
i

Retrogressive Thaw Slump identification
using U-Net and Satellite Image Inputs
Remote Sensing Imagery Segmentation using
Deep Learning techniques

Maria Leonor Caetano Soares Furtado

Dissertation presented as partial requirement for
obtaining the Master’s degree in Data Science and
Advanced Analytics, with a Major in Data Science

NOVA Information Management School
Instituto Superior de Estatística e Gestão de Informação

Universidade NOVA de Lisboa

RETROGRESSIVE THAW SLUMP IDENTIFICATION USING
U-NET AND SATELLITE IMAGE INPUTS

by

Maria Leonor Caetano Soares Furtado

Dissertation presented as partial requirement for obtaining the
Master’s degree in Data Science and Advanced Analytics, with a
Major in Data Science

Advisor: Mauro Castelli
Associate Professor, NOVA University of Lisbon

Co-advisor: Ingmar Nitze
PostDoc, Alfred Wegener Institute

October 2021

To my family and friends.

Acknowledgements

I would like to express my gratitude to Professor Mauro Castelli for all the support,

understanding and advice given throughout this process. Thank you for the words of

encouragement and the outstanding availability and reliability as an advisor.

I am grateful to the Alfred Wegener Institute and Dr. Ingmar Nitze for providing

me with the labelled data that made this project possible. I would also like to thank

Dr. Nitze for the continued guidance and support in the unknown world of remote

sensing imagery and permafrost and for advising me throughout the writing process.

I would also like to thank my leaders at Accenture, Fernando Lucini and Gilbert

Cassar for all the support and flexibility shown to me this past year while I wrote this

dissertation and still worked full-time. A special thanks to Gilbert for all the advice

and technical knowledge shared with me during the writing process. I would also

like to thank Adam Wickenden for helping me with the input data collection and also

for going through ideas with me on model development. Finally, to Jeffrey Nogosek

for organising Cloudwars 3 with the Alfred Wegener Institute and the Stockholm

Environment Institute, without this project I would not have had the awareness, data

or understanding needed to pursue this work.

A special thanks to my grandmother, mum, dad, auntie and uncle who have opened

every door and window they could to give me all the oportunities that have led me

to where I am today. Thank you for respecting and supporting all my decisions and

all the love you give me uncondicionally. To my brother, for being my best friend and

always there for me in times of need, always available to help without any questions.

To Alex, for being my partner in crime, for keeping me sane and grounded through

this process and supporting me in every way she could. To Moyin, Helen and Annie

for keeping me on track, helping me break this down into small goals with Trello and

for always making the time every week to check on me and cheer me on. To Charlotte

for our writing club and all the advice and tips. Thank you to Carlos for helping me at

very short notice with my very rusty Portuguese. Thank you to Alastair, Alex, Carolina,

Catarina, Charlotte, Chuck, Corey, Francesca, Gabriel, Hannah, Henrietta, Inês, Joey,

Jona, Kristia, Mafalda, Manel, Maren, Mariana, Miguel, SiSi, Tugse and Tze Ni for

vii

all the kind words of encouragement and all the advice you gave me throughout this

process.

I cannot thank enough everyone that has been mentioned and so many other friends

that have shown me nothing but kindness and support. Thank you for believing in me

and thank you for helping me grow everyday.

This was an incredible journey to be on, it was tough, it was outside of my comfort

zone, but in the end it was worth it. Thinking of that blank page and seeing how far I

was able to come with everyone’s support makes me be hopeful and positive about all

the things we can achieve together. Finally, I am thankful for hope.

viii

“All models are wrong, but some are useful.” (George E. P. Box)

Abstract

Global warming has been a topic of discussion for many decades, however its im-

pact on the thaw of permafrost and vice-versa has not been very well captured or

documented in the past. This may be due to most permafrost being in the Arctic and

similarly vast remote areas, which makes data collection difficult and costly.

A partial solution to this problem is the use of Remote Sensing imagery, which

has been widely used for decades in documenting the changes in permafrost regions.

Despite its many benefits, this methodology still required a manual assessment of im-

ages, which could be a slow and laborious task for researchers. Over the last decade,

the growth of Deep Learning has helped address these limitations. The use of Deep

Learning on Remote Sensing imagery has risen in popularity, mainly due to the in-

creased availability and scale of Remote Sensing data. This has been fuelled in the

last few years by open-source multi-spectral high spatial resolution data, such as the

Sentinel-2 data used in this project.

Notwithstanding the growth of Deep Learning for Remote Sensing Imagery, its use

for the particular case of identifying the thaw of permafrost, addressed in this project,

has not been widely studied. To address this gap, the semantic segmentation model

proposed in this project performs pixel-wise classification on the satellite images for

the identification of Retrogressive Thaw Slumps (RTSs), using a U-Net architecture.

In this project, the successful identification of RTSs using Satellite Images is achieved

with an average of 95% Dice score for the 39 test images evaluated, concluding that it

is possible to pre-process said images and achieve satisfactory results using 10-meter

spatial resolution and as little as 4 spectral bands. Since these landforms can be a

proxy for the thaw of permafrost, the aim is that this project can help make progress

towards the mitigation of the impact of such a powerful geophysical phenomenon.

Keywords: Permafrost; Retrogressive Thaw Slump (RTS); Remote Sensing; Multispec-

tral (MSI); Machine Learning (ML); Deep Learning (DL); Artificial Intelligence (AI);

U-NET; Convolutional Neural Network (CNN); Computer Vision (CV).

xi

Resumo

O aquecimento global tem sido tópico de discussão nas últimas décadas. Apesar

deste debate, o impacto do aquecimento global no degelo do pergelissolo e vice-versa

não está amplamente estudado nem documentado. Uma das causas que pode ter levado

a esta escassez de estudos é o facto do pergelissolo se encontrar no Ártico ou em regiões

igualmente remotas e inacessíveis, o que faz com que a recolha de dados seja difícil e

com custos elevados.

Uma das soluções parciais para este problema, usada há várias décadas, é a recolha

de imagens de satélite para estudar as mudanças nas regiões de pergelissolo. Apesar

dos inúmeros benefícios, esta técnica requer uma análise detalhada das imagens adqui-

ridas, o que, por conseguinte, se traduz num processo exaustivo e demorado quando é

feito manualmente por cientistas.

Ao longo das últimas décadas, o crescimento de “Deep Learning” propõe resolver

estas limitações. O uso desta ferramenta para a análise de imagens de satélite tem

crescido em popularidade, em particular devido ao aumento da quantidade e disponi-

bilidade de dados. Este aumento de dados tem sido sustentado em grande parte pela

disponibilização, na modalidade de “open-source” de dados de sensores multiespec-

trais de alta resolução espacial, como aqueles usados neste projeto, provenientes da

missão “Sentinel-2”.

No entanto, apesar de um crescimento do uso de “Deep Learning” na análise de

imagens de satélite a sua aplicação concreta especificamente na análise do degelo do

pergelissolo, abordada neste projeto, não tem sido amplamente estudado. Para abordar

esta lacuna, o modelo de “semantic segmentation” proposto neste projeto, classifica

cada pixel nas imagens de satélite para identificar "Retrogressive Thaw Slumps (RTSs)”,

usando a arquitetura “U-Net”.

Neste projeto, a identificação de RTSs usando imagens de satélite é bem sucedida,

conseguindo um “Dice Score” médio de 95%, nas 39 imagens de teste analisadas. Este

resultado levou a conclusão que é possível processar imagens de satélite e atingir

resultados satisfatórios usando imagens com 10 metros de resolução espacial e apenas

4 bandas espectrais. Como estas formas de relevo são uma boa indicação do degelo

xiii

do Pergelissolo, a esperança é que este projeto possa ajudar na mitigação do impacto

deste poderoso fenómeno geofísico.

