficient
element size for a reliable numerical result. Nevertheless, theoreti-
cal calculations based on abstracted models and/or experiments are
carried out, if possible, to validate the numerical results.

7.2 theory of linear elasticity

The following equations are according to Qu [137], Kienzler and Schrö-
der [80], and Klein [81] and based on linear elastic bodies, whose de-
formations are small and continuous. Figure 7.1 shows the normal
stresses σ and the shear stresses τ of an infinitesimal element within
a 3D body.

The elasto-mechanical behaviour of a 3D body can be described
using 15 equations.

39
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Figure 7.1: Normal (σ) and shear stresses (τ) of an infinitesimal element
with edge length of dx, dy, and dz.

The first six equations involve the strain-displacement relationships.
The strain vector ε contains the normal strains ε and the shear strains γ

and is obtained by differentiating the displacement vector u that con-
tains the displacement u in the directions x, y, and z. D denotes the
differential operator.

ε =



εx

εy

εz

γxy

γyz

γzx


=
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·
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uy

uz

 = D · u (7.1)

The following six equations describe the relation between the strain
and the stresses (Hooke’s law). Considering linear, isotropic material
properties characterised by a Youngs modulus E and a Poisson’s ra-
tio ν, the stress vector σ depends on the elasticity matrix E and the
strain vector:

σx
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σz

τxy
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τzx
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= E ·
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εx

εy

εz

γxy
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(7.2)

with :
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E =
E (1 + ν)−1

(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2


Equations 7.1 and 7.2 can be summarised to:

σ = E · ε = E · D · u (7.3)

The following equations of motion contain the internal stresses of
the body and the body forces Fb (e.g., dead load or centrifugal forces)
acting on it. The equations are based on Newton’s 2nd law of motion. Note that:

τxy = τyx,
τyz = τzy,
τxz = τzx.
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üy

üz

 (7.4)

→ σ · DT + Fb = ρü

with the transpose of the differential operator DT, the material den-
sity ρ and the acceleration vector ü.

7.3 principle of virtual work

According to Qu [137] and Klein [81], the principle of virtual work al-
lows the solution of the differential equations of motion (equation 7.4).
It states that the total work of internal and external forces, δWint and
δWext, respectively, on an infinitesimal, virtual displacement δu is
zero, which leads to:

δWint = δWext (7.5)

The internal work is defined as:

δWint =
∫

V
δεT · σ dV (7.6)

In figure 7.2, a general 3D body affected by body forces, surfaces
forces Fs, and concentrated forces Fc is displayed.
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The intertia body forces depend on the acceleration vector ü and
the density ρ. Damping effects are neglected. The external work in-
volves those forces acting on a 3D body characterised by a volume V
and a surface S:

δWext =
∫

V
δuT · Fb dV +

∫
S
δuT · Fs dS+ δuT · Fc−

∫
V

δuT · ρü dV (7.7)

Inserting equations 7.6 and 7.7 into equation 7.5 leads to:∫
V

δεT · σ dV =
∫

V
δuT · Fb dV +

∫
S
δuT · Fs dS + δuT · Fc

−
∫

V
δuT · ρü dV

(7.8)

The strain vector and the stress vector can be replaced by the rela-
tions stated in equations 7.1 and 7.3 and it follows:∫

V
δuT · DT · E · D dV · u =

∫
V

δuT · Fb dV +
∫

S
δuT · Fs dS

+δuT · Fc −
∫

V
δuT · ρü dV

(7.9)

Equation 7.9 contains the real virtual displacement vector δu. How-
ever, this vector is unknown and will be approximated with the fol-
lowing relation:

δuT = δxN
T · NT (7.10)

The tensor of the shape function N is the displacement interpola-
tion between nodes and consists of, e.g., linear or quadratic functions.

x

y

z

Fs

Fc

Fb

V

S

Figure 7.2: External forces acting on a general 3D body (surface S, volume V)
including body forces Fb, surfaces forces Fs, and concentrated
forces Fc.
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δxN denotes the vector of the virtual nodal displacement. Applying
the relation to equation 7.9 leads to:∫

V
δxN

T · NT · DT · E · D · N dV · xN

=
∫

V
δxN

T · NT · Fb dV +
∫

S
δxN

T · NT · Fs dS

+ δxN
T · NT · Fc −

∫
V

δxN
T · NT · ρN · ẍN dV

(7.11)

As this applies to all virtual nodal displacements, the equation can
be simplified:∫

V
(D · N)T · E · (D · N) dV · xN =

∫
V

NT · Fb dV

+
∫

S
NT · Fs dS + NT · Fc −

∫
V

NT · ρN · ẍN dV
(7.12)

Equation 7.12 contains on the left side a stiffness multiplied with a
displacement, on the right side external forces and the inertia body
forces. These equilibrium equations of the structure corresponding
to the nodal displacement vector xN and the nodal acceleration vec-
tor ẍN can be rewritten in a concise form as

M · ẍN + K · xN = F (7.13)

with : M =
Ne

∑
n=1

Me =
Ne

∑
n=1

∫
Ve

ρNT · N dVe ;

K =
Ne

∑
n=1

Ke =
Ne

∑
n=1

(D · N)T · E · (D · N) dVe ;

F = Fb + Fs + Fc

Thus, the mass matrix M and the stiffness matrix K are the sum
of all element mass matrices Me and element stiffness marices Ke,
respectively. Ne denotes the number of elements, Ve the element vol-
ume. The force vector F contains the body forces, surface forces, and
concentrated forces.

The nodal displacements in equation 7.13 can be obtained by ap-
plying iterative solving procedures. Differentiating the numerically
determined displacement field leads to the strains and stresses ac-
cording to the equations in chapter 7.2.

Finally, it may be noted that equation 7.13 conforms with equa-
tion 6.42 obtained by analysing a vibration chain-type model, with
the exception of the force vector that is not included in the latter.
In modal analyses, eigenfrequencies and mode shapes can be deter-
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mined without applying external forces to the system. Other analyses
concerning the vibrational properties, like for example frequency re-
sponse analyses, do consider external forces (cf., equation 6.38). How-
ever, this type of numerical analysis was only once performed within
this work to state the conformity of the experimental results with the
numerically obtained values (cf., analysis of bio-inspired lattices in
chapter 11).



Part III

E I G E N F R E Q U E N C Y I N C R E A S E I N S P I R E D B Y
N AT U R E

In this part of the dissertation, different studies evaluat-
ing the impact of biologically inspired structures and op-
timisation techniques on the vibration characteristics are
studied. The overall objective is to investigate whether
eigenfrequencies can be strongly shifted (maximised) us-
ing complex structures and optimisation techniques ob-
served in nature. In a final chapter, all studies are com-
pared among each other and to other published methods
aiming at an eigenfrequency increase.





8
S H A P E A D A P TAT I O N A C C O R D I N G T O M O D E
S H A P E S

Many different optimisation approaches to maximise eigenfrequen-
cies of various structures have already been published (cf., chapter 4).
However, structural optimisations, like topology and shape optimi-
sations, are often time consuming and require high computational
effort. In addition, the manufacturing of the optimised structures
is often restricted to additive manufacturing, which, however, has
become more promising in the last years, but still lacks in repro-
ducibility, high costs and extended production time. Therefore, all
mentioned studies led to good results, however, might not be applied
in big scale or for low-cost parts. An efficient frequency optimisation
method is therefore still in demand.

Adapting the shape according to eigenvectors (mode shapes), as it
is apparently present in diatom shells (cf., figure 3.4), has the potential
to be such an efficient optimisation technique [34]. In their paramet-
ric studies, Da Silva and Nicoletti [34] pre-deformed a Bernoulli beam
according to its mode shapes. They concluded that it is possible to
influence the n-th eigenfrequency of a beam by changing the beam
shape according to its n-th eigenvectors, while all additional frequen-
cies of lower order remain almost unaffected. First indications that
the method also applies for plate-like structures was shown in the
application to a cab floor [49]. In addition, the results from Lim and
Lee [89], who performed a topology optimisation on a simply sup-
ported 3D beam to maximise the frequency of the 1st bending mode,
indicate that the mode shape adaptation method might also work for
3D structures, because the resulting arch-like structure reminds of the
1st mode shape of an undeformed beam.

This chapter focuses on an extension of the work of Da Silva and
Nicoletti [34] by further investigating the potential of the method. The
pre-deformations applied to the simply supported beam were strong-
ly increased beyond the values studied by Da Silva and Nicoletti [34]
to analyse whether the mode shape adaptation method also applies
for large pre-deformations. While Da Silva and Nicoletti only inves-
tigated the first three mode shapes, the beam was also pre-deformed
according to the 4th and 5th mode shape.

Since Da Silva and Nicoletti [34] solely studied beams and little
work has been published regarding the eigenfrequencies of pre-de-
formed plate-like structures, the mode shape adaptation method was
additionally applied to squared plates. Small and large pre-deforma-
tions according to mode 1 to 4 were extensively studied.

47
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The here presented study on beams and plates did not only inves-
tigate the potential of the mode shape adaptation method to raise
single eigenfrequencies, but also studied the possibility to use the
proposed pre-deformation method for the maximisation of multiple
eigenfrequencies by applying several mode shapes.

8.1 material and methods

A slender beam, which has already been studied by Da Silva and
Nicoletti [34], and a squared plate were pre-deformed according to
their mode shapes. This was performed by conducting parametric
studies to investigate the impact of the pre-deformations on the eigen-
frequencies.

8.1.1 Slender Beam

The beam geometry and material properties were defined in analogy
to Da Silva and Nicoletti [34] leading to a 600 x 30 x 3 mm reference
beam (figure 8.1) made out of aluminium characterised by the prop-
erties listed in table 8.1.

a)

b

hb

lx
y

z

b)

x

z

x

y

l

Figure 8.1: Slender reference beam with coordinate system (a) and the de-
fined boundary conditions (b).

Table 8.1: Material properties of aluminium that were considered in the stud-
ies.

Properties

Young’s modulus E 69,000 MPa
Density ρ 2.688 · 10−9 t mm−3

Poisson’s ratio ν 0.34

Axial constraints are inevitable to increase eigenfrequencies by per-
forming the here analysed shape adaptation [34], since the eigenfre-
quency increase is based on the improved loadbearing capacity (arch
effect) resulting from the pre-deformation. Consequently, the beam
was simply supported at both ends implying a restriction of all de-
grees of freedom except for the rotation around the y axis.
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A modal analysis to calculate the first six eigenfrequencies and
eigenmodes was conducted. The adequate mesh was obtained in a
mesh convergence study varying the total number of nodes from 3
to 31. Since beam elements (CBEAM) were defined between two con-
secutive nodes, the number of beam elements varied from 2 to 30
within the mesh convergence study. A sufficient mesh fineness was
reached as soon as the results differed less than 5% from the results of
the following three finer meshes. The results were evaluated on the
1st and the 6th eigenfrequency. The numerically obtained results of
the undeformed reference beam and the beam pre-deformed accord-
ing to the 1st mode shape were compared to analytically obtained
eigenfrequencies to confirm the plausibility of the numerical simula-
tions.

The eigenfrequencies fn,b of a simply supported Bernoulli beam
characterised by Young’s modulus E, material density ρ, length l, rect-
angular cross section area A, and second moment of inertia I, both
depending on the beam width b and the beam height hb, are defined
as follows [24]:

fn,b =
1

2π

(nπ)2

l2

√
E I
A ρ

; n = 1, 2, 3... (8.1)

A = b hb (8.2)

I =
b hb

3

12
(8.3)

The n-th bending mode shape in the xz plane Wn,b depending on the
variable x can be described with the following equation [24]:

Wn,b(x) = sin
(n π x

l

)
; n = 1, 2, 3... (8.4)

According to Nicoletti [117], the approximation of a sinusoidal arch
as a circular arch generates an error smaller than 1% of the length l for
l/r ratios smaller than 1, which is valid for all here studied models.
Therefore, formulae to calculate the 1st and 2nd eigenfrequency of a
circular arch (figure 8.2) that have been published by Den Hartog [38]
serve as approximation for sinusoidal beams.

The first two eigenfrequencies f1,a and f2,a can be calculated as fol-
lows:

f1,a =
1

2π

√√√√ 1
r4

[
0.82

( r
λ

)2
+

(
π2

α2 − 1
)2
]√

E I
A ρ

(8.5)
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f2,a =
1

2π

√
1

r4 α4
α4 − 8 π2 α2 + 16 π4

1 + 0.075 α2

π2

√
E I
A ρ

(8.6)

with the radius r of the arch curvature depending on the arch span
length, which is equal to the undeformed beam length l, the arch
height ha, the central angle α (radian), and the slenderness ratio λs

depending on a rectangular cross section:

r =
1

2 ha

[(
l
2

)2

+ ha
2

]
(8.7)

α = 2 · sin−1
(

l
2 r

)
(8.8)

λs =
I
A

=
hb

2

12
(8.9)
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Figure 8.2: Dimensions of a circular arch.

8.1.1.1 Maximisation of a Specific Eigenfrequency or Mode Shape Fre-
quency

A pre-deformation according to the 1st, 2nd, 3rd, 4th, and 5th mode
shape was applied to the analysed beam. In analogy to Da Silva and
Nicoletti [34], a maximum relative pre-deformation δ was defined as
the quotient of the maximum pre-deformation of the beam δmax (mm)
and the beam height hb (mm):

δ =
δmax

hb
(8.10)

In parametric studies, δmax was varied to analyse maximum relative
pre-deformations from 0.0 to 5.0 mm with step sizes of 0.5 mm and
from 5.0 to 20.0 mm with step sizes of 5.0 mm. The 5th mode shape
showed a 1st transversal (i.e., out-of-plane) bending mode. Conse-
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quently, the height considered for the calculation of the maximum
relative pre-deformation δ was the beam width b. During the pre-
deformation according to mode 5, δmax was varied up to 180 mm,
which corresponded to a maximum relative pre-deformation of 6.0.

It may be mentioned that, although the pre-deformation was quite
large, the analyses were still linear. The mechanical system, however,
was changed considerably. Instead of beams (and plates), arches (and
vaults or shells) were investigated. In linear beam theory, the natural
eigenfrequencies do not depend on the axial constraint, whereas the
axial constraint (hindered horizontal displacements at the ends) be-
comes essential for arches and shells as the membrane load-bearing
capacity increases and so do the eigenfrequencies. Without the hor-
izontal constraint, the frequency change is marginal [34]. Since the
span length l was kept constant, the length of the arch changed with
increasing pre-deformation. As the aim was to alter eigenfrequencies
only due to the structural deformation without changing the mass
(and also boundary conditions and material properties), the beam
width b was adapted in all calculations to have a constant beam mass
of 145 g. If a variation of mass would have been permitted, it would
not have been possible to clearly state that the eigenfrequency in-
creases were due to the structural deformations, because mass change
would also have strongly manipulated the eigenfrequencies.

During the analyses, the first six eigenfrequencies and the mode
shapes were recorded. The resulting eigenfrequencies were always
ordered by their value. Consequently, the frequency increase of a
specific mode shape can lead to an alternation of the mode shape or-
der. Thus, if the mode shape that was adapted to the beam could not
be found within the first six eigenmodes, higher-order mode shapes
were searched for the corresponding mode shape.

The results of the parametric studies were compared to the refer-
ence beam. The obtained eigenfrequency increase ∆ f was calculated
based on the n-th eigenfrequency fn and the n-th eigenfrequency of
the reference beam fn,re f :

∆ f =
fn − fn,re f

fn,re f
· 100% ; n = 1, 2, 3, ... (8.11)

Equation 8.11 was also utilised to obtain the increase of specific mode
shape frequencies.

8.1.1.2 Maximisation of Multiple Eigenfrequencies

The reference beam was pre-deformed according to linear combina-
tions of different mode shapes to analyse whether a simultaneous
maximisation of different eigenfrequencies was possible.

The effect of linear combinations of mode 1 and 2, mode 1, 2, and 3,
and mode 1, 2, 3, and 4 of the reference beam were tested for max-
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imum relative pre-deformations of 1.0, 3.0, and 5.0. For each beam
node, the normalised eigenvectors of the considered mode shapes
were added in equal parts.

The resulting sum was normalised to obtain a maximum amplitude
of 1, which was multiplied by the maximum relative pre-deforma-
tion δ that was analysed. Additionally, weighted linear combinations
of mode 1 and mode 2 were investigated considering also maximum
relative pre-deformations of 1.0, 3.0, and 5.0. The normalised eigen-
vectors of mode 1 and mode 2 were multiplied with the factors c
and (1 - c), respectively, varying c from 0.0 to 1.0 in step sizes of 0.1.
Also here, the sum of the resulting values was normalised and sub-
sequently multiplied with the maximum relative pre-deformation δ.
An adaptation of the beam width b permitted a constant beam mass
of 145 g in all calculations.

8.1.2 Squared Plate

The considered plate was characterised by an edge length a of 100 mm
and a constant thickness hp of 2 mm (figure 8.3). The material proper-
ties were set analogue to the slender beam (table 8.1) resulting into
a plate mass of 53.76 g. Concerning the boundary conditions, all
degrees of freedom were restricted except for the rotations around
the x axis for the edges parallel to the x axis, and for the rotations
around the y axis for the edges parallel to the y axis. Thus, also here,
axial constraints were considered, as otherwise a significant eigenfre-
quency increase due to the mode shape adaptation would not have
been possible [15].
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Figure 8.3: Top view (a) and front view (b) of the squared reference plate
with coordinate system.

Similar to the investigated beam, a shell mesh convergence study
was conducted varying the number of elements per plate edge from 4
to 200 to identify a sufficiently small element size. A modal analysis
was performed in order to obtain the first six eigenfrequencies and
the corresponding mode shapes.

As the thickness to length ratio of the reference plate was smaller
than 10%, the plate could be considered as thin and the classic plate
theory of Kirchhoff was applied to calculate the eigenfrequencies an-
alytically [27]. The eigenfrequencies fmn,p of the simply supported,
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squared plate depend on the plate edge length a, the material den-
sity ρ, the plate height hp and the plate stiffness K, which is based on
Young’s modulus E, the plate height, the Poisson’s ratio ν, and the
natural numbers m and n [24]:

fmn,p =
π

2 a2

(
m2 + n2)√ K

ρ hp
; m, n = 1, 2, 3, ... (8.12)

K =
E hp

3

12 (1− ν2)
(8.13)

The following equations defined the mode shapes Wmn,p of the squared
plate:

Wmn,p(x, y) = sin
(m π x

a

)
sin
(n π y

a

)
; m, n = 1, 2, 3, ... (8.14)

The reference plate pre-deformed according to mode 1 was alike a
spherical shell. Thus, shallow spherical shell theory was used to val-
idate the numerical calculations. Shallow spherical shell theory im-
plies thin shells [27]. These thin shells are characterised by a shell
wall length and width of less than 10% of the shell radius, a con-
stant shell thickness, and a shell raise of less than about 1/8th of its
lateral dimension. During vibration, these shells deform primarily
perpendicular to the shell surface. The eigenfrequencies of a shallow
spherical shell fmn,sss can be obtained using the following equations,
in which rsss represents the curvature radius and hsss the height of the
spherical shell [159]:

fmn,sss =

√
fmn,p

2 +
1

4 π2
E

ρ rsss2 ; m, n = 1, 2, 3, ... (8.15)

rsss =
1

2 hsss

[( a
2

)2
+ hsss

2
]

(8.16)

8.1.2.1 Maximisation of a Specific Eigenfrequency or Mode Shape Fre-
quency

The plate was pre-deformed according to its first four mode shapes by
calculating the z values of 49 regular distributed points on the plate
(figure 8.4) using formula 8.14. As the analysed plate eigenmodes
show only vertical deformations, the calculated mode shapes Wmn,p

can be considered as the z values of the distributed points, while the
x and y values were like for the undeformed plate. The surface in be-
tween the points was interpolated to obtain the pre-deformed plate.
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Analogue to the slender beam, the maximum relative pre-defor-
mation δ was defined as the quotient between the maximum pre-
deformation of the plate varied from 0.0 to 60 mm and the plate thick-
ness. This time, the plate thickness was adapted to keep a constant
mass. The first six eigenfrequencies and the corresponding mode
shapes were recorded. If the mode shape that was adapted to the
plate could not be found within the first six eigenmodes, higher-order
mode shapes were searched for maximum relative pre-deformations
of 3.0 and 5.0 to find the corresponding mode shape. The eigen-
frequency deviation compared to the reference plate was calculated
using formula 8.11.

x

y

Figure 8.4: Regular distribution of points on the plate that were used for
pre-deforming the plate according to its mode shapes.

8.1.2.2 Maximisation of Multiple Eigenfrequencies

According to the investigated beam, linear combinations of mode
shapes were applied to the reference plate. As already described in
the corresponding paragraph about the slender beam, mode 1 and 2
and mode 1, 2, and 3 were equally combined. Also here, weighted
combinations of mode 1 and 2 were investigated. Both analyses were
performed for maximum relative pre-deformations of 1.0, 3.0, and 5.0.
The mesh properties and boundary conditions coincided with the pre-
vious investigations.

Figure 8.5 exemplarily shows the squared plate pre-deformed ac-
cording to the first four mode shapes and a linear combination of
the first two and the first three mode shapes. Here, a maximum pre-
deformation of 10 mm was considered.

8.2 results

In the following, the results of the mode shape adaptation method
applied to the slender beam and the squared plate are presented.
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Figure 8.5: Squared plate pre-deformed according to the 1st (a), 2nd (b),
3rd (c), and 4th (d) single bending mode shape. (e) shows the
pre-deformation according to a linear combination of the first
two mode shapes (50% mode 1 and 50% mode 2) and (f) the
linear combination of the first three mode shapes (33% mode 1,
33% mode 2, and 33% mode 3). The pre-deformed plates are
displayed in four different views for δ = 5.0 and the colours rep-
resent the maximum pre-deformation (mm).

8.2.1 Slender Beam

A beam mesh consisting of 24 elements (25 nodes) was chosen to
allow the generation of complex beam deformations throughout all
simulations, even though the mesh study results showed that the out-
put values had already converged with a coarser mesh and coincided
with the analytically obtained values (figure 8.6). The first six mode
shapes of the reference beam are shown in figure 8.7. The 1st, 2nd,
3rd, 4th, and 6th mode shapes represented the 1st, 2nd, 3rd, 4th, and
5th bending mode shapes in the xz plane, while the 5th mode shape
was the 1st bending mode in the xy plane (1st out-of-plane bending
mode, cf., definition of boundary conditions in figure 8.1). Regard-
ing the eigenfrequencies of the circular arch, the theoretical and nu-
merical frequencies of the 1st and the 2nd mode coincided very well
(figure 8.8).
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Figure 8.6: Results of the beam mesh study involving the 1st (a) and the
6th (b) eigenfrequency depending on the number of nodes. The
dashed black lines represent the analytically obtained results us-
ing Bernoulli beam theory. The red circled data points indicate
the chosen mesh properties, which allowed the generation of
complex beam pre-deformations in all simulations.
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Figure 8.7: 1st (a), 2nd (b), 3rd (c), 4th (d), 5th (e), and 6th (f) bending mode
shape of the analysed beam in the xz and the xy plane. The
colours represent the absolute normalised vibration amplitude.

8.2.1.1 Maximisation of a Specific Eigenfrequency or Mode Shape Fre-
quency

Shaping the beam according to the 1st, 2nd, 3rd, and 4th bending
mode shape resulted in a strong increase of the eigenfrequency con-
nected to the corresponding mode shape. Figure 8.9 shows exem-
plarily the first six eigenfrequencies of the beam pre-deformed ac-
cording to the 3rd and 4th bending mode shape, while the results
for the 1st and 2nd bending mode shape adaptation are attached in
the appendix chapter A.1. Lower-order frequencies remained con-
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Figure 8.8: 1st and 2nd mode shape frequency of the beam pre-deformed
according to the bending mode 1 for different maximum relative
pre-deformations. The analytically obtained values are based on
formulae for circular arches published by Den Hartog [38].

stant, also for higher maximum relative pre-deformations. However,
higher-order frequencies mostly decreased slightly with increasing
maximum relative pre-deformation. Especially the frequency of the
5th mode shape (i.e., 1st bending mode in the xy plane) strongly de-
creased with increasing maximum relative pre-deformation for all
beam pre-deformations.

It may be reminded that the beam width was decreased with rais-
ing maximum relative pre-deformation to have a constant beam mass.
Thus, the 5th mode shape frequency was certainly affected by the
beam width adaptation. In addition, the boundary conditions varied
for the 5th mode shape in comparison to the first four bending mode
shapes in the xz plane (cf., figure 8.1).

Regarding the 5th mode adaptation, however, the corresponding
eigenfrequency first increased and later decreased with increasing
maximum relative pre-deformation (figure 8.10). The other recorded
eigenfrequencies remained constant or decreased slightly.

In summary, a maximum relative pre-deformation of 5.0 already
resulted in a frequency increase of a specific mode shape of more than
1,000% for a shape adaptation of the beam according to the 1st, 2nd,
3rd, and 4th bending mode shape. Maximum relative pre-deformation
of 20.0 generated frequency increases of more than 4,000% for pre-
deformations according to mode 1 and 2 and of more than 2,000% for
mode 3 and 4. However, shaping the beam according to the 5th mode
shape increased the corresponding eigenfrequency only by 164% for
a maximum relative pre-deformation of 5.0.

The investigated methods to increase specific eigenfrequencies
raised the targeted eigenfrequencies in almost all analyses, as shown
in table 8.2. Only by shaping the beam according to the 4th mode
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(a) Beam pre-deformation according to mode 3
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(b) Beam pre-deformation according to mode 4

Figure 8.9: Frequencies of the first six bending mode shapes of the slender
beam depending on the maximum relative pre-deformation ac-
cording to mode 3 (a) and mode 4 (b). For some data points,
the frequency increase of the 3rd and 4th bending mode shape
compared to the reference beam is given. A magnified view of
the lower right corner of both diagrams involving small pre-de-
formations δ of 0 - 5 and low frequencies of 0 - 600 Hz is given on
the right-hand side of the figure.

shape, a decrease of all six eigenfrequencies with strongest decrease
for the 4th eigenfrequency was present. In addition, the eigenfrequen-
cies not targeted were also altered (i.e., decreased or increased) by 8%
to 28% applying maximum relative pre-deformations of 3.0.

Comparing the obtained frequency changes corresponding to a spe-
cific mode, all results showed highest frequency increase for the tar-
geted mode shape (table 8.2). The increase varied from 614% for
the frequency of the 4th bending mode shape to 641% for the fre-
quency of the 1st bending mode shape for the mode shape adapta-
tion method considering a maximum relative pre-deformation of 3.0.
The mode shape frequencies which were not targeted changed be-
tween 1% and 12% in average.
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Figure 8.10: Frequencies of the first six bending mode shapes of the slender
beam depending on the maximum relative pre-deformation ac-
cording to mode 5 (1st bending mode shape in the xy plane).
For some data points, the mode 5 frequency increase compared
to the reference beam is given.

Table 8.2: Eigenfrequency changes compared to the reference beam due to
the mode shape adaptation method, which was applied to the
slender beam considering a maximum relative pre-deformation
of 3.0, are displayed in (a). The alterations of the frequencies con-
nected to specific mode shapes (Mn) are shown in (b). The average
absolute values of the deviations of eigenfrequencies that were not
targeted are given. All targeted eigenfrequencies or mode shapes
are shown in bold numbers.

a) Max. f1 Max. f2 Max. f3 Max. f4

f1 299% 0% -1% -1%
f2 85% 122% -1% -1%
f3 0% 76% 28% -5%
f4 0% 36% -4% -24%
f5 -5% 11% 10% -23%
f6 0% 15% 42% -9%
Deviation 18% 28% 12% 8%

b) Max. f1 Max. f2 Max. f3 Max. f4

M1 641% 0% -1% -1%
M2 0% 636% -1% -1%
M3 0% -1% 626% -5%
M4 0% -1% -4% 614%
M5 -5% -3% -48% -45%
M6 0% -1% -2% -9%
Deviation 1% 1% 11% 12%
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8.2.1.2 Maximisation of Multiple Eigenfrequencies

Pre-deforming the reference beam according to a single mode shape
led to high frequency increases of the considered mode shape,
whereas the frequencies of the other mode shapes only differed
slightly (table 8.3). This trend was also observed for combinations
of the different mode shapes.

By shaping the reference beam according to a combination of the
bending modes 1 and 2, only the frequencies of both considered mode
shapes increased, while the frequencies of the other mode shapes
remained almost constant. This also applied for the combinations of
mode 1, 2, and 3 and of mode 1, 2, 3, and 4, however, the former also
resulted in a raise of the 4th bending mode frequency for a maximum
relative pre-deformation of 1.0. In all analysed mode combinations,

Table 8.3: Frequency deviations of the first four bending mode shapes com-
pared to the reference beam for different maximum relative pre-
deformations δ according to the 1st, 2nd, 3rd, and 4th single mode
shapes and combinations of these four mode shapes.

100% Mode 1 100% Mode 2
δ M1 M2 M3 M4 M1 M2 M3 M4

1.0 165% 0% 0% 0% 0% 164% 0% 0%
3.0 641% 0% 0% 0% 0% 636% -1% -1%
5.0 1,126% 0% 0% 0% -1% 1,110% -3% -2%

100% Mode 3 100% Mode 4
δ M1 M2 M3 M4 M1 M2 M3 M4

1.0 0% 0% 162% 0% 0% 0% -1% 159%
3.0 -1% -1% 626% -4% -1% -1% -5% 614%
5.0 -2% -4% 1,084% -10% -3% -4% -12% 1,050%

50% Mode 1, 33% Mode 1, 33% Mode 2,
50% Mode 2 33% Mode 3

δ M1 M2 M3 M4 M1 M2 M3 M4

1.0 27% 73% 0% 0% 16% 21% 55% 15%
3.0 36% 338% 0% 0% 21% 29% 277% -1%
5.0 37% 616% -1% -1% 20% 29% 509% -3%

25% Mode 1, 25% Mode 2,
25% Mode 3, 25% Mode 4

δ M1 M2 M3 M4

1.0 10% 12% 15% 32%
3.0 14% 18% 23% 190%
5.0 14% 17% 24% 362%
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the frequencies of the highest order mode shapes always increased
most.

Pre-deforming the reference beam according to weighted combina-
tions of the bending modes 1 and 2 led to different results for vary-
ing relative maximum pre-deformations (figure 8.11). For δ = 1.0, the
highest sum of the 1st and 2nd eigenfrequency was obtained by pre-
deforming the beam according to 20% of bending mode 1 and 80% of
bending mode 2, for δ = 3.0 by 80% of bending mode 1, and 20% of
bending mode 2, and for δ = 5.0 by 100% of bending mode 1 and 0%
of bending mode 2.
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Figure 8.11: 1st and 2nd eigenfrequency of the beam shaped with a maxi-
mum relative pre-deformation δ of 1.0, 3.0, and 5.0 according
to weighted combinations of the bending modes 1 and 2. Three
beam shapes are exemplarily shown for δ = 10.0. The trends of
the 1st eigenfrequencies for δ = 3.0 and δ = 5.0 almost coincided.

8.2.2 Squared Plate

The mesh size study indicated the sufficiency of an element edge
size of 16.6 mm to obtain correct values for the 1st and 6th eigenfre-
quency (figure 8.12). However, a finer mesh with an element edge
size of 1 mm and a total of 10.000 CQUAD4 elements was used to
picture the mode shapes correctly. The bending mode shapes of the
reference plate are shown in figure 8.13. The comparison between the
numerical and analytical results for the plate shaped according to the
1st bending mode shape showed good coincidence (figure 8.14).

8.2.2.1 Maximisation of a Specific Eigenfrequency or Mode Shape Fre-
quency

The pre-deformations of the reference plate implied adaptations of
the plate thickness to ensure a constant mass. Table 8.4 lists the de-
creased plate thicknesses dependent on the maximum pre-deforma-
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Figure 8.12: Results of the plate mesh study involving the 1st (a) and the
6th (b) eigenfrequency depending on the number of elements
per plate edge. The dashed black lines represent the analytically
obtained results using the classic plate theory of Kirchhoff. The
red circled data points indicate the chosen mesh properties.
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Figure 8.13: 1st (a), 2nd (b), 3rd (c), 4th (d), 5th (e), and 6th (f) bending mode
shape of the reference plate. The colours represent the absolute
normalised vibration amplitude.

