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Developing technological synergies between
deep-sea and space research

Jacopo Aguzzi1,2,*, Sascha Flögel3,*, Simone Marini2,4,*, Laurenz Thomsen5,
Jan Albiez6, Peter Weiss7, Giacomo Picardi8,9, Marcello Calisti10, Sergio Stefanni2,
Luca Mirimin11, Fabrizio Vecchi2, Cecilia Laschi12, Andrew Branch13, Evan B. Clark13,
Bernard Foing14, Armin Wedler15, Damianos Chatzievangelou1, Michael Tangherlini2,
Autun Purser16, Lewis Dartnell17, and Roberto Danovaro2,18

Recent advances in robotic design, autonomy and sensor integration create solutions for the exploration of
deep-sea environments, transferable to the oceans of icy moons. Marine platforms do not yet have the mission
autonomy capacity of their space counterparts (e.g., the state of the art Mars Perseverance rover mission),
although different levels of autonomous navigation and mapping, as well as sampling, are an extant capability.
In this setting their increasingly biomimicked designs may allow access to complex environmental scenarios,
with novel, highly-integrated life-detecting, oceanographic and geochemical sensor packages. Here, we lay an
outlook for the upcoming advances in deep-sea robotics through synergies with space technologies within
three major research areas: biomimetic structure and propulsion (including power storage and generation),
artificial intelligence and cooperative networks, and life-detecting instrument design. New morphological and
material designs, with miniaturized and more diffuse sensor packages, will advance robotic sensing systems.
Artificial intelligence algorithms controlling navigation and communications will allow the further
development of the behavioral biomimicking by cooperating networks. Solutions will have to be tested
within infrastructural networks of cabled observatories, neutrino telescopes, and off-shore industry sites
with agendas and modalities that are beyond the scope of our work, but could draw inspiration on the
proposed examples for the operational combination of fixed and mobile platforms.
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Introduction
The deep sea is the largest and the most unknown biome
on Earth (Danovaro et al., 2020), appearing to the

observer as continuous and monotonous at first sight.
Notwithstanding, this vast, three-dimensional system is
neither environmentally homogeneous nor stable
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(Robison, 2004), and contains a huge complexity of eco-
systems and biodiversity (Proud et al., 2017; Reygondeau
et al., 2017). The pelagic (within the water column) and
benthic (seafloor) domains present marked environmental
gradients (e.g., along depth and latitude) and cover vast
geographic regions (Levin et al., 2018), with several geo-
morphological habitats described for deep continental
margins and abyssal plains, such as hydrothermal vent and
cold seep fields, canyons and seamounts, among others
(Levin and Sibuet, 2012; Cormier and Sloan, 2018). To
date, limited information exists on the ecosystem bound-
aries separating major depth strata in the pelagic realm
(i.e., the epi-, meso-, bathy- and abyssopelagic zones), leav-
ing the relationship of deep-sea benthic and water-column
communities with major biosphere gradients in tempera-
ture, depth/pressure, light, salinity and latitude still to be
discovered on various spatial scales. Within this context,
marine technology is enabling the exploration of the deep
ocean at a rapidly increasing pace, reshaping at each step
our understanding of the adaptation and evolution of life,
and in turn, expanding our concept of habitability of
extreme environments (Mapelli et al., 2016).

Alongside the deep sea, space represents the future fron-
tier for human exploration and exploitation, with both
subject to the rapid development of robotic technologies.
Intensive industrial exploitation of marine ecosystems
started centuries ago, with modern ocean industries (e.g.,
fisheries, oil and gas or projected mining extractions) con-
tinuing in the willingness to exploit unstudied deep-sea
ecosystems. This continuing exploitation is stressing the
competition between economic gain and the acquisition
of scientific knowledge, including for the aim of sustainable
use of the resources (Danovaro et al., 2017c; Folkersen et al.,
2019). Given this situation, marine scientific and industrial
technologies anticipate robotic solutions for autonomous
acquisition of multidisciplinary data; biological, oceano-
graphic, geochemical and environmental, as well as for
in-situ manipulation and sampling (Jones et al., 2019). Pres-
ently, a large portion of space research is already applied to
the field of remote sensing of the ocean surface, serving
both industrial and scientific purposes (Anderson et al.,
2017), with operations now extending into deep-sea pelagic
and seafloor areas (e.g.,Wedler et al., 2018, 2020; Aguzzi et
al., 2020b). For example, data on the ocean interior are
used to calibrate and validate satellite readings, a connec-
tion enabled by various degrees of continuity in combined
data collection via vessel-assisted autonomous underwater
vehicles (AUVs), multiparameter coastal cabled observato-
ries, and moored buoys and Argo floats (Riser et al., 2016;
National Aeronautics and Space Administration [NASA],
2018). Moreover, underwater neutrino telescopes initially
conceptualized and deployed to detect astroparticles, have
been integrated into water-column research (e.g., Martini et
al., 2014), detecting life in the form of bioluminescence.

The objective of this review is to provide a vision for the
future development of deep-sea robotics based on the
engagement of space technology within three major
research areas: biomimetic structural and energetic de-
signs, artificial intelligence (AI), and miniaturization of
life-detecting sensor technologies. To do so, we

hypothesize that deep-sea scientific and industrial perma-
nent infrastructures can be used as operational proving
grounds for the testing and control of the new robotic
solutions that will be developed in the upcoming decades.
We propose these aforementioned topics for deep-sea
robotic development in a moment of central interest for
marine technologies according to the United Nations
Ocean Decade Initiative, with growing collaborations
between the European Space Agency and the World Ocean
Council and others, including NASA and NOAA in the
United States. Our ultimate goal is to suggest how the
exploration and monitoring of our abyssal realms could
also benefit future exo-ocean (i.e., extraterrestrial ocean)
exploration activities, as marine habitat equivalents.