Palavras-chave: Pergelissolo; Retrogressive Thaw Slump (RTS); Imagens de Satélite;

Multispectral Instrument; Machine Learning (ML); Deep Learning (DL); Artificial

Intelligence (AI); U-Net; Redes Neuronais Convolucionais; Visão Computacional.

xiv

Contents

List of Figures xix

List of Tables xxi

Acronyms xxiii

1 Introduction 1

1.1 Project Objectives and Research questions 2

1.2 The task of identifying Retrogressive Thaw Slumps using remote sens-

ing data . 2

1.2.1 The relevance of identifying Retrogressive Thaw Slumps using

Deep Learning and remote-sensing imagery 3

1.2.2 Challenges and Opportunities 3

1.3 Report Structure . 4

2 Theoretical Context 5

2.1 Permafrost and its degradation . 5

2.1.1 Thermokarst landforms . 5

2.1.2 Retrogressive Thaw Slumps . 6

2.2 Artificial Intelligence Applications in Remote Sensing 7

2.2.1 Conventional Machine Learning applications in Remote Sensing 8

2.2.2 Deep Learning applications in Remote Sensing Imagery 9

2.2.3 Deep Learning Models in Remote Sensing 11

2.3 Convolutional Neural Network (CNN) 12

2.3.1 Main Layers of a Convolutional Neural Network 12

2.3.2 Activation Functions . 17

2.3.3 Classical Convolutional Neural Network Architectures and their

evolution . 20

2.4 The various architectures used in Remote Sensing applications 22

2.4.1 Fully Convolutional Network (FCN) 23

xv

CONTENTS

2.4.2 DeepLab models . 23

2.4.3 U-Net . 23

3 Semantic Segmentation Models - Input data, algorithm and hyperparame-

ters 25

3.1 Input data . 25

3.1.1 Labelled data . 25

3.1.2 Sentinel-2 data collection . 25

3.1.3 Google Cloud Storage (GCS) and JPEG 2000 (JP2) data 28

3.1.4 Data understanding and preparation 29

3.2 Introduction to semantic segmentation models 31

3.2.1 Pre-processing of data . 31

3.2.2 Preparing the data for modelling using Tensorflow 33

3.2.3 Deep Learning process . 33

3.2.4 Measurement of model performance 42

3.2.5 Transfer Learning . 43

4 Modelling Experiments 45

4.1 Choosing the most appropriate classification model 45

4.1.1 Pixel-wise classification model 45

4.1.2 Evaluating the use of transfer learning 47

4.1.3 Pixel-level class imbalance . 47

4.1.4 Experiment set up . 48

4.2 Preprocessing experiments . 49

4.2.1 Size of the input patch . 49

4.2.2 Normalisation of input . 50

4.2.3 Data Augmentation . 51

4.3 Training experiments . 52

4.3.1 Network Hyperparameters . 52

4.3.2 Optimiser . 52

4.3.3 Learning rate . 54

4.3.4 Batch size . 55

4.3.5 Initialisation . 55

4.3.6 Activation function . 56

4.3.7 Loss Function . 58

4.3.8 Preventing overfitting . 59

4.4 Learnings from conducting experiments 60

5 Training the model on more data and model performance evaluation 63

5.1 Using transfer learning to train the model on more data 63

5.2 Training the model from scratch on new data 63

xvi

CONTENTS

5.2.1 Comparison with the Google Earth Engine (GEE) dataset model

- same parameters . 63

5.2.2 Hyperparameter tuning from scratch 65

5.3 Final Model . 65

5.4 Test Evaluation . 66

6 Conclusions and Future Work 71

6.1 Conclusions . 71

6.2 Limitations . 72

6.3 Future Work . 72

Bibliography 75

Annexes

I Annex 83

xvii

List of Figures

2.1 Landscape features and processes info-graphic (Philipp et al., 2021) . . . 6

2.2 Example of an RTS in the Arctic, kindly provided by Dr. Nitze 7

2.3 Example of an RTS with added legend. (b) and (c) are the ground photo

and Remote Sensing image of an RTS whose central location is 92.912° E,

34.848° N. (L. Huang et al., 2020) . 7

2.4 Example of an RTS in the Arctic, kindly provided by Dr. Nitze 8

2.5 Three-layer back-propagation neural network (Yang et al., 2008) 9

2.6 Study target of DL in Remote Sensing studies (L. Ma et al., 2019) 10

2.7 General Framework of Remote Sensing Image Classification Based on DL

(Li et al., 2018) . 11

2.8 DL models used in Remote Sensing studies (L. Ma et al., 2019) 11

2.9 The main layers of a CNN (Hiep and Joo, 2018) 12

2.10 The movement of the filter in a 2D CNN layer (Ferretti et al., 2020) . . . 13

2.11 The Convolution Operation in an n-channel input CNN (Panchbhaiyye and

Ogunfunmi, 2020) . 14

2.12 Different types of pooling with 2x2 kernel and stride 2 16

2.13 Softmax activation function (Nabiyev and Malekzadeh, 2021) 18

2.14 Tanh and Sigmoid activation functions (Fathi and Maleki Shoja, 2018) . . 19

2.15 Rectified Linear activation functions (Shenoy, 2019) 20

2.16 Architecture of LeNet-5 (Lecun et al., 1998) 20

2.17 Architecture of AlexNet (Krizhevsky et al., 2012) 21

2.18 U-Net Architecture, blue boxes are feature maps and white boxes are copied

feature maps (Ronneberger et al., 2015) 24

3.1 GEE Console UI showing a snippet of the bespoke JavaScript script 26

3.2 Example of the RGB channels normalised using z-score 28

3.3 Example of a RTS mask . 28

3.4 Distribution of GEE data RTS positive pixels 29

3.5 Distribution of JP2 data RTS positive pixels across datasets 30

3.6 NN hyperparameter optimization cycle (Stock et al., 2020) 34

xix

LIST OF FIGURES

3.7 Overview and relationship among the existing loss functions. (J. Ma et al.,

2021) . 35

3.8 Convergence of a 30-layer CNN in He et al.’s paper (He et al., 2015b) . . . 39

3.9 (a) Regular 2-layer NN (b) Example of NN after dropout applied. Crossed

neurons have been turned off. (Shanmugamani, 2018) 40

4.1 Example of convolution block(x = 16, z = 0.1) 46

4.2 Example of transpose convolution block(x = 16, z = 0.1) 46

4.3 U-Net architecture used in this project . 47

4.4 Input patch size Dice Coefficient comparison 49

4.5 Normalisation method Dice Coefficient comparison 51

4.6 Augmentation method Dice Coefficient comparison 52

4.7 Optimiser Loss comparison . 53

4.8 Learning rate Dice Coefficient comparison 54

4.9 Initialisation method Dice Coefficient comparison 56

4.10 Activation function Loss comparison . 57

4.11 Loss function Dice Coefficient comparison 58

4.12 ES usage Loss comparison . 59

4.13 Removal of Dropout Loss comparison . 60

5.1 Retraining with frozen weights Dice Coefficient comparison 64

5.2 Retraining from scratch Loss comparison 64

5.3 Subset of hyperparameter experiments with new data Validation dice coef-

ficient . 66

5.4 Dice Score comparison . 67

5.5 Loss comparison . 67

5.6 Dice Score vs. IoU Score Test images scatter plot 68

5.7 Test set predicted vs. ground truth high score examples 68

5.8 Test set predicted vs. ground truth medium score examples 69

5.9 Test set predicted vs. ground truth low score examples 69

5.10 Test set predicted vs. ground medium score example 70

xx

List of Tables

3.1 Distribution of GEE data for scene classification 29

3.2 Train/ Validation/ Test split of samples for GEE data 30

3.3 Train/Validation/Test split of samples for JP2 data 30

4.1 Input patch size comparison of Dice Coefficient and Loss 50

4.2 Normalisation method comparison of Dice Coefficient and Loss 50

4.3 Optimiser comparison of Dice Coefficient and Loss 53

4.4 Learning rate comparison of Dice Coefficient and Loss 54

4.5 Batch size comparison of Dice Coefficient and Loss 55

4.6 Initialisation method comparison of Dice Coefficient and Loss 56

4.7 Activation function comparison of Dice Coefficient and Loss 57