0 2 4
0

3,000

6,000

Maximum relative pre-deformation delta (-)

1st
ei

ge
nf

re
qu

en
cy

(H
z)

f1 analytical
f1 numerical

Figure 8.14: Analytically and numerically obtained 1st eigenfrequency of the
reference plate shaped according to the 1st bending mode shape
depending on different maximum relative pre-deformations.
The analytical solutions were calculated using classic plate the-
ory of Kirchhoff for δ = 0.0 (equation 8.12) and shallow spherical
shell theory for δ > 0.0 (equation 8.15).



8.2 Results 63

Table 8.4: Plate thickness hp and maximum relative pre-deformations δ for
the reference plate and the plates shaped according to the 1st, 2nd,
3rd, and 4th bending mode shape based on different maximum
pre-deformations δmax.

Max. pre-deformation δmax (mm)
0.0 6.0 10.0 40.0

Reference hp (mm) 2.0000 2.0000 2.0000 2.0000
δ (-) 0.0 3.0 5.0 20.0

Max. f1 hp (mm) 2.0000 1.9843 1.9573 1.5392
δ (-) 0.0 3.0 5.1 26.0

Max. f2 / f3 hp (mm) 2.0000 1.9680 1.9154 1.3063
δ (-) 0.0 3.0 5.2 30.6

Max. f4 hp (mm) 2.0000 1.9579 1.8897 1.1852
δ (-) 0.0 3.1 5.3 33.7

tions δmax. According to equation 8.10, the maximum relative pre-
deformation depended on the plate thickness. Therefore, the plate
thickness adaptations altered the maximum relative pre-deformation.
As a result, a maximum pre-deformation of, for example, 40 mm ac-
cording the 1st mode shape implied a maximum relative pre-defor-
mation of 26.0, while the corresponding value for the 4th mode shape
adaptation was 33.7 due to the reduced plate thickness (cf., table 8.4).

Pre-deforming the reference plate according to its 1st bending mode
shape resulted at first in an increase of all considered eigenfrequen-
cies (figure 8.15), which decreased after a maximum relative pre-de-
formation of 14.7 for the 1st and 6th eigenfrequency and 10.8 for the re-
maining eigenfrequencies. At its highest peak, the 1st eigenfrequency
increased by 606% compared to the reference plate.

Figure 8.15 shows how the order of the first six bending mode
shapes changed with increasing pre-deformation of the plate. The
1st bending mode shape frequency was increased by 488% at δ = 4.1.
In regard to higher maximum relative pre-deformations, this mode
shape could not be found anymore within the first 50 mode shapes.
For a maximum relative pre-deformation of 5.1, the 1st mode shape of
the pre-deformed plate coincided with the 6th bending mode shape
of the reference plate. The 2nd, 3rd, and 4th bending mode shapes
were still present up to a maximum relative pre-deformation of 5.1.

Shaping the reference plate according to its 2nd or 3rd bending
mode shape led to the same results (figure 8.16). Similar to the plate
adaptation according to its 1st bending mode shape, all analysed
eigenfrequencies first increased and then decreased with increasing
maximum relative pre-deformation. At their highest peaks at a max-
imum relative pre-deformation of 11.6 for the 2nd and at 5.2 for the
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Figure 8.15: Eigenfrequencies (a) and frequencies of the different mode
shapes (b) of the squared plate pre-deformed according to its
1st bending mode shape depending on different maximum rela-
tive pre-deformations. The highest 1st eigenfrequency increase
is given. In b), mode shapes, which are not among the first
six bending mode shapes of the reference plate, are named
’Mode X’. For δ = 0.0, 3.0, and 5.1, the mode shapes plotted
in b) are displayed in c) (top view). They are ordered in as-
cending frequency values. The colours represent the absolute
normalised vibration amplitude.

3rd eigenfrequency, the eigenfrequencies increased by 159% and 233%,
respectively. Regarding the mode shapes, only the 1st bending mode
shape did not change order until a maximum relative pre-deformation
of 5.2, while the frequencies of the other studied mode shapes ex-
ceeded each other and thus led to alterations in the mode shape or-
der. The 2nd bending mode shape was found among the first 50 mode
shapes up to a maximum relative pre-deformation of 3.1 with
12,237 Hz, whereas the 3rd bending mode shape could be identified
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Figure 8.16: Eigenfrequencies (a) and frequencies of the different mode
shapes (b) of the squared plate pre-deformed according to its
2nd or 3rd bending mode shape depending on different max-
imum relative pre-deformations. For both the 2nd and the
3rd eigenfrequency, the highest increases are given. In b), mode
shapes, which are not among the first six bending mode shapes
of the reference plate, are named ’Mode X’. For δ = 0.0, 3.1,
and 5.2, the mode shapes plotted in b) are displayed in c) (top
view). They are ordered in ascending frequency values. The
colours represent the absolute normalised vibration amplitude.

up to a maximum relative pre-deformation of 5.2 showing only minor
shape changes. Thus, the frequency of the 2nd bending mode shape
increased by 402% at δ = 3.1 and the frequency of the 3rd bending
mode shape by 233% at δ = 5.2.

A plate shape adaptation according to the 4th bending mode shape
(figure 8.17) resulted in eigenfrequency plots similar to those obtained
with the pevious shape adaptations in regard to the initial eigen-
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Figure 8.17: Eigenfrequencies (a) and frequencies of the different mode
shapes (b) of the squared plate pre-deformed according to its
4th bending mode shape depending on different maximum rela-
tive pre-deformations. The highest 4th eigenfrequency increase
is given. In b), mode shapes, which are not among the first
six bending mode shapes of the reference plate, are named
’Mode X’. For δ = 0.0, 3.1, and 5.3, the mode shapes plotted
in b) are displayed in c) (top view). They are ordered in as-
cending frequency values. The colours represent the absolute
normalised vibration amplitude.

frequency increase and the decrease in all eigenfrequencies with in-
creasing maximum relative pre-deformations. The 4th eigenfrequency
reached its highest peak at a maximum relative pre-deformation of
12.1 showing an eigenfrequency increase of 164% compared to the
reference plate. The 4th bending mode shape was found within the
first 50 mode shapes up to a maximum relative pre-deformation of 5.3
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and its frequency reached 26,612 Hz resulting in a frequency increase
of 584% compared to the reference plate.

In summary, the mode shape adaptation method resulted in high
eigenfrequency increases by pre-deforming a plate vertically by a
maximum of 10% of the plate edge length (table 8.5). The applied
plate pre-deformations led not only to an increase of the targeted
eigenfrequency, but also to an increase of all other eigenfrequencies
by 87% to 224% on average. An exclusive increase of the targeted
eigenfrequency was not possible. While the objective to maximise the
1st and 3rd eigenfrequency resulted in the highest increase of the tar-
geted eigenfrequency, pre-deforming the plate according to the 2nd

or 4th bending mode shape resulted in highest raise of an eigenfre-
quency that was not targeted. However, the targeted eigenfrequencies
also increased significantly.

Table 8.5: Eigenfrequency deviations compared to the reference plate for the
eigenvector approach to increase the 1st, 2nd, 3rd, and 4th eigenfre-
quency for a maximum pre-deformation δmax of 10.0 mm. The
frequency which increased most is shown in bold numbers.

Max. f1 Max. f2 Max. f3 Max. f4

f1 487% 228% 228% 240%
f2 135% 159% 159% 257%
f3 135% 233% 233% 257%
f4 67% 135% 135% 118%
f5 40% 109% 109% 183%
f6 55% 135% 135% 183%
Deviation 87% 168% 153% 224%

8.2.2.2 Maximisation of Multiple Eigenfrequencies

The plate pre-deformation according to linear combinations of the
1st, 2nd, and 3rd bending mode shape resulted in frequency raises
for all analysed eigenfrequencies (table 8.6). However, while a plate
adaptation according to the bending mode 1 caused highest increase
for the 1st eigenfrequency, the plate pre-deformations according to
higher-order mode shapes did not always raise the targeted eigenfre-
quencies most. Both the linear combination of the bending modes 1
and 2 and of the bending modes 1, 2, and 3 resulted in high eigen-
frequency increases for the 1st, 2nd, and 3rd eigenfrequency, while the
4th eigenfrequency rose less. It has to be noted that due to symmetry,
a linear combination of the bending modes 1 and 3 caused the same
results as the linear combination of the bending modes 1 and 2.

Next to the linear combinations, the weighted combinations of the
bending modes 1 and 2 were also considered. The results of fig-
ure 8.18 indicated that the highest eigenfrequency increase for the
1st eigenfrequency appeared at a full plate adaptation according to
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Table 8.6: Frequency deviations of the first four eigenfrequencies com-
pared to the reference plate for different maximum relative pre-
deformations δ according to the 1st, 2nd, and 3rd single bending
mode shapes and combinations of these mode shapes. The high-
est increase is shown in bold numbers.

100% Mode 1 100% Mode 2
δ f1 f2 f3 f4 f1 f2 f3 f4

1.0 84% 10% 10% 4% 40% 28% 82% 25%
3.0 322% 69% 84% 30% 145% 138% 139% 107%
5.0 487% 135% 135% 67% 228% 159% 233% 135%

50% Mode 1,
100% Mode 3 50% Mode 2

δ f1 f2 f3 f4 f1 f2 f3 f4

1.0 40% 28% 82% 25% 31% 13% 40% 11%
3.0 145% 138% 139% 107% 103% 68% 125% 66%
5.0 228% 159% 223% 135% 181% 132% 141% 96%

33% Mode 1,
33% Mode 2, 33% Mode 3

δ f1 f2 f3 f4

1.0 28% 14% 46% 13%
3.0 99% 76% 120% 69%
5.0 169% 137% 141% 115%
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Figure 8.18: 1st and 2nd eigenfrequency of the plate pre-deformed with a
maximum relative pre-deformation δ of 1.0, 3.0, and 5.0 accord-
ing to weighted combinations of the bending modes 1 and 2.
Three plate shapes are exemplarily shown for δ = 10.0.



8.3 Discussion 69

the bending mode 1 for all considered maximum pre-deformations.
With increasing influence of the 2nd bending mode, the 1st eigenfre-
quency decreased, but rose again after a certain ratio. A similar trend
could also be observed for the bending mode 2, where highest values
of the 2nd eigenfrequency appeared at the complete plate adaptation
according to the bending mode 2. The eigenfrequency minima ap-
peared for the 1st eigenfrequency at c values of 0.4, 0.5, and 0.6 for
maximum relative pre-deformations of 1.0, 3.0, and 5.0, respectively.
The 2nd eigenfrequency was minimised at c values of 0.8, 0.7, and 0.7
for maximum relative pre-deformations of 1.0, 3.0, and 5.0. The fac-
tor c symbolises the ratio of mode 1 as described in the corresponding
sub-chapter about the slender beam.

8.3 discussion

8.3.1 Slender Beam

The numerical results obtained by using the defined sufficient mesh
fineness coincided very well with the analytical results and are thus
plausible.

8.3.1.1 Maximisation of a Specific Eigenfrequency or Mode Shape Fre-
quency

The investigated method to increase specific eigenfrequencies by shap-
ing the beam according to the corresponding mode shape led to high
increases of the targeted 1st, 2nd, 3rd, and 4th eigenfrequencies. The re-
sults for small maximum relative pre-deformations according to the
1st, 2nd, and 3rd bending mode shape coincided very well with the
results obtained by Da Silva and Nicoletti [34] indicating an exclu-
sive increase of the targeted mode shape frequency, while especially
lower-order eigenfrequencies remained constant. Similar results were
obtained by shaping the beam according to the 4th bending mode
shape. Among all investigated mode shape adaptations, highest fre-
quency increase of up to 4,589% compared to the reference beam was
achieved for the 1st bending mode by shaping the beam according to
the targeted mode shape (δ = 20.0). The pre-deformed beam corre-
sponded to an arch, in which uniformly distributed transversal com-
pressive forces lead exclusively to normal forces, as shear forces and
bending moments disappear. This causes a high stiffness and thus
high eigenfrequencies. However, this was only possible due to the
axial (horizontal) constraint of the beam. In addition, Nicoletti [117]
stated that the beam eigenfrequency increases are due to an energy
transfer from longitudinal waves to transverse waves. This energy
transfer only occurs when axial strain is defined at the boundaries,
which is why the axial constraints are essential for the mode shape
adaptation method to significantly raise the eigenfrequencies.
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It has been stated that as soon as a beam receives a curved shape,
the 1st mode shape becomes extensional implying high tangential dis-
placement [38]. The 2nd mode shape, however, remains as a non-
extensional mode characterised by a radial displacement. For small
angles α, which imply small maximum relative pre-deformations,
the extensional 1st mode shape has a lower frequency than the non-
extensional 2nd mode shape [38]. However, the 1st mode shape fre-
quency rises fast with increasing pre-deformation, so that relatively
small pre-deformations caused already a mode order switch between
the 1st and the 2nd mode, which could also be observed in the here
analysed beam. The extensional energy is larger than the flexural en-
ergy, which is why the 1st mode shape frequency increases strongly
with increasing maximum relative pre-deformation.

Regarding maximum relative pre-deformations larger than 5.0, vari-
ations (especially decreases) of not targeted eigenfrequencies were
registered, which was not shown by Da Silva and Nicoletti [34]. At
the same time, higher pre-deformations allowed an additional, very
high frequency increase of the targeted mode shape.

A special role played the 5th mode shape, i.e., the 1st out-of-plane
bending mode (1st bending mode in the xy plane). For all mode
shape pre-deformations applied to the beam, the 5th mode shape
frequency decreased strongly with increasing maximum relative pre-
deformation. Since conservation of the beam mass was obtained
by adapting, i.e., reducing the beam width, the out-of-plane bend-
ing stiffness Eb3hb/12 was continuously reduced with higher pre-
deformations. Thus, the beam became weaker in the xy plane and
the corresponding frequency was reduced strongly independent of
the applied pre-deformation of the in-plane bending mode. Also the
defined boundary conditions had a strong impact on the 5th mode
shape frequency. As rotations around the z axis were prevented, the
5th mode shape was similar to a 1st in-plane bending mode shape
of a clamped-clamped beam. It has been shown that this bound-
ary condition results only in a small increase of the targeted eigen-
frequency compared to a beam simply supported at both ends [34].
Consequently, regarding the 5th mode adaptation, the corresponding
frequency first increased (arch effect) slightly (boundary condition)
and later decreased (stiffness reduction) with increasing maximum
relative pre-deformation.

Recently, an extension of the work from Da Silva and Nicoletti [34]
has been published analysing the impact of applying linearised mode
shapes instead of the complex, curved mode shapes. Nicoletti [116]
showed that the pre-deformation of a slender beam according to a
linearised (simplified) mode shape, which does not show any curva-
tures, still raised the corresponding eigenfrequency. However, the
eigenfrequency increase was less strong and other beam eigenfre-
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quencies were also significantly affected, even for small maximum
relative pre-deformations.

In summary, shaping the beam according to its mode shapes is an
efficient way to strongly increase the frequency of a specific mode
shape, while the frequencies of the other mode shapes only differ
slightly. It has to be noted, however, that the occurrence of mode
order switching and multiple (repeated) eigenfrequencies due to the
applied pre-deformations is possible.

8.3.1.2 Maximisation of Multiple Eigenfrequencies

Beam pre-deformations according to linear combinations of mode
shapes are an efficient method to increase the frequencies of vari-
ous mode shapes simultaneously. Shaping the beam according to
its 3rd bending mode shape, for example, increased the correspond-
ing frequency strongly, while the frequencies of the other analysed
mode shapes remained constant or decreased insignificantly. Pre-
deformations according to a linear combination of the 1st, 2nd, and
3rd bending mode shape, however, increased all three correspond-
ing frequencies, while the frequency of the 4th bending mode shape
changed only slightly. The weighted combinations of the bending
modes 1 and 2 showed that the highest sum of the 1st and the
2nd eigenfrequency was obtained by shaping the beam according to
either only the 1st or only the 2nd bending mode shape depending on
the maximum relative pre-deformation.

8.3.2 Squared Plate

As for the analysed beam, the chosen mesh properties led to numer-
ical results that corresponded to the analytical results for maximum
relative pre-deformations up to 5.0. Higher pre-deformations were
not calculated analytically, as the shell theory only applies for shal-
low shells.

8.3.2.1 Maximisation of a Specific Eigenfrequency or Mode Shape Fre-
quency

By adapting the shape of a simply supported squared plate according
to a specific mode shape, an increase of all eigenfrequencies could be
accomplished up to a certain pre-deformation.

It has been shown that by applying structural modifications, the
mode shapes change, resulting in an increase of the corresponding
eigenfrequency [6]. In the case of the 1st bending mode shape, the al-
terations of the maximum relative pre-deformations led to an increase
of the 1st eigenfrequency. Alshabatat and Naghshineh [6] concluded
that the highest eigenfrequency increase of dimpled plates can be
achieved by placing the dimples at the plate centre, as it increases
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the local bending stiffness at the region of high modal strain energy.
Modal strain energy was not taken into account in this study, so no
statement can be made with regard to the results obtained. However,
as the modal strain energy is defined as the product of the element
stiffness matrix and the second power of the mode shape component
[154], it can be assumed that the mode shape has a high influence, and
that therefore areas showing a high modal deflection also obtain high
modal strain energy. This would mean that published statements on
dimpled plates can also be applied here to a certain extent [6].

The results of this study showed that by altering the shape of a
plate, a change in the mode shape frequencies and order always oc-
curred. In addition, a connection between the mode shape change
and the eigenfrequency increase could be observed, which supports
the statement of Alshabatat and Naghshineh [6]. Considering the re-
sults of the eigenfrequency increase connected to the mode shapes,
high mode shape changes led to high increases of the correspond-
ing frequencies, while frequencies connected to mode shapes similar
to the reference plate resulted in low eigenfrequency increases. This
can be exemplarily seen for the adaptation of the plate according
to the 1st bending mode shape, where the bending modes 4 and 6
showed minor mode shape alterations up to a maximum relative
pre-deformation of 5.0 and therefore also low corresponding eigen-
frequency increases. High increases were achieved for the frequen-
cies connected to the first three bending modes, while the 1st bending
mode frequency showed the highest rise. Regarding relative maxi-
mum pre-deformations above 5.0, the 1st bending mode shape was
not present within the first 50 mode shapes leading to the conclusion
that the corresponding frequency increased strongly. In analogy to
the beam, the 1st extensional mode shape is characterised by a higher
energy than for instance the 2nd flexural mode shape. Consequently,
the 1st bending mode frequency showed the highest increase. Next,
the 2nd and 3rd bending mode frequencies rose most. In addition, the
vault dimensions of both mode shapes decreased with rising maxi-
mum relative pre-deformation. The remaining analysed mode shapes
did not change significantly.

Similar conclusions could be made for the plate pre-deformations
according to the bending modes 2/3 and 4. It has to be noted that the
shape adaptation according to the 2nd and 3rd mode shapes led to the
same results since the analysed plate was characterised by a constant
edge length. Consequently, the 2nd and 3rd eigenfrequency coincided
and the 2nd mode shape corresponded to the 3rd mode shape rotated
by 90◦.

Regarding the eigenfrequency decrease obtained for high maxi-
mum relative pre-deformations, it has been shown that the 1st plate
eigenfrequency increased with rising dimple height up to an opti-
mum height and later decreased with further increasing dimple height
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[6]. It was argued that the eigenfrequency decrease was due to the
dimple thickness decrease. Also in the present study, the eigenfre-
quency decreases for high pre-deformations might be due to the re-
duction of the bending stiffness because of the decreasing plate thick-
ness, which was inevitable to have a constant mass. Moreover, it
has to be noted that the formulae used for the eigenfrequency cal-
culations are restricted to small pre-deformations and different de-
pendencies can be expected for plates with high pre-deformations.
Figure 8.19 shows exemplarily the 1st mode shapes of a plate pre-
deformed according to the bending mode 1 with maximum relative
pre-deformations of 5.0, 10.0, 15.0, and 20.0, where it can be seen
that a flexural mode shape appeared for all pre-deformations. How-
ever, this mode shape was shifted from a mainly z movement to
a movement in the y direction with increasing maximum relative
pre-deformation due to the reduced bending stiffness because of the
smaller plate thickness. As up to a relative pre-deformation of 15.0 an
increase of the 1st eigenfrequency can be stated, a connection between
the eigenfrequency increase and the change in mode shape direction
is assumed. A comparison of the results from plates shaped accord-
ing to the bending modes 2/3 and 4 and their mode shapes confirm
this assumption. The proposed method to increase eigenfrequencies
can therefore only be used successfully when the deflections of the
mode shapes appear in the same direction as the pre-deformations.

In contrast to the results of the slender beam, for which the exclu-
sive increase of a specific mode shape frequency was quite success-
ful, the plate pre-deformation according to the selected mode shapes
always led to an increase of all considered eigenfrequencies. Conse-
quently, in the case of plates, the mode shapes cannot be seen as in-
dependent. It should rather be noted that all mode shapes deflected
certain plate areas that were also influenced by other mode shapes.
Thus, all eigenfrequencies changed when shaping the plate according
to a certain mode shape. In the results obtained here, the frequency
of the 1st bending mode showed the highest or second highest fre-
quency increase for any plate adaptation. As the 1st bending mode
shape elevates the whole plate area, it is expected that an influence
on the corresponding frequency is always present when adapting the
plate according to any other mode shape. Thus, the highest increase
of the 1st eigenfrequency could be achieved when shaping the plate
according to the bending mode 1.

8.3.2.2 Maximisation of Multiple Eigenfrequencies

Contrary to the investigated beam, the linear combination of several
mode shapes cannot be seen as a useful method to simultaneously
increase multiple eigenfrequencies, since none of the considered com-
binations led to eigenfrequency increases as high as the adaptation
according to the corresponding single mode shape. While in the case
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of the slender beam it was possible to track the frequency changes
of the different mode shapes, the mode shapes of the plate altered
so strongly that tracking was not possible. Consequently, only the
increase of the different eigenfrequencies was evaluated regardless of
the changing mode shape order.

The weighted combinations of the bending modes 1 and 2 also
indicated that an adaptation according to one mode shape can simul-
taneously cause a strong increase of the other eigenfrequencies. Thus,
an adaptation according to one mode shape provided better results
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Figure 8.19: 1st mode shape and the normalised vibration amplitude of
the squared plate pre-deformed according to the 1st mode
shape at different time frames t. The maximum relative pre-
deformations 5.0 (1), 10.0 (2), 15.0 (3), and 20.0 (4) are shown in
the xz plane (front view; a) and in the yz plane (side view; b).
The colours represent the absolute normalised vibration ampli-
tude.
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than a combination, concerning both eigenfrequencies, which had
also been observed for the slender beam. The results are consistent
with the findings of other already mentioned studies from Da Silva
and Nicoletti [34] and Fredö and Hedlund [49].

8.3.3 Outlook

The mode shape adaptation is an efficient method to increase eigen-
frequencies and mode shape frequencies of 1D and 2D structures.

In a first study that further extended the geometric complexity,
the mode shape adaptation method has been successfully applied
to a 3D beam structure (figure 8.20). The structure was meshed with
Solid element (CTETRA) elements of 9 mm edge length based on a
mesh study (figure 8.21), which resulted in 1,303,473 elements. The
translations and rotations of all nodes at both ends were inhibited.
Steel characterised by a Young’s modulus of 210,000 MPa, a density
of 7.85 · 10−9 t mm−3, and a Poisson’s ratio of 0.3 was considered as
material. A modal analysis revealed the first three eigenfrequencies
and mode shapes (figure 8.22).
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Figure 8.20: 3D beam structure with its dimensions (mm).
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Figure 8.21: Mesh convergence study result for the 3D beam structure
meshed with CTETRA elements. The chosen element size of
9 mm is framed.



76 Shape Adaptation According to Mode Shapes

Pre-deforming the structure according to its 1st mode shape re-
sulted in an increase of the 1st, 2nd, and 3rd mode shape frequency
(figure 8.23). The frequencies constantly rose with increasing norma-
lised pre-deformation, which was equal to the maximum pre-defor-
mation (mm) divided by the wall thickness of the structure (mm).
A small normalised pre-deformation of 3.0 led already to frequency
increases of 5%-11%, while a normalised pre-deformation of 15.0 re-
sulted in frequency increase of up to 60%.

It has to be noted, though, that the obtained frequency increases
were significantly lower than those of the 1D beam or the 2D plate
studied here. In addition, since 3D structures are certainly more com-
plex than 1D and 2D structures, the mode shape adaptation method
should be applied to a variety of different 3D structures in order to
generally state the effectiveness of this method to increase eigenfre-
quencies and mode shape frequencies of 3D structures.
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Figure 8.22: First three mode shapes and the corresponding eigenfrequen-
cies of the 3D beam structure in a 3D view and a side view. The
colours represent the absolute vibration amplitude.
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Figure 8.23: Frequencies of the 1st, 2nd, and 3rd mode shape of a 3D beam
structure pre-deformed according to the 1st mode shape con-
sidering different relative pre-deformations. For several nor-
malised pre-deformations, the frequency deviation compared
to the undeformed structure is given.
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8.4 conclusion

Shaping axially constrained beams and squared plates according to
their mode shapes led to strong eigenfrequency increases. This
method allowed the almost exclusive increase of the n-th mode shape
frequency (n = 1-5) of the beam, while the increase of the n-th plate
mode shape frequency (n = 1-4) simultaneously altered significantly
other eigenfrequencies. Overall, strong eigenfrequency increases were
obtained by applying only small structural pre-deformations without
weight increase.





9
S H A P E A D A P TAT I O N B A S E D O N E V O L U T I O N A RY
S T R AT E G I C O P T I M I S AT I O N S

In the 1960s, I. Rechenberg and his colleagues applied the principles
of biological evolution to technological optimisations involving ac-
cidents (mutation, cross over) and the proximate election strategies
(selection) [136]. Definition of the

mentioned biological
terms:

Mutation creates
new individuals by
randomly changing
parameters of the
individuals of the
current generation.

The cross over
method generates
new individuals by
exchanging the
parameter values of
two individuals from
the current
generation.

Selection implies
the survival and
reproduction of
individuals based on
their phenotype, i.e.,
the expression of
their genes.

The fitness
describes the
reproductive success
of an individual, i.e.,
its contribution to
the genes of the next
generation.

Elitism means that
individuals with
high fitness values
are preferred.

Evolutionary strategic optimisations are stochastic optimisation
methods. In contrast to traditional optimisation methods, the genetic
algorithms work over a set of candidate structures (individuals) that
cover a large search space instead of a single individual at each iter-
ation. They can be applied to multi-objective design problems and
show a relatively high probability to reach the global optimum of
a (unknown) fitness landscape that shows several local optima (fig-
ure 9.1) [4].

Fitness

Genotype space

Figure 9.1: Arbitrary fitness landscape.

Evolutionary structural optimisations have already been used to
solve vibration issues regarding beams and plates, e.g., by Xie and
Steven [195], Zhao et al. [207], and Zhu et al. [212] (cf., chapter 4).

The optimisation process applied here is illustrated in figure 9.2.
The genetic algorithm chooses randomly P candidate structures (in-
dividuals) from a large search space (gene pool) that form the starting
population. The gene pool consists of twice as many individuals as
the population, which are generated randomly. The chosen popula-
tion forms the parental population, which is evaluated regarding the
overall objective function (fitness). The best individuals are selected
and form together with a certain number of randomly chosen individ-
uals from the gene pool the reproducing population. The allowance
of randomly chosen individuals in the reproducing population pre-
vents a local optimisation, i.e., elitism is smaller than 1, which is im-
portant since the fitness landscape is unknown. Cross over and muta-
tion affect the reproducing population leading to the offspring popu-
lation, which then forms again the parental population. This process

79
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runs until reaching the stopping criterion, which, in the present work,
is defined by the maximum number of generations NG.

Gene pool: 2P
individuals

Starting
population:

P individuals

Parental
population:

P individuals

Reproducing
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P individuals

Offspring
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P individuals

Simulation
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form
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and selection
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Number of
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Number of
generations < NG

cross over,
mutation

Figure 9.2: Evolutionary strategic optimisation process, in which P denotes
the population size and NG the number of generations.

In this study, evolutionary strategic optimisations were applied to
the beam (1D) and the plate (2D) investigated in chapter 8 to com-
pare both eigenfrequency maximisation techniques. Also here, not
only single eigenfrequencies, but also multiple eigenfrequencies were
optimised.

In order to compare the evolutionary strategic optimisations and
the mode shape adaptation method to a common optimisation pro-
cedure, topography optimisations of the plate were performed. As
already mentioned in chapter 4, topography optimisations are a type
of shape optimisations, in which the nodes of a structure are moved
perpendicular to the structure’s surface with the objective to generate
an optimum structure. Here, the topography optimisations aimed at
the maximisation of single eigenfrequencies.
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9.1 material and methods

The analysed beam and plate geometries as well as the mesh prop-
erties and the boundary conditions were set analogous to those in
chapter 8.

9.1.1 Slender Beam

The parametric studies on the shape adaptation of the slender beam
were compared to evolutionary strategic optimisations. The used op-
timiser Octopus implemented in Grasshopper was developed for multi-
objective evolutionary optimisations that allow to consider multiple
objective functions simultaneously. The basic optimisation problem
can be stated as the optimisation of a single-objective function vector
[192]:

min{Garb(x) = [garb,1(x), garb,2(x), ..., garb,n(x)]} ; n = 1, 2, 3, ... (9.1)

with Garb(x) representing an arbitrary function (i.e., fitness function)
depending on the variable x and garb,n(x) arbitrary functions depend-
ing on the variable x.

The Octopus settings that were taken into account are listed in ta-
ble 9.1 and are based on the default and recommended settings. The
elitism was set to 50%, as this value in combination with a mutation
rate of also 50% is expected to lead to a successful optimisation [85].

Table 9.1: Octopus settings involving the Hypervolume Estimation Algo-
rithm (HypE).

Algorithm setting Value

Elitism 0.5
Mutation probability 0.1
Mutation rate 0.5
Cross over rate 0.8
Population size 80
Maximum generations 40 (stopping criterion)
HypE reduction yes
HypE mutation yes

The z values of the 25 beam nodes were varied in the range of -9.0
to 9.0 mm representing a vertical maximum relative pre-deformation
of 3.0. At the beginning, all parameter values were set to 0.0 mm.

Six optimisations were conducted with the objectives summarised
in table 9.2. Analogous to the shape adaptation according to the mode
shapes, the beam width was adjusted to ensure a constant mass of
145 g.

Note:
The maximum
relative pre-
deformation δ is
defined as the
quotient of the
maximum pre-
deformation (mm)
and the beam/plate
height (mm) (cf.,
equation 8.10).
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Table 9.2: Evolutionary strategic optimisation objectives specified for the
slender beam and the squared plate.

Optimisation Objective 1 Objective 2 Objective 3

1 max f1 min |m−mre f | -

2 max f2 min |m−mre f | -

3 max f3 min |m−mre f | -

4 max f4 min |m−mre f | -

5 max f1 max f2 -
6 max f1 max f2 max f3

Optimisation convergence was reached as soon as the highest eigen-
frequency of the last generation differed less than 2% from the high-
est eigenfrequencies of the three previous generations. Regarding the
first four optimisations, the beam structure with the highest eigen-
frequency of the last generation was declared as the best structure.
For the last two optimisations, the beam characterised by the high-
est sum of the 1st and 2nd or the 1st, 2nd, and 3rd eigenfrequency of
the last generation was declared as the best result. The optimisation
results were compared among each other as well as to the reference
beam and the parametric study results of the mode shape adaptation
(chapter 8) using equation 8.11.

9.1.2 Squared Plate

The evolutionary strategic optimisations were also applied to the
squared plate (chapter 8), which was based on 49 regularly distributed
points in the parametric study (cf., figure 8.4). Since this large num-
ber of parameters would require very high computational effort, only
25 points were considered here (figure 9.3), in between which the
plate surface was interpolated.

x

y

Figure 9.3: Regular distribution of 25 points on the plate that were used as
parameters for the evolutionary strategic optimisations.