Liquid water is potentially present beyond Earth in the
form of exo-oceans in several solar system bodies, includ-
ing several satellites of Jupiter (i.e., Europa, Ganymede and
Callisto), Saturn (i.e., Enceladus, Titan and Dione), and
Neptune (i.e., Triton), as well as dwarf planets such as
Pluto and Ceres (Iess et al., 2014; Henin, 2018; Hendrix
et al., 2019; Kamata et al., 2019). In particular, salty oceans
are likely present on Enceladus, Titan, Europa, Triton and
even on Ceres (Hendrix et al., 2019), while additional evi-
dence of hydrothermal venting has been found on Ence-
ladus and Europa (Hsu et al., 2015). Exo-oceanic
conditions seem to be similar to those on Earth. Encela-
dus, for example, has a vast salty exo-ocean (Fifer et al.,
2019) of 30–50 km depth (Iess et al., 2014; Hemingway
and Mittal, 2019), kept liquid by geothermal activity and
tidal friction. It mechanically decouples the rocky core
from the exterior ice shell (Saxena et al., 2018; Neveu and
Rhoden, 2019), with a thickness around 20–30 km (Luc-
chetti et al., 2017). Strong geothermal gradients and high
pressure produce fluxes of hot water, transported through
the ice shell via cracks and crevasses that erupt into space,
evaporating and freezing, to later fall back on the surface
as snow (i.e., cryovolcanism; Běhounková et al., 2017). That
condition of thermodynamic disequilibrium with abun-
dant dissolved carbon compounds is of relevance to the
possible emergence of life in such extraterrestrial environ-
ments (e.g., Deamer and Damer, 2017; Postberg et al.,
2018; Schwieterman et al., 2018). In this framework, there
is a growing need to identify potential synergies and trans-
ferable technologies within robotic design, mission auton-
omy and sensor integration in order to tackle the
interrelated challenges of exploring Earth’s abyssal areas
and the subsurface oceans of icy moons as potentially
analogous environments.

Biomimetic structure, along with systems for power
storage and generation of propulsive mobility are a rele-
vant aspect to be considered for both exploration scenar-
ios. At the time of writing, robotic designs similar to
traditional underwater vehicles (e.g., AUVs, Argo floats,
crawlers, rovers, etc.) are envisaged for the exploration
of extra-terrestrial ocean worlds. A comparison of different
habitat scenarios for the development of cooperative
marine and space robotic research with platforms and
concept designs of the past (Table 1) provides evidence
of previous cooperation. Different layers on Earth, such as
the deep sea and the ice caps with their internal lakes, can
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serve as proxies for exo-oceanic masses and fluid hydro-
carbon bodies on other planets and icy moons. On the
other hand, there are specific technical challenges which
cannot be (or have yet to be) resolved through traditional
engineering, which may benefit from an alternative, bio-
mimetic approach. For example, bio-inspired structural
design solutions may enable mobility paradigms not fea-
sible with traditional vehicles, such as navigating through
complex surface terrain, spatially constrained geomor-
phologies, and highly hydrodynamic regimes, while simul-
taneously minimizing the footprint on the environment
(e.g., Ono et al., 2019; Picardi et al., 2020).

At the same time, energy sources for submarine vehicle
propulsion are currently limited by battery technologies,

as the addition of extra battery space is often not a viable
solution because it would enlarge the platforms and alter
their overall buoyancy (Li et al., 2020). For space research,
power supply approaches are often centered on the use of
Radioisotope Thermoelectric Generators (RTG’s), such as
the multi-mission RTG prototypes with lower thermal
inventory assessed by Whiting (2021) and the Persever-
ance mission. RTGs however, are inapplicable to marine
exploration on Earth, due to tight control from concerns
over radioisotopes being accidentally released and pollut-
ing the environment (Barco et al., 2020). This limitation
may open the possibility to develop new forms of energy
provision based on bacterial fuel cells (at least for deep-sea
research; Aguzzi et al., 2021). The task of self-sustainable

Table 1. Evidence of cooperative scenarios for marine and space robotics. DOI: https://doi.org/10.1525/
elementa.2021.00064.t1

Planet of Moon, Region Type of Layera Technology

Earth, polar areas, and deep sea Ice shell (ice shelf) IceFin (ROVb/AUVc hibrid), and BRUIEd

Liquid salt water ROV, AUV, Mesobot, Argo floats, neutrino telescopes,
moored buoys, and Eelume-IMRe

Seabed ROV, AUV, crawlers, rovers, landers, and cabled
observatories

Europa Ice shell Cryobots, BRUIE, ENDURANCE AUVf, and EELSg

Internal lakes/brines Cryobots and EELS

Liquid salt water (deep-
sea equivalent)

DEPTHXh, BRUIE, ENDURANCE-AUV, and EELS

Seabed Leng-AUVi

Enceladus Ice shell Cryobots, BRUIE, ENDURANCE-AUV, and EELS

Internal lakes/brines Cryobots and EELS

Liquid salt water (deep-
sea equivalent)

DEPTHX, BRUIE, Leng-AUV, ENDURANCE-AUV, and EELS

Seabed Leng-AUV

Titan Liquid hydrocarbon AUV (Titan Submarine; Titan Subj)

Ganymede, Callisto, Dione, Mimas, Triton,
and polar areas on Mars

Equivalent layers
unknown/absent

Not yet conceptualized

AUV ¼ autonomous underwater vehicle.
aTypes of targeted environments for terrestrial and space missions. Exo-oceans are completely covered by icy shells, many kilometers
thick; terrestrial ice shelves can serve as analogues. The internal structures of these icy shells are hypothesized about, but currently
unknown, potentially containing lakes/brines (Hussman et al., 2015). Titan hosts a methane-based hydrological cycle, supporting
liquid hydrocarbon surface lakes and potentially subsurface reservoirs (Mastrogiuseppe et. al., 2019).
bRemotely operated vehicle.
cAutonomous underwater vehicle.
dBuoyant rover for under-ice exploration (Berisford et al., 2013).
eInspection, maintenance, and repair.
fEnvironmentally nondisturbing under-ice robotic Antarctic explorer (Stone et al., 2009).
gExobiology extant life surveyor.
hDeep phreatic thermal explorer (Greenberg et al., 2005).
iDeutsches Forschungszentrum für Künstliche Intelligenz (2012).
jNational Aeronautics and Space Administration (2014).
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energy production on a molecular level to sustain artificial
cells represents a relevant field of biomimicking metabolic
research (e.g., Jeong et al., 2020). Artificial cell systems
may even be used to sustain locomotion (or some
functionalities associated to it) in robots. For space
exploration, however, this solution may violate the
planetary protection principles set by the Committee on
Space Research (COSPAR); i.e. carrying bacterial
communities that present a potential source of
contamination for alien environments.

Moreover, deep-sea exploration requires an increase in
AI functionalities. Missions will benefit from growing
autonomy and the creation of intelligent platforms, en-
dowed with software solutions for, for example, on-board,
real-time automated data processing and transmission
(Marini et al., 2020). Augmented platform intelligence
should increase fault tolerance in the exploration of
unknown environments by swarms of cooperative vehi-
cles. This aspect would reduce (or be resilient to) the risk
of losing single units (Ayre, 2004), although in general
terms such swarms would not necessarily need to be
autonomous and can also add mission complexity to
deep-sea exploration. This cooperation would also imply
inter-platform communication capability (e.g., Masmitja et
al., 2020), with strong advances being made in this field
by national and international research consortia.