4.8 Loss function comparison of Dice Coefficient and Loss 58

5.1 Retraining on new data comparison of Dice coefficient and Loss 65

5.2 Hyperparameter combinations comparison of Dice Coefficient and Loss . 66

5.3 Dice score test image summary . 67

xxi

Acronyms

a.k.a. also known as

Adam Adaptive Momentum Estimation

AE Autoencoders

ANN Artificial Neural Network

API Application Programming Interface

AWI Alfred Wegener Institute

BGD Batch Gradient Descent

BPNN Back-Propagation Neural Networks

CE Cross Entropy

CNN Convolutional Neural Network

CPU Central Processing Unit

CRF Conditional Random Field

CRS Coordinate Reference System

CV Computer Vision

DBN Deep Belief Networks

DL Deep Learning

DSM Digital Surface Model

e.g. exempli gratia
ELU Exponential Linear Unit

EPSG European Petroleum Search Group

ES Early Stopping

FCN Fully Convolutional Network

xxiii

ACRONYMS

GAN Generative Adversarial Network

GCP Google Cloud Platform

GCS Google Cloud Storage

GEE Google Earth Engine

GHGs Green House Gases

GPU Graphic Processing Unit

i.e. id est
IoU Intersection over Union

JP2 JPEG 2000

LULC Land Use and Land Cover

ML Machine Learning

NAdam Nesterov-accelerated Adaptive Momentum Estimation

NAG Nesterov Accelerated Gradient

NiN Network in Network

NIR Near Infra-Red

NN Neural Network

OCR Optical Character Recognition

PRD Permafrost Region Disturbances

RAM Random Access Memory

ReLU Rectified Linear Unit

RF Random Forest

RGB Red, Green, Blue

RMSProp Root Mean Square Propagation

RNN Recurrent Neural Networks

ROI Region of Interest

RTS Retrogressive Thaw Slump

SEI Stockholm Environment Institute

SELU Scaled Exponential Linear Unit

SGD Stochastic Gradient Descent

SVM Support Vector Machines

SWIR Short Wave Infra-Red

xxiv

ACRONYMS

UI User Interface

VNIR Visible Near Infra-Red

w.r.t. with respect to

xxv

1

Introduction

Permafrost is found mainly in the Arctic region, it covers 15% of the exposed land

surface area in the Northern Hemisphere (Obu, 2021). The carbon content stored in

permafrost is thought to be double that in the atmosphere (Schuur et al., 2015). As

permafrost thaws due to global warming and other climate-change-driven events, the

stocks of carbon get released into the atmosphere. This release of Green House Gases

(GHGs) is estimated to add dozens of trillions of dollars to the global costs of climate

change in the next two to three decades (Calel et al., 2020).

The thaw of permafrost also known as (a.k.a.) permafrost degradation can not only

damage roads and other man-made infrastructures, but the release of said trapped

GHGs could also contribute further to global warming and even more permafrost

degradation (Schuur et al., 2015), as it warms and thaws at a faster rate, creating a

vicious cycle of global warming that is threatening life on Earth.

Although little can be done to prevent permafrost degradation, the ability to iden-

tify it in a semi-automated way using Deep Learning (DL) and Remote Sensing imagery

can go a long way in assessing and forecasting permafrost thaw related landscape

changes, hopefully feeding into carbon budget estimations and the development of

mitigating responses (Osterkamp and Jorgenson, 2009).

DL in remote sensing has been used in a wide range of applications (Zhu et al.,

2017), many of which have been captured in a recent review study, including but

not limited to Land Use and Land Cover (LULC) classification, image fusion, image

registration, object detection, scene classification and image segmentation (L. Ma et al.,

2019).

This project aims to combine remote sensing multi-spectral imagery data with the

advancements of DL frameworks to construct an automated way of helping to identify

signs of the patterns and processes associated with permafrost degradation.

1

CHAPTER 1. INTRODUCTION

1.1 Project Objectives and Research questions

This project has the primary aim of using remote sensing multi-spectral imagery to

build a DL neural network that allows the identification of Retrogressive Thaw Slump

(RTS) to assess the thawing of permafrost in the Arctic.

To achieve this goal, this project aims to answer the following questions:

1. How to deal effectively with the challenge of extracting and pre-processing multi-

spectral imagery?

2. What is the impact of changing hyperparameters and input parameters in the

network?

3. Is it possible to achieve satisfactory results using only 10-meter resolution im-

agery, or is higher resolution needed?

1.2 The task of identifying Retrogressive Thaw Slumps using

remote sensing data

The use of remote sensing imagery to analyse and monitor RTSs has been widespread

for many decades across many use cases in remote regions where RTSs are more com-

monly found. Due to their remote location, access to these areas is not only logistically

complicated but also expensive. This may have contributed to the popularity of remote

sensing imagery due to its reduced cost and ease of data collection.

Up until the last five years, most techniques used to identify RTSs were either man-

ual visual inspection, traditional statistical methods or conventional Machine Learning

(ML) techniques such as Linear Regression, Random Forest amongst others.

RTSs were often identified manually, either by simply identifying RTSs visually

with tools such as Google Earth Engine (GEE) Timelapse (Lewkowicz and Way, 2019)

or by combining remote sensing imagery with other data such as field observations

and historical weather data to investigate the growth of RTSs (Kokelj et al., 2015). This

is a lengthy laborious process, taking precious research time away from specialists,

leading to a desire to automate this process as much as possible, so that focus can be

shifted towards mitigation rather than identification methods.

In a step towards this, Nitze et al. (Nitze et al., 2018) take remote sensing data

and apply Linear Regression and Random Forest techniques to classify RTSs and other

types of Permafrost Region Disturbances (PRD).

Furthermore, since 2018, Huang et al. (L. Huang et al., 2018) (L. Huang et al.,

2020) (L. Huang et al., 2021) makes use of DL techniques to identify RTSs, making un-

precedented contributions to the field of identification of RTSs by using DeepLabv3+

to assign a label to each pixel in satellite images taken by the Planet CubeSat constel-

lation at a regional level.

2

1.2. THE TASK OF IDENTIFYING RETROGRESSIVE THAW SLUMPS USING

REMOTE SENSING DATA

The availability of labelled data from the Arctic, provided by researchers during

a project with both the Alfred Wegener Institute (AWI) and Stockholm Environment

Institute (SEI), was the missing element, proving the feasibility of using DL for the

identification of RTSs in this region.

The main goal of this project is to build a DL model that identifies thaw slump

locations and shapes in the Arctic region through pixel-wise classification of remote

sensing images. To this author’s knowledge, there are no state-of-the-art segmentation

models focused on the use of satellite images to identify RTSs in the Arctic.