The z values of the 25 points were manipulated during the optimi-
sation in a range of -10.0 to 10.0 mm representing a maximum rela-
tive pre-deformation of -5.0 to 5.0. The same optimisation settings
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as set for the slender beam were chosen (table 9.1), only differing in
the population size, which was increased to 100. As for the shape
adaptation according to mode shapes (chapter 8), the plate thickness
was adapted to ensure a constant mass. The optimisation objectives
corresponded to those for the slender beam (table 9.2). Also the con-
vergence criterion and result evaluation were set according to those
of the slender beam.

Regarding the topography optimisations, the same shell mesh was
used as for the previous studies and the plate thickness was de-
creased to reach a total mass equal to the reference plate. The re-
duced plate thicknesses are listed in table 9.3 and corresponded to
the plate thicknesses obtained by applying the mode shape adapta-
tion method with a maximum relative pre-deformation of 5.0 (chap-
ter 8). Four topography optimisations were performed with the ob-
jectives to (1) maximise the 1st, 2nd, 3rd, and 4th eigenfrequency and
to (2) keep a constant mass compared to the reference plate. All el-
ements not connected to a boundary condition were considered as
design space. The set optimisation properties are summarised in ta-
ble 9.4. The chosen pre-deformation height represented a maximum
relative pre-deformation of 5.0. Note that in the

used software
HyperMesh, the
pre-deformation
height and
pre-deformation
angle are called
’draw height’ and
’draw angle’,
respectively. The
value of the
pre-deformation
angle controls the
angle at the sides of
the elevation of the
plate, i.e., the
pre-deformation.

Table 9.3: Plate thickness hp
defined for the to-
pography optimisa-
tions.

Objective hp (mm)

max f1 1.9573
max f2 1.9154
max f3 1.9154
max f4 1.8897

Table 9.4: Topography optimisation set-
tings.

Setting Value

Minimum width 1.5 mm
Pre-deformation angle 60◦

Pre-deformation height 10.0 mm
Upper bounds 1.0
Lower bounds 1.0

9.2 results

For both the slender beam and the squared plate it was possible to
increase the eigenfrequencies by applying evolutionary strategic and
topography optimisations. Convergence was shown for all optimisa-
tions (cf., convergence plots in appendix chapter A.2).

9.2.1 Slender Beam

The evolutionary strategic optimisations aiming at the maximisation
of single beam eigenfrequencies resulted in a strong increase of the
targeted eigenfrequencies (figure 9.4). While the targeted eigenfre-
quency in all optimisations increased the most, the remaining anal-
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ysed eigenfrequencies only changed slightly (maximum 6% to 10% in
average) aside from the 5th eigenfrequency, which always decreased
(table 9.5). The optimisation targeting a 1st eigenfrequency increase
raised the 1st eigenfrequency by 297%, while the optimisation aiming
at a 4th eigenfrequency increase only raised the 4th eigenfrequency by
35%. The results also show that the targeted eigenfrequency was in
all cases maximised until it approximately coincided with the next
higher-order eigenfrequency. As the mode shape orders switched
only partly, the frequency increases of the 1st to 4th mode shapes
were similar to the corresponding eigenfrequency increases. In sum-
mary, the obtained eigenfrequency increases were very similar to
those reached by the mode shape adaptation approach as shown in
chapter 8. However, shaping the beam according to a specific mode
shape strongly raised the corresponding frequency, which was not
reached by the optimisations.

The optimised beam shapes obtained by the maximisation of the 1st,
2nd, and 3rd eigenfrequency looked very similar to the corresponding
mode shapes (figure 9.5). The maximum relative pre-deformations
were slightly lower than the maximum permitted value of 3.0 (ta-
ble 9.6). Regarding the beam shape for increasing the 4th eigenfre-
quency, the beam shape differed from the 4th mode shape of the ref-
erence beam. In addition, a relatively low pre-deformation of 1.3 was
present and the eigenfrequency increase was the lowest among the
four optimisations.
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Figure 9.4: First six eigenfrequencies of the reference beam and the opti-
mised beams targeting a maximisation of the 1st, 2nd, 3rd and
4th eigenfrequency. The increase of the targeted eigenfrequen-
cies compared to the undeformed (reference) beam are given and
symbolised by arrows.
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a)

b)

c)

d)

e)

f)

Figure 9.5: Side view (xz plane) of the optimised beam with the objectives to
maximise the a) 1st, b) 2nd, c) 3rd, d) 4th eigenfrequency, e) 1st and
2nd eigenfrequency, and f) 1st, 2nd, and 3rd eigenfrequency. The
black dashed lines represent the horizontal line at z = 0.0 mm.

Table 9.5: Eigenfrequency increase (a) and increase of the frequencies con-
nected to specific mode shapes (Mn) (b) compared to the refer-
ence beam due to the evolutionary strategic optimisation (Opti)
and the mode shape adaptation method (Mode) for the slender
beam deformed with a maximum relative pre-deformation of 3.0.
The average absolute values of the deviations of eigenfrequencies
that were not targeted are given. The targeted eigenfrequencies or
mode shapes are shown in bold numbers.

a) Eigenfrequency Devi-
f1 f2 f3 f4 f5 f6 ation

max f1 Opti 297% 0% -1% 6% -20% -1% 6%
Mode 299% 85% 0% 0% -5% 0% 18%

max f2 Opti 6% 124% 22% 15% -7% 0% 10%
Mode 0% 122% 76% 36% 11% 15% 28%

max f3 Opti 20% -1% 76% 0% -22% 3% 9%
Mode -1% -1% 28% -4% 10% 42% 12%

max f4 Opti 16% 11% 0% 35% -1% 1% 6%
Mode -1% -1% -5% -24% -23% -9% 8%

b) Frequency of mode shape Devi-
M1 M2 M3 M4 M5 M6 ation

max f1 Opti 297% 0% -1% 6% -20% -1% 6%
Mode 641% 0% 0% 0% -5% 0% 1%

max f2 Opti 6% 173% -1% 29% -17% 17% 14%
Mode 0% 636% -1% -1% -3% -1% 1%

max f3 Opti 20% -1% 78% -1% -22% 3% 9%
Mode -1% -1% 626% -4% -48% -2% 11%

max f4 Opti 16% 11% 0% 38% -3% 1% 6%
Mode -1% -1% -5% 614% -45% -9% 12%
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Table 9.6: Maximum relative pre-deformation of the four optimised beams
and the reference beam.

z values of beam nodes Maximum relative
Objective min (mm) max (mm) pre-deformation δ (-)

max f1 -0.1 8.8 2.9
max f2 -8.7 5.5 2.9
max f3 -7.8 1.6 2.6
max f4 -3.8 0.8 1.3

Reference 0.0 0.0 0.0

The beam structures resulting from the optimisations targeting at
an increase of the 1st and 2nd and of the 1st, 2nd, and 3rd eigen-
frequency looked similar and reminded of a linear combination of
mode 1 and mode 2 (figure 9.5). Both beam shapes corresponded to
a maximum relative pre-deformation of 3.0. The optimisations led
to an increase of all targeted eigenfrequencies, however, the increases
varied between 30% and 123% (table 9.7). The higher order eigenfre-
quencies changed only slightly with the exception of the decreasing
5th eigenfrequency. Regarding the frequencies of the different mode
shapes, the 2nd and 3rd mode shape changed order resulting in a high
increase of the mode 2 frequency, while the frequency of the 3rd mode
shape slightly decreased during the second optimisation.

Table 9.7: Increase of the eigenfrequencies (a) and mode shape frequencies
(b) compared to the reference beam due to the evolutionary strate-
gic optimisations aiming at the maximisation of multiple eigenfre-
quencies. The targeted eigenfrequencies are shown in bold num-
bers.

a) Eigenfrequencies
Objective f1 f2 f3 f4 f5 f6

max f1 & f2 30% 122% 1% -1% -28% 5%
max f1, f2 & f3 46% 123% 48% 0% -11% 0%

b) Frequencies of mode shapes
Objective M1 M2 M3 M4 M5 M6

max f1 & f2 30% 128% -1% -1% -28% 5%
max f1, f2 & f3 46% 232% -1% 0% -11% 0%

Compared to the mode shape adaptation results for a maximum
relative pre-deformation of 3.0 (cf., table 8.3), the optimisations aim-
ing at raising the 1st and 2nd mode shape frequencies led to lower
frequency increases (30% vs. 36% for the 1st mode shape frequency
and 128% vs. 338% for the 2nd mode shape frequency). However,
the optimisation targeting at a simultaneous increase of the 1st, 2nd,
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and 3rd mode shape frequency reached for the first two mode shape
frequencies higher values than the mode shape adaptation, yet the
3rd mode shape frequency was decreased.

9.2.2 Squared Plate

The optimisation led to pre-deformed plates with increases in all
analysed eigenfrequencies (figure 9.6). Similar to the beam results,
the targeted eigenfrequency showed in nearly all cases the highest
increase and almost coincided with the next higher-order eigenfre-
quency. However, the maximisation of the 2nd eigenfrequency raised
the 3rd eigenfrequency slightly more (table 9.8).

The eigenfrequency increase varied from 372% for the maximisa-
tion of the 1st eigenfrequency to 178% for the maximisation of the
4th eigenfrequency. The maximisation of the 1st eigenfrequency led
to a plate shape similar to the 1st mode shape of the reference plate.
However, the maximisations of both the 2nd and the 3rd eigenfre-
quency generated plate shapes comparable to the 4th mode shape of
the reference plate, while the maximisation of the 4th eigenfrequency
resulted in a plate shape similar to the 5th mode shape of the ref-
erence plate. The maximum relative pre-deformations of the plate
shapes showed values between 5.1 and 5.3.
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Figure 9.6: First six eigenfrequencies of the reference plate and the four plate
shapes obtained by evolutionary strategic optimisations aiming
to maximise the 1st, 2nd, 3rd, and 4th eigenfrequency. The in-
crease of the targeted eigenfrequencies compared to the unde-
formed plate is given. Below, a top view (xy plane) of the four
optimised plates is displayed. The grey scale represents the pre-
deformation (mm).
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Table 9.8: Eigenfrequency deviations compared to the reference plate for the
three methods, the evolutionary strategic optimisation (Opti), to-
pography optimisation (Topo), and the mode shape adaptation
method (Mode), to increase the 1st, 2nd, 3rd, and 4th eigenfre-
quency for a maximum pre-deformation δmax of 10.0 mm. For
each study, the frequency which increased most shown in bold
numbers. The highest increase for each eigenfrequency among all
studies is underlined.

Eigenfrequency Devi-
Obj. f1 f2 f3 f4 f5 f6 ation

max f1 Opti 372% 96% 139% 54% 59% 72% 84%
Topo 294% 59% 59% 31% 14% 28% 38%
Mode 487% 135% 135% 67% 40% 55% 87%

max f2 Opti 199% 231% 240% 154% 108% 134% 167%
Topo 158% 114% 117% 90% 59% 67% 98%
Mode 228% 159% 233% 135% 109% 135% 168%

max f3 Opti 285% 123% 300% 153% 108% 138% 161%

Topo 231% 42% 177% 83% 68% 72% 99%
Mode 228% 159% 233% 135% 109% 135% 153%

max f4 Opti 170% 58% 74% 178% 129% 156% 117%

Topo 216% 74% 76% 159% 110% 111% 117%
Mode 240% 257% 257% 118% 183% 183% 224%

Similar to the evolutionary strategic optimisations, the topography
optimisations resulted in plate shapes with highest eigenfrequency
increase obtained for the targeted eigenfrequencies (figure 9.7). All
considered eigenfrequencies were higher than those of the reference
plate. The eigenfrequency increases varied from 295% for the 1st eigen-
frequency to 114% for the 2nd eigenfrequency and were thus lower
than those resulting from the evolutionary strategic optimisations.
While the plate shapes for maximising the 1st and 4th eigenfrequency
were similar to those of the evolutionary strategic optimisations, the
plate shapes of the 2nd and 3rd eigenfrequency maximisation looked
similar to the 2nd and 3rd mode shapes of the reference plate. Regard-
ing the topography optimised plates, the mode shapes were similar
to those of the reference plate (cf., figure 8.13). It has to be noted
that in contrast to the evolutionary strategic optimisations, the plates
used for the topography optimisations were only deformed in posi-
tive z direction. Moreover, the maximum deformations of 7 mm were
lower than the maximum absolute value of 10 mm reached by the
evolutionary strategic optimisations.

Table 9.8 also lists the obtained eigenfrequency increases for the
mode shape adaptation method. While the highest increase for the
1st eigenfrequency was reached by the mode shape adaptation ap-
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Figure 9.7: First six eigenfrequencies of the reference plate and the four plate
shapes obtained by topography optimisations aiming to max-
imise the 1st, 2nd, 3rd, and 4th eigenfrequency. The increase of the
targeted eigenfrequencies compared to the undeformed plate is
given. Below, a top view (xy plane) of the four optimised plates is
displayed. The grey scale represents the pre-deformation (mm).

proach, the evolutionary strategic optimisation led to highest increases
of the 2nd, 3rd, and 4th eigenfrequency. The resulting eigenfrequencies
of the topography optimisations were for the maximisation of the 1st,
2nd, and 3rd eigenfrequency lower than the other two methods and
for the 4th eigenfrequency maximisation in the middle between the
other two results. Generally, all three methods with the aim to max-
imise the 1st plate eigenfrequency resulted in highest increase of the
targeted eigenfrequency. Regarding the maximisation of the 2nd to
4th eigenfrequency, however, the targeted eigenfrequencies rose, but
in most of the simulations another analysed eigenfrequency exhibited
a stonger increase.

Regarding the maximisation of multiple eigenfrequencies, both the
maximisation of the 1st and 2nd eigenfrequency and the maximisa-
tion of the 1st, 2nd, and 3rd eigenfrequency caused similar results (Ta-
ble 9.9). Highest increase was seen for the 1st, 2nd, and 3rd eigenfre-
quency compared to the reference plate. The remaining considered
eigenfrequencies increased between 84% and 113%. The optimised
plate shapes were very similar, but seemed to be mirrored at the xz
and xy plane (figure 9.8). Compared to the mode shape adaptation
(chapter 8), all targeted eigenfrequency increases were higher.

In comparison to the mode shape adaptation based on multiple
mode shapes (table 8.6), the evolutionary strategic optimisation led
in all cases to higher eigenfrequency increases (maximisation of the
1st and 2nd eigenfrequency: 246% vs. 181% for the 1st and 216% vs.
132% for 2nd eigenfrequency; 1st, 2nd, and 3rd eigenfrequency: 266%
vs. 169% for the 1st, 204% vs. 137% for the 2nd, and 286% vs. 141%
for the 3rd eigenfrequency).
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Table 9.9: Eigenfrequency increase due to evolutionary strategic optimisa-
tions for the squared plate. The targeted eigenfrequencies are
shown in bold numbers.

Eigenfrequencies
Objective f1 f2 f3 f4 f5 f6

max f1 & f2 246% 216% 220% 112% 84% 113%
max f1, f2 & f3 266% 204% 286% 149% 117% 153%

max f1 & f2 max f1, f2 & f3

10.0

-10.0

Figure 9.8: Top view (xy plane) of the plates obtained by evolutionary strate-
gic optimisations aiming at a simultaneous maximisation of the
1st and 2nd eigenfrequency and the 1st, 2nd, and 3rd eigenfre-
quency. The grey scale represents the pre-deformation (mm).

9.3 discussion

9.3.1 Slender Beam

The evolutionary strategic optimisations with the aim to maximise
single eigenfrequencies of the first four orders resulted in strongest
increases of all targeted eigenfrequencies, while the eigenfrequencies
not targeted, aside from the 5th eigenfrequency, were only slightly af-
fected. Overall, the 1st eigenfrequency was the most increased, while
the smallest eigenfrequency increase was reached for the 4th eigenfre-
quency. The resulting beam shapes of the optimisations aiming at the
maximisation of the 1st, 2nd, and 3rd eigenfrequency looked similar to
the 1st, 2nd, and 3rd mode shape of the reference beam. The maximi-
sation of the 4th eigenfrequency led to a beam shape, which differed
from the 4th mode shape of the reference beam, and the obtained
eigenfrequency increase of 35% was comparably small. All reached
eigenfrequency increases were comparable to the eigenfrequency in-
creases obtained by the mode shape adaptation method and the 3rd

and 4th eigenfrequency were even raised to higher values.
Since the optimisations were not combined with a mode tracking al-

gorithm, the targeted eigenfrequency only increased until it coincided
with the higher-order eigenfrequency. Consequently, the maximisa-
tion of the 1st eigenfrequency, for example, led to a beam structure,
whose 1st and 2nd eigenfrequency almost coincided (multiple or re-
peated eigenfrequencies). These findings correspond to the 1st eigen-
frequency maximisation of a simply supported 2D beam conducted
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by Du and Olhoff [44], where the 1st and the 2nd eigenfrequency of
the optimised beam were similar. Also Krog and Olhoff [84] stated
that the occurrence of multiple (repeated) eigenfrequencies during
structural optimisations aiming at eigenfrequency increases is likely.
In the present study, the 1st mode shape then switched order with
the 2nd mode shape, but its frequency could not be increased fur-
ther. Also the other targeted eigenfrequencies were only maximised
until reaching the value of the next higher-order eigenfrequencies
due to the absence of a mode tracking algorithm. Since almost no
mode switch occurred, the frequencies of specific mode shapes were
increased by almost the same amount as that of the corresponding
eigenfrequencies. Thus, compared to the mode shape adaptation ap-
proach, the mode shape frequencies were increased less strongly.

The optimisations aiming at the increase of multiple eigenfrequen-
cies were also successful, as all targeted eigenfrequencies increased.
Interestingly, both optimised beams looked similar, although only
one showed a 3rd eigenfrequency increase compared to the reference
beam.

Regarding the increase of the 1st, 2nd, and 3rd mode shape frequen-
cies, the optimisation did not lead to a 3rd mode shape frequency
increase, while increases in the other two mode shape frequencies
were higher than those resulting from the mode shape adaptation
method. Thus, the evolutionary strategic optimisation is apparently
not the best method to simultaneously increase multiple mode shape
frequencies, which might be due to the missing mode tracking algo-
rithm.

9.3.2 Squared Plate

All optimisations succeeded as they all increased the targeted eigen-
frequencies. Regarding the evolutionary strategic optimisations, the
targeted eigenfrequencies always rose most. However, the optimi-
sation aiming at a 2nd eigenfrequency maximisation increased the
3rd eigenfrequency slightly more. This might be due to the fact that
both the 2nd and the 3rd mode shapes were very similar and also the
corresponding eigenfrequencies almost coincided.

In contrast to the evolutionary strategic optimisations, the topogra-
phy optimisations always resulted in highest increases for the
1st eigenfrequency, regardless which eigenfrequency was targeted. But
the targeted eigenfrequencies reached in any case the second highest
increase.

In both optimisation approaches to increase eigenfrequencies, the
4th eigenfrequency maximisation generated a plate shape similar to
the 5th mode shape of the reference plate. It can be assumed that
due to the similar shapes of mode 4 and mode 5, which both showed
maxima at the edges, a 4th eigenfrequency increase was still achieved.
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As for the slender beam, the absence of mode tracking only allowed
the frequency increase of a specific mode shape up to the frequency
of the next higher-order mode shape, which can also be the reason
for the resulting plate shape similar to the 5th mode shape of the
undeformed plate.

The optimisation objective to maximise the 1st and 2nd or the 1st,
2nd, and 3rd eigenfrequency increased all targeted eigenfrequencies.
Also the maximisation of single eigenfrequencies always led to an in-
crease of all analysed eigenfrequencies. But, regarding the multiple
eigenfrequency optimisations, the two (three) targeted eigenfrequen-
cies rose by a similar amount (i.e., 246% and 216% for the maximi-
sation of the 1st and the 2nd eigenfrequency, respectively, and 166%,
204%, and 286% for the maximisation of the 1st, 2nd, and 3rd eigenfre-
quency, respectively). In contrast to that, the optimisation aiming at a
maximisation of the 1st eigenfrequency led to increases of 372%, 96%,
and 139% for the 1st, 2nd and 3rd eigenfrequency, respectively.

Comparing the optimisation results to the mode shape adaptation
method to increase single eigenfrequencies, it is not possible to state
which used approach generated highest eigenfrequencies. Regarding
the increase of multiple eigenfrequencies, the evolutionary strategic
optimisations led to higher increases of the targeted frequencies.

9.3.3 Methodology

The evolutionary strategic optimisation required high computing ca-
pacity. Due to the large number of parameters, many generations had
to be calculated to reach an optimisation convergence. The popula-
tion and generation number were chosen according to the standard
settings and can be seen as a good compromise concerning compu-
tational time and variability. Nevertheless, it might be possible to
improve the obtained results further by varying the optimisation set-
tings and – with regard to the plate – also the number of variables. It
is also advised to alter the mutation probability in further studies in
order to enable a more diverse variety of shapes. In addition, it has
to be noted that even though all optimisations are within the set con-
vergence criterion, it can be expected that, in particular regarding the
plate, higher eigenfrequencies can be developed investing more com-
putational time (i.e., considering more interpolation points and/or
increasing the population size and/or the number of generations).

In general, optimisations based on evolutionary algorithms do not
always provide the optimum results for the defined objectives and
boundary conditions. Genetic algorithms do not have a well-defined
solution as the set of interesting solutions have an almost infinite size
and are therefore difficult to represent. Regarding the analysed plate,
for example, the obtained eigenfrequency increases for the maximi-
sation of the 3rd eigenfrequency and the maximisation of the 1st, 2nd,
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and 3rd eigenfrequency were – aside from the 2nd eigenfrequency in-
crease – very similar. However, the corresponding plate shapes dif-
fered strongly, showing a disadvantage of this optimisation algorithm.
During the optimisation, only one shape was followed, while many
different shapes may have led to the same results. No statement can
therefore be made regarding the global maximum, since the optimisa-
tion could also be converged towards a local maximum, although an
elitism of 50% was specified to avoid local optimisation. In addition,
Octopus is a multi-objective optimiser. It is therefore impossible for a
non-dominated solution to improve one objective without negatively
affecting other objective values [192]. As the mass difference, whose
minimisation was set as one objective, can only be seen as a constraint
in order to assure a constant mass and thus comparability with the
other optimisation methods, not the Pareto front, but all individuals The Pareto front

implies the set of all
Pareto optimum
solutions, for which
no objective function
can be improved
further without
degrading another
objective function.

of the last generation were considered for evaluation in the present
work.

The topography optimisation of the plate generally showed minor
eigenfrequency increases. However, none of the results obtained the
maximum allowed pre-deformation height, which could be due to
meeting the convergence criteria prematurely. Further investigations
varying the convergence criteria and the optimisation settings should
be carried out in order to increase the performance of this shape op-
timisation approach. Nevertheless, similar plate shapes are expected.
In addition, it has to be noted that the optimisation results need to
be smoothed in order to enable easier manufacturing. By applying
smoothing, similar shapes as for the eigenvalue approach appeared
for the maximisation of the first two eigenfrequencies. Thus, it can-
not be concluded from the comparison of the different optimisation
results that the topography optimisation caused poorer results, but
rather that more computational and post-processing work is needed
to achieve similar results.

Regarding the mode shapes of the topography optimised plates,
high similarity to the reference plate mode shapes were obtained, es-
pecially for the first three eigenfrequencies. This could not be ob-
served for the two other approaches applied to the plate. Many opti-
misation algorithms are set to keep the corresponding mode shapes,
which might apply in this case also, providing an additional possible
explanation of why not the full allowed pre-deformation was used.
Consequently, the topography optimisation results led to lower eigen-
frequency increases, but kept the mode shapes similar to the reference
plate, which might also be interesting for technical applications.
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9.4 conclusion

Evolutionary strategic optimisations of a slender beam and a squared
plate to maximise single eigenfrequencies (n = 1-4) resulted in strong
eigenfrequency increases at constant mass. While the targeted beam
eigenfrequency raise hardly involved alteration in the remaining anal-
ysed eigenfrequency values, the plate shape optimisations always
changed all analysed eigenfrequencies. Due to the absence of a mode
tracking algorithm, the targeted eigenfrequencies were maximised
until reaching the value of the next higher-order eigenfrequency. Re-
garding the analysed plate, the evolutionary strategic optimisations
generally led to higher eigenfrequency increases than the additionally
performed topography optimisations.
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R E G U L A R A N D I R R E G U L A R H O N E Y C O M B P L AT E S

Sandwich panels are widely-used lightweight structures because of
their high density-specific stiffness and strength. Especially in the
aerospace industry, sandwich panels are extensively applied. They
commonly consist of two thin and stiff face layers that are separated
by a thick lightweight core structure (figure 10.1). The resulting high
second moment of inertia leads to a high bending stiffness [70]. This
large bending stiffness per mass generally leads to high eigenfrequen-
cies [46]. The eigenfrequencies of sandwich panels depend on the
shear modulus of the core and the contribution of the face plates to
the bending stiffness – aside from the impact of the panel’s length,
width, height, and the material properties [113].

Top face sheet

Irregular
core

Bottom
face sheet

Figure 10.1: Sandwich panel composed of a top face sheet, an irregular core
structure, and a bottom face sheet.

The impact of structural irregularities present in cellular structures
on the mechanical properties have already been studied (cf., chap-
ter 2), but the results have hardly been applied to sandwich panels.
However, some studies investigated the impact of undesired irregu-
larities in an overall regular sandwich panel core on the mechanical
properties, because such irregularities can occur due to, for exam-
ple, structural defects, variation in the manufacturing process, or pre-
stressing [113]. Mukhopadhyay and Adhikari [113] performed free
vibration analyses of sandwich panels with these unintentionally ir-
regular honeycomb cores and stated an eigenfrequency increase with
an increasing degree of irregularities. Another study published by
Heimbs [70] investigated several core structures (hexagonal, over-ex-
panded honeycomb, and folded cores of different geometries and ma-
terials) under compression and shear loads and compared the numer-
ical results to experiments.

Regarding more complex sandwich structures, functional grading
is one type of irregularity, which has been focused on in different
studies (e.g., Zenkour [203] or Xiang et al. [194]). However, in these

95



96 Regular and Irregular Honeycomb Plates

studies, the intentionally irregular sandwich cores were based on
graded material properties, whereas the structure remained regular.
Summing up, sandwich panels with irregular core structures to im-
prove the mechanical properties have hardly been investigated.

In the present study, the 1st eigenfrequency of a solid plate was
compared to plates composed of regular rectangular cells and honey-
combs as well as irregular Voronoi cells, which can be implementedVoronoi cells are

polygons that are
defined by the
intersection of

contact lines built
midway between

points distributed on
a plane (2D

Voronoi) or in a
space (3D Voronoi)

(cf., figure 10.3)

as core structures in sandwich panels. The irregular Voronoi combs
are inspired by nature, as they are very frequently present in diatom
shells (figure 10.2). The impact of the structural irregularities on the
1st eigenfrequency was compared to the eigenfrequency increase ob-
tained by pre-deforming the plates according to the 1st mode shape.
Detailed studies on this method to raise eigenfrequencies are docu-
mented in chapter 8.

20 µm

Figure 10.2: Scanning electron microscopic image of the diatom Thalas-
siosira sp. (reprinted from Andresen [12] with permission from
Springer Nature). The characters and the scale bar are replaced
to improve the resolution.

10.1 material and methods

The analysed plates had the geometric properties of the squared plate
described in chapter 8.1.2 and the material properties listed in ta-
ble 8.1. As the application of a cellular structure led to a reduced
mass, the thickness of the solid plate was adapted to generate a solid
reference plate of the same mass. All plates were meshed with Shell
elements (PSHELLs) characterised by an element size in the range of
0.6 mm to 1.0 mm depending on the geometry. All plate edges were
simply supported. The definition of a modal load case allowed the
calculation of the plates’ 1st eigenfrequencies. Table 10.1 lists the
plates that were analysed:

The 1st eigenfrequency of the solid reference plate (plate 1) was cal-
culated analytically considering Kirchhoff classic plate theory (equa-
tion 8.12) to demonstrate the plausibility of the numerical results. Sub-
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Table 10.1: Six squared plates that were analysed.

Name a (mm) hp (mm) m (g)

(1) Solid plate (reference) 100 0.74 20.0
(2) Regular rectangular plate 100 2.00 20.0
(3) Regular hexagonal plate 100 2.00 20.0
(4) Quasi-regular Voronoi plate 100 2.00 20.0
(5) Irregular Voronoi plate (manually) 100 2.00 20.0
(6) Irregular Voronoi plate (optimised) 100 2.00 20.0

sequently, the plates based on regular rectangular cells and honey-
combs (plates 2 and 3), each having a cell/comb width of about
25 mm width, were generated. For both plates, the constant cell wall
thickness was adapted to reach the defined plate mass of 20.0 g.

The irregular plates were composed of Voronoi cells, which are
characterised as polygons defined by the intersection of contact lines
built midway between points (figure 10.3). Hence, for a given distri-
bution of points, the Voronoi cell distribution is unique and there is
no empty space between cells [202]. As for the regular cellular plates,
the Voronoi wall thickness was adapted to ensure the targeted plate
mass of 20.0 g.

Figure 10.3: Based on an irregular point distribution (left-hand side),
Voronoi cells are generated (right-hand side).

First, the constant Voronoi cell size was increased from 1 mm to
40 mm with a step size of 1 mm to study the impact of the cell size
forming the quasi-regular Voronoi plates on the 1st eigenfrequency. A
Voronoi plate with a constant cell size of 25 mm, which corresponded
to the cell size of both regular plates, was chosen as the quasi-regular
Voronoi plate (plate 4) to compare it to the other studied plates.

The two irregular Voronoi plates were based on a cell size interpo-
lation algorithm, which consisted of an attractor value, a global value,
and a transition area, which depended on an attractor area radius r
and a decay factor β (figure 10.4). The outer edges of the plates were
considered as attractors to increase the stiffness close to the simply
supported edges. An irregular plate was constructed manually mim-
icking the shell geometry of the diatom Thalassiosira sp. displayed in
figure 10.2 (plate 5). This smooth transition from smaller cells close
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to the edges to larger cells in the middle was realised by defining a
global cell size of 18 mm, a cell size close to the attractor of 5.0 mm,
an attractor radius of 6.0 mm, and a decay factor of the attractor cell
size β of 5.5.

Interpolation value

r βr
Attractor

value

Global
value

Attractor
defined area

Transition
area

Global
area

Distance
from at-
tractor

Attractor
cell size

Transition
area

Global
cell size

r βr

Figure 10.4: The interpolation function displayed on the left-hand side is
based on an attractor value and a global value with a linear
interpolation between them using the decay factor β. On the
right-hand side, the described interpolation function is exem-
plarily applied to a 2D Voronoi structure. The cell size gradient
depends on an attractor (here: black middle point), an attractor
radius r defining the attractor cell size area, a transition area,
whose area radius is the product of the attractor radius and the
decay factor, and a global cell size.

The described parametric algorithm-based construction of the irreg-
ular plates allowed the generation of numerous different geometries
by varying the parameter values. An evolutionary strategic optimisa-
tion (cf., introduction of chapter 9) using the optimiser Octopus imple-
mented in Grasshopper was conducted considering the Octopus settings
listed in Table 9.1 to design an optimised irregular Voronoi plate. The
considered objective functions involved (1) the maximisation of the
1st eigenfrequency and (2) the minimisation of the mass difference
compared to the targeted plate mass of 20.0 g. The population size
was set to 50 and 20 generations were calculated, which was the stop-
ping criterion of the optimisation. The attractor decay factor had
a constant value of 1.1. The parameter definition covered different
ranges and start values listed in table 10.2.

Table 10.2: Parameter definition ranges and start values for the evolutionary
strategic optimisation applied to Voronoi plates.

Global Attractor Attractor
diameter radius area radius

Range 13.00-26.00 mm 1.00-10.00 4.00-8.00 mm
Start value 19.50 mm 2.50 mm 6.00 mm
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Regarding the result evaluation, the plate with the highest 1st eigen-
frequency of the last generation was declared as optimum irregular
Voronoi plate (plate 6).