Life-detecting technologies are also of relevance for
both deep-sea research (e.g., ecological monitoring ac-
tions; reviewed recently by Rountree et al., 2020) and
spatial exploration. The presence of liquid water alone is
not a sufficient condition of habitability, and habitable
environments do not necessarily contain life, such as
a freshly formed habitat on Earth not yet colonized (Cock-
ell et al., 2016) and artificial (i.e., lab-created) habitats
(Cockell et al., 2017). Notwithstanding, liquid water is
considered to be a necessary requirement of an environ-
ment for habitability and the possibility of extraterrestrial
life (Schulze-Makuch et al., 2020). Thus, in the marine
environments of icy moons that are geothermally active
(where life would need to be chemosynthetic due to the
absence of sunlight), sensors should target the identifica-
tion of life at different levels of complexity, from molecu-
lar and environmental traces of its activity (e.g., chemical
disequilibria, signs of biofilms, bioturbation or sounds) to
the direct identification of the presence of uni- and mul-
ticellular organisms (e.g., Carr et al., 2017; Aguzzi et al.,
2020b; Dachwald et al., 2020). In relation to such targeting,
the achievements made by the marine science community
can provide space technology with highly-integrated life-
detecting, oceanographic and geochemical sensor technol-
ogies (Aguzzi et al., 2019).

Biomimetic structure and propulsion

Operating in extreme environments, such as the deep sea,
requires consistent advances in robotics, and innovative
engineering solutions that enable navigation in unknown
and dynamically changing environments (Figure 1A). This
capacity relies on the development of robotic systems
capable of efficient and multi-modal locomotion, exploit-
ing metabolic-like renewable energy provision, and

cooperating in heterogeneous swarms to maximize the
effectiveness of future missions. Such advances may also
be of interest for tackling future industrial challenges (e.g.,
Liljebäck and Mills, 2017). At the time of writing, most of
the robotic systems employed in deep-sea and exo-ocean
exploration have been designed following a traditional
engineering approach (e.g., crawlers, rovers or AUVs;
Table 1), which grants high reliability and robustness to
certain commonly encountered classes of problems, such
as reduced mobility in uncharted terrains (Purser et al.,
2013; Farley et al., 2020). In some cases, where traditional
designs fall short, effective solutions may be provided by
biomimetics, i.e. the approach of reverse engineering to
simulate characteristics that are typically associated with
biological systems (Ayre, 2004). Biomimetics is a broad
field, which could contribute to solutions for the afore-
mentioned engineering challenges for both marine explo-
ration scenarios (i.e., on Earth and within icy moons).

Agile terrestrial locomotion on irregular terrains can be
pursued through the construction of multi-legged robots
as conceptual arthropod-like structural designs (Aguzzi et
al., 2021). This approach has been applied to the coastal
marine domain, such as the Silver2 crab (Picardi et al.,
2020), as well as in the deep sea (e.g., Crabster CR6000;
Jun et al., 2017). Within the global exploration strategy of
cross-thematic projects (Wedler et al., 2018, 2020), multi-
legged platforms were envisioned, in addition to the
development of more traditional crawlers, rovers and
AUVs, to cooperate in exploring, deploying, and maintain-
ing scientific instrumentation in deep-sea environments
as equivalents to planetary surfaces. Another notable
example of adaptation and multi-modal operations for
space is represented by the RoboSimian (Hebert et al.,
2015), a multi-legged robot developed at NASA-JPL capa-
ble of terrestrial locomotion, climbing, and manipulation
through its articulated limbs, for which an underwater
version has also been envisioned. Adapting to an evolving
scenario, such as different phases of an exploratory mis-
sion, has been pursued in another project from NASA-JPL,
the Exobiology extant life surveyor (EELS; Ono et al.,
2019), where a robot with a snake-like morphology was
designed to crawl on the surface of Enceladus, penetrate
an icy crevasse and swim in an underground water ocean.
A similar morphology has also been envisioned for deep-
sea, off-shore industrial surveillance (Eelume; Liljebäck
and Mills, 2017).

The adaptation to dynamically changing environments,
while being delicate in the interactions with the surround-
ings and resilient to possible faults, can be achieved by
employing soft materials in the construction of robots
(Calisti et al., 2017). This achievement would imply the
development and manufacturing of new lighter com-
pounds shaped and assembled via novel 3D printing tech-
niques (Phillips et al., 2019), achieving a density close to
seawater. Recently, a soft-bodied robot with distributed
electronics was successfully deployed in the Mariana
Trench (Li et al., 2021), proving the ability to protect elec-
tronics from high-pressure water using elastomeric mate-
rials. In addition, the use of bio-inspired functionalized
soft materials in the construction of robots will enable
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advanced behaviors, such as self-healing properties (Ha-
ger, 2017) and distributed sensing and actuations (Asadnia
et al., 2015). Both functionalities will enhance the resili-
ence of the platforms to damage and their ability to react
to the changing environmental conditions.

Another major challenge related to the use of
(semi-)autonomous robotic systems in deep-sea explo-
ration is energy independence (Aguzzi et al., 2021).
Traditional engineering solutions are limited by the
development of efficient batteries, increasing their size
or utilizing alternative energy carriers such as hydrogen.
Additionally, the use of local water currents or tempera-
ture gradients has been investigated as a source of energy
(Chiu et al., 2017). On the other hand, organisms rely on
the generation of energy through different biological
processes that can be replicated in artificial systems.
Biomimicking the metabolism of deep-sea organisms
may provide renewable energy provision, through the

in-situ processing of substrata (feeding-like functions)
as potential gain for space exploration. For instance,
mimicking life solutions for bioluminescence (i.e., the pro-
duction of light by organisms) at low energetic cost would
allow low-light imaging (see section on Life-detecting
technologies) and/or substrate-harvesting capabilities
would likely be accompanied by concomitant biomimetic
development in animal-like grippers and toothed mouths.