1.2.1 The relevance of identifying Retrogressive Thaw Slumps using Deep
Learning and remote-sensing imagery

Nitze et al. (Nitze et al., 2018) highlight that uncertainty around the scale and rapid

pace of permafrost degradation is a result of most PRD not being documented due to

their under-representation in the remote sensing studies. They also expect permafrost

to degrade faster than the current projections by models that do not consider PRD-

driven thaw. These models do not take into account the full extent of increased carbon

emissions from permafrost thaw, which can further contribute to global warming, a.k.a.

permafrost carbon feedback (Schaefer et al., 2014).

Osterkamp et al. (Osterkamp and Jorgenson, 2009) strongly argue the need for

more research targeted at identifying and monitoring PRD for the benefit of monitor-

ing GHGs, and the estimation of the consequences of its monitoring on global warming

and the future of life on Earth. Despite the extensive literature on using remote sensing

imagery and DL in the field of LULC, there are still major limitations when it comes to

the identification of permafrost disturbances. A recent review study on remote sensing

for permafrost-related analysis in the last two decades (Philipp et al., 2021) found that

only a handful amongst 325 articles used DL and only one by Huang et al. (L. Huang

et al., 2020) refers to RTSs in particular.

By developing a project through Accenture with researchers from both the AWI

and SEI, the feasibility of using DL for the identification of RTSs became apparent.

This project aims to make a significant contribution to this field by attempting to fill

some knowledge gaps in RTSs identification and provide a basis for future carbon

emissions estimations.

1.2.2 Challenges and Opportunities

One of the biggest challenges ahead of this project will be the automated satellite

data extraction due to the unreliability of the Application Programming Interface

(API) available to perform this task, since sometimes it was very slow or would stop

responding all together. Another challenge could be the identification of small RTSs

given that the smallest pixel resolution available in this project represents a 10x10

meter area, and some thaw slumps can be as small as that if not smaller.

3

CHAPTER 1. INTRODUCTION

There is an opportunity of using techniques used in other widely researched remote

sensing applications, for example, LULC use cases, that could provide some guidance

in designing and training the DL model introduced in this project.

1.3 Report Structure

• Chapter 2 will consist of the theoretical context of this project.

• Chapter 3 will describe the chosen methodology, including the chosen data and

algorithms.

• Chapter 4 will outline the experiments conducted in the optimisation of the

model of choice.

• Chapter 5 will assess the behaviour of the model when trained on more data,

introduce the final model and its evaluation using unseen data.

• Chapter 6 will summarise the conclusions of this project, its limitations, and

suggestions for future work.

4

2

Theoretical Context

All the necessary scientific concepts and ideas will be discussed in this section to

provide the reader with a theoretical context of the task at hand.

2.1 Permafrost and its degradation

Permafrost is characterised as frozen ground that has a temperature colder than 0◦C

continuously for two or more years (van. Everdingen and International Permafrost

Association (USA), 1998). There are several types of permafrost zones (continuous,

discontinuous, sporadic, and isolated) (Obu, 2021) characterised according to the

distribution of permafrost within them and how much of the zone is underlain by

permafrost. As the Arctic has warmed twice as fast as the globe on average, a.k.a.

Arctic amplification (Cohen et al., 2014) the consequences of global warming are

disproportionally felt in the Arctic.

In the Northern Hemisphere, immense amounts of soil organic carbon are trapped

in permafrost soils. Any change in boundary conditions that causes the ground to

warm will result in the thaw of permafrost. These abrupt thaw processes will expose

previously frozen soil organic matter, causing it to undergo microbial degradation and

release GHGs exempli gratia (e.g.) methane and carbon dioxide as a result.

This vicious cycle could further exacerbate Arctic amplification, making it impera-

tive to monitor and predict the volume of GHGs released into the atmosphere due to

the abrupt thaw of permafrost.

2.1.1 Thermokarst landforms

The extent of permafrost and its degradation is difficult to measure and historically

requires extensive and costly investigation. A way to attempt this is to look for evidence

of the formation of thermokarst landforms such as those depicted in Figure 2.1 which

cause visible geological changes in close range of abrupt thaw locations.

Thermokarst is the sinking of the ground’s surface due to the thawing of per-

mafrost. There are many examples of thermokarst landforms, the most common and

5

CHAPTER 2. THEORETICAL CONTEXT

fast-changing are lakes and ponds (Grosse et al., 2013) (Rowland et al., 2010). Another

relevant example of thermokarst features are RTSs (Figure 2.1, label 10). This paper

will focus on the identification of these in an attempt to capture some of the extent of

permafrost degradation in the Arctic. The following section will describe RTSs further.

Figure 2.1: Landscape features and processes info-graphic (Philipp et al., 2021)

2.1.2 Retrogressive Thaw Slumps

RTSs typically occur in very ice-rich permafrost mostly formerly glaciated terrain.

They can usually be described as horseshoe-shaped landslides caused by the thawing of

ice-rich permafrost, which causes erosion mostly at its steep head scarp. RTSs usually

occur on sloped terrain, the thawed material can then flow downslope normally into

nearby water features such as lakes and rivers (Osterkamp and Jorgenson, 2005) as

seen in Figure 2.2.

This means that RTSs have particular parts that can ease their visual identification

through the mentioned head scarp, the headwall that forms after the slump and the

slump floor itself (Lantuit and Pollard, 2008), which can also be described as slump

scar zone. These have been labelled in Figure 2.3 for the reader’s benefit.

6

2.2. ARTIFICIAL INTELLIGENCE APPLICATIONS IN REMOTE SENSING

Figure 2.2: Example of an RTS in the Arctic, kindly provided by Dr. Nitze

Figure 2.3: Example of an RTS with added legend. (b) and (c) are the ground photo
and Remote Sensing image of an RTS whose central location is 92.912° E, 34.848° N.
(L. Huang et al., 2020)

Having said that, RTSs can have a large variety of surrounding landscape, vegeta-

tion and underlying sediment colours, as seen in Figure 2.4, which makes it very hard

to detect them across the entire Arctic.

As some sections of the slump scar stabilise they become vegetated (Kokelj et al.,

2015), and thus harder to identify using only visual Red (R), Green(G) and Blue (B)

channels, this is where other spectral bands can identify, features not seen with the

naked eye (L. Huang et al., 2020)

2.2 Artificial Intelligence Applications in Remote Sensing

The advancements in Artificial Intelligence have made it possible to identify and

classify particular features in images, even Remote Sensing imagery. This section will

introduce the techniques used in this field.

Given the lack of research found on the specific task of identifying RTSs using

7

CHAPTER 2. THEORETICAL CONTEXT

Figure 2.4: Example of an RTS in the Arctic, kindly provided by Dr. Nitze

Remote Sensing imagery, a more expansive approach on looking at DL and ML tech-

niques using Remote Sensing imagery was taken.

2.2.1 Conventional Machine Learning applications in Remote Sensing

Before the rise in popularity of DL applications in Remote Sensing imagery, more

shallow structures that process features extracted from the satellite images, such as

Random Forest (RF), were used. This type of ML techniques require features to be

extracted by experts to enable the algorithms to use them, typically on a pixel level and

without taking into account spatial features or context. The DL techniques introduced

in this project, perform feature map extraction as part of the algorithm and capture

those spatial features and context as part of that process, as will be seen in section

2.3.1.

In a study (Bramhe et al., 2018) on extracting built-up areas from Sentinel-2 Re-

mote Sensing imagery, DL techniques were compared against the most widely used con-

ventional ML methods in Remote Sensing classification to show the benefits of using

DL algorithms, both Gaussian Support Vector Machines (SVM) and Back-Propagation

Neural Networks (BPNN) were evaluated.