Afterwards, the solid reference plate and the five cellular plates
were pre-deformed according to their 1st mode shapes as described
in chapter 8 adapting the plate thickness to have a constant mass of
20.0 g. Different intensities of plate pre-deformations were studied in-
volving maximum pre-deformations of 1-5 mm in step sizes of 1 mm
(δ = 0.5 - 2.5) and of 5-20 mm in step sizes of 5 mm (δ = 2.5 - 10.0). The Note that the

maximum relative
pre-deformation δ

is defined as the
quotient of the
maximum
pre-deformation
δmax (mm) and the
plate thickness
hp (mm) (cf.,
equation 8.10).

impact of the plate pre-deformation on the 1st eigenfrequency was
analysed.

The 1st eigenfrequency results of the plates were compared to that
of the solid plate using equation 8.11.

10.2 results

The analytical 1st eigenfrequency solution of 363.5 Hz of the here anal-
ysed, solid plate coincided well with the numerical value of 363.4 Hz.

Regarding the quasi-regular Voronoi plate, the 1st plate eigenfre-
quency depended on the Voronoi cell size as shown in figure 10.5.
All 1st eigenfrequency values were between 631 Hz (Voronoi cell size:
2 mm) and 806 Hz (Voronoi cell size: 40 mm). The trend line fitted to
the data had a slope of 4.1 Hz mm−1.
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Figure 10.5: 1st eigenfrequencies of 2D Voronoi plates with different cell
sizes. All plates exhibit a mass of 20.0 g. The grey dashed trend
line has a slope of 4.1 Hz mm−1

The evolutionary strategic optimisation of the irregular Voronoi
plate converged as shown in the appendix chapter A.3. The plates of
the last optimisation generation exhibiting a mass of 20.00± 0.15 g are
displayed in figure 10.6. The 1st eigenfrequencies were in the range
of 810 Hz to 962 Hz. All six exemplary displayed plates showed large
cells in the plate middle and small cells close to the plate edges. The
Voronoi plate with the highest 1st eigenfrequency of 962 Hz (plate 6)
is displayed in figure 10.6 (6).
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Figure 10.7 illustrates the six studied plates and the overall 1st eigen-
frequency increase with increasing plate complexity. The plates com-
posed of regular rectangular and honeycomb cells, and the quasi-
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Figure 10.6: For the irregular Voronoi plates of the last optimisation gener-
ation, the 1st eigenfrequency and the absolute mass difference
compared to the reference plate are displayed. All plates with a
maximum absolute mass differences of 0.15 g compared to the
reference mass of 20.00 g are considered. Six Voronoi cell con-
figurations circled in red are displayed on the left hand side.
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Figure 10.7: 1st eigenfrequency depending on the maximum pre-deforma-
tions of 0 mm (undeformed), 1 mm, 2 mm, 3 mm, 5 mm, and
20 mm according to the 1st mode shape for different plates
(constant mass of 20 g, varying plate thickness) including a
solid plate (a), regular rectangular plate (b), regular hexagonal
plate (c), quasi-regular Voronoi plate (d), irregular Voronoi plate
(manually) (e), and irregular Voronoi plate (optimised) (e). The
deviation compared to the undeformed solid plate’s 1st eigenfre-
quency is given for maximum pre-deformations of 0 mm, 2 mm,
and 20 mm.
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regular Voronoi plate had similar cell sizes. Regarding the unde-
formed plates, their 1st eigenfrequencies showed similar values of
715 Hz, 775 Hz, and 792 Hz, respectively. The manually constructed
irregular Voronoi plate, which showed a cell size interpolation sim-
ilar to the diatom Thalassiosira sp., had the same 1st eigenfrequency
like the honeycomb plate. Optimising the irregular Voronoi cell con-
figuration, however, led to a maximum 1st eigenfrequency of 962 Hz.
Thus, without applying pre-deformations, the 1st eigenfrequency was
increased by 165% compared to the solid plate of the same mass.

Pre-deforming the plates according to the 1st mode shape, how-
ever, led to a significantly higher 1st eigenfrequency increase for all
plates than the application of irregular cellular structures. The solid
plate already reached a 1st eigenfrequency increase of 141% by ap-
plying a pre-deformation of only 1 mm height (δ = 0.5). From a
pre-deformation of 2 mm on, the 1st eigenfrequency increase of the
solid plate was always the highest compared to all lightweight plates.
Overall, the 1st eigenfrequency rose most for the solid plate (up to
5,041 Hz for δmax = 20 mm), while the cellular plates with a maxi-
mum pre-deformation of 20 mm showed similar increases (between
3,226 Hz for the irregular optimised Voronoi plate and 3,602 Hz for
the regular hexagonal plate).

Figure 10.8 shows all six plates pre-deformed by a maximum value
of 20 mm according to the 1st mode shape. It has to be noted that
all pre-deformed plates exhibited plate thicknesses lower than 2 mm
to meet the constant mass of 20 g. Regarding the pre-deformation of
20 mm, for example, the solid plate’s thickness was only 0.68 mm and
the thickness of the optimised irregular Voronoi was 1.87 mm.

(a) (b) (c)

(d) (e) (f)

Figure 10.8: A solid plate (a), regular rectangular plate (b), regular hexago-
nal plate (c), quasi-regular Voronoi plate (d), irregular Voronoi
plate (manually) (e), and irregular Voronoi plate (optimised) (e)
pre-deformed according to the corresponding 1st mode shape
(δmax = 20 mm).

10.3 discussion

Both an increasing cell complexity and a rising plate pre-deformation
according to the 1st mode shape led to a 1st eigenfrequency increase.
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Regarding the Voronoi plate, the results showed a 1st eigenfre-
quency increase with rising Voronoi cell size. As the material prop-
erties and the overall plate geometry remained constant, the eigen-
frequency increase was mainly based on the stiffness increase due to
an improved material distribution. Similar results were obtained by
Tekog̃lu et al. [168], who presented a Young’s modulus increase with
increasing foam cell size.

The last generation of an evolutionary strategic optimisation con-
tained the individuals with the highest fitness, thus the irregular
Voronoi plates with the highest 1st eigenfrequencies. All optimised
plates were characterised by small Voronoi cells close to the sim-
ply supported plate edges, which led to an increased stiffness. At
the same time, material was removed from the plate middle, which
showed the highest amplitude of the 1st bending plate mode. A sim-
ilar gradient in Voronoi cell size can be observed in some diatoms
(cf., figure 10.2). Regarding the irregular Voronoi plates displayed
in figure 10.6, the 1st eigenfrequencies varied in a range of approx-
imately 150 Hz although the plate geometries looked similar. This
indicates the high potential of small geometrical changes to influence
the eigenfrequencies significantly. It has to be noted, though, that
the conducted evolutionary strategic optimisations possibly did not
reveal best possible irregular Voronoi plates and that further optimi-
sations with altered settings might lead to higher 1st eigenfrequencies
(cf., chapter 9.3.3).

The comparison of all plates revealed a progressive 1st eigenfre-
quency increase from the solid plate to the regular and up to the
irregular plate. Also Mukhopadhyay and Adhikari [113] have stated
a 1st eigenfrequency increase with rising structural irregularities.

It is known that sandwich panels show high eigenfrequencies due
to their high bending stiffness per mass [46]. Replacing a regular with
an irregular core structure is expected to even raise the eigenfrequen-
cies further, which might prevent resonance phenomena by shifting
the eigenfrequencies out of the range of external exciting frequencies.

The plate pre-deformation resulted in extremely high eigenfre-
quency increases. Small pre-deformations of the solid plate led al-
ready to a 1st eigenfrequency that was higher than that of the irreg-
ular plates. Compared to these exceedingly high 1st eigenfrequency
increases of the solid plate, the application of irregular cellular struc-
ture raised the 1st eigenfrequency less strongly. A combination of
both methods, the application of irregular structures and the mode
shape adaptation, is not a promising design approach, as it even led
to poorer results than using only the mode shape adaptation.

Although the reached eigenfrequency increases due to the struc-
tural irregularities seem to be small compared to those achieved with
the mode shape adapation method, eigenfrequency increases of more
than 100% are still high values. Since given technical specifications do
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not always allow a global deformation of the structure, the applica-
tion of irregular core structures might be easier to realise. Moreover,
additional functions of a cellular core, e.g., a good heat dissipation
performance, are still possible. Regarding the realisation of sandwich
plates with the here studied, irregular Voronoi structures as cores, the
manufacturing process is certainly more complex than for core struc-
tures composed of a foam structure or regular honeycombs, which
has to be taken into account when complex core structures are imple-
mented.

In this study, only the core structures have been simulated. In fu-
ture investigations, the top and lower layer of the sandwich panel
should be included in the simulation, as they will have a strong im-
pact on the mechanical properties. Dai et al. [35] studied the eigen-
frequencies and mode shapes of different sandwich structures with
a honeycomb core varying the top and bottom layer thickness. Since
the thickness increase involved a nonlinear increase of mass and stiff-
ness, the resulting 1st eigenfrequency raise was accompanied by mode
order switching (note: resulting mode shapes are always ordered de-
pending on their frequency). Thus, the inclusion of top and bottom
layers in this study would probably also lead to alterations in mode
shape orders, which should be analysed in further investigations.

10.4 conclusion

The investigations showed the high potential of biologically inspired,
irregular Voronoi plates not only for lightweight design structures,
but also for structures with improved vibration properties, i.e., in-
creased eigenfrequencies. The 1st eigenfrequency was significantly
raised by using irregular cellular structures. In addition, the mode
shape adaptation led to even higher frequency increases.
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R E G U L A R A N D I R R E G U L A R L AT T I C E
S T R U C T U R E S

Irregular lattice structures show improved mechanical properties com-
pared to regular lattice structures, as already mentioned in chapter 2.
However, the impact of structural irregularities in lattice structures
on the eigenfrequencies has hardly been investigated. Thus, in this
study, a regular strut-based lattice structure was compared to irregu-
lar strut-based lattice structures characterised by different degrees of
structural irregularities. The procedure of this study displayed in fig-
ure 11.1 is divided intro three parts including the lattice design and
optimisation, vibration measurements, and further lattice optimisa-
tions.

Lattice 1 Lattice 2 Lattice 3 Lattice 4

Regular lattice
based on a unit cell

Irregular lattice
based on an irregular

point distribution

Lattice
design

Constant IrregularStrut cross
section

Para-
metric
study

Evolutionary strategic
optimisation

Simulation &
optimisation

L1 L2 L3 L4Best lattice
structures

Evolutionary strategic optimi-
sation with reduced/adapted

parameter definition range

Vibration
measurement

Validation

L2∗ L3∗ L4∗

Figure 11.1: Overview of the study on regular and irregular lattice struc-
tures containing the lattice design and optimisation (solid line),
vibration measurements (dotted line), and further lattice opti-
misations (dashed line).
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11.1 material and methods

11.1.1 Lattice Design and Optimisation

To evaluate the impact of structural irregularities in lattices on the vi-
bration characteristics, three lattice structures were designed and sim-
ulated: (a) a regular lattice with constant strut cross sections, (b) a reg-
ular lattice with irregular strut cross sections, and (c) an irregular lat-
tice with irregular strut cross sections. Each lattice was constructed in-
side a defined design space (figure 11.2), which was connected to four
blocks with bore holes to screw the lattice onto an adapter plate dur-
ing the subsequent vibration measurements. While the four blocks
were meshed with solid elements (CTETRA), the lattice struts were in-
corporated as beams (CBEAM) connected to the blocks via Rigid Body
Elements (RBE3s). The blocks’ lower surfaces were mounted. The
aluminium alloy AlSi10Mg (Young’s modulus: 75,000 MPa, density:
2.7 10−9 t mm−3, Poisson’s ratio: 0.33) was defined as a lattice mate-
rial. A modal load case was specified to obtain the structure’s eigen-
frequencies. The three types of lattices were designed as follows:

a. Regular lattice with constant strut cross sections (Lattice 1):
This lattice was based on a simple unit cell composed of four diag-
onal struts (figure 11.3a). A parametric study varying the number
of unit cell repetitions in each axis from 2 to 8 for axes x and y
and from 1.5 to 7.5 for axis z was conducted. The circular strut
cross section with a diameter of 2.08 mm remained constant. Re-
garding the evaluation, only lattice structures with angles between
the strut and the horizontal axis of more than 35◦ were considered,
as demanded by the subsequent additive manufacturing process.
The lattice structure with the lowest mass at a 1st eigenfrequency
of 1,500 Hz (value given by the later-used test facility operating
sphere) was chosen as test body L1.
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Figure 11.2: 3D view (a), top view (b), and side view (c) of the lattice design
space. The dimensions are given in mm.
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b. Regular lattice with irregular strut cross sections (Lattice 2):
This lattice configuration corresponded to the chosen L1 structure.
To provide varying diameters of the circular cross sections along
one strut, each strut was divided into three to five sections, de-
pending on the strut length. The parametric strut diameters were
interpolated as shown in figure 10.4 considering the lower design
space-surface as the attractor. The parameter definition ranges and
start values are summarised in table 11.3.
The strut cross section optimisation was conducted utilising the op-
timiser Octopus implemented in Grasshopper to perform evolutionary
strategic optimisations (c.f., introduction of chapter 9) considering
different objective functions. The objectives were (1) the maximisa-
tion of the 1st eigenfrequency and (2) the minimisation of the mass
difference compared to the structural mass of the chosen L1 struc-
ture (mL1), which both formed the fitness in equal parts. The op-
timisation settings are summarised in Table 9.1. The gene pool
contained 100 structures, and the population size P was 50. The
optimisation stopped after calculating the 20th generation. Eval-
uating the last generation lattice structures, the lattice structure
with the highest 1st eigenfrequency at a maximal mass difference
of 0.5% compared to mL1 was selected as the test body.

(1) (2)

z y
x

(a) A unit cell (1) multiplied by 2
in the three directions leads to a
regular lattice structure (2).

(1) (2)

z
y

x

(b) Connecting irregularily dis-
tributed points (1) generates an
irregular lattice structure (2).

Figure 11.3: Design of a regular lattice structure based on a unit cell (a) and
of an irregular lattice structure generated by connecting points
distributed in a body (b).

c. Irregular lattice with irregular strut cross sections (Lattice 3):
The irregular lattice design was based on a point distribution in-
side the design space. The point distribution density was interpo-
lated as previously illustrated in figure 10.4 with the design space
centre point as the attractor. Similar to the irregular lattice con-
struction performed by Nourbakhsh et al. [119], the lattice struc-
tures were constructed by connecting each point to a varying num-
ber of neighbouring points (figure 11.3b). In the case of two struts
forming an angle smaller than 20◦, the larger strut was discarded
in order to avoid disorder. The irregular strut cross section di-
ameters were interpolated analogous to Lattice 2. All parameter
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definition ranges and starting values (i.e., middle value of each
range) are listed in table 11.2.

The optimisation process was conducted in the same way as that of
Lattice 2. However, the gene pool contained 200 structures, and the
population size was augmented to 100 because of the higher number
of parameters. To conform with Lattice 2, all lattice structures of the
last generation were evaluated. The chosen test body corresponded
to the lattice with the highest 1st eigenfrequency at a maximal mass
difference of 0.5% compared to mL1.

The three lattice test bodies chosen were transformed into 3D mod-
els and meshed with CTETRA elements (element size 0.5 mm). Modal
analyses with boundary conditions in analogy to the beam models
led to structural eigenfrequency values of the solid models. Both
the beam and solid models were also calculated considering three ac-

Table 11.1: Parameter definition ranges and start values for the lattice strut
cross section interpolation.

Global Attractor Attractor Attractor
diameter radius area radius decay factor

Range 2.00-3.00 mm 1.50-2.30 30-50 mm 1.0-2.0
Start value 2.50 mm 1.90 mm 40 mm 1.1

Table 11.2: Parameter definition ranges and start values for the Lattice 3 op-
timisation.

Point distribution density
Global Attractor Attractor Attractor

distance distance area radius decay factor

Range 10.0-40.0 mm 5.0-40.0 mm 2.0-4.0 mm 5-20
Start value 25.0 mm 22.5 mm 3.0 mm 13

Connecting neighbouring points
Number of Min. angle Min. angle
neighbours between strut between

& horizontal two struts

Range 5-30 35◦-60◦ 20◦-60◦

Start value 18 48◦ 40◦

Strut cross section diameter
Global Attractor Attractor Attractor

diameter diameter area height decay factor

Range 1.5-5.0 mm 1.5-5.0 mm 10-40 mm 2.0-4.0
Start value 3.3 mm 3.3 mm 25 mm 3.0
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celerometers, each as a point mass of 0.6 g, which were implemented
in the subsequent vibration measurements. To compare the 1st eigen-
frequencies obtained by the beam model and the solid model, the
differences were calculated using equation 8.11.

The three lattice test bodies were manufactured with AlSi10Mg us-
ing the selective laser melting additive manufacturing sys-
tem EOS M 290.

11.1.2 Lattice Vibration Measurements

The vibration measurements were performed at the Deutsches Zen-
trum für Luft- und Raumfahrt (German Aerospace Centre) (DLR) vi-
bration laboratory in Bremen, Germany. During measurements, the
cleanroom (class ISO 8) had a constant temperature of 20.5± 0.5◦C at
ambient pressure and a constant humidity of 57.5± 1.5% rF. The test
facility TIRAvib 51010 / LS (TIRA GmbH) was used.

The test bodies were screwed to an aluminum adapter plate as
shown in figure 11.4. Two uniaxial accelerometers (Delta Shear, Type
4371, Brüel & Kjær) controlling the vertical movement of the shaker,
and one triaxial accelerometer (Triax-ICP, Type 356A33, PCB Piezo-
tronics, Inc.) were fixed with resin to the adapter plate. Each test
body was equipped with three uniaxial accelerometers (Delta Shear,
Type 4517-C, Brüel & Kjær) at three different positions connected to
a charge amplifier (Type 2692 Nexus, Brüel & Kjær).
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Figure 11.4: 3D (a) and top view (b) of the vibration test setup for L1 lat-
tice structure including uniaxial control accelerometers C-Z1
and C-Z2, a triaxial accelerometer on the adapter plate AP, and
three uniaxial accelerometers on the lattice structure AL-X, AL-
Y, and AL-Z.

Vertical acceleration considering sinusoidal and random vibration
was applied to each of the three test bodies. Random vibration was
employed for 4min per test body with a frequency resolution of 0.5 Hz.
Sine-up and sine-down sweeps were then conducted with a sweep
rate of 1 Hz s−1. The vibration test levels are summarised in table 11.3.
For each test body, the first three eigenfrequencies and the vibration
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amplitude were calculated. Differences between the solid model and
the measurement results were obtained by equation 8.11. The half-
power bandwidth method demonstrated in figure 11.5 was used to
estimate the damping ratio for the 1st eigenfrequency in excitation
direction z of each test body. This method assumes a symmetrical
response curve, light damping, and no effect of neighbouring modes
on the analysed mode [24]. The damping ratio ζ was defined as

ζ =
1
2

fmax − fmin

f
(11.1)

Here, f denotes the resonance frequency (eigenfrequency) and fmin

and fmax the frequencies at the half-power amplitude
(

x̂/
√

2
)

with
x̂ symbolising the vibration amplitude. The calculated damping ra-
tios for the 1st eigenfrequency were applied to the frequency response
analysis of each structure to assess the consistency between simula-
tions and measurements.

x̂

x̂√
2

fmin f0 fmax

Amplitude

Frequency

Figure 11.5: Application of the half power bandwidth method to the vibra-
tion amplitude plot.

Table 11.3: Sinusoidal (a) and random (b) vibration test levels.

Test body Frequency range Level Overall level

a) Lattice 1 (L1) 600-2,500 Hz 1.0g -
Lattice 2 (L2) 1,400-3,000 Hz 1.0g -
Lattice 3 (L3) 2,000-4,000 Hz 1.0g -

b) Lattice 1 (L1) 500-2,500 Hz 5.0 · 10−4 g2 Hz−1 1.000 gRMS

Lattice 2 (L2) 500-2,500 Hz 5.0 · 10−4 g2 Hz−1 1.000 gRMS

Lattice 3 (L3) 500-4,000 Hz 3.0 · 10−4 g2 Hz−1 1.025 gRMS
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11.1.3 Further Lattice Optimisation

The initial optimisation round comprised 1st eigenfrequency maximi-
sations of different lattice structures, including the structure fabrica-
tion and the execution of experiments. Additional optimisations were
then conducted to investigate the possible development of further-
improved lattice structures. Based on the optimised lattice structures
for Lattices 2 and 3, the parameter definition ranges were confined so
that the parameter values of the printed structures remained inside
the newly defined ranges. For both Lattices 2 and 3, optimisations
configured as previously were conducted, and the results were evalu-
ated likewise, leading to the best structures L2∗ and L3∗.

To analyse whether the acceptance of struts oriented less than 35◦

to the horizontal leads to structures with higher eigenfrequencies, an-
other optimisation was conducted. Here, the lattice generation and
the optimisation approach were based on those of Lattice 3, but the
minimum angle between the struts and the horizontal plane was set
to 0◦ permitting the development of horizontal struts. After obtain-
ing the best lattice structure based on the specified evaluation method
(Lattice L4), the parameter definition ranges were reduced around the
parameter values of the obtained best lattice structure as before. Fur-
thermore, the maximum number of generations was changed from
20 to 40 to provide a longer optimisation process. The evaluation
method led to the best lattice structure L4∗.

11.2 results

11.2.1 Lattice Design and Optimisation

Figure 11.6 shows the parametric study results filtered by a minimum
angle between the strut and the horizontal of 35◦. The lattice structure
revealing the lowest mass of 127.7 g at a 1st eigenfrequency of 1,500 Hz
was chosen as lattice L1. It was built by three, four, and three and a
half unit cell repetitions in the x, y, and z axes, respectively.
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Figure 11.6: Parametric study results for lattice 1. The red circled data point
indicate the chosen lattice L1.
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Figure 11.7a displays the structures forming part of the last gener-
ation developed during the optimisation process for lattice 2. The
structure with the lowest mass difference compared to Lattice 1 of
0.03 g and a 1st eigenfrequency of 1,615 Hz was selected as the test
body L2. The global strut cross section diameter was 2.41 mm, the
diameter at the attractor was 1.79 mm, the attractor space height was
40 mm, and the attractor decay factor was 1.1. Thus, the application
of the strut diameter grading from larger diameters at the lower part
of the structure to smaller diameters at the top led to an 1st eigenfre-
quency increase of 7.7% compared to that of lattice L1.
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Figure 11.7: Optimisation results for lattice 2 (a) and lattice 3 (b). The red
circled data point indicate the chosen lattices L2 and L3, respec-
tively.

Figure 11.7b shows the last generation structures for Lattice 3. The
structure with the lowest mass difference compared to structure L1
of 0.55 g and a 1st eigenfrequency of 2,430 Hz was chosen as the test
body. Table 11.4 summarises the defined parameter values for reach-
ing the chosen lattice design. The obtained lattice structure’s 1st eigen-
frequency was increased by 62% compared to the L1 structure. The
three chosen lattice structures L1, L2, and L3 are illustrated in fig-
ure 11.8. L2 differs from L1 by showing graded stut cross section
diameters from smaller values at the bottom to higher values at the
top. The irregular lattice structure L3 has two symmetry axes parallel
to the xz and the yz plane.

Table 11.5 summarises the 1st eigenfrequencies for the three test
bodies obtained by the beam and the solid model, as well as by
neglecting or including the accelerometers. The inclusion of the ac-
celerometers resulted in slightly lower frequency values for both mod-
els. The eigenfrequencies obtained by the beam models including the
attached accelerometers were about 7%–22% lower than that of the
solid models. The masses of L1, L2, and L3 showed only small differ-
ences for both models. However, the conversion of the beam models
into solid models led to a slight decrease in mass up to 7%. The struc-
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tural masses of the manufactured lattice structures L1, L2, and L3
were 124.9 g, 124.6 g, and 123.4 g, respectively, and differed less than
5% from the solid model masses (table 11.5).

Table 11.4: Defined parameter values for the chosen L3 lattice structure.

Point distribution density
Global Attractor Attractor Attractor

distance distance area radius decay factor

Value 36.5 mm 16.0 mm 2.5 mm 12

Connecting neighbouring points
Number of Min. angle Min. angle
neighbours between strut between

and
horizontal

two struts

Value 18 59◦ 33◦

Strut cross section diameter
Global Attractor Attractor Attractor

diameter diameter area height decay factor

Value 2.5 mm 2.1 mm 22 mm 2.5

(a)

(b)

(c)

L1 L2 L3

x

y

y
z

xy
z

Figure 11.8: Top view (a), side view (b), and 3D view (c) of the lattice struc-
tures L1, L2, and L3.
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Table 11.5: 1st eigenfrequencies of the three test bodies L1, L2, and L3 ob-
tained by the beam model and solid model, both with accelerom-
eters (acc.) neglected (negl.) and included (incl.), as well as
the model masses and the eigenfrequency deviation of the beam
models to the solid models with accelerometers included.

Beam model Solid model Dev.
negl. incl. acc. acc. acc.
acc. acc. mass negl. incl. mass incl.

L1 1,500 Hz 1,471 Hz 127.7 g 1,925 Hz 1,895 Hz 119.3 g -22.4%
L2 1,615 Hz 1,586 Hz 127.7 g 2,073 Hz 2,028 Hz 119.1 g -21.8%
L3 2,430 Hz 2,404 Hz 127.2 g 2,619 Hz 2,581 Hz 121.4 g -6.9%

11.2.2 Lattice Vibration Measurements

The obtained 1st eigenfrequencies of the three lattice structures by ap-
plying random vibration and by performing sine-up and sine-down
sweeps are shown in table 11.6. The random and sine sweep eigen-
frequency values coincided very well. For L1 and L2, the three ac-
celerometers measured the same eigenfrequency values. However,
the 1st eigenfrequency in the z direction of L3 was significantly higher
than that in the x and y direction. Table 11.6 also lists the calculated
damping ratios for the three structures using the half-power band-
width method. Lattice L3 showed the lowest damping ratio of 0.0026
for the 1st eigenfrequency in excitation direction z followed by L1
with 0.0044. The highest damping ratio of 0.01 was calculated for L2.
Applying the averaged damping ratios to the frequency response
analysis showed response curves similar to the measured values as
exemplarily shown in figure 11.9 for L3. The peak position values
of 3,725 Hz for the simulation and 3,877 Hz for the experiment dif-
fered by 3.9%, whereas the peak height of 17.3 for the experiment
was 23.7% higher than the simulation peak height of 13.2. For the
lattices L1 and L2, the frequency response analysis plots compared to
the experimental results are displayed in appendix chapter A.4.

Comparing the measured eigenfrequencies with the numerically
obtained eigenfrequencies of the solid model with attached accelerom-
eters showed a deviation of less than 5% (table 11.7). For all structures,
the numerically obtained values were slightly higher.
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Table 11.6: Measured 1st eigenfrequencies obtained by the application of
random and sinusoidal-up and -down excitation and calculated
damping ratios ζ in z direction for the 1st eigenfrequency.

Random Sine up Sine down

L1 x 1,812 Hz 1,809 Hz 1,807 Hz
y 1,811 Hz 1,814 Hz 1,815 Hz
z 1,810 Hz 1,809 Hz 1,807 Hz
ζ in z direction 0.0044 0.0043 0.0044

L2 x 1,995 Hz 2,009 Hz 2,010 Hz
y 1,995 Hz 2,007 Hz 2,008 Hz
z 1,995 Hz 2,003 Hz 2,005 Hz
ζ in z direction 0.0104 0.0096 0.0100

L3 x 2,565 Hz 2,568 Hz 2,570 Hz
y 2,565 Hz 2,568 Hz 2,570 Hz
z 3,877 Hz 3,877 Hz 3,879 Hz
ζ in z direction 0.0026 0.0026 0.0026
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Figure 11.9: Frequency response curves for L3 obtained by experiment and
simulation using a solid model including accelerometers with a
damping ratio of 0.0026.

11.2.3 Further Lattice Optimisation

The measured data coincided well with the numerical data of the
solid models, therefore, the solid model results were also considered
in the further lattice optimisations. Figure 11.10 shows the 1st eigen-
frequency of the four lattice structures and the further-optimised lat-
tice structures L2∗, L3∗, and L4∗. Although there was only a slight
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difference in the eigenfrequency values of L2 and L2∗, further opti-
misations led to significantly higher 1st eigenfrequencies for L3∗ and
L4∗ compared to the lattice structures of the first optimisation. Alto-
gether, the 1st eigenfrequency was increased by 58% comparing L4∗

to L1. All lattice masses differed by less than 3% from the L1 solid
mass (figure 11.11).

The chosen lattice structures of each model are displayed in fig-
ure 11.12. While L2∗ was very similar to L2, the struts and their cross
sections of L3∗ differed from L3. The lattice structure L4∗ showed a
higher structural complexity than L4.

Table 11.7: 1st eigenfrequency obtained by simulation using a solid model
including accelerometers and by measurements based on
sinusoidal-up excitation. The deviation between the measured
and the simulated 1st eigenfrequency is also given.

Simulation Measurement Deviation

L1 1,895 Hz 1,809 Hz -4.5%
L2 2,028 Hz 2,003 Hz -1.2%
L3 2,581 Hz 2,568 Hz -0.5%

L1 L2 L2∗ L3 L3∗ L4 L4∗

2,200

3,000

1,895
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Figure 11.10: 1st eigenfrequency obtained numerically using solid models
including accelerometers for different lattices. The eigenfre-
quency values are given above each bar.
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Figure 11.11: For all optimum lattice structures, the mass values obtained
numerically using solid models normalised with the L1 mass
of 119.3 g are given. The dashed black line at a normalised
mass value of 1.0 represents the L1 mass.
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Figure 11.12: Top view (a), side view (b), and 3D view (c) of the lattice struc-
tures L4, L2∗, L3∗, and L4∗.

11.3 discussion

11.3.1 Lattice Design and Optimisation

The lattice design method used allowed the development of lattice
structures with increasing degrees of structural irregularity involving
an enhancement of the structural eigenfrequencies. It was possible to
increase the 1st eigenfrequency by 7% from L1 to L2 and by 36% from
L1 to L3. Using beam models facilitated the optimisation procedure
because far less computational time was required in comparison to
that of the solid models.
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The regular lattice with a constant stut cross sections L1 was based
on a simple unit cell with diagonal struts. Considering the vibration
analyses of different regular lattice structures conducted by Syam et
al. [166], it is likely that the inclusion of horizontal struts into the
unit cell forming the structure L1 leads to a higher 1st eigenfrequency.
Also Zhao et al. [208] showed in their studies that the 1st eigenfre-
quency of a uniform lattice depends on the unit cell shape. However,
as our aim was to meet the fabrication requirements of the angles be-
tween the struts and the horizontal of more than 35◦, the horizontal
struts were neglected.

The optimisation results for Lattice 2 and 3 showed an increase in
the 1st eigenfrequency with an increase in the mass difference com-
pared to the structural mass of L1. Regarding a SDOF system, the
eigenfrequency f depends on the root of the stiffness divided by the
mass (cf., equation 6.21). Thus, a larger lattice mass can lead to a
lower eigenfrequency. However, in this study, the increasing mass
owing to changes in the lattice structures results in a higher stiffness
and thus to enhanced eigenfrequencies.

The defined optimisation objectives led to structures with high
eigenfrequencies and low mass differences. However, most of the last-
generation structures showed masses exceeding the aimed 0.5% mass
difference compared to the mass of L1, and were therefore neglected.
The 1st eigenfrequencies of the chosen L2 and L3 structures were
among the lowest 1st eigenfrequencies of all structures forming the
last generation while complying with the weight limit. It is likely
that improving the definition of the optimisation objectives will re-
sult in more structures with acceptable (e.g. lower) mass differences,
e.g., by implementing the mass difference constraint directly into the
evolutionary algorithm.

The stut cross sections of the structure L2 were graded from a
thinner cross section diameter at the bottom to a higher diameter
at the top. The results showed that the applied small-scale grading
led already to an eigenfrequency increase of almost 8%. Maskery et
al. [105], Cheng et al. [32], and Plocher and Panesar [135] also showed
that the implementation of grading to regular lattice structures leads
to improved properties.