Space exploration employs long-lasting energy solu-
tions such as RTGs (Konstantinidis et al., 2015), the use
of which is not applicable in the marine research because
of the associated environmental threat (Barco et al., 2020),
concerns over nuclear proliferation, and extremely tight
control over relevant radioisotopes, such as highly-refined
plutonium. At the same time, marine robotics aim to find
solutions to increase long-lasting operational autonomy
complementary to traditional battery technologies, such
as the Piezo-Acoustic Backscatter (PAB; Jang and Adib,

Figure 1. Major lines of action within each field for research development. (A) Novel biomimicking designs in
locomotion, energy generation concepts, and use of swarms are needed as a step toward expanding accessible zones
and increasing the likelihood of mission success. (B) Artificial intelligence and cooperating networks have to be able to
process large datastreams without human intervention, while at the same time balancing the exploration objectives
and engineering constraints (i.e., communications power, budget to optimize mission execution, etc.) and offering
adaptive resilience to disturbances and unexpected factors. (C) New designs for life-detecting instrumentation have to
minimize size and increase the capability to detect life based on the identification and quantification of biological
molecules, used in parallel with other optoacoustic methods. PAM ¼ passive acoustic monitoring. DOI: https://
doi.org/10.1525/elementa.2021.00064.f1
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2019) for battery-less underwater networking and micro-
bial fuel cells (e.g., Guzman et al., 2010). For example,
AUVs are already operating with hydrogen power (Marini
et al., 2020), and hydrogen-oxygen (H2-O2) fuel cells are
currently being developed (Aguzzi et al., 2021) to feed
lithium polymer battery systems. Nevertheless, these fuel
cells still require human maintenance and recharge, and
in order to eliminate that drawback innovative cells sys-
tems that harvest in-situ methane are being conceived for
use in seepage areas (DeLong and Chandler, 2002).

Energy extraction by metabolic mimicking could pro-
vide new alternatives for long-lasting autonomous robotic
functionalities in deep-sea exploration. A new generation
of microbial fuel cells aims at producing energy in an
autopoietic manner (Santoro et al., 2017), using catabo-
lism by-products in circular energy loops (e.g., Ieropoulos
et al., 2013). In the future, these cells may completely
eliminate the bacterial components, with biochemical
reaction routes inferred with reverse engineering ap-
proaches (e.g., Kim et al., 2020b). These energy systems
may even become diffuse in the whole robotic structure
(e.g., Jeong et al., 2020), sustaining slow locomotor func-
tionalities, and could be associated to energy harvesting
by other physical forces directed to the robot itself (e.g.,
hydrostatic pressure) through piezoelectric sensors (Sala-
zar et al., 2018; Han et al., 2019).

Research on the performance of these cells in extreme
marine environments (e.g., geothermal or polar areas) to
monitor energy generation and storage efficiencies may
also contribute to space research at the level of life sup-
port systems. Biology-based fuel cells for energy provision
are controllable, replicable, low-cost experimental micro-
cosm ecosystems with bacterial communities, used to test
for cost-benefit and stability in mass-energy exchange
(e.g., Escobar and Nabity, 2017). Specific in-situ manipula-
tion capabilities could allow experimentation on bacterial
metabolism (e.g., within chambers), adapting that metab-
olism to the hostile space environment via genetic engi-
neering and using deep-sea volcanic systems as natural
laboratories (Danovaro et al., 2017b). The up-scaling of
results to larger volumes will provide valuable insights
on water, gases, organic matter and overall energy recy-
cling loops within artificial ecosystems. Although for some
space applications this solution may violate the COSPAR
principles of preventing the cross-contamination of life, it
will inspire how we conceive self-sustained recharging
microcosm and life-support systems. In this respect, CO-
SPAR does not yet have explicit guidance for exo-ocean
hardware contamination restrictions. COSPAR Policy on
Planetary Protection is establishing guidelines with 5 ca-
tegories, to avoid forward contamination of other planets
and to prevent backward contamination of the Earth when
samples are returned (Cheney et al., 2020; COSPAR, 2020).
Category IV, mostly comprised of probe and lander mis-
sions, targets chemical evolution and/or the origin of life.
For these types of missions, scientific consensus acknowl-
edges a noteworthy chance of contamination, which could
compromise future investigations. Category V, on the
other hand, includes all Earth-return missions. The princi-
pal concern regarding those missions is to avoid

contamination of the terrestrial system, the Earth and the
Moon. This concern is also relevant to missions to icy
moons such as Europa and Enceladus. Bioburden reduc-
tion will have to be applied to minimize the probability of
inadvertent contamination of a Europan or Enceladan
ocean, targeting towards < 10–4 per mission. The missions
will have to address specific forward contamination risks
and follow strict protocols to limit and document bacterial
systems during spacecraft testing, apply sterilization,
determine survival during cruise phases and specific en-
vironments, and consider constraints for the termination
of a mission that will be compatible with planetary pro-
tection guidelines.

AI and cooperating networks

The continuous development of autonomy is paramount
in order to maximize the efficiency of remote robotic
operations in extreme environments (Figure 1B). Plat-
forms can acquire very large amounts of heterogeneous
data, which can be processed in real-time (as well as pre-
served in their original form) to extract knowledge for
autonomous functionalities. Key autonomous functional-
ities can be categorized into mission planning, naviga-
tion/trajectory planning, adaptive sampling/sensing, and
summarization of collected data. The requirement for mis-
sion autonomy is further enforced by the challenge of
data transmission, which is impaired by water itself over
great depths/distances.When these operational considera-
tions are contextualized to ocean exploration at unknown
depths, with shielding ice-sheets and astronomical bodies,
and over immense distances, analogous conditions
observed in the deep sea are of immense value as a test-
bed operational scenario for such autonomous
capabilities.

The success of long-term, complex deep-sea and exo-
ocean exploration missions relies on appropriate handling
of competing objectives (e.g., seafloor versus water col-
umn) and constraints (e.g., power and communications).
Autonomous mission planning and execution methods
may be used to optimize the behavior of the respective
vehicle, based on a given utility function and set of con-
straints (Gaines et al., 2020; Aguado et al., 2021). Due to
the dynamic operational environments, these methods
must be robust to unexpected disturbances and capable
of adapting the overall mission plan and objectives based
on the state of the vehicle and collected data.

Other key difficulties are navigation and vehicle trajec-
tory planning. Exo-oceans are completely covered by icy
shells, potentially tens of kilometers thick (Hussman et al.,
2015). Accessing these subsurface oceans requires pene-
trating this icy shell, imposing a number of key constraints
on missions targeting these bodies. Such a bore hole
would be limited in diameter, on the order of 10 cm,
restricting the vehicle and instrument form factor. The ice
cover restricts direct radio frequency communication with
orbital assets and navigation based on global navigation
satellite systems. The cost of transiting through many kilo-
meters of ice likely prohibits using multiple boreholes.
Finally, the restrictive energy budget of such a vehicle
would require low-power solutions. Navigation would be
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limited to methods based on acoustics, terrain relative
navigation/simultaneous localization and mapping
(SLAM), and dead-reckoning. Acoustic multi-lateration,
combined with dead reckoning presents a solution for
in-ice cryobot navigation (Kowalski et al., 2016; Dachwald
et al., 2017). Additionally, these navigation methods could
be augmented with tether payout and pressure/density
profile information. This type of in-ice navigation paired
with maneuverability would significantly increase the
robustness of transit through the icy shell.