Support Vector Machines (SVM) According to a 2010 review (Mountrakis et al.,

2011) of over 100 studies on the use of SVM in Remote Sensing, this model’s popularity

in the field came from its ability to generalise well even when there is limited training

data, which is quite common in Remote Sensing problems. Their major limitation

comes in the form of parameter assignment issues, which affect the quality of the

results.

Random Forest (RF) RF has always been a popular method, as it is an ensemble clas-

sifier that makes use of multiple decision trees combined with random subsampling

of the training data and variables.

8

2.2. ARTIFICIAL INTELLIGENCE APPLICATIONS IN REMOTE SENSING

According to a review on the use of RF in Remote Sensing, (Belgiu and Drăguţ,
2016) RF became a popular classifier in Remote Sensing due to the high accuracy of

its classifications. It also seems to successfully handle the high dimensionality and

multicollinearity of Remote Sensing data, being fast and not prone to overfitting. Its

main limitation is its sensitivity to the sampling design.

Back-Propagation Neural Networks (BPNN) The traditional BPNN is a popular ML

algorithm, according to a review (Yuan et al., 2020) in environmental Remote Sensing

it has been used extensively for research in this field. Yuan et al. report improvement in

accuracy against traditional regression methods across several papers by using BPNN

but highlights a couple of limitations: the slow convergence of the algorithm and how

much it is affected by weight initialisation, being susceptible to getting stuck in local

minima.

This traditional Neural Network forms the back-bone of many DL models, so it is

imperitive to understand its inner works.

A BPNN consists of one or more hidden layers between an input and an output

layer, each layer having many neurons/nodes that are fully connected to the next layer

as it can be seen from Figure 2.5. It is trained via forward and backward propagation.

Starting with forward propagation the input is propagated through the hidden layers

in the network until it reaches the output layer where the error between the predicted

and actual values is calculated.

Straight after the error is calculated, it is propagated backwards to update the

neuron weights of each layer to minimise the error.

Figure 2.5: Three-layer back-propagation neural network (Yang et al., 2008)

2.2.2 Deep Learning applications in Remote Sensing Imagery

Looking at the field of DL with Remote Sensing, most studies have been focused on

the field of LULC classification, as suggested by a DL in Remote Sensing application

9

CHAPTER 2. THEORETICAL CONTEXT

review (L. Ma et al., 2019) in Figure 2.6. Object detection, Scene Classification and

Segmentation (a.k.a. pixel-wise classification) are also techniques to classify images or

areas of these images.

Figure 2.6: Study target of DL in Remote Sensing studies (L. Ma et al., 2019)

In traditional natural images, image classification assigns a label to a whole input

image, either by outputting a class or a probability of classes that describe that image.

However, this is not the case in Remote Sensing, where the concept is broader, referring

to either pixel-wise or scene classification, as shown in Figure 2.7.

Pixel-wise classification The classification of each pixel, similar to the concept of

image segmentation, as it is known when performed in natural images. Each pixel in

a Remote Sensing image could represent, as an example, a 10 by 10-meter area, which

would usually be associated with a natural image area.

So by classifying each pixel in a Remote Sensing image, we are classifying a 10x10

meter area, each class represented by the different colours at the top right of Figure

2.7 for example.

Scene classification The automatic assignment of a semantic label to a scene, repre-

sented by the different coloured containers at the bottom right of Figure 2.7. A scene

being a local image patch that is usually manually extracted from large-scale satellite

images that contain classes (e.g. forest areas, residential area) (Li et al., 2018).

Object detection In Remote Sensing images, it is used to find out if a satellite image

has one or more objects belonging to a given class and find the position of each object

predicted in the image (Cheng and Han, 2016).

10

2.2. ARTIFICIAL INTELLIGENCE APPLICATIONS IN REMOTE SENSING

Figure 2.7: General Framework of Remote Sensing Image Classification Based on DL
(Li et al., 2018)

2.2.3 Deep Learning Models in Remote Sensing

The same review (L. Ma et al., 2019) also suggests that the most used DL model

in Remote Sensing imagery is Convolutional Neural Network (CNN) as indicated in

Figure 2.8.

Figure 2.8: DL models used in Remote Sensing studies (L. Ma et al., 2019)

The models in Figure 2.8 can be classified into two types of DL models: CNN,

Recurrent Neural Networks (RNN), and Fully Convolutional Network (FCN) are super-

vised models, whereas Autoencoders (AE), Deep Belief Networks (DBN), Generative

Adversarial Network (GAN) models are unsupervised models.

Supervised models require labelled data to learn from the ground truth, whereas

unsupervised ones do not. For example, Alvarez et al. (Alvarez et al., 2020) use GAN

to solve the binary change detection problems in Remote Sensing. This is done by

using the discriminator likelihood to generate the distribution of unchanged samples.

As labelled data has been collected for this project, its focus will be on a supervised

DL model. CNN has been chosen as it is the most popular supervised technique, so

section 2.3 will expand on this.

11

CHAPTER 2. THEORETICAL CONTEXT

2.3 Convolutional Neural Network (CNN)

CNNs are a type of Artificial Neural Network (ANN) that have been praised for

their contribution to the field of computer vision. CNNs have been very successful

and efficient in image classification, object detection, and many other computer vision

applications (Goodfellow et al., 2016).

In general, a CNN takes an input image, extracts low-level features, and hierarchi-

cally builds on this to extract more abstract features so that it can extract features that

are common for all outputs. This concept has its origin in the biology of the visual

cortex, which has small regions of cells that light up to specific characteristics of the

visual field until the entire visual field is processed and categorised.

2.3.1 Main Layers of a Convolutional Neural Network

Like any other Neural Network, a CNN is composed of an input layer, an output

layer, and several hidden layers connecting them, as shown in Figure 2.9.

The input layer usually consists of a representation of the input image to be anal-

ysed, and the output layer of the probabilities for each class. The hidden layers usually

consist of convolutional, non-linearity, pooling, and fully connected layers, which are

the building blocks for most CNNs and therefore will be described in detail in the

following sections.

Figure 2.9: The main layers of a CNN (Hiep and Joo, 2018)

2.3.1.1 Input Layer

Each image is represented as a 3D matrix with dimensions of width (W), height (H),

and depth (D), which take a different order depending on the mathematical definition

or Tensorflow implementation. In the field of natural images, the third dimension

(depth) may take the value of 3 for Red, Green, Blue (RGB) channels of images or 1

for grey colour images. In the field of Remote Sensing imagery, this dimension can

12

2.3. CONVOLUTIONAL NEURAL NETWORK (CNN)

have N channels, each associated with readings from a different sensor. For example,

Sentinel-2 images have 13 channels that will be explored in detail in section 3.1.2.

2.3.1.2 Convolutional Layer

The objective of the Convolution Operation is to extract features from an image.

It is the key differentiator from a Dense layer, as it enables the ability to capture

dependencies between pixels through the application of filters. It learns local patterns

rather than global patterns. In layman’s terms, it takes the matrix of the image and

the matrix of a filter/kernel and merges the information in both. By making the filter

smaller than the input dimension, sparse interaction can be achieved, reducing the

memory requirements and improving the model’s efficiency.

The fact that a given filter with some set of weights is convolved across the whole

input image means that neurons are constrained to using those same set of weights

for getting the output, a.k.a. shared parameters. This parameter sharing gives the

Convolution Operator the property of translation equivariance, meaning that if we

translate the input, the output will also be translated, giving CNNs the ability to learn

features regardless of their position.

A Convolutional layer is a layer that applies different convolution operations to

the data. This makes it the most essential building block of a CNN and the most

computationally expensive too. To fully understand this process, it will be broken

down below.