The conversion of the beam models into solid models led to a slight
decrease in mass, because the strut intersection points were combined
to form one solid connection. This connection was stiffer than the con-
nection simulated in the beam model. Therefore, the overall 1st eigen-
frequency was also higher. As L1 and L2 were quite similar, the differ-
ences between the beam and solid model results coincided. However,
for L3, the differences between the beam and solid model were far less
because of the lower number of strut intersection points compared to
that of L1 and L2. Accordingly, there was a smaller increase in stiff-
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ness in the solid model compared to the beam model for structure L3
and consequently a smaller increase in the 1st eigenfrequency.

11.3.2 Lattice Vibration Measurements

The measured 1st eigenfrequency based on the random and the sine-
up and -down excitation coincided very well indicating a successful
experiment. Moreover, the numerical results of the solid models cor-
responded to the measurement results by more than 95%. The slightly
higher simulation results might result from the high stiffness of the
fixed support in comparison to the fixation of the lattice structures
with four screws to the adapter plate during measurements. Thus,
the higher stiffness led to slightly higher eigenfrequencies in the sim-
ulation.

The masses of the additive manufactured structures hardly differed
from those of the solid model masses indicating a successful manu-
facturing process. However, the manufactured lattice structures were
not analysed in detail to check for the existence of cracks or micro-
structural imperfections.

Previous studies comparing numerical results with measurements
on additive manufactured lattice structures revealed differences be-
tween simulation and measurement results of less than 4% for the
1st eigenfrequency [32], of 4%-14% for the 1st eigenfrequency and the
stiffness [166], and of 4%-18% for elastic moduli [106]. In the two
latter studies, the differences were justified with imperfections in the
material properties and, in the last case, with a high surface rough-
ness of the additive manufactured structures, which can lead to a re-
duction in stiffness. However, the differences between measurements
and simulations were quite low in the present study. Because of this
successful validation, the numerical results of the further lattice op-
timisations can be seen as a realistic prediction for future realised
lattice structures.

The calculated damping ratios were the highest for L2, followed
by L1 and L3. For all three lattice structures, the damping ratios of
the sine-up and -down excitation coincided very well, although the
values were rather low. Considering the analysis of Wang et al. [185]
on estimating the possible error by using the half-power bandwidth
method for calculating damping ratios, the obtained damping ratios
have to be treated with caution, because the method is originally
based on the frequency response of a single degree of freedom sys-
tem and might thus overestimate the damping ratios. However, the
numerically obtained frequency response curve showed good confor-
mity with the measurements, especially regarding the peak positions.
The existing differences in the amplitude values might indicate an
overestimation of the damping ratio in the simulation, because the



120 Regular and Irregular Lattice Structures

consideration of the calculated damping ratios in the simulation led
to lower amplitudes than in the experiments.

Separate systematic investigations to analyse the damping proper-
ties of lattice structures with different degrees of structural irregular-
ities would be highly promising for potential applications, because
eigenfrequencies apparently do not correlate with damping proper-
ties.

It was not possible to verify the calculated eigenmodes of the lattice
structures experimentally, because the three uniaxial accelerometers
were placed at different locations. In continuative studies, the lattice
structures should be equipped with more triaxial accelerometers to
measure not only the eigenfrequency, but also the mode shape. This
also allows a more precise characterisation of the damping ratios of
each lattice structure. In this study, however, the intention of the vi-
bration measurements was to obtain the eigenfrequencies to validate
the simulation results.

11.3.3 Further Lattice Optimisation

The evolutionary strategic optimisation was used to generate opti-
mised lattice structures, because it allowed the generation of multiple
optimised structures that represent a compromise of various defined
objectives. Moreover, the evolutionary strategic optimisation can be
applied to optimisation problems including many parameters and
large parameter definition ranges, whereas the conduction of a para-
metric study involving the analysis of all parameter combinations
would not have been possible. However, although elitism of 50% was
specified to avoid local optimisation, the optimisation results of this
approach might still not include the best possible lattice structures
(c.f., discussion of methodology in chapter 9.3.3). Therefore, further
lattice optimisations were conducted based on the results of the first
optimisations. The aim was to develop lattice structures with even
higher 1st eigenfrequencies. The results showed only a slight eigenfre-
quency improvement of 0.4% for Lattice 2 indicating that the first op-
timisation had already generated an almost optimal lattice structure
under the defined constraints. Regarding Lattice 3 and 4, however,
further optimisations led to significantly improved lattice structures.
This shows that conducting lattice optimisation in two steps is a valid
approach to exploit the full potential of the respective lattice design
concepts. It is important to point out that the structure L4 clearly
showed a higher 1st eigenfrequency than that of the structure L3.
Thus, the implementation of nearly horizontally oriented struts into
an irregular lattice seemed to enhance the eigenfrequency. Similar re-
sults have been published by Syam et al. [166]. Although they solely
studied regular lattice structures based on different unit cells, some of
the unit cells contained horizontal struts. The lattice structures with
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the lowest eigenfrequencies were lacking horizontal struts. However,
the additive manufacturing process of lattice structures including hor-
izontal struts involves the use of support structures that must be
subsequently removed. Here, the 1st eigenfrequency of the further-
optimised structure L3∗ was already quite close to the 1st eigenfre-
quency of the structure L4∗, although the latter contained nearly hori-
zontal struts. This shows the possibility of designing lattice structures
with high 1st eigenfrequencies that meet the additive manufacturing
requirements to reduce the amount of support structures. However,
it is likely that the implementation of higher degrees of irregularities
and more delicate structures would lead to even higher 1st eigenfre-
quencies. This should be demonstrated in further studies focusing on
eigenfrequency maximisation without manufacturing restrictions.

11.4 conclusion

The design and optimisation of irregular lattice structures can be
used to raise eigenfrequencies of technical lightweight structures. The
eigenfrequency increase is a function of the degree of structural irreg-
ularities allowed. Low degrees of structural irregularities meeting
additive manufacturing restrictions already increase significantly the
eigenfrequencies.
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C O M PA R I S O N O F D I F F E R E N T M E T H O D S T O
I N C R E A S E E I G E N F R E Q U E N C I E S

Different methods to increase eigenfrequencies have been published
as summarised in chapter 4. Regarding the methods studied here,
the advantages and disadvantages of evolutionary strategic optimi-
sations have already been discussed in chapter 9.3.3. Therefore, the
following paragraphs focus mainly on the mode shape adaptation
method. Finally, all investigated methods to increase eigenfrequen-
cies are compared among each other.

The main advantage of the mode shape adaptation method to in-
crease eigenfrequencies over other types of stiffening techniques and
optimisations is that stiffening and thus high eigenfrequency increase
is already achieved with small computational effort. In addition, no
mass increase or reduction is needed and the method is already ef-
ficient for small pre-deformations: a 1st eigenfrequency increase of
300% for the beam and 221% for the plate was generated by a max-
imum relative pre-deformation δ of 2.0 according to the 1st bending
mode shape. The 1st bending mode frequency of the beam was even
increased by 400%. Maximum relative pre-deformations of 3.0 led to
1st eigenfrequency raises of 300% for the beam and 322% for the plate.
The 1st bending mode frequency of the beam increased by 641%. Re-
garding the plate, both mentioned eigenfrequency increases corre-
sponded to the 1st bending mode shape, because no mode switching
occurred.

The eigenfrequency increase of simply supported 2D beams due
to the application of topology optimisations has been studied by Du
and Olhoff [44]. Huang et al. [73] applied their proposed modifica-
tions of the SIMP model to avoid artificial modes also on the same
2D beam. In both studies, the 1st eigenfrequency rose by about 154%
including a mass reduction of 50%, which is a significantly lower
eigenfrequency increase compared to shaping the beam according to
its 1st mode shape. The increase of the 1st eigenfrequency of a squared
plate with similar boundary conditions has also been investigated by
using topology optimisation, where an eigenfrequency increase of
101% with a mass reduction of 50% occurred [44].

While comparing these published studies to the results obtained
within this work, it has to be noted that the published studies pro-
posed an eigenfrequency raise combined with a mass reduction. Here,
the mass was contant. Considering equation ?? valid for a SDOF sys-
tem, the eigenfrequency depends on the root of the stiffness divided
by the mass. Thus, a mass reduction tends to increase the eigenfre-

123
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quency. However, although the mass was strongly reduced in the
mentioned published studies, the eigenfrequency increases obtained
by the mentioned studies were still significantly lower than those re-
ceived in the present work for structures having a constant mass.

A study on the optimum distribution of dimples and beads us-
ing a genetic algorithm to maximise the 1st eigenfrequency of sim-
ply supported rectangular plates was performed by Alshabatat and
Naghshineh [6]. They obtained a 1st eigenfrequency increase of 25.4%
considering four 9.8 mm high dimples, each in one plate corner, which
corresponded to a maximum relative pre-deformation δ of 9.8, as the
plate thickness was 1 mm. Their beading technique increased the
1st eigenfrequency by 160.5% based on four 8 mm high beads, i.e., a
maximum relative pre-deformation δ of 8.0. Comparing these val-
ues with the plate eigenfrequency increases that were achieved us-
ing the mode shape adaptation approach, higher values occurred at
all times taking similar pre-deformations into account: a plate pre-
deformation according to the 1st bending mode considering a max-
imum relative pre-deformation of only 5.1 raised the 1st eigenfre-
quency by 487%. Also the evolutionary strategic and the topogra-
phy optimisations resulted in significantly higher 1st eigenfrequency
increases.

Another study dealt with the 1st eigenfrequency of a 2D plate by
inserting a hole in the plate’s middle [131]. The results showed only
small eigenfrequency increases of about 4% for a simply supported
plate, although the hole’s shape and size was optimised. The method,
however, strongly increased the 1st eigenfrequency of a clamped plate
by about 44%.

As the mode shape adaptation is most similar to beading, the fol-
lowing text focuses on a comparison between these two techniques.
The following advantages and disadvantages apply in both cases:
Stiffening is achieved without any additional weight increase and
without adding any joints. However, the method is limited to the
material capacity to deform plastically without cracking [6]. Bead-
ing causes a higher computational effort than the shape adaptation
according to mode shapes, but smaller or similar expenses in the
manufacturing are expected, since the beads have to be applied only
in some parts of the plate. In contrast to that, the overall plate shape
needs to be adapted for the mode shape adaptation. On the one
hand, this can be seen as an advantage, because the not beaded area
of beaded plates should be kept as small as possible, as otherwise
high stress peaks appear [150]. On the other hand, the bulging must
also be possible, without restraining attached parts or the installation
space. Finally, it has to be noted that the mode shape adaptation ap-
proach is highly dependent on the boundary conditions and is not
applicable to structures that are not axially constrained. Moreover,
the applied pre-deformations certainly lead to more complex geome-
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tries compared to the un-deformed structures, yet, the complexity of
the here investigated pre-deformed structures is small in comparison
to the irregular plate or lattice structures. In addition, other men-
tioned structural adaptation methods to raise eigenfrequencies also
involve an increase of structural complexity. But the present results
showed that even small pre-deformations according to mode shapes,
which are supposed to be applied more easily, increased the eigenfre-
quencies strongly.

Figure 12.1 displays the obtained 1st eigenfrequency increases based
on the here investigated methods and four published studies, which
aimed at a 1st eigenfrequency maximisation of simply supported 2D
structures. The dashed lines represent the average 1st eigenfrequency
increase obtained by the mode shape adaptation, the evolutionary
strategic optimisations, and the remaining displayed studies includ-
ing the topography optimisation and other published methods to in-
crease eigenfrequencies. Note that the presented structures partly
vary in the maximum relative pre-deformation. In addition, the struc-
tural mass is not always kept constant.

Highest 1st eigenfrequency increases were obtained for the mode
shape adaptation approach. The 1st beam eigenfrequency did not
rise as strongly as the 1st eigenfrequency of the plate, because it then
coincided with the 2nd beam eigenfrequency. Regarding the plate,
however, higher-order eigenfrequencies were also increased, which is
why the 1st eigenfrequency could also be raised further. Applying
the mode shape adaptation method to the cellular plates also led to
strong 1st eigenfrequency increases that were, however, lower than
the increase of the solid plate.

The evolutionary strategic optimisations resulted in average in the
second largest 1st eigenfrequency increase. Also here, multiple (re-
peated) eigenfrequencies ( f1 = f2) appeared for the 1D beam. While
the solid 2D plate’s 1st eigenfrequency was raised strongly, the in-
crease of the cellular plate’s 1st eigenfrequency was less intense. The
lowest 1st eigenfrequency increase of 58% was obtained for the irreg-
ular lattice structure. However, this lattice was compared to a regular
lattice structure, which was already a quite stiff lightweight structure.
If the irregular lattice eigenfrequency would have been compared to
that of a hollow solid structure, for instance, the eigenfrequency in-
crease might have been higher.

Among the remaining studies aiming at an eigenfrequency increase
including the topography optimisation and other published methods,
the topography optimisation led to the highest 1st eigenfrequency
raise, which was comparable to the eigenfrequency increase obtained
for the 1D beam based on both the mode shape adaptation and the
evolutionary strategic optimisations. The published studies consid-
ered here raised the 1st eigenfrequencies by 4%-161%, which are a
smaller eigenfrequency increases than those obtained by the here
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investigated methods. It may be noted that many other, published
studies aiming at 1st eigenfrequency increases considered alternative
boundary conditions (e.g., cantilevers or fully clamped plates, cf., lit-
erature review in chapter 4), which is why they are not mentioned
here.

Figure 12.2 shows that both investigated methods to increase mul-
tiple (1st and 2nd eigenfrequency or 1st, 2nd, and 3rd eigenfrequency)
eigenfrequencies were successful. However, in almost all studies, all
three eigenfrequencies were raised. Regarding the mode shape adap-
tation approach applied to the 1D beam, for example, the maximisa-
tion of the 1st and 2nd eigenfrequency increased both targeted eigen-
frequencies and also the 3rd eigenfrequency more strongly than the
maximisation aiming at an increase of all three eigenfrequencies. In
regard to the squared plate, both analysed methods led to stronger
eigenfrequency raises than for the beam. This can be explained by the
maximum relative pre-deformation of 5.0 considered for the plate,
while the beam was only pre-deformed by δ = 3.0. The present in-
vestigations are not compared to other studies, because there are no
published studies on this topic that use comparable boundary condi-
tions. Also the obtained frequency increase of specific mode shapes is
not compared here among the different methods, because even small
structural adaptation resulted in strong mode shape variations for the
plate. Thus, mode tracking was not successful. However, especially
the results for the mode shape adaptation method indicated a high
frequency increase of the targeted mode shape due to the structural
modification.

To sum up, the following bullet points characterise each method:

− Mode shape adaptation

• Easy and fast application

• Low computational effort required

• Significant eigenfrequency increase at constant mass
→ Small pre-deformations have already strong impacts on
eigenfrequencies

• Frequencies of specific mode shapes can be shifted

• Increase of multiple eigenfrequencies possible

! Effective application to 3D structures has to be further in-
vestigated

− Evolutionary strategic optimisations

• Effective solutions for multi-objective optimisations

• Significant eigenfrequency increase at constant mass

• Many solutions are created, out of which the best compro-
mise between the objectives can be chosen
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• High increase of multiple eigenfrequencies possible

! Multiple eigenfrequencies possible due to lacking of mode
tracking

! High computational effort due to the iterative process

− Application of irregular cellular and lattice structures

• Significant eigenfrequency increase at constant or reduced
mass

• Lightweight structures that allow an optimum material dis-
tribution

• Parametric constructions permit a high variety of different
structures

• High potential for the integration of additional functions
like damping, which has to be studied in detail

! High computational effort, if combined with evolutionary
strategic optimisations or parametric studies





Part IV

G I R D E R D E S I G N F O R P E T R A I V

The previous part dealt with the impact of biologically
inspired structures and optimisation techniques on the vi-
bration properties. In this part, biologically inspired vi-
bration optimisation is applied to a technical component,
more precisely, to a magnet supporting structure (girder)
of the synchrotron radiation facility PETRA IV that is cur-
rently planned at the DESY and expected to start operation
in January 2027.
After a detailed problem definition, a study on the im-
pact of different components and boundary conditions on
the eigenfrequencies of the magnet-girder assembly is pre-
sented. Based on the results, the boundary conditions for
the subsequent girder development process are defined.
The generated girder development process is composed
of different steps including a topology optimisation, the
result abstraction, the implementation of biologically in-
spired structures (e.g., irregular Voronoi combs studied in
chapter 10), and the conduction of cross section optimisa-
tions using the evolutionary strategy studied in chapter 9.
The designed biologically inspired girder structure is then
manufacturing from grey cast iron, before vibration mea-
surements are performed ultimately.





13
H I G H LY B R I L L I A N T P E T R A I V S Y N C H R O T R O N
R A D I AT I O N S O U R C E

In the framework of various challenges human society is currently fac-
ing, e.g., the climate change, the extinction of species, or the rapidly Brilliance describes

how the number of
photons per second
per unit bandwidth,
i.e., the spectral flux,
is distributed in
space and angular
range.[191] A
highly brilliant
synchrotron light
source creates a
bright X-ray beam,
i.e., an X-ray beam
that is small,
intense, and nearly
parallel.

increasing population on earth, it is crucial to deeply understand com-
plex biological, physical, and chemical processes in nature to find so-
lutions for the challenges. As synchrotron radiation sources allow
the investigation of structures, materials, and processes in different
time and length scales in situ/in vivo, they are essential to create a
deeper understanding of nature [149]. With the help of synchrotrons,
for example, large membrane protein complexes have been investi-
gated [55], the novel coronavirus SARS-CoV-2 has been studied [43],
and the rhizosphere chemistry was analysed [176]. But also the de-
tailed investigation of technical structures, materials, and fabrication
processes is fundamental to improve technology. The synchrotron
radiation technology plays a key role in engineering science, permit-
ting, for example, a detailed analysis of the structure solidification
process of alloys [187] or the in situ analyses of metal additive man-
ufacturing [165]. Altogether, synchrotron radiation facilities are used
in many different disciplines and are very important to find solutions
for today’s challenges.

As a considerable part of this work is dealing with the develop-
ment of an innovative biologically inspired girder design for the syn-
chrotron radiation facility PETRA IV at DESY, this chapter introduces
the field of synchrotron radiation facilities and the current situation
of the PETRA IV project. The third sub-chapter is dedicated to the gen-
eral structure and the importance of magnet-girder assemblies, before
the last sub-chapter summarises the specifications considered for the
development of an optimised girder design.

13.1 synchrotron radiation facility

The heart of a synchrotron radiation facility is a storage ring, in which
electrons circle at a constant energy. Deflecting their trajectory using
magnetic fields generates electromagnetic waves, i.e., synchrotron ra-
diation [191].

Today’s synchrotron light sources are able to produce tuneable par-
ticle beams covering the electromagnetic radiation from far infrared
to the hard X-ray regime. There are more than 70 synchrotron facility
in operation or under construction worldwide. Users from different

133
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disciplines of natural sciences use their services, highlighting the im-
portance of synchrotrons for multidisciplinary research [191].

A synchrotron is composed of five main components displayed in
figure 13.1 [191]:

• Electron source: the electrons generated by a heated filament
inside an electron gun are accelerated using a Linear Accelera-
tor (LINAC).

• Booster ring: the electrons are injected from the LINAC into an
evacuated booster ring to be further accelerated to reach the
energy of the electrons in the main storage ring, into which
they are then injected.

• Main storage ring: the ring is composed of arced sections with
dipole, quadrupole, and sextupole magnets (i.e., the magnet
lattice) and straight sections, in which Insertion Devices (IDs),The magnet lattice

is the positioning of
the magnet along the

X-ray beam path in
the synchrotron

radiation facility.

like for example undulators, generate the synchrotron radia-
tion. The electrons are maintained on a defined path. Dipole
(bending) magnets deflect the electrons around the arced sec-
tions, quadrupoles focus the electron beam, and the sextupole
magnets control the chromatic aberrations.

• Radio Frequency (RF) cavity: due to the emission of synchrotron
radiation, the electrons loose energy, which is restored by a RF

cavity supplying the electrons with energy.

• Beamlines: the beamlines come off tangentially to the storage
ring. The particle beam is normally focussed and/or monochro-
matised in the optics hutch before entering the experimental
hutch.

13.2 petra iv project

All synchrotron radiation sources worldwide are limited in spectral
brightness [149]. However, a new (fourth) generation of synchrotron
sources has been developed based on stronger focusing lattices (’Mul-
ti-Bend Achromats’), which generate highly parallel and narrow par-
ticle beams characterised by high-intensity X-rays [191]: highly bril-
liant light sources.

Several synchrotron radiation facilities are already working with
new or upgraded machines, e.g., MAX IV (Lund, Sweden), SIRIUS
(Campinas, Sao Paolo, Brazil) or European Synchrotron Radiation Fa-
cility’s Extremely Brilliant Source (ESRF-EBS) (Grenoble, France). Many
other facilities like Diamond (Oxfordshire, England), SOLEIL (Saint-
Aubin, France), Super Photon ring-8 GeV (SPring-8) (Sayo Town, Hyōgo
Prefecture, Japan) or DESY (Hamburg, Germany) are discussing up-
grades [66]. At DESY (figure 13.2), the current PETRA IV project aims
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Figure 13.1: Main components of today’s synchrotron radiation facilities.

at upgrading the present synchrotron radiation source PETRA III to
PETRA IV, which will be an ultralow-emittance source and diffrac- Emittance is the

product of the linear
particle source size
and the x-ray beam
divergence in the
same plane [191]. A
large emittance
states a high
movement of the
particles relative to
particle bunch,
which is why
synchrotron
radiation facilities
strive for a low
emittance.

The diffraction
limit is the
theoretical limit of
the resolution of an
optical system, i.e.,
the limit of the
achievable focus. In
a diffraction limited
storage ring, the
horizontal emittance
of the X-ray beam is
smaller than the
diffraction limit of
the X-ray beam
leading to highly
coherent laser-like
X-ray beams.

tion limited up to X-rays of 10 keV. Thus, its X-rays will be used for
3D microscopy of biological, chemical, and physical structures and
processes under realistic conditions considering time scales down to
the sub-nanosecond regime. The analysed length scales will vary
from atomic dimensions to millimetres [149].

The PETRA IV project started in spring 2016. After finishing the
conceptual design phase by publishing the conceptual design report
in November 2019, the technical design phase will probably last until
December 2022. The construction work is planned to be initiated at
the beginning of 2025, involving certainly a shut-down of PETRA III.
PETRA IV is expected to start operation in January 2027. For more
information about the PETRA IV project and its current status it is re-
ferred to Agapov et al. [2], Röhlsberger et al. [141], Schroer et al. [148],
and Wanzenberg et al. [188].

The currently operating PETRA III synchrotron is installed in a tun-
nel built in 1976, which has a large circumference of 2.304 km [148,
149]. This tunnel will also be used for the upgraded machine. The
layout of PETRA IV consists of eight arcs of 201.6 m length each and
eight straight sections, of which four are 108 m long and the remain-
ing four 64.5 m (figure 13.3). One arc is composed of eight identical
cells, each of 26.2 m length. In each cell, five girders of 1 m, 3 m,
and 6 m length are planned to support the magnets (figure 13.4) [148],
which would lead to 320 girders supporting the magnets. The mag-
net lattice is not yet fully defined. Generally, a seven bend acomatic
lattice as used for ESRF-EBS is also earmarked for PETRA IV, but it will
be supplemented by stronger sextupole magnets due to the larger cir-
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cumference [2]. First magnets have been designed and several proto-
type magnets based on different materials will be studied soon [188].

© DESY/R. Schaaf

Figure 13.2: View on the DESY ground with the different accelerators
(printed with permission from DESY).
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(reprinted from Schroer et al. [148] with permission from
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Figure 13.4: Planned support using girders for the magnets and other com-
ponents in a 26.2 m lattice cell of PETRA IV. The girders (orange)
are 1 m, 3 m, and 6 m long. The displayed magnet models are ar-
tificial (modified according to Andresen et al. [14], printed with
permission from DESY).

13.3 magnet-girder assemblies

A high particle beam stability is essential to obtain a low-emittance
and diffraction limited storage ring [204]. For this, the magnet-girder
assembly plays an important role.

A girder acts like a beam to which different components are fixed
[143]. The girder studied here supports magnets of a particle accelera-
tor. For girders used in particle accelerators, the following advantages
can be summarised [143, 153]:

− Girders lift all components (magnets) up to the particle beam
height.

− All components can be mounted and aligned outside the tunnel,
which permits a faster installation and alignment of the whole
particle accelerator.

− Neighbouring components that require a very precise position-
ing against each other (i.e., very low tolerances) can be placed
on one girder. Thus, the individual components are isolated
from ground movements.

− Girders allow at all time an easy re-alignment of all components
together, e.g., in the case of ground settling.

Aside from these advantages, it has to be noted that girders are
another part of the accelerator machine. Each part can reduce the
particle beam stability due to amplification of the ground vibrations
or thermal deformations [153]. However, because of the considerable
advantages of using girders, they are widely utilised in particle accel-
erators.

Girder structures installed in accelerator machines generally have
to meet the following requirements:
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− Because of the heavy components mounted to the girder, a high
stiffness is essential for low static deflections due to gravity.

− All eigenfrequencies shall be above 30 Hz [153], because ground
vibrations strongly drop with increasing frequency (cf., fig-
ure 13.7). As the numerically obtained eigenfrequencies are of-
ten higher than the actual ones, the objective is to reach a
1st eigenfrequency of about 50 Hz in the numerical models.

− High temperature stability is required, because possible thermal
deformations (e.g., studied for ESRF-EBS by Tampigny et al. [167])
strongly influence the particle beam stability.

− An easy transportation has to be possible, during which struc-
tural deformations of the equipped girder have to be as low as
possible.

− The girder should be light to keep the total weight of a fully
equipped girder assembly as low as possible to allow a trans-
portation of the equipped girder.

− The girder structure must be easy to align.

− Often, an adjustability of the girder (and the magnets) posi-
tioned in the tunnel is required to allow a re-alignment of all
components.

− The manufacturing of the girder structure has to be cost effec-
tive.

It is therefore of high interest to design a girder structure with high
eigenfrequencies, a high stiffness, and a low mass. A systematic in-
vestigation of how theses aspects can be combined to design an op-
timised girder structure was the aim of this work. Other mentioned
requirements regarding the girder structure are not considered here.

The stability of the particle beam depends, aside from the thermal
issues, on the transfer function of the ground vibration to the particle
beam. This vibration transmission path is illustrated in figure 13.5.
Ground motions are inevitable. However, the vibrations reaching the
particle beam ∆ xbeam should be less than 10% of the particle beam
size σx,beam to obtain the required particle beam stability and can be
calculated as follows [204]:

∆ xbeam = xgr · TFgr−sl ·
[
TFsl−gir · TFgir−mag

]
· qd

·TFmag−beam · q f o f b < 0.1 σx,beam
(13.1)

Thus, ∆ xbeam depends on the ground vibrations xgr and on the
transfer functions from the ground to the slab TFgr−sl , from the slab
to the girder TFsl−gir, from the girder to the magnet TFgir−mag, and on
the transfer function amplification due to the lattice design TFmag−beam.
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Figure 13.5: Vibration transmission path from the ground vibration to the
particle beam including the differen transfer functions TF
(based on Zhang [204]).

The latter can be positively influenced by a fast orbit feedback fac-
tor q f o f b. In addition, in the case of low magnet-girder assembly
eigenfrequencies, passive damping mechanisms (damping pads or
materials) can reduce high vibration amplifications by a factor qd as
applied to the Advanced Photon Source (APS) (Argonne National Lab-
oratory, Lemont, Illinois, USA) [102] or to the European Synchrotron
Radiation Facility (ESRF) (Grenoble, France) [205].

In regard to damping, the dynamic amplification factor H is de-
fined as the ratio of the dynamic amplitude and the static displace-
ment due to a constant force (cf., chapter 6.2.3). Figure 6.5 shows
the dependency of the dynamic amplification factor on the ratio of
the excitatory frequency Ω and the eigenfrequency of the system ω:
η = Ω/ω. Thus, soft magnet-girder assemblies lead to a ratio η larger
than

√
2 due to the low magnet-girder assembly eigenfrequency. Con-

sequently, the vibration transmissibility from the ground to the par-
ticle beam is very low and the structure is isolated from the ground
motion. Nevertheless, soft supports cannot be implemented in the ac-
celerator machine because of the low tolerances between neighbour-
ing girders.

Damping mechanisms can be effectively applied to intermediate-
stiffness supports that show η values around 1 (resonance). As visi-
ble in figure 6.5, the dynamic amplification factor decreases with rais-
ing damping ratio ζ. However, if the structural eigenfrequency is
significantly larger than the excitation frequency (η << 1), a high
structural stiffness is present and damping mechanisms are not nec-
essary because of the already low transmissibility [153]. Therefore,
stiff magnet-girder assemblies are inevitable to reach a high particle
beam stability.
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Zhang [204] gave an overview on magnet-girder assemblies of dif-
ferent accelerator machines worldwide. The 1st eigenfrequencies of
the magnet-girder assemblies vary from about 10 Hz of the 3rd gener-
ation machines (ESRF, APS) and about 20 Hz for SPring-8 or Shanghai
Synchrotron Radiation Facility (SSRF) (Shanghai, People’s Republic of
China) to above 40 Hz for the new-generation light sources (SOLEIL,
ESRF-EBS). Meyners [109] measured a 1st eigenfrequency of the cur-
rently installed PETRA III girder of about 35 Hz and a 1st magnet mode
at 25 Hz. A PETRA III girder installed in the PETRA tunnel is displayed
in figure 13.6.

Figure 13.6: 4.2 m long PETRA III girder (light grey) inside the PETRA
tunnel that is positioned on bases (dark grey) and equipped
with several components including three large magnets (red).
The girder alignment system (cam movers) placed between the
girder and the bases is circled in a dashed light green line.

So far, most girders have box-like structures. However, new design
approaches have been made, e.g., at the Argonne National Labora-
tory, where topology optimisations of the Advanced Photon Source
Upgrade (APS-U) girder combined with thickness optimisations of
the upper solid girder plate allowed a 1st eigenfrequency increase
towards 39 Hz for a 6.5 m long ductile cast iron (GR-60/40/18) girder
considering three support points [91, 120].

Generally, a compromise between stability (vibration, temperature)
and adjustability (alignment) has to be made. On the one hand, a
large number of girder support points increases the stiffness and thus
the 1st eigenfrequency [8]. Moreover, the support points should be
placed as close as possible to the upper girder surface and thus to
the magnets, because low support points reduce the eigenfrequen-
cies. The National Synchrotron Light Source (NSLS)-II (Brookhaven
National Laboratory, Long Island, New York, USA) girder, for exam-
ple, is supported by eight support points, but still shows a 1st eigenfre-
quency of only 30 Hz, since the support points are located close to the
ground [139]. On the other hand, an over-determined system of more
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than three support points is difficult to align, especially considering
the small tolerances. In addition, a three point support allows a free
horizontal expansion and thus a smooth thermal deformation [204].

While motorised jacks and cam movers (e.g., applied to the
PETRA III girder) have been used as girder alignment systems, man-
ual adjustments are more present in the latest magnet-girder assem-
blies, e.g., wedge jacks (APS, SSRF [204]) or precision levellers made
by AirLoc AG (www.airloc.com) (e.g., SOLEIL [103] or ESRF-EBS [33]).
Nevertheless, a support system allowing a girder adjustment at any
time generally shows a lower stiffness than a non-adjustable support.

Summing up, there are different specifications and demands that
have to be taken into account to develop a new girder design. Some
specifications are studied in chapter 14. The main objective of the
later girder design process (chapter 15) is the development of an bi-
ologically inspired girder characterised by high eigenfrequencies, a
high stiffness, and a low mass.

13.4 problem definition, specifications , and model as-
sembly

One of the big challenges in the PETRA IV project is to design an
upgraded machine that allows a horizontal emittance of less than
30 pm rad, which is almost two orders of magnitude smaller than the
emittance of the currently operated PETRA III storage ring [148]. At
the same time, the estimated alignment and field tolerance of one
girder to the neighbouring girders is 50 µm [148]. Therefore, a high
stability of the storage ring is essential.