For an AUV tasked with exploring the exo-ocean below
the ice shell and given the above constraints, acoustic
navigation with a single acoustic beacon would be critical.
Ultra-short baseline systems offer a potential solution to
this problem (e.g., Masmitja et al., 2020); however, they
are generally severely range-limited due to the required
high-frequency acoustics. Methods using a lower fre-
quency, range-only acoustic beacon would improve the
operational range and robustness of navigation solutions
(McPhail and Pebody, 2009; Webster et al., 2012). Even in
mission concepts in which multiple disparate beacons are
deployed, single beacon navigation methods would
improve overall robustness of the navigation system. Ter-
rain relative navigation and SLAM methods can also be
used to assist in navigation, when acoustic signals are not
available for localization (Paull et al., 2014). Such methods
benefit from being independent from any infrastructure
external to the vehicle, but only provide navigation in
local coordinates that ultimately must be referenced back
to a global frame. These navigation methods are compli-
cated by the expected difficulty in determining and main-
taining heading in an exo-ocean. The potential absence of
magnetic fields and the induced magnetic fields of bodies
such as Europa could limit the use of magnetic navigation,
while dynamic platforms and operations at high latitudes
could limit gyroscopic methods (Hussman et al., 2015).
Finally, vehicle trajectory planning would be required to
improve the navigational solutions and reduce the power
consumption required to achieve a mission’s stated objec-
tives (De Carolis et al., 2018). These navigational methods
are also relevant to terrestrial extreme marine environ-
ments such as the deep-sea and under ice. As such,
deep-sea operational test beds will be critical in the devel-
opment and refinement of robust navigational solutions
for use in exo-oceans. Steps towards this direction are
being made within the global exploration strategy of the
cross-thematic projects Robotic Exploration of Extreme
Environments – Deep Sea and Earth’s Moon (ROBEX) and
Autonomous Robotic Networks to Help Modern Societies
(ARCHES) (see also Supplemental Material Text 1).

The traditional AUV command cycle (for both terres-
trial marine exploration as well as current space probes
such as Mars rovers) involves human operators sending
fixed commands to the vehicle, the vehicle executing
those commands, transmitting the acquired data to
ship/shore, and then repeating the process. In remote
marine and exo-ocean mission scenarios, having humans
regularly involved in the decision loop is not feasible.
Thus, fully autonomous on-board interpretation of data
and re-command of the vehicle is required to maximize

the utility of the collected data (Zhang et al., 2019). Some
methods of this so-called adaptive sampling/sensing
approach have been developed to target scientific features
of interest such as ocean fronts (Zhang et al., 2016; Branch
et al., 2019), hydrothermal/chemical plumes (Farrell et al.,
2005; Ferri et al., 2010; Mason et al., 2020), and phyto-
plankton patches (Zhang et al., 2021). However, especially
in the case of completely unobserved environments such
as exo-oceans, the most interesting scientific features that
eventually should be targeted may not be known a priori.
In such cases, techniques for adaptive online exploration
may be used that seek out “unexpected” new observations
autonomously, based on previous history (Girdhar et al.,
2013), as already demonstrated in polar regions (Clark et
al., 2018).

As marine robotic platforms acquire a huge amount of
heterogeneous data, a relevant effort has been dedicated
to the autonomous data treatment, with the support of
the European Commission and the European Marine
Board. AI technology, centered on machine learning, is
designed to identify patterns in available data and then
apply that knowledge to new data without human inter-
vention (Jordan and Mitchell, 2015; Karpatne et al., 2017).
Intelligent applications must be capable of not only de-
tecting and extracting useful information to reduce the
memory storage and ease the communication activities,
but also of explaining autonomously why such informa-
tion is relevant and how it has been extracted from data.
These capabilities are important, especially for explaining
the dynamics of unknown environments and for inferring
relationships that may be beyond the human cognitive
reach (Barredo Arrieta et al., 2020). Significant progress
has been made here in the context of marine science,
including AI algorithms for the processing of multivariate
time series and multi-spectral analysis of oceanographic,
geochemical and biological data (Cordier et al., 2017; Be-
yan and Browman, 2020; Makiola et al., 2020; Malde et al.,
2020). These approaches may be of benefit for space oce-
anic exploration research, where large amounts of data
cannot be easily transferred but whose interpretation
would have relevant scientific value.

A hardware architecture capable of controlling sensors
and executing algorithms in real time, for the indepen-
dent interpretation of content-based data from remote
computational resources, is the core of the edge-
computing paradigm (Shi et al., 2016). Such a technologi-
cal approach, together with the Internet of Underwater
Things (Qiu et al., 2020; Jahanbakht et al., 2021), results
in the continuously growing development of intelligent,
communicating observing systems, comprised by swarms
of cooperative robots, used for scientific exploration and
industrial monitoring (e.g., Berlinger et al., 2021). Multi-
scale exploration of marine and extra-terrestrial environ-
ments could be enforced by cooperating vehicles
equipped with heterogeneous sensors, as for example in
the case of continental margin and abyssal plain areas
(Aguzzi et al., 2019; Rountree et al., 2020), icy-moon
oceans (Aguzzi et al., 2020b; Blanc et al., 2020) or the
hydrocarbon lakes on Titan and polar ice caps (embedding
water lakes) on Mars (e.g., Mastrogiuseppe et al., 2019).
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In this framework, deep-sea operations can benefit
from the synergies between complex teleoperations of
semi-autonomous robotic systems conceived for lunar and
planetary (sub-)surfaces (Ehrenfreund et al., 2012). Archi-
tectures of robotic villages on moons and planets have
been considered, including systems of support infrastruc-
tures and services, with various degrees of autonomy and
intelligence. The partnership of robots with human habi-
tats has some common challenges for the deep sea, lunar
and planetary surfaces (Heinicke and Foing, 2021).