The filter/kernel introduced above has dimensions (K) smaller than the input im-

age dimensions for height and width, but the same third dimension (the number of

channels (n)). The filter moves along the width and height of the input image, with a

given stride (s) value, performing element-wise multiplication between the filter and

the same dimensional portion of the image over which the filter is passing (depicted

by the shaded area in Figure 2.10) until it traverses the entire image.

Figure 2.10: The movement of the filter in a 2D CNN layer (Ferretti et al., 2020)

13

CHAPTER 2. THEORETICAL CONTEXT

In the case of images with n-channels, the matrix multiplication is performed

between the kernel and input channel stacks as depicted in Figure 2.11, all the results

are then summed with the bias to give a one-depth channel convoluted feature map

with depth equal to the number of filters (m).

Figure 2.11: The Convolution Operation in an n-channel input CNN (Panchbhaiyye
and Ogunfunmi, 2020)

The size of this feature map will be affected by several parameters, some of which

have been mentioned above already:

• Filter dimensions (K) The dimensions of the filters used in the layer. For exam-

ple, k x k x n in Figure 2.11.

• Stride (s) The number of pixels the filter shifts over the input matrix. When

the stride is 1, the filters are moved 1 pixel at a time. The larger the stride, the

smaller the feature map.

• Number of filters (m) The number of filters used in the convolutional layer.

Usually the higher the number of filters the more image features get extracted

and the better the CNN recognises patterns in unseen images.

• Zero Padding (p) Sometimes, the filter dimensions do not fit the image input

dimensions perfectly. A strategy commonly used to maintain the input matrix

dimensions and avoid the loss of information is to pad the matrix with zeros

around the borders.

The output convolution dimensions, assuming a symmetric CNN architecture and

the image to be square (height equals width), so both dimensions have the same values,

can be calculated as follows (Dumoulin and Visin, 2018):

dimout =
dimin + 2p −K

s
+ 1 (2.1)

14

2.3. CONVOLUTIONAL NEURAL NETWORK (CNN)

If either the architecture or the input size is asymmetric, 2.1 can be used to calculate

the feature map dimensions separately for height and width.

When it comes to depth as shown in Figure 2.11, the output depth dimension is

always equal to the number of filters m:

Dout = m (2.2)

A CNN will usually have several convolutional layers to learn spatially hierarchical

patterns. The first convolutional layer will learn local simple patterns such as lines and

edges. Then a second convolutional layer will learn features made up of the features

learned in the first layer to learn more complex patterns.

As we go deeper into the network, the filters also become more responsive to a

larger region of the pixel space, enabling each filter to learn larger patterns. The

process will repeat itself for subsequent layers, the number of layers will depend on

the complexity of the input image’s features.

2.3.1.3 Non-Linearity Layer

Non-linearity is a key feature of a Neural Network (NN) that enables the modelling

of outputs that can not be produced from linear combinations of the inputs. A non-

linearity layer is nothing more than an activation function that takes the feature map

generated by the convolutional layer and creates an activation map as the output.

The different activation functions are described in section 2.3.2 in detail. Most of

the recent CNN meta-architectures use Rectified Linear Unit (ReLU) (or its derivatives,

such as leaky ReLUs) due to their efficiency and robustness to noise (He et al., 2015b).

2.3.1.4 Pooling Layer

The Pooling Layer, a.k.a. subsampling or downsampling layer, usually follows a

Convolutional Layer or a Non-Linearity Layer if these are separate. Its main function

is to reduce the dimensionality and subsequently the number of parameters in the

network, whilst retaining the most important information of the activation map. This

can reduce the training time and computational power required and increase training

efficiency through extracting the dominant translation-invariant features.

Just like the convolutional layer above, a window slides through each feature map

applying the pooling operation, so spatial neighbourhood dimensions a.k.a. pooling

kernel size (Kp) and stride (s) are important parameters that need to be defined be-

forehand. For example, in an overlapping pooling layer Kp > s, one can calculate the

feature map output dimensions following a pooling layer as follows (Dumoulin and

Visin, 2018) using equations 2.3 and 2.4:

dimout =
dimin −Kp

s
+ 1 (2.3)

15

CHAPTER 2. THEORETICAL CONTEXT

When it comes to depth, the output depth dimension is always equal to the input

dimension depth:

depthout = depthin (2.4)

To achieve this several spatial pooling types can be applied interchangeably, the

most common ones are described below. Figure 2.12 depicts an example of a non-

overlapping pooling layer, where Kp = s = 2:

• Max Pooling It returns the maximum value from the window of the image cov-

ered by the pooling kernel. It discards noisy activations, thus performing de-

noising as well as dimensionality reduction. This could help avoid overfitting.

In practice, this type of pooling shows the best performance (Goodfellow et al.,

2016).

• Average Pooling It returns the average of all the values from the window of the

image covered by the pooling kernel, only performing dimensionality reduction.

Figure 2.12: Different types of pooling with 2x2 kernel and stride 2

2.3.1.5 Fully Connected Layer

Finally, once the outputs of all the layers above successfully represent the high-

level features of the input image, this output is flattened into a 1D matrix that can be

fed to the Fully Connected Layers. The first few layers of this type learn non-linear

combinations of these features to identify which features most strongly correlate with

the output classes.

In a scene classification problem, to identify the most likely output class the last

of these fully connected layers usually has a softmax (multi-class problem) or sigmoid

(binary class problem) activation function to output a vector of probabilities, with

each element in this vector corresponding to the probability of an object belonging to

a specific class and all of these probabilities summing to one.

16

2.3. CONVOLUTIONAL NEURAL NETWORK (CNN)

In a pixel-wise classification problem, the final layer could be used to perform a

pixel-wise prediction and output a matrix of probabilities with the same dimensions

as the input matrix, with each element in this matrix corresponding to the probability

of an object belonging to a specific class. More detail on how the necessary matrix

dimensions are upsampled is given in the following section.

2.3.1.6 Fractionally-strided/ Transposed Convolutional Layer

For example, in an architecture that allows for end-to-end pixel-wise classification,

such as FCN), a fractionally-strided layer (Long et al., 2015) is needed to link the

network’s outputs back to the pixels using learnable parameters. It upsamples the

feature map within the network back to the image size dimensions as a segmentation

map to enable end-to-end learning by backpropagating the pixel-wise loss. It is often

misleadingly referred to as deconvolutional layer, mainly because of its use in a study

(Zeiler and Fergus, 2013) that visualises convolutional networks.

In a pixel-wise classification problem, this could also be used as the last layer, like

in Deconvnet (Noh et al., 2015) instead of feature maps, this Transposed Convolutional

Layer generates pixel-wise class probabilities corresponding to the size of the input

images, the said matrix of probabilities described above.

2.3.2 Activation Functions

There are several activation functions used for different purposes. Those commonly

used in hidden layers are the Sigmoid, Softmax, Tanh and ReLU activation functions.

In a CNN, it is usual to have an activation function following every convolution layer

to introduce non-linearity, the recommendation in modern NNs is the use of ReLU

activation functions (Goodfellow et al., 2016).

We will start by introducing some activation functions commonly used in the out-

put layer - sigmoid and softmax.

2.3.2.1 Sigmoid

Although the Sigmoid activation function was popular in the 90s as a non-linear

layer to normalise the output of each neuron in hidden layers, it lost popularity (Good-

fellow et al., 2016) to both the Tanh and ReLU activation functions.

These days, since it outputs values between zero and one, the sigmoid activation

function is usually used in the output layer for single label/multi-label binary classifi-

cation problems.