As mentioned in the previous chapter 13.3, the stability of the syn-
chrotron facility, and thus of the particle beam, strongly depends on
the temperature and the ground stability. Regarding the first, the
temperature inside the PETRA tunnel will be stabilised to ±1 K [148]
to avoid strong movements or deformations of tunnel segments or
machine components like girders.

In addition, the parts of the tunnel utilised for PETRA IV will be
reinforced by massive concrete rings to increase the stability [148].
However, the ground vibration also influences the synchrotron facility
stability. Measurements show that the ground vibration amplitudes
at the DESY campus strongly drops with increasing frequency (fig-
ure 13.7) [26, 108]. High amplitudes result from ocean waves at about
0.2 Hz, traffic noise at about 2-8 Hz, and strong in-house noise be-
tween 20 Hz and 50 Hz [148]. Above 50 Hz, the ground vibration am-
plitudes are small, which is why all eigenfrequencies of the magnet-
girder assembly shall be higher than 50 Hz. Thus, the targeted 1st

eigenfrequency of the PETRA IV girder is significantly higher than the
eigenfrequency value of 30 Hz proposed by Sharma et al. [153].

www.airloc.com
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Figure 13.7: Vertical Power Spectral Density (PSD) and the Root Mean
Square (RMS) of the ground vibration at the DESY campus dur-
ing midday and night. The figure is reprinted from Schroer
et al. [148] with permission from DESY. Minor modifications in-
clude the correction of the axis labels.

Besides the high eigenfrequencies, the girder is expected to show
a high stiffness, since it has to carry the heavy magnets. Static de-
flections below 0.5 mm are allowed. In addition, the girder structure
should be as light as possible owing to the transport of the magnet-
girder assembly from the assembly area, where the girder is equipped
with magnets and the magnet alignment takes place, into the long
and small tunnel. In order to fulfill these requirements, complex bi-
ologically inspired geometries are considered in this work, which en-
able a higher performance. The designed girder will be manufactured
using the casting technology. During this process, a mould represent-
ing the negative structure of the desired part is filled with high tem-
perature, liquid metal (figure 13.8). Cooling leads to the solidification
of the metal, which forms the designed structure [196]. Traditional
casting constraints would limit the design freedom and consequently
lead to structures with less-improved mechanical properties, which
has been studied by Xu et al. [196]. However, the implementation of
3D printed sand moulds (cores) into the casting process allows the
manufacturing of a complex, optimised structure [184]. The fabrica-
tion of the sand moulds is similar to other powder-based processes.
A thin layer of sand mixed with an activator is distributed on the job
box surface. According to each cross section (slice) of the manufac-
tured part, a binder is sprayed on the area. During the subsequent
bonding reaction, the sand particles stick together forming the cross
section. In other regions, which were not provided by the binder, the
sand remains loose. The job box surface moves then downward by a
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(a) (b)

core

Figure 13.8: Casting process with additively manufactured cores: The fused
metal (red) fills the voids of the mould (light grey) that is com-
posed of two parts (a). The complex structure is realised by
using a core (dark grey). The black arrows show the parting
direction of the mould to obtain the final casted part (b).

defined layer thickness and the next slice of the part is made. This
process continues until the part is completely printed [174]. Con-
sequently, aside from the inevitable avoidance of small cross section
values and voids inside the structure, the girder development process
was not constrained by demands of the subsequent manufacturing
technology.

In the following, the general FEM model of the here studied PETRA IV
magnet-girder assembly is described.

As already mentioned, the PETRA IV machine will be installed in
the already available PETRA tunnel. Therefore, the design space for
the girders followed the dimensions of the currently installed PETRA III
girders (cf., figure 13.6). All following studies were exemplarily ap-
plied to the 2nd (4th) girder of figure 13.4 that is equipped with eight
magnets. Figure 13.9 shows the girder design space, which was con-
nected to three bases at three points with the x coordinates 0.05 lG,
0.50 lG, and 0.95 lG (lG = 2,900 mm, the girder length). The connection
was realised using Beam elements (CBEAMs) with a diameter of 50 mm
and a length of 20 mm, which were connected to the girder and the
bases via RBE3s. The lower surface of the bases was considered as
mounted.

For the girder, the bases, and the three connection beams, Structural
Steel with a minimum yield strength of 235 MPa (S235) was specified
as material characterised by a Young’s modulus of 210,000 N mm−2,
a density of 7.83 10−9 t mm−3, and a Poisson’s ratio of 0.3.

The girder was equipped with eight magnets varying in width
(cf., figure 13.9) and mass (table 13.1), which were fixed to the upper
girder surface. As the volume of each magnet Vmag was fixed, its tar-
geted mass mmag was obtained by defining an artificial density ρmag

for each magnet. At the same time, a factor q of 1.15 was included to
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conservatively assume a slightly higher mass, as the heavy magnets
have a strong impact on the overall eigenfrequencies:

ρmag = q
mmag

Vmag
(13.2)

Hereinafter, the impact of different components and boundary con-
ditions of the magnet-girder assembly on the eigenfrequencies was
analysed.
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Figure 13.9: Top view (a), side view (b), and 3D view (c) of the general
model of the 3 m PETRA IV magnet-girder assembly including
the girder design space (grey), the three bases (green), the eight
magnets (blue), and the three beams connecting the girder to
the bases (red). The location of the particle beam is shown in
magenta. All given dimensions are in mm.
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Table 13.1: Magnet properties including the mass mmag, the volume Vmag,
and the artificial density ρmag.

Magnet Mass Volume Artificial density

QD3 0.155 t 5.099 107 mm3 3.496 10−9 t mm−3

SD1A 0.540 t 5.226 107 mm3 1.188 10−8 t mm−3

QF4A 0.280 t 6.674 107 mm3 4.825 10−9 t mm−3

SF2AH 0.650 t 6.297 107 mm3 1.187 10−8 t mm−3

QF4B 0.280 t 6.674 107 mm3 4.825 10−9 t mm−3

QF1B 0.385 t 2.833 107 mm3 1.563 10−8 t mm−3

SD1B 0.540 t 5.226 107 mm3 1.188 10−8 t mm−3

QD5 0.385 t 6.674 107 mm3 6.634 10−9 t mm−3
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PA R A M E T R I C S T U D Y O N C O M P O N E N T S A N D
B O U N D A RY C O N D I T I O N S

In this study, different structural components and boundary condi-
tions of the magnet-girder assembly were altered to investigate their
impact on the eigenfrequencies.

14.1 material and methods

Two different girder geometries were taken into account to assess
the influence of the girder design on the analysed parameters (fig-
ure 14.1): (1) a box girder that corresponded to the defined girder
design space and possessed a wall thickness of 50 mm and (2) a
4,200 mm long PETRA III girder currently installed in the PETRA III
machine, which has seven inner vertical ribs. The PETRA III girder
geometry was adapted to obtain a girder length of 2,900 mm.

(a) (b)

2900

525

650xy

z

x
y z

2900

525

650
xy

z

Figure 14.1: The PETRA III girder scaled in y-direction to 2,900 mm length
(a) and a box girder (b) that were both analysed in a parametric
study. In (a), the lower figure shows the adapted PETRA III
girder with hidden top surface to visualise the inner rib struc-
ture.

A mesh study of the FEM model varying the CTETRA element size
from 10 mm to 45 mm in step sizes of 2.5 mm identified a sufficient
element size applied to both the girder structures and the magnets.
Regarding the mesh study, only the girder structure equipped with
magnets was considered. Thus, as the bases were neglected, a fixed
support was defined at the three support point locations, i.e., all trans-
lations and rotations were inhibited. The element size, which showed
result differences compared to the three previous element size steps
of maximum 5%, was declared as sufficient.

147
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During the parametric study, the following components and bound-
ary conditions were altered and their impact on the first six eigenfre-
quencies of the magnet-girder assembly was investigated:

1. Magnet position height and connection

2. Stiffness of the magnet-girder connection

3. Magnet mass

4. Girder support point position

5. Stiffness of the girder support

6. Material properties of the girder and the bases

Table 14.1 lists the model components that were considered for each
analysis.

14.1.1 Magnets

14.1.1.1 Magnet Position Height and Connection

The distance between the lower magnet surface and the girder was
altered from 15 mm to 215 mm with a step size of 25 mm. In addition,
the distances 0 mm – magnets fixed to the girder – and 290 mm were
analysed. Similar to the magnet-girder assembly currently installed
in the PETRA III accelerator (cf., figure 13.6), in which each magnet
is connected to the girder via four screws imbedded in resin, the
magnets were positioned on the girder using four beams of 50 mm
diameter each. The analyses were conducted for both the magnets
positioned individually and the magnets connected to each other. The
latter was realised using beams of 50 mm diameter that were fixed to
the middle node of the front and back side of each magnet. All beams
were connected to the magnets and the girder via RBE3s. Figure 14.2
shows exemplarily the model assembly for the position height study
of the connected magnets.

14.1.1.2 Stiffness of the Connection between Girder and Magnet

The diameter of the beams connecting the magnets to the girder was
varied from 5 mm to 100 mm with a step size of 5 mm to investigate
the impact of the connection stiffness on the magnet-girder assembly
eigenfrequencies. A distance between magnets and girder of 215 mm
was assumed following the magnet position height of the PETRA III
girder.

The fixation of a magnet on the girder can be abstracted as a frame
composed of four elastic posts (height hpost, bending stiffness EI) and
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x
yz

Figure 14.2: Parametric study model for the magnet position height study
with connected magnets exemplarily displayed for the PE-
TRA III girder. The model includes the girder (grey), the mag-
nets (blue), and the bases (green) as well as the beams connect-
ing the girder to the bases (red), the magnets to the girder (or-
ange), and the magnets among each other (magenta).

a rigid bar, on which a mass m is fixed that can only move horizon-
tally (figure 14.3). According to Gross et al. [58], the stiffness kpost of
one post depends on the applied force F and the deflection w:

kpost =
F
w

=
12 EI
hpost

3 ; with : w =
F hpost

3

12 EI
(14.1)

(a) (b) (c)
m

hpost

EI m

m
k f rame

w
F

Figure 14.3: A frame composed of four elastic posts with the height hpost
and the bending stiffness EI and a rigid bar with a mass m that
can only move horizontally is displayed in (a). It is abstracted
as a SDOF spring-mass system with the spring k f rame (b). The
applied force F leads to the deflection w (c). The sketches are
based on Gross et al. [58].

As the four posts are connected side-by-side (i.e., parallel), the re-
sulting stiffness of the frame k f rame is the sum of the four single stiff-
nesses:

k f rame = 4 kpost (14.2)
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Thus, the 1st eigenfrequency of the frame f1, f rame is

f1, f rame =
1

2π

√
k f rame

m
=

1
2π

√
48 EI

m hpost
3 (14.3)

Based on these equations, the horizontal stiffness of the connec-
tion between girder and magnet was estimated using equation 14.2,
in which the stiffness is multiplied by 4, since one magnet is sup-
ported by four parallel beams. The lowest frequency of a horizontal
rigid magnet mode was estimated using equation 14.3 considering the
mass of the heaviest magnet SF2AH (cf., table 13.1). Regarding both
equations, the magnets were abstracted as point masses on top of the
beam neglecting the beam masses and the connection stiffness of the
beam to the girder was assumed as infinitely stiff.

To estimate the vertical stiffness of the magnet support, the support
was abstracted as four parallel massless rods, each of a length lrod
and an extensional stiffness EA provided with a mass m at its end.
Figure 14.4 shows one of these rods. A movement of the mass leads
to an equal extension ∆l of the rods. Thus, a restoring force acts on
the mass. The total stiffness of the four rods is four times the rod
stiffness krod defined as [58]:

krod =
EA
lrod

(14.4)

(a) (b) (c)

m

lrod
EA

m∆l

m
F

Figure 14.4: A massless rod of an extensional stiffness EA that is provided
with a mass m at its end (a) is extended by ∆l owing to a move-
ment of the mass (b). A restoring force acts on the mass (c). The
sketches are based on Gross et al. [58].

14.1.1.3 Magnet Mass

To investigate the impact of the magnet mass on the magnet-girder
assembly, the factor q (cf., equation 13.2) was varied from 0.10 to 2.05
with a step size of 0.15. The magnets were considered as fixed to the
upper girder surface.
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14.1.2 Girder Support

14.1.2.1 Support Point Position

In first studies, the impact of the number and location of the girder
support points on the eigenfrequencies were studied (figure 14.5). For
more details it is refered to Andresen [10].

3 lower
SPs

4 lower
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3 upper
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4 upper
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6 upper
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Figure 14.5: 1st eigenfrequency of the magnet-girder assembly depending
on the number and the position height (i.e., at the lower or
higher part of the girder) of the support points (SPs) and on
the implementation of the bases. The study was performed on
a 4.2 m long box-shaped girder equipped with magnets. The
eigenfrequency values are given above each bar.

The results showed a significant 1st eigenfrequency increase with
a rising support point number. However, assuming more than three
support points would result in an over-determined system, which
makes an accurate adjustment of the equipped girder in the tunnel
difficult or even impossible. Thus, different positions of only three
support points were analysed.

Since both investigated girder geometries showed a thin wall com-
pared to the girder length, a consideration of the girder as a shell
body with the same element size that was obtained in the mesh study
was possible. Due to the high number of analysed combinations of
support point positions, a solid girder would have involved very time-
consuming computational effort. In contrast, the magnets were still
considered as solids to consider not only their masses, but also their
moments of inertia.

The x values of the support points were varied during the para-
metric study from 0.05 lG to 0.35 lG for point 1, from 0.65 lG to 0.95 lG
for point 2, and from 0.3 lG to 0.7 lG for point 3 in step sizes of 0.1 lG,
whereby lG symbolises the girder length. In addition, the study was
conducted three times with different z values of the support points
considering 900 mm, 700 mm, and 500 mm, which resulted in a total
of 243 analysed support point position combinations.
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Figure 14.6 shows all support points that were considered. The
front and back wall of the PETRA III girder were positioned at
y = 185.5 mm and y = 462.5 mm, i.e., closer to the girder centre (cf., fig-
ure 14.1a). Consequently, the support points at heights of 500 mm and
700 mm were moved by 185.5 mm in the y direction (support points 1
and 2) and in the negative y direction (support point 3) to be defined
on the girder wall.

(a) (b)

x
yz

SP 1 SP 2 x y
z

SP 3

Figure 14.6: All positions of the three support points (SP, small red circles)
that were considered in the parametric study are displayed ex-
emplarily for the PETRA III girder in a 3D front view (a) and
back view (b). The girder (grey) is slighly transparent making
the inner ribs visible. All positions that the support points 1, 2,
and 3 are assigned to during the parametric study are framed
in light green. The magnets supported by the girder are shown
in blue.

The support point combination which led to the highest 1st eigen-
frequency was chosen. Subsequently, the model was calculated with
the girder considered as a solid body to estimate the deviation of the
shell model from the volume model.

14.1.2.2 Stiffness of the Girder Support

To study how the girder support stiffness affects the overall magnet-
girder assembly eigenfrequencies, the diameter of the beams connect-
ing girder and bases was varied from 5 mm to 100 mm in 5 mm steps.

Since only shear forces were relevant owing to the shortness of the
beams, the shear stiffness kshear of the connection between girder and
bases was estimated based on a cantilever beam with a point load
(figure 14.7). The maximum deflection wmax at x = l is [57]:

wmax =
F l

G A κ
(14.5)

As the stiffness depends on the force and the deflection (cf., equa-
tion 14.1), it is defined as:

kshear =
G A κ

l
(14.6)

where G symbolises the shear modulus and κ is defined as 3/4 for
the here present circular cross section [162].
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(a) (b)

x

l

EI F

l

x wmax

F

Figure 14.7: A point load F is applied to a cantilever beam of a length l and
a bending stiffness EI (a). The beam deflects as shown with a
dashed line in (b) leading to a maximum deflection wmax. The
sketches are based on Gross et al. [57].

14.1.3 Material Properties

In the previous studies, S235 was considered as material for the girder
and the bases. Here, the impact of the material properties on the
eigenfrequencies was analysed by considering the materials alumini-
um, grey cast iron, spheroidal cast iron, and mineral cast for the
girder and the bases (table 14.2). The results were compared to those
obtained for the girder and bases made out of S235. Additionally, the
ratio

√
E/ρ was considered as it can be seen as a parameter of how

the Young’s modulus and the density, which are significant material
properties, affect the eigenfrequency.

Table 14.2: Material properties of aluminium AlSi10Mg, grey cast iron (EN-
GJL-350), spheroidal cast iron (EN-GJS-700-2), and mineral cast
(EPUMENT® 140/5 [138]) considered for the girder and the
bases involving the Young’s modulus E, the material density ρ,
and the Poisson’s ratio ν. In the last row, the ratio

√
E/ρ was

normalised with the corresponding value for S235 of 5.2 · 106.

Aluminium Grey cast
iron

Spheroidal
cast iron

Mineral
cast

E (N mm−2) 75,000 130,000 176,000 30,000
ρ (t mm−3) 2.7 · 10−9 7.3 · 10−9 7.2 · 10−9 2.3 · 10−9

ν (-) 0.33 0.26 0.28 0.30√
E/ρ (N mm−1) 5.3 · 106 4.2 · 106 4.9 · 106 3.6 · 106√
E/ρ (-) 1.02 0.81 0.95 0.70

14.2 results

This sub-chapter contains the parametric study results. The mesh
study revealed a sufficient element size of 20 mm for both girder ge-
ometries considering the first six eigenfrequencies (figure 14.8). The
total number of elements was 76,600 for the PETRA III girder and
67,799 for the box girder.



14.2 Results 155

20 30 40

100

200

Element size (mm)

Fr
eq

ue
nc

y
(H

z)

f1 f2 f3
f4 f5 f6
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Figure 14.8: First six eigenfrequencies depending on the element size for the
PETRA III girder (a) and the box girder (b). A element size of
20 mm was chosen.

14.2.1 Magnets

14.2.1.1 Magnet Position Height and Connection

Eigenfrequency decreases with rising distance between the magnets
and the girder were obtained for both girder geometries (figure 14.9).
Regarding the PETRA III girder with individually positioned magnets,
a strong eigenfrequency decrease from 0 mm to 15 mm distance was
followed by a slight continuous decrease of all eigenfrequencies with
further increasing distance. Figure 14.10 shows the 1st mode shape for
15 mm distance between the magnets and the girder. Girder deforma-
tions at the connection to the magnet-beams occurred and indicated
a lower connection stiffness, which did not appear at a distance of
0 mm, i.e., for the magnets fixed to the upper girder surface.

Apparently, including a magnet connection did not prevent the gen-
eral trend of decreasing eigenfrequencies with increasing distance be-
tween girder and magnets. However, the eigenfrequencies decreased
less strongly. The strongest impact of the magnet connection on the
eigenfrequencies was obtained for large distances between girder and
magnets and for the higher-order eigenfrequencies. In addition, the
magnet connection led to higher eigenfrequency increases for the
PETRA III girder than for the girder box.

Comparing exemplarily the 5th mode shape for the distances 0 mm,
115 mm, and 215 mm between the magnets and the box girder shows
the impact of the magnet connection (figure 14.11). With regard to the
magnets fixed to the girder, the magnet connection did not alter the
eigenfrequencies nor the mode shape. At a distance of 115 mm, the
magnet connection prevented the local magnet modes and the overall
mode shape was still similar to the 5th mode shape for the magnets
fixed to the girder. However, at a high distance of 215 mm, the local
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(a) PETRA III girder with individ-
ually positioned magnets
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(b) Box girder with individually
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(c) PETRA III girder with con-
nected magnets
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(d) Box girder with connected
magnets

Figure 14.9: First six eigenfrequencies depending on the distance between
girder and magnets for the PETRA III girder (a) and the box
girder (b) with individually positioned magnets as well as for
the PETRA III girder (c) and the box girder (d) with connected
magnets.

magnet modes appeared despite the magnet connection that was also
oscillating. Thus, the corresponding frequency decreased strongly.

14.2.1.2 Stiffness of the Connection between Girder and Magnet

For both girder geometries, all analysed eigenfrequencies rose with
increasing connection stiffness between girder and magnets up to a
certain stiffness value, after which the frequencies almost remained
constant (figure 14.12). Although the box girder eigenfrequencies
showed higher values than the PETRA III girder and the trends of
the curves also varied, the 1st eigenfrequency of both girder geome-
tries remained almost constant from a beam cross section diameter
of about 50 mm on. Higher-order eigenfrequencies reached constant
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x
yz 0.0 1.0

Figure 14.10: 1st mode shape of the PETRA III girder with magnets posi-
tioned individually 15 mm above the upper girder surface. The
detailed view shows local deformations of the upper girder
surface. The colors represent the normalised vibration ampli-
tude.

values at higher beam diameters. Regarding the mode shapes, the
1st mode shape was characterised by local magnet modes for small
beam diameters (figure 14.13). As soon as the mode shape changed
into a global tilting mode (beam cross section diameter of 30 mm
for the PETRA III girder and 50 mm for the box girder), the corre-
sponding 1st eigenfrequency remained almost constant. For a beam
cross section diameter of 50 mm, the horizontal stiffness can be es-
timated as 311 N µm−1 (equation 14.2) and the vertical stiffness as
7.7 ·103 N µm−1 (equation 14.4).

Regarding the model based on a beam cross section diameter of
5 mm, the frequency of this mode shape characterised by a horizon-
tal movement of the heaviest magnet SF2AH (cf., table 13.1) can be
compared to an analytically calculated eigenfrequency. Applying
equation 14.3 to the PETRA III girder model, the analytically obtained

(a)

(b)

Distance: 0 mm Distance: 115 mm Distance: 215 mm

x
yz

0.0 1.0

Figure 14.11: 5th mode shape of the box girder for individually positioned
(a) and connected (b) magnets for distances between the mag-
nets and the girder of 0 mm (magnets fixed to the upper girder
surface), 115 mm, and 215 mm. The colours represent the nor-
malised vibration amplitude.
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1st eigenfrequency value of 5.7 Hz was higher than the numerical
value of 1.1 Hz.

14.2.1.3 Magnet Mass

Almost all eigenfrequencies decreased with increasing magnet mass
for both girder geometries (figure 14.14). However, the 1st eigenfre-
quency of the box girder remained unaffected by the changing mag-
net mass. The corresponding mode shape showed a global rotation
around an axis parallel and almost equal to the magnet axis (fig-
ure 14.15). The rotation axis of the 1st mode shape of the PETRA III
girder was farther away from the magnet axis, thus, the 1st eigenfre-
quency decreased with the rising magnet mass.

14.2.2 Girder Support

14.2.2.1 Support Point Position

The support point position strongly affected the 1st magnet-girder as-
sembly eigenfrequency for both girder geometries (figure 14.16). The
higher the support points were located, the higher was the obtained
1st eigenfrequency. As exemplarily shown for the PETRA III girder in
figure 14.17, lowering the support points led to a lower rotation axis
of the 1st rotational mode shape, which caused a 1st eigenfrequency
decrease and larger vibration amplitudes of the magnets.

In addition, the 1st eigenfrequency generally increased with rising
distance in x direction between the support points. Regarding the
box girder, the 1st eigenfrequency reached its highest value for a max-
imum distance between the support points 1 and 2 and an equal dis-
tance of about 1,300 mm between the support points 2 and 3 and the
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Figure 14.12: First six eigenfrequencies depending on the cross section di-
ameter of the beams connecting the magnets to the PETRA III
girder (a) and the box girder (b).
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xy
z
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Figure 14.13: 1st mode shape of the magnet-girder assembly with the box
girder depending on the connection stiffness between the mag-
nets and the girder, i.e., different cross section diameters of
the beams connecting the magnets to the girder involving
5 mm (a), 30 mm (b), 60 mm (c), and 100 mm (d). The colours
represent the normalised vibration amplitude.
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Figure 14.14: First six eigenfrequencies of the magnet girder assembly with
the PETRA III girder (a) and the box girder (b) depending on
the magnet mass factor q, which was multiplied with the given
magnet masses and led to the total mass of all eight magnets
displayed on the top horizontal axis.

support points 1 and 3 (table 14.3). For the PETRA III girder, the sup-
port point 1 position slightly differed to reach the maximum 1st eigen-
frequency. Nevertheless, for both girder geometries, highest eigenfre-
quencies were obtained defining the three support points to form a
large (isosceles) triangle in the xy plane.

The obtained results based on a shell model were finally com-
pared to those of a volume model. While the shell model resulted
in a 1st eigenfrequency of 90 Hz for the box girder and 69 Hz for the
PETRA III girder, the volume model revealed 1st eigenfrequencies of
98 Hz for the box girder and 76 Hz for the PETRA III girder. Thus, the
results of both models coincided by 91% for the box girder and by
90% for the PETRA III girder.



160 Parametric Study on Components and Boundary Conditions

(a)

(b)

q = 0.10 q = 1.15 q = 2.15

xy
z

0.0 1.0

Figure 14.15: 1st mode shape of the magnet-girder assembly with the PE-
TRA III girder (a) and the box girder (b) depending on dif-
ferent magnet masses that were generated by multiplying the
mass of each magnet with the factor q. The colours represent
the normalised vibration amplitude.

Table 14.3: Position of the three support points (SPs) at a height of 900 mm
that led to the highest 1st eigenfrequency of the magnet-girder
assembly.

x value of the SP (mm) distance x of SPs (mm)
SP 1 SP 2 SP 3 SP 1-2 SP 1-3 SP 3-2

Box girder 1,645 4,255 2,950 2,610 1,305 1,305
PETRA III girder 1,935 4,255 2,950 2,320 1,015 1,305

14.2.2.2 Stiffness of the Girder Support

Similar to the results for the varying stiffness of the magnet-girder
connection, an increasing girder support stiffness resulted in an eigen-
frequency raise for both girder geometries until an almost constant
value was reached for a specific beam cross section diameter of about
50 mm for the 1st eigenfrequency (figure 14.18). For small beam di-
ameters, the 1st mode shape was characterised by a tilting rigid body
mode of the girder as shown exemplarily for the PETRA III girder
in figure 14.19. With increasing beam cross section diameter, the
rigid body mode transformed into a girder twist mode. A similar
behaviour of a rigid body mode being transformed into a girder de-
flection mode with increasing beam cross section diameter was also
observed for the higher-order mode shapes.

For the analysed girder mode shapes, primarily shear forces were
acting on the short support beams. Regarding a beam cross section
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Figure 14.16: 1st eigenfrequency of the magnet-girder assembly depending
on the position height and the distance between the three sup-
port points located at the front left (SP 1), the front right (SP 2),
and the back (SP 3) of the girder. The support points are posi-
tioned at different heights (i.e., z values) of 900 mm (a), 700 mm
(c), and 500 mm (e) for the PETRA III girder and of 900 mm (b),
700 mm (d), and 500 mm (f) for the box girder. The distances
in x direction between SP 1 and SP 2, between SP 1 and SP 3,
and between SP 2 and SP 3 are symbolised by blue asteriks,
red triangles, and green circles, respectively.
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Figure 14.17: 1st mode shape of the loaded PETRA III girder considering the
support point positions at x = 1,645 mm (SP 1), x = 4,255 mm
(SP 2), and x = 2,950 mm (SP 3, at the rear side of the girder)
leading to the highest 1st eigenfrequency. The support points
were located at heights of 900 mm (a), 700 mm (b), and
500 mm (c). The colours represent the normalised vibration
amplitude and the undeformed loaded girder structures are
sketched with grey lines.
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Figure 14.18: First six eigenfrequencies of the magnet-girder assembly de-
pending on the cross section diameter of the three beams con-
necting the PETRA III girder (a) and the box girder (b) to the
three bases.

diameter of 50 mm, the support stiffness for each support point can
be estimated as 5.95 ·103 N µm−1 considering equation 14.6.

14.2.3 Material Properties

The eigenfrequency strongly depended on the material properties.
Regarding the box girder, the 1st eigenfrequency differences com-
pared to the S235 girder coincided well with the

√
E/ρ ratio (cf., ta-

ble 14.2) indicating that a high
√

E/ρ ratio led to a high 1st eigenfre-
quency (figure 14.20). However, for the PETRA III girder, this relation
only partly applied, as the normalised 1st eigenfrequency values of
the aluminium and the mineral cast girder were lower than those of
the box girder.
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Figure 14.19: Side view (a) and 3D view (b) of the 1st mode shape of
the magnet-girder assembly based on the PETRA III girder.
The three different cross section diameters 5 mm, 50 mm, and
100 mm of the beams connecting the girder to the bases are
considered. The colours represent the normalised vibration
amplitude.

14.3 discussion

The parametric study revealed a strong impact of all analysed com-
ponents/boundary conditions on the eigenfrequencies of the magnet-
girder assembly. Generally, the majority of the analysed relationships
between the components/boundary conditions and the overall eigen-
frequencies were independent of the studied girder geometries. In
the following, the obtained results are discussed.

14.3.1 Magnets

The impact of the magnet position height and connection, the mag-
net connection stiffness, and the magnet mass on the magnet-girder
assembly eigenfrequencies was studied. In the following, some com-
ments on the obtained results are given.

Concerning the magnet position height and connection study, the
strong eigenfrequency decrease from 0 mm to 15 mm height for the
PETRA III girder resulted from the girder geometry. The beams con-
necting the magnets to the girder were fixed to the girder at the outer
part of the upper surface that was not directly supported by the ver-
tical girder walls, since those were slightly moved towards the girder
centre (cf., figure 14.1a). Consequently, already a slight lift of the mag-
nets above the girder surface resulted in high stresses – and thus high
deformations – in these areas. The connection stiffness of the magnets
was reduced and so were the eigenfrequencies. This was not the case
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Figure 14.20: 1st eigenfrequency of the magnet-girder assembly depending
on the material properties of the bases and the PETRA III
girder (a) and the box girder (b). Above each bar, the 1st eigen-
frequency value normalised with the 1st eigenfrequency for
S235 is given.

for the box girder, because the vertical girder walls were at the very
ends of the upper girder surface, which is why the connection area
to the beams was directly supported.

Regarding the study on the magnet connection stiffness, the analyt-
ical calculation of the magnet mode shape frequency was in the same
order of the numerically obtained value, but still differed (5.7 Hz vs.
1.1 Hz). The differences can be explained by the simplification of the
analytical model, in which the magnet volume was not considered.
Consequently, the centre of mass was assumed to be lower than that
in the numerical model and the magnet mass inertia was also ne-
glected. In addition, the girder had a certain stiffness, which was
abstracted to be infinite in the analytical model. However, since both
obtained frequency values were still in the same order, the numerical
value can be seen as plausible.

The analyses of the magnet mass impact on the eigenfrequencies
showed that the 1st box girder eigenfrequency did not vary with in-
creasing magnet mass. This highlights that the girder eigenfrequency
can be independent of the magnet mass, if the corresponding mode
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shape is characterised by a global rotation around an axis as close as
possible to the magnet axis (i.e., to the particle beam).

In summary, the study indicated that the following aspects posi-
tively influence (i.e., increase) the magnet-girder assembly eigenfre-
quencies:

− a low position of the magnets (i.e., as close as possible to the
upper girder surface),

− connecting the magnets to each other,

− a high stiffness of the connection between girder and magnets
(i.e., a high stiffness of the magnet alignment system),

− a low magnet mass, and

− mode shapes that show a global rotation around an axis close
to the particle beam.

The currently installed PETRA III girder is equipped with magnets
positioned high above the upper girder surface using an alignment
system for each magnet (cf., figure 13.6), which leads to a decrease of
the overall eigenfrequencies as shown in the parametric study. For
PETRA IV, a different magnet alignment system is planned to increase
the magnet support stiffness and to avoid low frequency magnet
eigenmodes.