Life-detecting technologies

Life-detecting technologies (i.e., instrumentation and
techniques to detect life) conceived for astrobiological
research should be sufficiently repeatable, sensitive, and
reliable in detecting life signatures we know from Earth
and under similar environmental conditions (Neveu et al.,
2018). If possible, samples should be collected across dif-
ferent spatial scales in a complementary manner. Increas-
ingly, life detection in the deep sea will combine image
and molecular sensor technologies into highly integrated
payloads, which require miniaturization in order to be
fully portable in different marine and exo-ocean environ-
ments (Figure 1C). Marine research is developing ‘omics
sensors to trace environmental DNA and/or RNA (eDNA
and eRNA), and at the same time, the exo-ocean commu-
nity is implementing a path of coupling cameras with
microfluidic samplers for multi-molecular analyses, as
described in this section.

Marine biological sensors are getting progressively
smaller. Animal-borne technologies such as data loggers
and video cameras are being miniaturized and can now
store complex biological and environmental information
about investigated seascapes (e.g., Wilmer et al., 2015;
Fehlmann and King, 2016; Nassar et al., 2018). Similar
sensors can be implemented on planetary rovers or even
in space suits to monitor extravehicular activities. As an
example, micro-cameras (e.g., OmniBSI by OmniVision)
could be assembled into diffuse imaging systems that
recompose the field of view into photomosaics, hence not
only surveying the environment but also detecting
changes within mosaic quadrants with highly efficient
functional responses similar to flies (Bogue, 2013).
Research effort on reducing sensor size in marine plat-
forms (Zereik et al., 2018) has a clear value for astrobiol-
ogy in exo-ocean exploration scenarios that require
optimization in volume and weight with new pressure and
atmosphere resistant materials. For example, icy-moon
shells that need to be penetrated pose severe technolog-
ical constrains in platform and sensor payload transport
(Ono et al., 2019; Bryson et al., 2020).

Bio-ecological and genomic sensors for the identifica-
tion and quantification of small organic molecules (e.g.,
amino acids), biopolymers (i.e., polyamides, polynucleo-
tides, and polysaccharides), and lipids as universal markers
for life (Georgiou and Deamer, 2014) or DNA/RNA are
being developed in association with microfluidic sampling
capabilities. Microfluidic sensors act as molecular labora-
tories (Beaton et al., 2011) and are currently used in
diverse fields such as the detection of waterborne

pathogens (Rainbow et al., 2020), the oil and gas industry
(Sieben et al., 2017) and ocean monitoring (Wang et al.,
2020). The most recent application of such Lab-on-a-Chip
technologies to marine research has involved the use of
the 3 rd Generation Environmental Sample Processor
(Scholin et al., 2018) employed in different field experi-
ments (Zhang et al., 2019), including multi-omics analyses
of marine microbes (Evans et al., 2019). DNA sequencing
technology has also evolved, thanks to the nanofabrica-
tion of high-performance microfluidic chips comprising
modules for DNA extraction, library preparation using
protocols integrated with magnetic particles (e.g., Vol-
TRAX by Oxford Nanopore Technologies), and the single-
channel structure nanopore for sequencing (e.g., MinION;
Oxford Nanopore Technologies), upgradable to a multi-
channel microfluidic system (Fu et al., 2020). A further
step in fluid handling for microfluidic devices may con-
sider the implementation of paper-based analytical de-
vices for multi-step assays, including ‘omics applications
(Kim et al., 2020a).

New tools for the determination of biodiversity are
focusing on eDNA/eRNA detection and semi-
quantification (Cordier et al., 2021). This focus is paving the
route for the creation of in-situ bio-ecological detecting
tools and sensors, scouting for the presence of signatures
of life in extreme environments such as the trenches and
deep-sea floors, hydrothermal vents or at high latitudes.
Such a development will converge with in-situ micro-
fluidic sampling capability in the near future. Although
presently far from being achieved in the marine medium,
this technological convergence is relevant for detecting life
within thick ice shells while the probe penetrates into the
exo-ocean (e.g., Fukuba et al., 2011; Scholin et al., 2018).
For icy moons (and Mars), a biomarker detector equipped
with a bioaffinity-based sensor has been conceived for
a future astrobiological mission (Fairén et al., 2020).

Image analysis with high definition and high magnifi-
cation can improve considerably our ability to detect dif-
ferent forms of marine life (Bicknell et al., 2016).
Combining high-density, low-light and acoustic cameras
(morphologic approach), hydrophones (passive acoustic
approach) and ‘omics (molecular approach) allows the
quantification of the presence and activity of deep-sea life
within a broad range of ecological sizes (Aguzzi et al.,
2019; Danovaro et al., 2020). However, species traceability
by ‘omics coupled to concomitant image acquisition re-
quires a careful calibration phase in order to understand
the matching feasibility between the markers and the
portrayed species (Mirimin et al., 2021).

In astrobiology, the effort in the integration of sensor
payload is currently centered on microorganisms (e.g.,
Moissl-Eichinger et al., 2016; Merino et al., 2019) with
conceived prototypes such as the NASA-JPL Ocean Worlds
Life Surveyor that integrates molecular analyses with the
micro-imaging and spectral analysis of liquid samples. A
deep-sea inspired technological development may con-
tribute to shifting the focus of astrobiology research from
micro- to larger-sized multicellular organisms. Although
such a possibility remains remote according to current
knowledge, its theoretical framework (e.g., Levin et al.,
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2017; Newman, 2018) may provide the opportunity for an
interactive dialogue between marine and space scientists
on invention and application of new and deep off-the-
shelf life-detecting technological solutions (Arora et al.,
2019; Dachwald et al., 2020).

Perspectives and future outlook

The three major research areas discussed here are centered
on the technological challenges of the exploration of
remote deep-sea environments, considering at the same
time the potential gains for space research within the
oceans of icy moons as extreme habitat equivalents. Bio-
mimicking solutions should open a new operational line
in the exploration of marine extreme environments.
Already established assets (cabled observatories and
deep-sea off-shore installations, docked AUVs and craw-
lers) will be combined with innovative robotics, incorpo-
rating biological components in their morphology, energy
generation and cooperative behavior (Figure 2). Highly
mobile, crab-like platforms could act as small surveying
satellites, operating within areas around permanent
marine infrastructures, while being carried, recharged and
controlled via crawlers and AUVs. This combination of
platforms may promote a step forward in the use of auton-
omous, intelligent biomimetic robotics for the exploration
of exo-oceans.

In this scenario, we postulated a new framework for
dialogue on robots and sensors within three major
research topics of interest to produce a new class of ser-
vices (Figure 3). For example, off-shore industries could
benefit strongly from robotic developments for surveil-
lance and maintenance of their infrastructures. For min-
ing, these developments could include multi-legged (e.g.,
arthropod-like) platforms cooperatively interacting in the
selective picking of dispersed metal-rich nodules and gath-
ering them into piles (rather than wheel-tracked vehicles
eroding and bulldozing) to be targeted later by suction
recollects from ships or large AUVs.