σ (z) =
1

1 + e−z
(2.5)

17

CHAPTER 2. THEORETICAL CONTEXT

2.3.2.2 Softmax

Anytime we want to represent a probability distribution over a discrete variable

with K possible values, we use the softmax function shown in Equation 2.6. It can be

thought of as a generalisation of the Sigmoid function shown in Equation 2.5, which

is used to represent it over a binary variable instead (Goodfellow et al., 2016).

σ (zi) =
ezi∑K
j=1 e

zj
f or i = 1,2, . . . ,K (2.6)

In NNs, the softmax activation function is commonly used for multi-class classi-

fication, being an output layer that predicts the multinomial probability distribution

described above.

As it can be seen in Figure 2.13, the softmax activation will output one value for

each node in the output layer, this outputted vector of probabilities that sum to one is

interpreted as the probability of membership for each class.

Figure 2.13: Softmax activation function (Nabiyev and Malekzadeh, 2021)

2.3.2.3 Tanh

The hyperbolic tangent activation function a.k.a. Tanh function was used as the de-

fault activation function for hidden layers in the late 90s to 2010s after it showed signs

of typically performing better than the logistic sigmoid activation function (Goodfel-

low et al., 2016). Both of these activation functions are depicted in Figure 2.14.

As shown in Equation 2.7, it takes as input any real value and outputs values

between −1 and 1.

tanh(z) =
e2z − 1
e2z + 1

(2.7)

Despite their ability to learn complex mapping functions, both the Sigmoid and

Tanh activation functions have a known limitation, they saturate for extreme values of

z, only being strongly sensitive to their input when z is near zero, which can be seen

from Figure 2.14.

This problem is known as vanishing gradients and makes it very difficult to know

how the parameters should change to improve the cost function (Goodfellow et al.,

2016) and consequently for Deep Neural Networks to learn effectively.

18

2.3. CONVOLUTIONAL NEURAL NETWORK (CNN)

Figure 2.14: Tanh and Sigmoid activation functions (Fathi and Maleki Shoja, 2018)

2.3.2.4 ReLU

ReLUs were introduced to address the problem of vanishing gradients and quickly

replaced the Sigmoid and Tanh activation functions by providing performance im-

provements. Deep CNNs with ReLUs trained several times faster than the same ones

with Tanh units (Goodfellow et al., 2016).

The rectified linear activation function returns its input value if the value is greater

than zero or zero if the input is zero or less.

Relu(z) = max(0, z) (2.8)

In this sense, it can be said that because ReLUs are nearly linear, they preserve

properties that make linear models easy to optimise and generalise well (Goodfellow

et al., 2016).

ReLUs do not come without limitations, large updates to the weights could mean

that the input to the activation function is always negative meaning the activation

value will always be zero, this is known as the dying ReLU problem. This means the

gradient is zero, so the unit will never activate, the weights will not be adjusted, so like

the vanishing gradient problem the learning will be slow with constant zero gradients

(Maas et al., 2013).

This can be corrected by several variations of the ReLU, for example, Leaky and

Parametric ReLUs that change the slope to the left of the origin id est (i.e.) x < 0. Either

by a fixed parameter in Leaky ReLU (as shown in Figure 2.15) or by a parameter that

is learned by backpropagation using weights and biases in Parametric ReLU.

There are more complex examples like Exponential Linear Unit (ELU)s and Thresh-

old ReLU functions that are known to improve accuracy compared to ReLUs.

19

CHAPTER 2. THEORETICAL CONTEXT

Figure 2.15: Rectified Linear activation functions (Shenoy, 2019)

2.3.3 Classical Convolutional Neural Network Architectures and their
evolution

Architecture is the arrangement of the layers introduced thus far into set patterns.

The first CNN architecture was introduced by Lecun in the early 90s, followed by some

other influential architectures that have built on each other and evolved since. This

section describes these and their contributions.

2.3.3.1 LeNet

In 1989, LeCun et al. proposed the first multilayered CNN successfully trained

via backpropagation. After a decade of improvement iterations, LeNet-5 (Lecun et al.,

1998) was the famous architecture depicted in Figure 2.16 that started the use of CNNs

for Optical Character Recognition (OCR) tasks, but it did not perform well in other

computer vision problems.

Figure 2.16: Architecture of LeNet-5 (Lecun et al., 1998)

20

2.3. CONVOLUTIONAL NEURAL NETWORK (CNN)

2.3.3.2 AlexNet

In 2012, (Krizhevsky et al., 2012) took LeNet’s work as inspiration to create a much

deeper CNN and implemented a few novel contributions which are still essential to

the success of CNNs to this day:

• ReLU The benefits of the ReLU have been highlighted in section 2.3.2, contribut-

ing to faster training times than the Sigmoid activation function used in LeNet’s

implementation.

• Dropout The use of Dropout layers as a regularisation method helped avoid the

problem of overfitting.

• Data Augmentation Using artificial data augmentation techniques to increase

the size and variety of the training dataset by translating and reflecting existing

images improved the performance of the model.

• Training on a GPU Using a couple of Graphic Processing Unit (GPU)s to train

AlexNet allowed for faster training on a greater number of larger images, which

set a milestone for the success of CNNs, the delineation of responsibilities be-

tween the 2 GPUs is shown in Figure 2.17.

Figure 2.17: Architecture of AlexNet (Krizhevsky et al., 2012)

2.3.3.3 VGG

VGGNet (Simonyan and Zisserman, 2014) won the ImageNet Challenge 2014. This

network is built on the simple principles of the two conventional CNNs introduced

above, creating a deeper network (19 weight layers) with the idea of using blocks of an

increasing number of filters. These repeated structures of a sequence of convolutional

layers followed by a max-pooling layer, for downsampling, created deeper networks

with more non-linearities captured. Several other factors contributed to its success:

• Filters with smaller dimensions By using filters with a smaller receptive field

of 3x3 and maintaining the number of filters in each of the convolutional lay-

ers in each block the same, more non-linearities can be captured using fewer

parameters.

21

CHAPTER 2. THEORETICAL CONTEXT

• Increasing number of filters By roughly doubling the number of filters in each

block, more complex features can be captured.

• Scale jittering Uses scale jittering as one of the data augmentation techniques.

2.3.3.4 Other Evolutions

Several meaningful contributions were made by other architectures, such as:

• Network in Network (NiN) A NiN block(Lin et al., 2014) applies a fully-connected

layer to each pixel, they consist of a convolutional layer and multiple 1x1 convo-

lutional layers, this design has influenced many other CNN designs.

• GoogleNet Also working with blocks, each of its Inception (Szegedy et al., 2015)

blocks has 4 paths, extracting information in parallel through convolutional lay-

ers of different filter dimensions and max-pooling layers. It also makes use of the

1x1 convolution introduced in NiN to reduce channel dimensionality per pixel.

This makes it a very efficient network architecture with a low computational cost.

• Batch normalisation Introduced in 2015, this method (Ioffe and Szegedy, 2015)

makes normalisation part of the model architecture by performing it for each

training mini-batch. It performs reparametrisation of the model, reducing the

need to coordinate updates across many layers (Goodfellow et al., 2016). It not

only allows the use of much higher learning rates and more relaxed initialisation,

but it also acts as a regularisation technique, as will be seen in section 3.2.3.5.

• ResNet This architecture (He et al., 2015a) challenges the convention of opti-

mising the original unreferenced functions by optimising the residual mappings

instead. This way the authors manage to create residual networks with a depth

of 152 layers, which is 8 times deeper than the VGG net, whilst keeping a lower

complexity, making them more accurate and easier to optimise.