Recently, the alignment system Easy Alignment System (EASy) has
been invented at DESY [134]. The EASy type A3 is discussed to be
placed between the PETRA IV magnets and the girder. The alignment
component is 234 mm high [134], which implies a distance between
magnets and girder similar to the maximum value of 215 mm that
was analysed in the present parametric study. First experiments on
the EASy A3 revealed a minimum horizontal stiffness of 50 N µm−1

and a vertical stiffness of slightly more than 1.0·103 N µm−1 [145].
In contrast, the parametric study model, in which each magnet

was connected to the girder using four beams with a cross section
diameter of 50 mm, showed a magnet support stiffness of 311 N µm−1

horizontally and 7.7·103 N µm−1 vertically. These values are signifi-
cantly higher than the measured stiffness for the EASy A3. Moreover,
considering the analytical calculations based on equation 14.4, a ver-
tical stiffness of 1,000 N µm−1 would correspond to a beam diameter
of about 18.1 mm. Following the relation between the beam cross sec-
tion diameter and the 1st eigenfrequency displayed in figure 14.12, a
cross section diameter of 18.1 mm would result in a 1st eigenfrequency
of the magnet-girder assembly of about 13 Hz. However, it shall be
noted again that this calculation is based on a simplified analytical
model, which is why the estimated eigenfrequency value, as well as
the calculated stiffness value of the magnet support have to be inter-
preted with caution. In further studies, the connection stiffness of the
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magnets positioned on the girder should be measured to ensure that
reliable values are discussed.

At the MAX IV synchrotron radiation facility laboratory, all mag-
nets positioned on one girder are linked in one large box to avoid
low frequency magnet bending modes [76]. The parametric study
results also indicated that connecting the magnets raises the overall
eigefrequencies, because rigid magnet modes at low frequencies are
prevented. However, the implementation of a magnet connection is
probably not possible for PETRA IV, because an easy and individual
adjustment of all magnet installed in the tunnel is required. Conse-
quently, the low frequency magnet bending modes have to be avoided
by a very high stiffness of the alignment system.

In the following girder development process (chapter 15), the mag-
nets will be considered as fixed to the upper girder surface, since
otherwise an optimisation to increase the girder modes would hardly
be possible due to the various low frequency magnet modes.

14.3.2 Girder Support

The study of the girder support position and stiffness indicated that
the following aspects increase the eigenfrequencies:

− a high position of the support points,

− a horizontal support point positioning in form of a large (isosce-
les) triangle, and

− a high girder support stiffness.

In different synchrotron machines worldwide, girders are fixed by
using more than three support points (e.g., SOLEIL [103] or NSLS-
II [139]). However, as already mentioned in chapter 13.3, more than
three support points result in an over-determined system, which
makes the girder alignment in the tunnel almost impossible. In addi-
tion, due to a possible ground settlement during the accelerator oper-
ation for many years, a girder alignment might be necessary. There-
fore, only three support points were considered here.

Based on the results, the support points should be positioned in a
large triangle involving an increased support span to obtain a higher
stability and thus higher eigenfrequencies. This was also stated by
Liu et al. [91] working on an APS-U girder design. Moreover, the sup-
port points should be placed as high as possible, which was also ob-
tained by Amirikas et al. [8] and in previous studies (cf., figure 14.5).
Low support point locations would decrease the eigenfrequencies
and increase the vibration amplitudes of the magnets in the case of
resonance, which should be avoided to guarantee a high functionality
of the particle accelerator.
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In addition to the support point position, a high stiffness of the
girder support system is essential, which is why an appropriate girder
alignment system should be chosen. Apparently, wedge jacks and
AirLoc AG’s precision levellers allow a high girder support stiffness,
because they have been used in the latest magnet-girder assemblies
(cf., chapter 13.3). Regarding the APS-U girder, the implementation of
stiff lateral pushers also rose the eigenfrequencies significantly [120].
Once a girder is aligned, an additional clamping system can further
increase the support stiffness and the magnet-girder assembly eigen-
frequencies, as applied to the SOLEIL girder [54, 103]. However, con-
sidering the targeted alignment tolerance of one girder to the neigh-
bouring girders of 50 µm [148], clamping an aligned girder might
lead to small structural deformations and thus to a misalignment of
the magnets.

It is also important to note that a high stiffness of the bases, on
which the girder is positioned, is necessary to obtain high eigenfre-
quencies. As shown in previous studies, a low base stiffness can
strongly reduce eigenfrequencies (cf., figure 14.5). For this reason,
the here considered bases were heavy and stable solid blocks, which
can also be utilised for PETRA IV.

14.3.3 Material Properties

The material properties strongly influence the eigenfrequencies of the
magnet-girder assembly. As eigenfrequencies are known to be pro-
portional to the Young’s modulus and anti-proportional to the mass
(cf., equation 8.1 or equation 8.12), the observed high dependency of
the 1st eigenfrequency on the

√
E/ρ ratio was expectable. However,

this effect seems to only fully apply to the simple box girder. The
PETRA IV girder shows a more complex geometry involving an irreg-
ular material (mass) distribution. Consequently, not only the

√
E/ρ

ratio, but also the irregular mass distribution has a significant effect
on the eigenfrequencies. Thus, it can be concluded that the consid-
eration of the

√
E/ρ ratio is very useful as a first approach to evalu-

ate the effectiveness of a girder (bases) material, especially for simple
girder structures, before further detailed analyses shall be carried out.

Aside from the
√

E/ρ ratio, further material properties have to
be taken into account for the decision on the girder/bases material:
Girders placed next to an undulator should have a very low magneti-
sability to avoid an undesired impact on the undulator magnetic field.
Also the temperature stability and corrodibility of a girder and bases
material are important characteristics, because variations in the tun-
nel air temperature and humidity can cause corrosion and structural
deformations. Although the PETRA IV tunnel temperature will be sta-
bilised to ±1 K (cf., chapter 13.4), an outage is always possible, which
is why the girder (and bases) material should show a high tempera-
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ture stability. However, the temperature stability will not be analysed
in this work.

As the desired material properties for the girder and bases have not
been specified yet, the following girder design process (chapter 15)
will consider S235 as material for both girder and bases. Girders of
other synchrotron facilities are made of similar materials such as car-
bon steel (ESRF-EBS [Cianciosi2016a]) or ductile cast iron (APS-U [120]).
The PETRA IV girder or bases might also be made of grey or spheroidal
cast iron. Both materials showed a

√
E/ρ ratio similar to S235 (cf.,

table 14.2) and the small deviations in the ratio correlate with the
1st eigenfrequency deviations. Consequently, based on the eigenfre-
quency results using a steel girder, the eigenfrequency values for a
cast iron girder can be estimated.

Since this work focuses on the 3 m PETRA IV girder, which is not
located directly next to an undulatur, the magnetisability is not a rel-
evant factor here. However, the parametric study results indicate that
the design process of a girder located close to an undulator should
consider alternative material properties (e.g., aluminium) from the be-
ginning, as the optimisation outcome can presumably not be applied
directly to a girder with a different

√
E/ρ ratio.

14.4 conclusion

The impact of different boundary conditions and material properties
on the magnet-girder assembly was studied. The loading conditions
(magnet position height and stiffness, and the magnet mass), the
girder support (location of the support points and the support stiff-
ness), and the material properties of the girder and bases strongly
influence the eigenfrequencies of the magnet-girder assembly.

Based on the results of the parametric study and the specifications
defined by DESY, the following boundary conditions were considered
for the subsequent development of a biologically inspired girder de-
sign (chapter 15):

− The magnets will be placed directly on the girder surface to
have a maximum stiffness and to be able to optimise the girder
without the appearance of magnet bending modes in the range
of low-order frequencies.

− The magnet mass will be multiplied by a factor q of 1.15 to
calculate conservatively with a slightly higher magnet load.

− The girder will be supported at three locations characterised by
the x values 1,935 mm (0.05 lG), 4,255 mm (0.95 lG), and 2,950 mm
(0.5 lG), which allowed an optimum stability. The girder will be
connected to the bases via beams each showing a cross section
diameter of 50 mm.
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− S235 will be defined as material for the girder and the bases. The
latter will be considered in the models as solid blocks.





15
D E V E L O P M E N T O F A B I O L O G I C A L LY I N S P I R E D
G I R D E R D E S I G N

An innovative girder structure is required to achieve the particle beam
stability that is essential for an optimum functionality of the PETRA IV
machine. In this chapter, the development of a design process for a
new 3 m PETRA IV girder is described. The design process is based on
biologically inspired structures and optimisation techniques.

15.1 material and methods

The development of a new girder design involved different steps,
which are summarised in figure 15.1. At first, a topology optimi-
sation was performed to disclose an optimum material distribution
(cf., figure 4.1) based on the given specifications that are presented in
chapter 13.4. However, a topology optimisation only indicates where
material should be placed or removed and does not present an opti-
mum dimensioned structure.

Figure 15.2 shows exemplarily the development process of an op-
timised 2D structure with the objective to increase the stiffness at
reduced mass. Based on the defined boundary conditions and load
cases, the topology optimisation identifies an optimum material dis-
tribution. The abstraction of the topology optimisation result allows
the creation of a beam model with an initial constant cross section
diameter. Subsequently, a cross section optimisation shows the op-
timum dimension of each strut. The result clearly varies from the
cross section dimensions obtained by the topology optimisation. Fi-
nally, the structure was partly adapted, e.g., replacing sharp corners
by smooth connections and thickening critical intersection points to
allow a successful manufacturing process.

Thus, also here, the topology optimisation served as an inspiration
for an optimum material distribution within the defined design space.
The topology optimisation result was interpreted and abstracted, be-
fore, in combination with the implementation of biologically inspired
structures, a parametric beam-shell model of the girder was created.
The subsequent cross section optimisation using the evolutionary strat-
egy led to numerous structures that were evaluated. After transform-
ing the best structure into a volume model, the results of both the
beam-shell and the volume model were compared to identify a possi-
ble deviation of the results using a comparably fast calculating beam-
shell model. The volume model was then improved implementing
further biologically inspired structures. Last structural adaptations
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demanded by changes in the specifications and by special require-
ments regarding the manufacturing process led to the final girder
structure. After the manufacturing process, the eigenfrequencies and
mode shapes were measured performing impact tests and compared
to the numerical results obtained for the volume model.

Specifications

Topology
optimisation

Parametric
beam-shell

model

Cross section
optimisation

Optimum
beam-shell

model

Volume
model

Final
structure

Manufac-
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Vibration
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Result in-
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Transformation
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of bio-inspired

structures
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Result
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Figure 15.1: Overview of the girder design procedure including nine steps.

Specifications:
boundary conditions & load cases

Topology optimi-
sation result

Beam model
Cross section

optimisation result
Final structural

adaptations

Figure 15.2: Development of an optimised 2D structure based on the given
specifications. The process comprised a topology optimisation,
the development of a beam model, a cross section optimisation,
and the finalisation of the structure implementing small struc-
tural adaptations, e.g., rounding of sharp edges and corners.
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15.1.1 Topology Optimisation

A topology optimisation was conducted to reveal an optimum mate-
rial distribution. The model was built up following the specifications
in chapter 13.4 and the model assembly shown in figure 13.9. Thus,
the design space, from which material was removed during the opti-
misation, was shaped like a box. However, the upper surface with a
thickness of 20 mm was defined as non-design space, because a con-
tinuous upper girder surface was required for the later fixation of
different components in the tunnel. The box girder was equipped
with magnets and connected via beams to the bases. Consequently,
the non-design space comprised, aside from the upper girder surface,
the magnets, the bases, the connection beams, and the RBE3s defined
between the connection beams and both the girder and the bases.

The box girder, the magnets, and the bases were meshed with con-
stant element sizes of 20 mm, 50 mm, and 100 mm, respectively, lead-
ing to a very fine mesh of the design space to allow the development
of clear load paths during the optimisation. Table 15.1 lists the total
number of nodes and elements.

Table 15.1: Number of volume mesh nodes and elements of the topology
optimisation for the 3 m PETRA IV girder.

Number of nodes Number of elements

Girder design space 279,541 1,574,726
Girder non-design space 17,150 50,181
Magnets 7,066 25,725
Bases 2,609 9,132
Total 306,366 1,659,764

All nodes of the lower bases’ surfaces were considered as fixed (all
translations = all rotations = 0). A modal load case to calculate the
1st eigenfrequency and a linear static load case to obtain the maxi-
mum static deformation due to gravity (g = 9.81 m s−2 in -z direction)
were defined.

The optimisation objective was to maximise the 1st eigenfrequency
considering two constraints: a maximum volume fraction of 20% for
material removal from the solid design space and a maximum static
deformation due to gravity of 0.05 mm.

The topology optimisation result assigns to each element of the de-
sign space an artificial element density value. While a value of 1 indi-
cates that the corresponding element is essential to reach the defined
objectives, elements with low artificial density values are removed.
Here, the threshold value of the artificial element density was chosen
as low as possible to obtain a connected structure.
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15.1.2 Abstraction and Cross Section Optimisation

The structure obtained from the topology optimisation was abstracted
into a beam-shell model. For this, strut- and beam-like parts were
replaced by lines (beams) and surface-like parts by surfaces (shells).
Thick, surface-like parts were abstracted as surfaces stiffened by ad-
ditional rectangular ribs or as sandwich structures with an inner core
based on ribs oriented in 45◦ angles with respect to the horizontal.

All lines were divided into sections of about 50 mm length and
considered as CBEAMs that were connected to the upper solid plate via
RBE3s. The surfaces were meshed with an element size of 30 mm using
Shell elements (CTRIAs) and connected to the corresponding beams by
sharing nodes. The top surface that had been defined as non-design
space, the magnets, and the bases were considered as solids. Also
the beams connecting the girder and the bases were included in the
model.

Subsequently, an evolutionary strategic optimisation of the shell
thicknesses and the beam cross section diameters was performed us-
ing the optimiser Octopus implemented in Grasshopper that permitted
a multi-objective optimisation considering various parameters (for
more information related to Octopus, it is referred to chapter 9). The
optimisation objectives were (1) the maximisation of the 1st eigenfre-
quency, (2) the minimisation of the maximum deformation due to
gravity, and (3) the minimisation of the girder mass. The 21 parame-
ters involved 11 shell thicknesses (definition range for each thickness:
5.0-30.0 mm) and 10 beam cross section diameters each varying in the
range 20.0-70.0 mm. The population size was set to 100 and the stop-
ping criterion was a maximum number of 20 generations. Regarding
the optimisation settings, the default Octopus values were chosen (cf.,
table 9.1).

All structures forming the last generation were considered for eval-
uation choosing the structure with the highest 1st eigenfrequency as
the girder structure with an optimum parameter combination. With
the help of different algorithms implemented in the Grasshopper-based
module ELISE, the beam-shell model was transferred into a volume
model that was also evaluated regarding its eigenfrequencies, mode
shapes, and maximum static displacement due to gravity
(g = 9.81 m s−2 in -z direction). A comparison of the results obtained
by the volume model to those based on the beam-shell model in-
dicated whether the fast calculating beam-shell model had already
revealed plausible results.
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15.1.3 Biologically Inspired Structures and Further Structural Adaptation

Based on the numerical results of the previous section, structural
adaptations of the girder were performed. The 1st mode shape of
the optimised girder structure showed a bending of the large lower
strut. In order to avoid this deformation and to raise the correspond-
ing eigenfrequency, a vertical strut was implemented in the middle
front of the structure connecting the large lower strut to the upper
girder surface.

Subsequently, the structure was provided with different biologi-
cally inspired structural elements to further improve both the me-
chanical properties and the design. Table 15.2 summarises all biologi-
cally inspired structures implemented in the girder design.

Due to posterior changes in the specifications by DESY, further
structural changes have been applied to the designed girder. These
changes involved a small reduction of the girder design space, which
led to the removal of a small amount of material at the left girder
side close to the base. In addition, the girder structure was slightly
adapted to create space for a middle, inner screw. In the areas of the
support point positions, material was added horizontally to fix the
girder on machine shoes that allow a later vertical adjustment and
connect the girder to the bases. At DESY, it was decided to use the
machine shoe type UMS5-KDSA (isoloc Schwingungstechnik GmbH,
www.isoloc.de).

In the final vibration experiments, the eigenfrequencies and the
mode shapes of the unloaded girder positioned on soft springs were
measured. In order to compare the numerical results to those ob-
tained by the experiments, the eigenfrequencies and the mode shapes
of the free and unloaded bio-inspired girder were calculated specify-
ing grey cast iron (EN-GJL-350) as girder material (cf., material prop-
erties in table 14.2). In addition, the 1st eigenfrequency of the free
and unloaded PETRA III girder of 4.2 m length currently installed in
the tunnel (figure 13.6) was also calculated considering grey cast iron
as girder material and compared to that of the bio-inspired girder.

After that, the magnets, the bases provided by DESY, and the ma-
chine shoes were included into the model to obtain the eigenfrequen-
cies, the mode shapes, and the maximum deformation due to gravity
of the magnet-girder assembly. For the bases, spheroidal cast iron
(EN-GJS-700-2) was defined as material (cf., material properties in ta-
ble 14.2). The machine shoes were abstracted as solid cylinders made
of S235 following the dimensions of the already mentioned machine
shoe type UMS5-KDSA. For all model components, a fine volume
mesh was used as characterised in table 15.3.

www.isoloc.de
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Table 15.2: Five biologically inspired design principles implemented in the
PETRA IV girder design. The figures show the branches of a
tree (1), a shell structure detail of the diatom Thalassiosira sp.
(© AWI, the scale bar represents 10 µm) (2), a detail of a Scan-
ning Electron Microscopic (SEM) image of the diatom Roperia
tesselata (reprinted from Lee and Lee [87] with permission from
Taylor & Francis, the scale bar represents 1 µm) (3), a SEM im-
age of Stephanopyxis nipponica (reprinted from Ferrario et al. [48]
with permission from Schweizerbart science publishers, the scale
bar represents 10 µm) (4), and a SEM image of Hemiaulus sp.
(reprinted from Friedrichs [51] with permission from the au-
thor) (5).

(1) Hierarchical structures: Tree branches are
hierarchical structures allowing a smooth
load distribution and high stiffness. A hier-
archical structure was implemented in the
lower part of the girder structure replacing
the cross-struts and the small surface in be-
tween that were obtained from the topology
optimisation.

(2) Voronoi combs: Voronoi combs present in
many diatom shells, e.g., Thalassiosira sp.,
lead to high surface stiffening, high eigen-
frequencies, and increased energy absorp-
tion. Here, Voronoi combs replaced the ini-
tially regular rectangular ribs of four sur-
faces.

(3) 45◦ oriented ribs: Many diatom shell struc-
ture show structures oriented in 45◦, e.g.,
Roperia sp., which increase the torsional
stiffness. These ribs were implemented in
the girder structure to increase the torsional
stiffness, as the lower order mode shapes
were likely to be characterised by a global
girder torsion.

(4) Round / oval holes: Round/oval structures
result in a reduction of peak stresses and
are present in numerous diatom shell struc-
tures, e.g., in Stephanopyxis sp. Additionally,
these holes reduce weight. They were im-
plemented in the back surface of the girder
structure. Besides the weight reduction,
these structures are also essential for the
subsequent casting process, because they al-
low the removal of material inside.

(5) Smooth connections: In almost all diatom
shells, smooth connections and transitions
to reduce peak stresses can be observed.
Smooth connections were also adopted to
the girder structure. Besides the reduction
of peak stresses, it is also necessary for a
successful casting process.
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Table 15.3: Number of volume mesh nodes and elements of the final magnet-
girder assembly for the 3 m PETRA IV girder.

Number of nodes Number of elements

Girder 499,552 2,815,203
Magnets 197,111 920,933
Mashine shoes 1,164 4,202
Bases 35,472 162,810
Total 733,299 3,903,148

15.1.4 Manufacturing and Impact Testing

The designed girder structure was manufactured by the foundry
Wurzen GmbH using the casting technology in connection with 3D
printed sand moulds. Grey cast iron (EN-GJL-250) was used due to its
low ductility [184], which supported the filling of the complex mould.
Wurzen GmbH also took care of additional adaptations of the manu-
factured part requested by DESY, including bore holes, notches, and a
high surface evenness.

Impact testing was conducted at DESY to measure the eigenfrequen-
cies of the free and unloaded girder. The girder was positioned on
three springs to abstract the free positioning (cf., figure 15.15). Eight
uniaxial accelerometers (Type 4507 B 005, Brüel & Kjær) were fixed
with resin to the upper girder surface at the different positions shown
in figure 15.3. Using a recoilless hammer (Halder Supercraft 3377.050,
1.15 kg), the girder was hit through a rubber mat at the positions 4
and 8. Subsequently, the accelerometers were fixed to one pedestal
and to the floor next to the set up in order to measure the vibrations
of the pedestal and the floor. After converting the analog signals
into digital signals using the ADC Data Translator DT9857E-08, the
custom-made software VSI DataServer (Mark Lomperski, DESY) was
utilised to store the data and perform the Fourier transformation to
obtain the Power Spectral Density PSD of the girder.

x

y
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2

3

4

5

6

7

8

Figure 15.3: Top view of the bio-inspired girder, in which the positions 1
to 8 of the eight accelerometers are shown in black circles. The
considered coordinate system differs from that used in the sim-
ulations.
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The measured first five eigenfrequencies of the girder corresponded
to the average of the eigenfrequency values detected by the eight ac-
celerometers. Deviations between the simulation results and the mea-
sured eigenfrequencies were calculated using equation 8.11.

As the impact testing did not involve a force measuring modal ham-
mer, a custom-made MATLAB (The MathWorks, Inc.) script (Daniel
Thoden, DESY) was used to obtain the measured mode shapes (i.e.,
the displacement of the upper girder surface) from the acceleration
data. The first step of the procedure included in the MATLAB script
was the double integration of the measured data using the Newton-
Cotes formulas (quadrature). Then, the eigenfrequencies were sepa-The Newton-Cotes

formulas are used
for numerical

integration. They
are helpful for

integrand data given
at equidistant points.

IIR filters produce
filters with sharp
frequency cutoff

characteristics and
only require a small

number of
coefficients and thus

comparably little
memory capacity.

They are often
applied to obtain the

amplitude
response.[126]

rated applying a 6th order Infinite Impulse Response (IIR) bandbass fil-
ter. After applying a frequency bandpass filter with the range 90% fn

to 110% fn ( fn denotes the n-th eigenfrequency) to the data, the re-
sulting displacement was plotted for each accelerometer in a 3D plot
matching the actual accelerometer positions. A movie was created for
each mode shape visualising the vibration of the upper girder surface,
which was compared to the numerically obtained mode shapes.

15.2 results

This sub-chapter presents the results of the girder development pro-
cess aiming at a biologically inspired PETRA IV girder design.

15.2.1 Topology Optimisation

The topology optimisation resulted in a continuous structure involv-
ing all elements of an artificial element density larger than 0.55 (fig-
ure 15.4a). At a first glance, the structure reminded of a bridge. It con-
sisted of two large arch-like structures connected to the upper girder
surface, which were also interconnected at several positions. The rear
arch-like structure was filled with matrial. At both ends of the front
arch-like structure, material was accumulated forming surface-like
structures. The convergence plots shown in appendix A.5 indicated
a successfull maximisation of the defined optimisation objective con-
sidering the constraints on the maximum static displacement and the
volume.

15.2.2 Abstraction and Cross Section Optimisation

The topology optimisation result was abstracted to a beam-shell mod-
el to perform a cross section optimisation. As illustrated in figure 15.4b,
thin, beam-like structures were abstracted as curves/lines, whereas
large, surface-like structures were considered as surfaces. The rear,
thick arch-like structure was transformed into a biologically inspired
sandwich structure with two outer surfaces and inner ribs oriented
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(a) Topology optimisation result
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(b) Beam-shell model

Figure 15.4: Front view (1), side view (2), and 3D view (3) of the topology
optimisation result for the loaded girder structure (a) and the
abstracted beam-shell model (b). The topology optimisation re-
sult comprises all elements with an artificial element density
larger than 0.55 represented by the colouring.
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with an angle of 45◦ towards the horizontal. The two surfaces on the
right and on the left side of the structure were stiffened by applying
cellular structures as ribs. In a first step, regular rectangular ribs were
applied.

The evolutionary strategic optimisation led to numerous girder
structures varying in their parameter values. Figure 15.5 shows the
highest 1st eigenfrequency reached in each generation and the cor-
responding maximum static displacement and girder mass of that
girder structure. All three objectives converged towards a maximised
(1st eigenfrequency) or minimised (maximum static deformation and
girder mass) value. However, the differences between the objective
values of the first and the last generation were only 1.3% (1st eigen-
frequency), -3.0% (maximum static deformation), and -2.9% (girder
mass) considering equation 8.11. Comparing all structures of the first
and the last generation (figure 15.6), a general improvement of the
whole population can be seen. The structures were pushed towards
a higher 1st eigenfrequency, a lower girder mass, and a lower maxi-
mum static displacement as it has been defined in the optimisation

5 10 15

71.2

71.7

Iteration (-)

1st
ei

ge
nf

re
qu

en
cy

(H
z)

f1

47

48
M

ax
im

um
st

at
ic

de
fo

rm
at

io
n

(µ
m

)
wmax

(a) 1st eigenfrequency and maximum static deformation

5 10 15

71.2

71.7

Iteration (-)

1st
ei

ge
nf

re
qu

en
cy

(H
z)

f1

1.85

1.89

G
ir

de
r

m
as

s
(t

)

m

(b) 1st eigenfrequency and girder mass

Figure 15.5: The cross section optimisation convergence plots for the beam-
shell girder model are displayed. For each iteration (genera-
tion), the highest 1st eigenfrequency f1 and the corresponding
maximum static deformation wmax (a) as well as the correspond-
ing girder mass m (b) are given.
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objectives. Four different parameter combinations were exemplarily
highlighted. The structures 1 and 2 showed a very similar maximum
static deformation, whereas their girder mass and 1st eigenfrequency
varied strongly. In contrast to that, the structures 1 and 4 had a sim-
ilar girder mass, but differed in their maximum static displacement
and their 1st eigenfrequency. Also interesting is the comparison of the
structures 2 and 3, which were characterised by the same 1st eigen-
frequency and also a similar girder mass, but showed very different
maximum static displacements.

The girder structure with the highest 1st eigenfrequency (high-
lighted with a square in figure 15.6) showed a 1st eigenfrequency of
71.8 Hz, a maximum static deformation of 0.047 mm, and a girder
mass of 1.84 t. The beam cross section diameters and shell thicknesses
leading to this structure are illustrated in figure 15.7. The beam cross
section diameters varied from 39.6 mm to 68.8 mm and the shell thick-
nesses from 13.1 mm to 29.5 mm.
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Figure 15.6: For all structures of the first and the last generation obtained
by the evolutionary strategic cross section optimisation, the
1st eigenfrequency and the corresponding maximum static de-
formation (a) as well as the 1st eigenfrequency and the corre-
sponding girder mass (b) are displayed. Four structures are
exemplarily bordered in shape of a square (structure 1), a dia-
mond (structure 2), a circle (structure 3), and a triangle (struc-
ture 4).
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Table 15.4 summarises the properties of the chosen girder structure
with the highest 1st eigenfrequency based on a beam-shell model
and a volume model. The results coincided very well showing de-
viations of maximum 9.2% for the first four eigenfrequencies, 2.0%
for the maximum static deformation, and 0.0% for the girder mass.
Figure 15.8 displays the first four mode shapes considering the vol-
ume model, which coincided with those of the beam-shell model. All
mode shapes showed global girder deformations. Additionally, the
first two mode shapes were characterised by a strong deformation of
the large lower strut.
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Figure 15.7: The structure with the highest 1st eigenfrequency among all
structures of the last optimisation iteration was based on the
displayed shell thicknesses (circled values) and beam cross sec-
tion diameters (framed values). The border colours of the di-
mensions given in mm match the colours of the corresponding
shell or beam. The upper girder surface is hidden.

Table 15.4: First four eigenfrequencies, maximum static deformation due to
gravity, and the girder mass for the beam-shell model and the
volume model. The deviation of the beam-shell model compared
to the volume model is given. In all models, steel S235 was con-
sidered as material of the girder and the bases.

Beam/shell
model

Volume
model

Deviation

Eigenfrequencies f1 67.3 Hz 69.3 Hz -2.9
f2 73.2 Hz 72.8 Hz 0.5%
f3 87.4 Hz 96.3 Hz -9.2%
f4 95.1 Hz 104.3 Hz -8.8%

Maximum static deformation 0.051 mm 0.050 mm 2.0%
Girder mass 1.84 t 1.84 t 0.0%
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Figure 15.8: 1st (a), 2nd (b), 3rd (c), and 4th (b) mode shape of the volume
model that resulted from the cross section optimisation. The
colours represent the normalised vibration amplitude and the
undeformed magnet-girder assemblies are sketched with grey
lines. Steel S235 is specified as material of the girder and the
bases.

15.2.3 Biologically Inspired Structures and Further Structural Adaptation

The final bio-inspired girder design is pictured in figure 15.9 includ-
ing an illustration of the biologically inspired features implemented
in the design. Moreover, the additional structural adaptations due to
late changes in the specifications are marked. They include (1) the
slight removal of material at the front-left side and at the rear middle
creating space for the bases that were moved horizontally towards
the beam axis, (2) the small material removal at the lower side of the
upper thick surface to make space for the middle screw, and (3) the
implementation of material in form of ’ears’ at the three support point
positions allowing a connection to the machine shoes.

The designed girder mad of grey cast iron had a volume of 2.76 m3

and a mass of 2.01 t. The eigenfrequencies of the free, unloaded girder
and of the magnet-girder assembly, considering the bases provided
by DESY and the machine shoes abstracted as cylinders, are listed in
table 15.5. The 1st eigenfrequency dropped by 54% comparing the
magnet-girder assembly to the free girder. The 1st eigenfrequency of
the free, 4.2 m long PETRA III girder was with 119.1 Hz very similar to
that of the here designed girder.

Figure 15.10 shows the first four mode shapes of the free, unloaded
girder. The 1st eigenmode is a twist around the centre of the upper
girder surface. This corresponds to the 1st mode shape of the magnet-
girder assembly (figure 15.11). The remaining displayed mode shapes
of the magnet-girder assembly differed from those of the free un-
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loaded girder. Nevertheless, they were were similar to those of the
first volume model (figure 15.8). However, the 1st mode shape showed
already a deformation of the bases, which has not been observed for
the previously used box-shaped bases.

Regarding the maximum deformation due to gravity of the magnet-
girder assembly, the highest value of 53 µm ocurred in the middle
front of the girder far away from the support points (figure 15.12).
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Figure 15.9: Rear view (a) and front view (b) of the biologically inspired
girder design. The figures of the biological role models are
displayed: a detail of a Scanning Electron Microscopic (SEM)
image of the diatom Roperia tesselata (reprinted from Lee and
Lee [87] with permission from Taylor & Francis, the scale bar
represents 1 µm) (i), the diatom Thalassiosira sp. (© AWI, the
scale bar represents 10 µm) (ii), a SEM image of Stephanopyxis
nipponica (reprinted from Ferrario et al. [48] with permission
from Schweizerbart science publishers, the scale bar represents
10 µm) (iii), a SEM image of Hemiaulus sp. (reprinted from
Friedrichs [51] with permission from the author) (iv), and the
branches of a tree (v). The additional structural modifications
are bordered with dashed black lines and include material re-
moval due to position changes of the bases (1) and due to the
location of a large middle screw (2) as well as the implementa-
tion of ’ears’ (3).
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Table 15.5: First five eigenfrequencies of the free unloaded bio-inspired
girder and the magnet-girder assembly considering the bio-
inspired girder. Grey cast iron is specified as girder material.

free and unloaded girder magnet-girder assembly

f1 119.6 Hz 55.0 Hz
f2 189.8 Hz 59.8 Hz
f3 236.8 Hz 74.8 Hz
f4 257.1 Hz 82.7 Hz
f5 290.4 Hz 94.6 Hz

(a) (b)

(c) (d)

xy
z

0.0 1.0

Figure 15.10: 1st (a), 2nd (b), 3rd (c), and 4th (d) mode shape of the free and
unloaded final biologically inspired girder. The colours rep-
resent the normalised vibration amplitude. Grey cast iron is
specified as girder material.
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Figure 15.11: 1st (a), 2nd (b), 3rd (c), and 4th (d) mode shape of the final
magnet-girder assembly. The colours represent the normalised
vibration amplitude and the undeformed models are sketched
with grey lines. Grey cast iron is specified as girder material,
spheroidal cast iron as material of the bases.
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Figure 15.12: Deformation due to gravity of the final magnet-girder assem-
bly. The colours represent the deformation in mm and the
undeformed model is sketched with grey lines. Grey cast iron
is specified as girder material, spheroidal cast iron as material
of the bases.