Marine scientific and industrial off-shore infrastruc-
tures may provide innovative test-bed services for robotics
development (Figure 3), if we assume a growing momen-
tum in the exploration of abysses and exo-oceans as their
habitat equivalents, identified in the NASA Roadmap for
the Exploration of Ocean Worlds (Hendrix et al., 2019).
Permanent networks of cabled observatories, together
with their expanding water-column projections, are
becoming the core of the first in-situ ecological laborato-
ries, establishing operational control fields for docking
mobile robots with in-situ manipulation capabilities
(Rountree et al., 2020). To date, this achievement is immi-
nent at the European Multidisciplinary Seafloor and
water-column Observatories, the US National Science

Figure 2. Innovative biomimicking applications in a scenario of extreme environment exploration. Bioinspired
solutions beyond the current state of the art in deep-sea robotics such as the Silver2 crab (Picardi et al., 2020), coupled
with cabled observatories equipped with docking garages (see Aguzzi et al., 2020a, for X-Node specifications) powered
by industrial assets (telecommunication cabled and off-shore platforms) and transported by crawlers and autonomous
underwater vehicles. This combination of established and innovative biomimicking platforms could be implemented
to solve the problem of accessing remote deep-sea environments (hydrothermal vents and nodule fields), resulting in
a test bed for exo-ocean exploration. DOI: https://doi.org/10.1525/elementa.2021.00064.f2
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Foundation Ocean Observatories Initiative and Ocean Net-
works Canada among others (Aguzzi et al., 2019). Their
fixed platforms are allowing full sensor coverage of a ver-
tical cross section of the marine biosphere, by integrating
water-column and seabed oceanographic, geochemical
and biological data with atmospheric (by surface buoys)
and satellite readings (Danovaro et al., 2017a). In the past
decade, neutrino telescopes of the KM3Net network
(Agostini et al., 2020) also joined the monitoring efforts
of cabled observatories, with their moored towers added
to the previous water-column sensing technologies (Chat-
zievangelou et al., 2021).

The United Nations has declared the 2020s as the
Decade on Ecosystem Restoration, and environmental
exploration and monitoring technologies are increasingly
taking a central stage (Howell et al., 2020; Waltham et al.,
2020). By combining marine with space robotics explora-
tion solutions for the monitoring and surveillance of eco-
logically important and sensitive habitats (reefs, fishing
grounds, deep-sea floors and trenches) or at oil and gas
platform decommissioning sites, some major technologi-
cal breakthrough will possibly arise in the near future:

1. New life-inspired morphologies and bio-derived
materials with innovative and miniaturized sen-
sor packages will advance robotic hardware with
more diverse sensing systems, to sustain new
intelligent approaches for mission/activity plan-
ning and knowledge gain. This upgraded design
will improve the success of complex autonomous

missions in unknown environments, through
more efficient energy management and control
of on-board instrumentation. The intelligent
tools needed for the interpretation of the col-
lected data will allow the acquisition of new
knowledge inferred from the explored
environment.

2. AI-sustained decision-making will provide a step
forward in adapting the functionalities of individ-
ual platforms in extreme aqueous environments.
This autonomy will advance the deployment of
long-lasting missions with limited human inter-
vention, adaptively controlling reciprocal naviga-
tion, communication, and data collection.
Additionally, this adaptation will allow for further
behavioral upgrades for cooperated missions.

3. Ecological monitoring technologies will augment
their capability by integrating molecular and
imaging approaches into robotic platforms able
to extract information with AI. The autonomous
data collection by eDNA sensors will revolution-
ize our understanding of marine biodiversity, by
tracing the presence (and possibly abundance) of
organisms within a wide spectrum of sizes and
complexity, with this paradigm contributing to
the search for life in equivalent exo-ocean
habitats.

As a concluding thought, we suggest that the efforts of
recreating bio-inspired deep-sea robots with innovative

Figure 3. Deep-sea infrastructural testing scenario. The deep-sea operational scenario serves as an analogue for
other liquid saltwater habitats in planetary bodies of our solar system, as an innovative context for cooperation among
marine and space sciences plus off-shore industry. The three research topics for cooperation (see Figure 1) generate
a wide spectrum of innovative scientific and industrial services. DOI: https://doi.org/10.1525/elementa.2021.
00064.f3
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locomotor designs, energy acquisition and storage sys-
tems, coupled to the development of new sensing and
behavioral functionalities (e.g., bioluminescence), will
teach us new insights on potential biological adaptations
and their limits in extreme environments. This reverse-
engineering approach may even expand the paradigm
under which the search for extra-terrestrial life is envis-
aged, suggesting newly conceived and artificially con-
structed morphologies and energy-providing
mechanisms that could favor life to survive and operate
under the constrains of exo-ocean habitats.
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Danovaro, R, Flögel, S, Lebris, N, Juanes, F, De
Leo, FC, Del Rio, J, Thomsen, L, Costa, C, Ricco-
bene, G, Tamburini, C, Lefevre, D, Gojak, C, Pou-
lain, PM, Favali, P, Griffa, A, Purser, A, Cline, D,
Edigington, D, Navarro, J, Stefanni, S, D’Hondt,
S, Priede, IG, Rountree, R, Company, JB. 2019.
New high-tech interactive and flexible networks for
the future monitoring of deep-sea ecosystems. Envi-
ronmental Science & Technology 53(12): 6616–6631.
DOI: http://dx.doi.org/10.1021/acs.est.9b00409.

Aguzzi, J, Costa, C, ,Calisti, M, , Funari, V, , Stefanni, S,
Danovaro, R, , Gomes, HI, Vecchi, F, Dartnell, LR,
Weiss, P, Nowak, K, Chatzevangelou, D, Marini,
S. 2021. Research trends and future perspectives in
marine biomimicking robotics. Sensors 21(11):
3778. DOI: http://dx.doi.org/10.3390/s21113778.
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Genova, A, Iess, L, Jäggi, A, Kempf, S, Krupp, N,
Lara, L, Lasue, J, Lainey, V, Leblanc, F, Lebreton,
JP, Longobardo, A, Lorenz, R, Martins, P, Mar-
tins, Z, Marty, JC, Masters, A, Mimoun, D, Palum-
ba, E, Parro, V, Regnier, P, Saur, J, Schutte, A,
Sittler, EC, Spohn, T, Srama, R, Stephan, K,
Szeg}o, K, Tosi, F, Vance, S,Wagner, R, Van Hoolst,
T, Volwerk, M, Wahlund, JE, Westall, F, Wurz, P.
2020. Joint Europa Mission (JEM): a multi-scale
study of Europa to characterize its habitability and
search for extant life. Planetary Space Science 193:
104960. DOI: http://dx.doi.org/10.1016/j.pss.2020.
104960.

Bogue, R. 2013. Developments in biomimetic vision. Sen-
sor Review 33(1): 14–18. DOI: http://dx.doi.org/10.
1108/02602281311294306.

Branch, A, Flexas, MM, Claus, B, Thompson, AF, Zhang,
Y, Clark, EB, Chien, S, Fratantoni, DM, Kinsey, JC,
Hobson, B, Kieft, B, Chavez, FP. 2019. Front delin-
eation and tracking with multiple underwater vehi-
cles. Journal of Field Robotics 36(3): 568–586. DOI:
http://dx.doi.org/10.1002/rob.21853.

Bryson, FE, Nassif, M, Szot, PA, Chivers, CJ, Daniel, N,
Wiley, BE, Plattner, T, Hanna, A, Tomar, Y, Rapo-
port, S, Spiers, EM, Pierson, S, Hodges, A, Lawr-
ence, J, Mullen, AD, Dichek, D, Hughson, K,
Meister, MR, Lightsey, EG, Schmidt, B. 2020. Ver-
tical Entry Robot for Navigating Europa (VERNE)
mission and system design. ASCEND 2020. DOI:
http://dx.doi.org/10.2514/6.2020-4061.

Calisti, M, Picardi, G, Laschi, C. 2017. Fundamentals of
soft robot locomotion. Journal of the Royal Society
Interface 14(130): 20170101. DOI: http://dx.doi
.org/10.1098/rsif.2017.0101.

Carr, CE, Mojarro, A, Hachey, J, Saboda, K, Tani, J,
Bhattaru, SA, Smith, A, Pontefract, A, Zuber,
MT, Finney, M, Doebler, R, Brown, M, Talbot, R,
Nguyen, V, Bailey, R, Ferguson, T, Church, G, Ruv-
kun, G. 2017. Towards in situ sequencing for life
detection. 2017 IEEE Aerospace Conference. Big Sky,
MT. DOI: http://dx.doi.org/10.1109/AERO.2017.
7943896.

Chatzievangelou, D, Bahamon, N, Martini, S, Del Rio,
J, Riccobene, G, Tangherlini, M, Danovaro, R, De
Leo, FC, Pirenne, B, Aguzzi, J. 2021. Integrating
diel vertical migrations of bioluminescent deep scat-
tering layers into monitoring programs. Frontiers in
Marine Science 8: 661809. DOI: http://dx.doi.org/
10.3389/fmars.2021.661809.

Cheney, T, Newman, C, Olsson-Francis, K, Steele, S,
Pearson, V, Lee, S. 2020. Planetary protection in
the new space era: science and governance. Frontiers
in Astronomy and Space Sciences 7: 589817. DOI:
http://dx.doi.org/10.3389/fspas.2020.589817.

Chiu, MC, Karkoub, M, Her, MG. 2017. Energy harvesting
devices for subsea sensors. Renewable Energy 101:

Art. 10(1) page 12 of 19 Aguzzi et al: Deep-sea and space research technological synergies
D

ow
nloaded from

 http://online.ucpress.edu/elem
enta/article-pdf/10/1/00064/494885/elem

enta.2021.00064.pdf by guest on 10 February 2022

http://dx.doi.org/10.1007/s10514-019-09836-5
http://dx.doi.org/10.1007/s10514-019-09836-5
http://dx.doi.org10.1098/rsif.2015.0322
http://dx.doi.org10.1098/rsif.2015.0322
http://dx.doi.org/10.1016/j.jsse.2020.03.001
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1016/j.inffus.2019.12.012
http://dx.doi.org/10.1016/j.snb.2011.02.042
http://dx.doi.org/10.1016/j.snb.2011.02.042
http://dx.doi.org/10.1089/ast.2016.1629
http://dx.doi.org/10.1089/ast.2016.1629
http://dx.doi.org/10.1126/scirobotics.abd8668
http://dx.doi.org/10.1126/scirobotics.abd8668
http://dx.doi.org/10.1093/icesjms/fsaa084
http://dx.doi.org/10.1002/fee.1322
http://dx.doi.org/10.1016/j.pss.2020.104960
http://dx.doi.org/10.1016/j.pss.2020.104960
http://dx.doi.org/10.1108/02602281311294306
http://dx.doi.org/10.1108/02602281311294306
http://dx.doi.org/10.1002/rob.21853
http://dx.doi.org/10.2514/6.2020-4061
http://dx.doi.org/10.1098/rsif.2017.0101
http://dx.doi.org/10.1098/rsif.2017.0101
http://dx.doi.org/10.1109/AERO.2017.7943896
http://dx.doi.org/10.1109/AERO.2017.7943896
http://dx.doi.org/10.3389/fmars.2021.661809
http://dx.doi.org/10.3389/fmars.2021.661809
http://dx.doi.org/10.3389/fspas.2020.589817


1334–1347. DOI: http://dx.doi.org/10.1016/j.
renene.2016.10.018.

Clark, E, Bramall, N, Christner, B., Flesher, C, Harman,
J, Hogan, B, Lavender, H, Lelievre, S, Moor, J,
Siegel, V, Stone, W. 2018. An intelligent algorithm
for autonomous scientific sampling with the VALKY-
RIE cryobot. International Journal of Astrobiology
17(3): 247–257. DOI: http://dx.doi.org/10.1017/
S1473550417000313.

Cockell, C, Hecht, L, Landenmark, H, Payler, S, Snape,
M. 2017. Rapid colonization of artificial endolithic
uninhabited habitats. International Journal of Astro-
biology 17(4): 386–401. DOI: http://doi.org/10.
1017/S1473550417000398.

Cockell, CS, Bush, T, Bryce, C, Direito, S, Fox-Powell, M,
Harrison, JP, Lammer, H, Landenmark, H, Mar-
tin-Torres, J, Nicholson, N, Noack, L, O’Malley-
James, J, Payler, SJ, Rushby, A, Samuels, T,
Schwendner, P, Wadsworth, J, Zorzano, MP.
2016. Habitability: A review. Astrobiology 16(1):
89–117. DOI: http://doi.org/10.1089/ast.2015.
1295.
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