15.2.4 Manufacturing and Impact Testing

The designed girder structure was manufactured using the casting
technology. Bauch [23] documented the manufacturing process. The
final mould is displayed in figure 15.13a. At a temperature of 1,340 ◦C,
the liquid metal (grey cast iron EN-GJL-250) was filled into the
mould’s voids (figure 15.13b) leading to the cast component illus-
trated in figure 15.13c. Figure 15.13d shows the final cast component
after removing sand leftovers, burrs, and feeders and after the clean-
ing procedure.
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Figure 15.13: Casting process of the biologically inspired girder including
the development of the final mould (a), the filling of the mould
with liquid metal (b), the raw cast component (c), and the
cleaned cast component (d). The photos are displayed with
permission from Giesserei Wurzen GmbH.
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In the end, further structural adaptations including bore notches,
holes, and the requested surface evenness were applied to finalise
the developed biologically inspired PETRA IV girder structure (fig-
ure 15.14).

The impact testing allowed the detection of the first five eigenfre-
quencies of the free and unloaded bio-inspired girder, which were
visible as peaks in the Power Spectral Density (PSD) plot (figure 15.15)
that additionally shows the numerically obtained eigenfrequencies.
The measured peak at the 2nd eigenfrequency value was not as sharp
as the peaks for the other four eigenfrequencies. Moreover, there were
several smaller peaks at frequency values below 80 Hz. Likewise, the
PSD plot of the floor and the pedestal (figure 15.16) showed various
peaks between 20 Hz and 80 Hz. In addition, there was a peak at
about 150 Hz in the PSD of the pedestal, which was not present in the
floor movement.

In table 15.6, the measured eigenfrequencies are compared to the
numerically obtained values. As it was already visible in the PSD

plots, both eigenfrequency values corresponded very well, showing
deviations of maximal 5.2%.

The visualisation of the vibration amplitude of the upper girder
surface based on hitting the girder on position 8 is displayed in fig-
ure 15.17, exemplarily for the 1st eigenfrequency. The data obtained
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Figure 15.14: Photos of the manufactured bio-inspired girder in a front view
(a) and back view (b). Springs are positioned between the
bases and the girder. This setup was used for the impact test-
ing. The photos are printed with permission from DESY.
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by the eight accelerometers allowed the detection of a torsional 1st

mode shape, which corresponds to the mode shape obtained by the
modal analysis (cf., figure 15.10a). A comparably high displacement
was detected at the position 8, where the girder had been hit for this
impact testing.
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Figure 15.15: Power spectral density (logarithmic scale) depending on the
frequency obtained by eight accelerometers fixed to the upper
surface of the biologically inspired girder. The unloaded girder
was positioned on springs and hit with an impact hammer
on position 4. The grey vertical lines show the numerically
obtained eigenfrequencies.
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Figure 15.16: Power spectral density (logarithmic scale) depending on the
frequency obtained by two accelerometers fixed to the floor
and to the pedestal, on which is biologically inspired girder
was placed.
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Table 15.6: First five eigenfrequencies of the free unloaded bio-inspired girer
obtained by simulation and by measurements based on impact
testing. The measured eigenfrequencies are the mean values of
the eight sensors positioned at different locations of the upper
girder surface. The deviation between the measured and the sim-
ulated eigenfrequencies is also given.

Simulation Measurement Deviation

f1 119.6 Hz 116.6 Hz -2.5%
f2 189.8 Hz 199.7 Hz 5.2%
f3 236.8 Hz 238.7 Hz 0.8%
f4 257.1 Hz 250.2 Hz -2.7%
f5 290.4 Hz 292.5 Hz 0.7%

0
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-5

Figure 15.17: Visualisation of the measured 1st mode shape of the bio-
inspired girder based on eight accelerometers placed on the
upper girder surface. The vertical axis shows the displacement
in µm. The figure is made by and printed with permission
from Daniel Thoden, DESY.

15.3 discussion

In this chapter, the results of the girder development process are dis-
cussed.

15.3.1 Topology Optimisation

The topology optimisation converged successfully and the chosen
mesh properties were appropriate, since the establishment of clearly
defined load paths was possible.

The resulting unsymmetrical structure was comparable to a typical
bridge structure. A girder encounters high loads due to the heavy
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magnets it has to carry. Thus, a bridge-like structure was expected to
appear, since a maximum static deformation due to gravity was set
as a constraint. The non-symmetry of the structure results from the
similarly non-symmetrical loading. In addition, Warwick et al. [190]
stated that topology optimisations with frequency objectives rarely re-
sult in symmetrical structures, because the mode shapes of complex
geometries are often non-symmetrical. Regarding compliance min-
imisation objectives, however, topology optimisations often lead to
symmetric structures allowing an equally distributed load path. Con-
sequently, although the here generated structure is non-symmetrical,
it still has the appearance of a symmetrical structure that was de-
formed afterwards.

15.3.2 Abstraction and Cross Section Optimisation

The structure resulting from the topology optimisation was success-
fully abstracted into a beam-shell model, because both the load paths
and the surface-like structures were explicitly visible.

The subsequent cross section optimisation showed a clear conver-
gence of the three optimisation objectives. A comparison of the struc-
tures forming the first and the last generation of the optimisation in-
dicated a general improvement of the properties, i.e., the 1st eigenfre-
quency increased and the maximum static deformation and the mass
decreased. Thus, it can be concluded that the algorithm worked suc-
cessfully. However, the cross section optimisation improved the ob-
jectives only slightly: the maximum 1st eigenfrequency increase from
the first to the last generation was only 1.3%, and the corresponding
decrease in the maximum static deformation and the mass was -3.0%
and -2.9%, respectively. The obtained optimum structure was based
on cross section values that strongly varied, which possibly shows
that the optimisation was yet successful.

On the one hand, the small improvement of the objectives might in-
dicate that the topology optimisation result and the abstraction into
a beam-shell model resulted already in a girder structure with very
good properties, where the 1st eigenfrequency could almost not be in-
creased further considering the defined boundary conditions. On the
other hand, it is possible that the improvement of the optimisation
objectives was limited due to the used optimisation method. As al-
ready discussed in chapter 9.3.3, evolutionary strategic optimisations
do not always reveal the best solution, because the algorithm might
have followed a local maximum of the fitness landscape instead of
the global maximum. Thus, although all defined optimisation objec-
tives converged, they possibly converged towards a local maximum.
Also, the defined optimisation settings and the number of parameters
could have influenced the only small improvement of the structures
from the first to the last generation.
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In general, raising the number of parameters in an evolutionary
strategic optimisation certainly increases the computational effort.
Thus, although the struts of the girder model were subdivided, the
same cross section diameter values were assigned to all subdivisions,
because otherwise the number of parameters would have been too
large. The large strut in the front of the beam-shell model, for exam-
ple, certainly plays an important role for the stability of the structure.
Varying cross section diameters along the strut could have further im-
proved the girder structure. To study the impact of many parameters
on the analysed properties, a combination of the optimisation with a
preceding Design of Experiments (DoE) is possible. The DoE identifies
the impact of each parameter on the overall objectives. Thus, more
parameters (i.e., varying cross-section diameters along one strut or
different thicknesses applied to one shell) could have been consid-
ered. The outcome of the DoE would indicate the parameters strongly
influencing the eigenfrequency and the maximum static deformation.
Those parameters would have then been included in the subsequent
evolutionary strategic optimisation, while less affecting parameters
would have been given a constant cross section value. Thus, in con-
tinuative studies, the effectiveness of a DoE prior to the evolutionary
strategic optimisation should be studied.

The eigenfrequencies and the maximum static deformation due to
gravity of the beam-shell model conformed to the corresponding val-
ues of the volume model. The appearing deviations of 0.5% to 9.2%
(absolute values) can be explained by the different mesh properties
and also by small structural adaptations due to transforming the
beam-shell model into a volume model. Since neither the structure,
nor the mode shape were symmetrical, the small structural adapta-
tions affected some mode shapes (and thus the corresponding eigen-
frequencies) more strongly than others. While the 1st and 2nd eigenfre-
quency coincided by more than 97%, the 3rd and 4th eigenfrequency
varied up to 9.2%. The 3rd and 4th mode shapes involved not only a
girder deflection, but also deformations of the bases, which did not
occur for the 1st and 2nd mode shape. A detailed view on the connec-
tion between girder and bases shows that the transformation of the
beam-shell model into the volume model made the corners of the up-
per girder surface round (figure 15.18). This involved the removal of
material at the connection point to the beam that connected the girder
and the bases. Thus, more RBE3 were necessary to connect the beam
to the girder, which presumably increased the connection stiffness
and thus the eigenfrequencies of the volume model compared to the
beam-shell model. However, both models can be seen as plausible, be-
cause the mode shapes coincided and the eigenfrequency deviations
were small taking the size and the complexity of the structure into
account.
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Figure 15.18: Beam-shell model with displayed cross sections (a) and vol-
ume model (b) of the best magnet-girder assembly that re-
sulted from the cross section optimisation. For both models,
a detailed view on a beam connecting the girder to the bases
is given. The models are composed of the girder (light grey),
the bases (dark grey), the magnets (green), the beams connect-
ing the girder to the bases (blue), and the RBE3 elements (red).

15.3.3 Biologically Inspired Structures and Further Structural Adaptation

The successful implementation of biologically inspired structures into
the girder design led to a complex girder structure with an attractive
design.

The comparison of the 1st eigenfrequency of the free and unloaded
bio-inspired girder to the 1st eigenfrequency of the free and unloaded
PETRA III girder (figure 13.6) reveals the same 1st eigenfrequency value
(120 Hz vs. 119 Hz) specifying grey cast iron as girder material. Note
though, that the PETRA III girder was 4.2 m long, while the length
of the here developed girder was 2.9 m. Yet, this comparison is only
partly meaningful for the application in the synchrotron facility, be-
cause the properties of the loaded girder positioned on the bases in-
side the tunnel are relevant and do certainly vary from the properties
of the free and unloaded girder.

Comparing the 1st eigenfrequency of the bio-inspired magnet-
girder assembly of 55 Hz to the 1st eigenfrequency of 69 Hz of the
magnet-girder assembly obtained after the cross section optimisation
(volume model) gives a 21% lower 1st eigenfrequency value of the
first model. It has to be noted, though, that a comparison of both
models is hardly possible, because – aside from the different mesh
properties - they varied in the geometry and the material properties
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of the girder (S235 vs. grey cast iron) and the bases (S235 vs. spheroidal
cast iron). The study on the impact of the material properties on the
magnet-girder assembly had already shown that grey cast iron re-
duces the 1st eigenfrequency by almost 20% compared to S235 (cf., fig-
ure 14.19). Also the mounting stiffness of the girder has a strong im-
pact on the eigenfrequencies, which has also been investigated in the
parametric study (cf., figure 14.17). The mounting stiffness of the final
bio-inspired magnet-girder assembly was reduced due to the smaller
bases, which is presumably why the 1st mode shape at 55 Hz showed
already deformations of the bases. Regarding the initial, cross section
optimisation based magnet-girder assembly, the first deformations of
the bases were obtained for the 3rd mode shape at 75 Hz. Also previ-
ous studies have pointed out that the stiffness of the bases strongly
influences the magnet-girder assembly (cf., figure 14.4). Thus, future
studies should include an optimisation of the bases’ geometry to max-
imise the stiffness.

While measurements have revealed a 1st eigenfrequency of the
magnet-girder assembly used in the PETRA III synchrotron facility of
about 35 Hz [109], the numerically obtained 1st eigenfrequency of the
here studied magnet-girder assembly was with 55 Hz considerably
higher. However, the latter value has to be dealt with caution, because
the abstraction of the machine shoes as cylinders might have led to
a girder support stiffness varying from the actual one. Therefore,
in addition to the vibration measurements of the unloaded and free
bio-inspired girder, the eigenfrequencies of the here studied magnet-
girder assembly should also be measured to verify the numerical re-
sults.

In regard to the impact of the loading on the girder, Giorgetta [54]
conducted eigenfrequency measurements of the loaded and the un-
loaded SOLEIL girder. The 1st eigenfrequency of the unloaded girder
of 108 Hz dropped by 59% to 44 Hz with added magnets. Assum-
ing that this value can be applied to the here developed PETRA IV
girder, the 1st eigenfrequency of 120 Hz of the unloaded girder would
decrease to 49 Hz, which is slightly lower than the 55 Hz that were
numerically obtained for the magnet-girder assembly. In addition,
Nudell et al. [120] stated a 1st eigenfrequency decrease of 10% by
considering the floor compliance in the numerical model. Applying
this value to the estimated 49 Hz for the 1st eigenfrequency would
decrease the 1st eigenfrequency to 44 Hz. However, this 1st eigen-
frequency value of the bio-inspired magnet-girder assembly is only
hypothetical and based on two studies applied to different magnet-
girder assemblies varying in geometry, loading, boundary conditions,
and material properties. In addition, applying the 1st eigenfrequency
decrease of 59% obtained by Giorgetta [54] and of 10% received by
Nudell et al. [120] to the PETRA III girder would result in a 1st eigen-
frequency of 44 Hz, which is slightly higher than the actually mea-
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sured 1st eigenfrequency of 35 Hz. Therefore, the mentioned 1st eigen-
frequency estimation has to be treated with caution. Yet, it can be
concluded that the numerically obtained 1st eigenfrequency value of
the bio-inspired magnet-girder assembly might overestimate the real
1st eigenfrequency, which is why the eigenfrequencies should be de-
termined experimentally.

15.3.4 Manufacturing and Impact Testing

The today’s achievements in the field of casting technologies allowed
a successful fabrication of the bio-inspired girder structure. Despite
the large dimensions and the complexity of the structure, a mould
was manufactured and successfully filled with the liquid metal to
built the casted part.

Regarding the financial expense, the manufacturing of the here de-
signed girder structure was certainly more expensive than in the case
of simple box-like girders. However, if the higher structural complex-
ity increases the stability of the magnet-girder assembly, and thus of
the particle beam, a higher financial expense might be justifiable. Re-
garding the casting process including 3D printed sand moulds, Upad-
hyay et al. [174] stated that the cost per part remains constant indepen-
dent of the part complexity, while the costs for traditional manufac-
turing processes would rise strongly with increasing part complexity.
Thus, in the case of manufacturing the PETRA IV girders using the
casting technology with 3D printed sand moulds, a high structural
complexity is possible, which might allow very stable magnet-girder
assemblies.

The impact testing completed the girder development process. The
high correspondence of the numerically obtained eigenfrequencies
with the experimental data does not only show that the numerical
models are reliable, but it also indicates a successful manufacturing
process. Despite the already mentioned complexity of the designed
girder, it was possible to produce a casted part without critical blow-
holes or a significant discrepancy from the modelled geometry.

Regarding the obtained PSD of the bio-inspired girder, the less dis-
tinct peak at the 2nd eigenfrequency can be explained by the corre-
sponding mode shape, which showed highest vibration amplitudes
at the lower part of the girder, whereas the upper girder surface
equipped with the accelerometers vibrated less strongly. Neverthe-
less, the detected 2nd eigenfrequency corresponds to the numerically
obtained eigenfrequency by about 95%.

Various peaks appeared at frequencies below 80 Hz. As the peaks
were also present in the PSDs of the floor and the pedestal, it is con-
cluded that those vibrations result from the in-house noise. In-house
noise has also been detected in the ground vibration measurements
at DESY displayed in figure 13.7. The additional peak at about 150 Hz
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appearing in the PSD of the pedestals might indicate a resonance fre-
quency of the pedestal. Summing up, the impact testing clearly iden-
tified the eigenfrequencies of the unloaded girder, especially when
considering the PSDs of the floor and the pedestal.

15.3.5 Outlook

The application of a parametric product development process based
on a topology optimisation, the implementation of biologically in-
spired structures, and an evolutionary strategic cross section optimi-
sation allowed the successful generation of an optimised biologically
inspired girder structure for PETRA IV that has been manufactured.
The coincidence of the structural eigenfrequencies and mode shapes
measured in final experiments to the numerically obtained results val-
idates the conducted methods and the simulation models. However,
for the verification of the whole magnet-girder assembly, further ex-
periments are necessary. Especially the stiffness of the machine shoes
should be determined to include the correct stiffness values into the
model. In addition, the stiffness of the ground and the PETRA tunnel
should be considered in the model, as studies at different synchrotron
radiation facilities noted a strong impact of the ground compliance on
the magnet-girder assembly properties (e.g., at the APS-U [120] or at
the ESRF-EBS [Cianciosi2016a]).

In future applications of the here studied girder design process,
the process might be complemented by optimising the shape of the
implemented bio-inspired structures, e.g., of the Voronoi combs, to
further improve the mechanical properties of the girder. In addi-
tion, as already mentioned in chapter 15.3.2, the beam-shell model
obtained from the topology optimisation result should be based on a
higher number of parameters allowing a very precise dimensioning
of all structural elements of the designed structure. To deal with the
numerous parameters, a DoE could identify the parameters strongly
affecting the analysed mechanical properties. Subsequently, the cross
section optimisation would disclose the optimum diameters and shell
thicknesses for those parameters.

Regarding the specifications defined at the beginning of the girder
development process, several inputs changed. These changes imply,
for example, the boundary conditions (size of the girder design space)
and the loading (magnet properties and position). In addition, spec-
ifications relevant for the girder design, which have not been deter-
mined yet, should be specified prior to a reapplication of the design
development process. These include the alignment system for the
magnets and for the girder, because the connection stiffness strongly
influences the properties of the magnet-girder assembly. Also the de-
sign of the bases and the material properties of both the bases and
the girder should be defined before re-conducting the girder optimi-
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sation. The updated specifications for the PETRA IV girder can then
be considered in the generated design development process to obtain
an adapted girder geometry.

After generating a new girder design based on the adapted spec-
ifications, the girder structure should also be studied regarding the
thermal deformation. As the PETRA tunnel temperature will be main-
tained at a constant value, the thermal deformation for the girder is
likely not to be an issue, which is why a thermal load case should not
be included in the girder design process. Nevertheless, the thermal
behaviour of the structure should be analysed. In addition, studies
on the transportation of the loaded girder into the PETRA tunnel have
to be carried out, as the transportation could involve structural de-
formations and thus a misalignment of the components on the girder
and/or the girder.

In summary, the generated girder development process has suc-
cessfully been applied to a 2.9 m long PETRA IV girder. Changes in
the specifications and input data can be implemented into the design
process to receive adapted girder structures.

15.4 conclusion

A development process for a girder structure installed in a synchro-
tron radiation facility has been generated. Based on a topology opti-
misation result, a parametric beam-shell model including biologically
inspired structures was built up. The subsequent cross section optimi-
sation using evolutionary strategic optimisation revealed an optimum
girder structure, which was successfully manufactured using the cast-
ing technology. Eigenfrequency measurements validated the numeri-
cal models. Future changes in the specifications can be implemented
in the development process to obtain adapted girder structures.
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Finding the optimal structural design to avoid resonance has been
a goal for decades as it is of high interest in many technical areas.
Especially lightweight design structures show a high susceptibility
to vibration. There are different ways to prevent high vibration am-
plitudes of an oscillating system involving the alteration of stiffness
and/or mass to shift the eigenfrequencies above external, exciting fre-
quencies (’detuning the system’), which is mainly studied here. As
an increase in eigenfrequency can substantially reduce the dynamic
response of a structure, an eigenfrequency maximisation is of great
interest for numerous technical applications.

Diatoms face vibrational load cases, while being attacked by their
predators. It is likely that the shape of their shells, which often shows
irregular honeycomb and lattice structures, are optimised with re-
gard to their vibration characteristics. A detailed literature review
on technical lightweight structures reveals little findings on the vibra-
tion properties of irregular cellular and lattice structures. However,
regarding structural optimisations with emphasis on vibration char-
acteristics, a broad literature study shows the quantity of research
related to vibrations highlighting the relevance of this topic. Aside
from these common procedures to improve the vibration characteris-
tics, the here studied methodologies to increase eigenfrequencies are
inspired by nature. Thus, in the frame of biomimetics and biological
inspiration, structures and phenomena present in nature, especially
in diatoms, are investigated considering their vibration characteris-
tics.

It has been observed that diatom shells are shaped according to
their vibration mode shapes leading to the assumption that these
shells have been vibration optimised during the process of evolution.
Applying this idea of mode shape adaptation to axially constrained
beams (1D) and plates (2D) results in strong eigenfrequency increases
at a constant mass. A pre-deformation of maximum five times the
beam height/plate thickness raises the 1st eigenfrequency by 298%
for the beam and 487% for the plate. In addition, the increase of mul-
tiple eigenfrequencies combining various mode shapes is possible.

The mode shape adaptation results are compared to evolutionary
strategic optimisations and, in the case of the plate, also to topogra-
phy optimisations. The optimisations using commercially available
optimisers successfully increase the targeted eigenfrequencies, e.g.,
the 1st eigenfrequency was raised by 297% for the beam and 371%
for the plate. However, the single eigenfrequency increases are gen-
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erally lower than that obtained through the mode shape adaptation
method, while the evolutionary strategic optimisations lead to better
results for the multiple eigenfrequency increase. In addition, the ap-
plication of mode shapes on a structure is significantly faster than
conducting optimisations.

In regard to complex honeycomb and lattice structures observed in
aquatic plankton organisms, the impact of structural complexity on
the eigenfrequencies is studied. The 1st eigenfrequency of a 2D cellu-
lar plate is significantly raised by 165% using irregular structures. In
addition, the application of the mode shape methodology to the stud-
ied cellular plates raised the 1st eigenfrequency even further. Also
concerning lattice structures, a strong 1st eigenfrequency increase
with rising structural complexity is obtained, including a maximum
1st eigenfrequency raise of 58%. Additional constraints on the design
allow the development of vibration optimised lattices that can be ad-
ditively manufactured (3D printed) without using support structures.

As an example of a vibration-optimised structure, a girder used
in synchrotron radiation facilities to support the magnets and to as-
sure a stable particle beam is studied. It is focused on the girder
design for the currently planned synchrotron radiation facility up-
grade PETRA IV at DESY. In a parametric study, the impact of different
boundary conditions on the magnet-girder assembly is studied, in-
volving variations of the loading conditions (magnet mass, magnet
position height, and connection stiffness between girder and mag-
nets), the girder support definitions (location of support points, sup-
port stiffness), and the material properties of the girder and bases.
Afterwards, a development process for a girder structure installed
in a synchrotron radiation facility is generated. Based on a topol-
ogy optimisation result, a parametric beam-shell model including bi-
ologically inspired structures is built up. The subsequent cross sec-
tion optimisation using evolutionary strategic optimisation reveals an
optimum girder structure. The biologically inspired girder design
includes Voronoi combs, tree branches, smooth connections, round
holes, and 45◦ oriented ribs. The girder structure was manufactured
using the casting technology and vibration experiments (impact test-
ing) showed a very good coincidence of the numerically obtained
and measured eigenfrequencies. The 1st eigenfrequency of the free
unloaded girder was 120 Hz. Future changes in the specifications can
be implemented in the development process to obtain adapted girder
structures.
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a.1 shape adaptation according to mode shapes

Figure A.1.1 shows the first six eigenfrequencies of the studied beam
pre-deformed according to mode 1 and to mode 2.
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(a) Beam pre-deformation according to mode 1
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(b) Beam pre-deformation according to mode 2

Figure A.1.1: Frequencies of the first six bending mode shapes of the slender
beam depending on the maximum relative pre-deformation
according to mode 1 (a) and mode 2 (b). For some data points,
the frequency increase of the 1st and 2nd bending mode shape
compared to the reference beam is given. A magnified view of
the lower right corner of both diagrams involving small pre-de-
formations δ of 0 - 5 and low frequencies of 0 - 600 Hz is given
on the right-hand side of the figure.
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a.2 shape adaptation based on evolutionary strategic
optimisations

The following figures display the convergence plots for the evolu-
tionary strategic optimisations of the slender beam aiming at (1) a
minimisation of the mass difference compared to the mass of the
reference beam and (2) a maximisation of the 1st (figure A.2.1), 2nd

(figure A.2.2), 3rd (figure A.2.3), and 4th eigenfrequency (figure A.2.4).
In addition, the convergence plots of the evolutionary strategic opti-
misations aiming at a maximisation of the 1st and 2nd eigenfrequency
(figure A.2.5) and of the 1st, 2nd, and 3rd eigenfrequency (figure A.2.6)
are shown.

Regarding the analysed squared plate, the convergence plots for
the evolutionary strategic optimisations aiming at (1) a minimisa-
tion of the mass difference compared to the mass of the reference
plate and (2) a maximisation of the 1st (figure A.2.7), 2nd (figure A.2.8),
3rd (figure A.2.9), and 4th eigenfrequency (figure A.2.10) are depicted.
The evolutionary strategic optimisations of the plate to raise the 1st

and 2nd eigenfrequency as well as the 1st, 2nd, and 3rd eigenfrequency
are displayed in figures A.2.11 and A.2.12, respectively.

Additionally, topography optimisations of the plate were conducted.
The corresponding convergence plots for the maximisation of the 1st,
2nd, 3rd, and 4th eigenfrequency are shown in figures A.2.13, A.2.14,
A.2.15, and A.2.16, respectively.
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Figure A.2.1: Convergence plot of the evolutionary strategic optimisation of
the beam aiming at a maximisation of the 1st eigenfrequency
and a minimisation of the mass difference compared to the
reference beam. Displayed are the 1st eigenfrequency (blue)
and the corresponding mass difference (red) depending on
the iteration number. The mass difference values are very
small, because for each calculated structure the beam width
was adapted to have a constant mass.
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Figure A.2.2: Convergence plot of the evolutionary strategic optimisation of
the beam aiming at a maximisation of the 2nd eigenfrequency
and a minimisation of the mass difference compared to the
reference beam. Displayed are the 2nd eigenfrequency (blue)
and the corresponding mass difference (red) depending on
the iteration number. The mass difference values are very
small, because for each calculated structure the beam width
was adapted to have a constant mass.
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Figure A.2.3: Convergence plot of the evolutionary strategic optimisation of
the beam aiming at a maximisation of the 3rd eigenfrequency
and a minimisation of the mass difference compared to the
reference beam. Displayed are the 3rd eigenfrequency (blue)
and the corresponding mass difference (red) depending on
the iteration number. The mass difference values are very
small, because for each calculated structure the beam width
was adapted to have a constant mass.
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Figure A.2.4: Convergence plot of the evolutionary strategic optimisation of
the beam aiming at a maximisation of the 4th eigenfrequency
and a minimisation of the mass difference compared to the
reference beam. Displayed are the 4th eigenfrequency (blue)
and the corresponding mass difference (red) depending on
the iteration number. The mass difference values are very
small, because for each calculated structure the beam width
was adapted to have a constant mass.
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Figure A.2.5: Convergence plot of the evolutionary strategic optimisation of
the beam aiming at a maximisation of the 1st and the 2nd eigen-
frequency. Displayed are the 1st (blue) and corresponding
2nd eigenfrequency (red) depending on the iteration number.
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Figure A.2.6: Convergence plot of the evolutionary strategic optimisation
of the beam aiming at a maximisation of the 1st, 2nd, and
the 3rd eigenfrequency. Displayed are the 1st (blue) eigen-
frequency and the corresponding 2nd (red) and 3rd eigenfre-
quency (green) depending on the iteration number.
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Figure A.2.7: Convergence plot of the evolutionary strategic optimisation of
the plate aiming at a maximisation of the 1st eigenfrequency
and a minimisation of the mass difference compared to the
reference plate. Displayed are the 1st eigenfrequency (blue)
and the corresponding mass difference (red) depending on
the iteration number. The mass difference values are very
small, because for each calculated structure the plate height
was adapted to have a constant mass.
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Figure A.2.8: Convergence plot of the evolutionary strategic optimisation of
the plate aiming at a maximisation of the 2nd eigenfrequency
and a minimisation of the mass difference compared to the
reference plate. Displayed are the 2nd eigenfrequency (blue)
and the corresponding mass difference (red) depending on
the iteration number. The mass difference values are very
small, because for each calculated structure the plate height
was adapted to have a constant mass.

10 20 30

8,000

9,000

Iteration (-)

3rd
ei

ge
nf

re
qu

en
cy

(H
z)

0.3

0.7

1.1

M
as

s
di

ff
er

en
ce

(1
0−

6
kg

)

Figure A.2.9: Convergence plot of the evolutionary strategic optimisation of
the plate aiming at a maximisation of the 3rd eigenfrequency
and a minimisation of the mass difference compared to the
reference plate. Displayed are the 3rd eigenfrequency (blue)
and the corresponding mass difference (red) depending on
the iteration number. The mass difference values are very
small, because for each calculated structure the plate height
was adapted to have a constant mass.
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Figure A.2.10: Convergence plot of the evolutionary strategic optimisation
of the plate aiming at a maximisation of the 4th eigenfre-
quency and a minimisation of the mass difference compared
to the reference plate. Displayed are the 4th eigenfrequency
(blue) and the corresponding mass difference (red) depend-
ing on the iteration number. The mass difference values are
very small, because for each calculated structure the plate
height was adapted to have a constant mass.
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Figure A.2.11: Convergence plot of the evolutionary strategic optimisation
of the plate aiming at a maximisation of the 1st and 2nd eigen-
frequency. Displayed are the 1st eigenfrequency (blue) and
the corresponding 2nd eigenfrequency (red) depending on the
iteration number.
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Figure A.2.12: Convergence plot of the evolutionary strategic optimisation
of the plate aiming at a maximisation of the 1st, 2nd, and
3rd eigenfrequency. Displayed are the 1st eigenfrequency
(blue) and the corresponding 2nd (red) and 3rd eigenfre-
quency (green) depending on the iteration number.
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Figure A.2.13: Convergence plot of the topography optimisation of the plate

aiming at a maximisation of the 1st eigenfrequency. Dis-
played are the 1st eigenfrequency (blue) and the correspond-
ing constraint violation (red) depending on the iteration num-
ber.
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Figure A.2.14: Convergence plot of the topography optimisation of the plate
aiming at a maximisation of the 2nd eigenfrequency. Dis-
played are the 2nd eigenfrequency (blue) and the correspond-
ing constraint violation (red) depending on the iteration num-
ber.
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Figure A.2.15: Convergence plot of the topography optimisation of the plate
aiming at a maximisation of the 3rd eigenfrequency. Dis-
played are the 3rd eigenfrequency (blue) and the correspond-
ing constraint violation (red) depending on the iteration num-
ber.
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Figure A.2.16: Convergence plot of the topography optimisation of the plate
aiming at a maximisation of the 4th eigenfrequency. Dis-
played are the 4th eigenfrequency (blue) and the correspond-
ing constraint violation (red) depending on the iteration num-
ber.
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a.3 regular and irregular honeycomb plates

The convergence plot of the evolutionary strategic optimisation aim-
ing at a 1st eigenfrequency maximisation of an irregular Voronoi plate
is displayed in figure A.3.1.
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Figure A.3.1: Convergence plot of the evolutionary strategic optimisation of
the irregular Voronoi plate aiming at a maximisation of the
1st eigenfrequency and a minimisation of the mass difference
compared to the reference beam. Displayed are the 1st eigen-
frequency (blue) and the corresponding mass difference (red)
depending on the iteration number.
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a.4 regular and irregular lattice structures

The figures A.4.1 and A.4.2 show the frequency response curves of
the lattices L1 and L2, respectively, obtained by experiment and sim-
ulation.
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Figure A.4.1: Frequency response curves for L1 obtained by experiment and
simulation using a solid model including accelerometers with
a damping ratio of 0.0044.
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Figure A.4.2: Frequency response curves for L2 obtained by experiment and
simulation using a solid model including accelerometers with
a damping ratio of 0.01.
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a.5 development of a biologically inspired girder de-
sign

Figure A.5.1 displays the convergence plots of the topology optimisa-
tion of the PETRA IV girder.
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Figure A.5.1: Girder topology optimisation convergence plots of the
1st eigenfrequency (a), the constraint violation (b), and the
compliance (c) depending on the number of iteration.
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