• DenseNet This architecture (G. Huang et al., 2017) builds on the concept of

the ResNet, but instead of adding inputs and outputs together in its cross-layer

connections, it concatenates them instead. It also uses transition layers (1x1

convolution) to keep the dimensions under control.

2.4 The various architectures used in Remote Sensing

applications

In the field of Remote Sensing applications, the goal is usually pixel-wise classifi-

cation, which can be thought of as natural image segmentation. For this, the main

state-of-the-art CNN-based segmentation models used in Remote Sensing have been

introduced.

22

2.4. THE VARIOUS ARCHITECTURES USED IN REMOTE SENSING

APPLICATIONS

2.4.1 Fully Convolutional Network (FCN)

Long et al. (Long et al., 2015) proposed FCN to address the task of semantic segmen-

tation. Having taken as base models some Classical CNN architectures introduced in

Section 2.3.3, these were transformed from classifiers to FCN by swapping the fully

connected layers with convolutional layers and dropping the final classifier layer.

Maggiori et al. (Maggiori et al., 2016) celebrates the improvements of using FCN

over patch-based CNN for pixel-wise labelling in Remote Sensing imagery.

To achieve pixel-wise classification, at each of the coarse output locations, a 1x1

convolution with a depth dimension of m, where m is the number of classes, is used

to predict scores for each class. This is followed by the Fractionally-strided layer

(introduced in section 2.3.1) to bilinearly upsample the outputs to pixel-wise outputs.

The authors (Long et al., 2015) note that even though bilinearly upsampling was

used in FCN, the convolution filter in such a layer need not be fixed to this but can

be learned, emphasising that a stack of said layers and activation functions can even

learn non-linear upsampling.

Many of the architectures introduced below are extensions of the FCN architecture

(Long et al., 2015), bringing new evolutions to the field of Semantic Segmentation

namely Deeplab models (Chen et al., 2017), Conditional Random Field (CRF)-RNN

(Zheng et al., 2015), ParseNet (Liu et al., 2015), U-Net (Ronneberger et al., 2015) and

dilated convolutions (Yu and Koltun, 2016).

Despite this, FCN is still being used widely in Remote Sensing applications, it has

been used together with a Digital Surface Model (DSM) on Remote Sensing imagery

(Sun and Wang, 2018), for multi-label Remote Sensing image retrieval by extracting

a segmentation map (Shao et al., 2020), for the classification of multi-source Remote

Sensing data with Fusion-FCN (Xu et al., 2018) amongst others.

2.4.2 DeepLab models

Huang et al. (L. Huang et al., 2020) (L. Huang et al., 2021) uses DeepLabv3+ (Chen

et al., 2018), the latest version of DeepLab, to classify each pixel that has an RTS

present and to quantify their evolution, making it extremely relevant to this project.

The DeepLab models raise output resolution by using the “atrous” convolution

instead of the classic one, doing the same with the density of the labels predicted for

each class, Chen et al. (Chen et al., 2017) also use CRF to adjust region boundaries in

post-processing and capture small details.

2.4.3 U-Net

U-Net (Ronneberger et al., 2015) was originally presented to solve medical imaging

segmentation problems, since it identifies global image context while maintaining

spatial accuracy. As shown in Figure 2.18, this is achieved by a combination of encoder,

23

CHAPTER 2. THEORETICAL CONTEXT

stacked convolution (conv 3x3, ReLU arrow), and max-pooling layers (max pool 2x2

arrow) that capture the context through the feature map and the decoder to enable

that specific localisation through transposed convolutions (up-conv 2x2 arrow). It

introduced the bottom-up/top-down architecture with skip connections (copy and

crop arrow) to reach the final result.

Yi et al.(Yi et al., 2019) use U-Net as a base for DeepResUnet, a residual learning

adaptation for complex building segmentation using Remote Sensing imagery. An-

other application is the use of U-Net as the base for cloud detection with Cloud-AttU

(Guo et al., 2020), which incorporates an attention mechanism to complete the cloud

detection task in Remote Sensing images.

Figure 2.18: U-Net Architecture, blue boxes are feature maps and white boxes are
copied feature maps (Ronneberger et al., 2015)

24

3

Semantic Segmentation Models -

Input data, algorithm and

hyperparameters

3.1 Input data

The input data is one of the essential aspects of the model, characteristics such as

image dimensions (in terms of pixels WxH), the number of bands (D) and even the

number of images used for training, validation and test can influence the speed and

performance of the chosen model.

3.1.1 Labelled data

To be able to train a supervised DL model, the availability of labelled data is essential

in the process of training the model. This ground truth is the key in calculating the

error and updating the weights of the model until its loss and evaluation metric show

good performance.

Thaw Slump Shape files The ground truth RTS polygons were very kindly provided

by Doctor Ingmar Nitze and the AWI. These were collected across pre-defined sites in

different locations at different timestamps and georeferenced for consistency and ease

of use.

Two different types of shapefiles containing RTS polygons were provided:

• Merged thaw slumps first iteration Delineated by students and awaiting vali-

dation from Doctor Nitze, this type contains a total of 8,005 features.

• Merged thaw slumps validated Delineated by students and validated by Dr.

Nitze, this type contains a total of 1,203 features.

3.1.2 Sentinel-2 data collection

As mentioned in Section 1, the primary data source for this project will involve the

use of Sentinel-2 satellite imagery. There are two product types available to users,

25

CHAPTER 3. SEMANTIC SEGMENTATION MODELS - INPUT DATA,

ALGORITHM AND HYPERPARAMETERS

Level 1-C Top Of Atmosphere reflectances and level 2-A Bottom Of Atmosphere re-

flectance images, both in cartographic geometry (The European Space Agency, 2021).

The latter is the one used in this project, as it is pre-processed to minimise atmo-

spheric effects, leading to better normalisation across different regions. There are 13

spectral bands available, from the Visible Near Infra-Red (VNIR) and Near Infra-Red

(NIR) all the way to the Short Wave Infra-Red (SWIR) (The European Space Agency,

2021).

There are four 10 m resolution bands: the three RGB bands -Red (665 nm), Green

(≈560 nm) and Blue (≈493 nm), plus a NIR (≈833 nm) band which is very important

for vegetation detection. These are the ones initially used in this project.

In addition, there are six 20 m bands: 4 narrow bands in the VNIR vegetation red

edge spectral-domain (≈704 nm,≈740 nm, ≈783 nm, and ≈865 nm) and 2 wider SWIR

bands (≈1610 nm and ≈2190 nm) commonly used for snow/ice/cloud detection, or

vegetation moisture assessments. Finally, two 60 m bands mainly focused on cloud

screening and atmospheric correction (≈443 nm for aerosols and ≈945 nm for water

vapour) and cirrus detection (≈1374 nm).

3.1.2.1 Google Earth Engine (GEE) and JavaScript

GEE provides the ability of extracting satellite data using bespoke JavaScript queries

through a Console User Interface (UI) (shown in Figure 3.1), the Sentinel-2 data is

available in the GEE image collection with ID COPERNICUS/S2.

Figure 3.1: GEE Console UI showing a snippet of the bespoke JavaScript script

A bespoke JavaScript script was created that extracts satellite data for a fixed area

and stores it in Google Cloud Storage (GCS), this method of data collection will hereby

be referred to as GEE data. This is an area of 2.56 km2, so that the input size is close

to 256x256 pixel representation, since for the highest resolution band one pixel repre-

sents a 10x10 m area.

26

3.1. INPUT DATA

To source positive labels, the data is extracted when a (retrogressive) thaw slump

is present in the area with the RTS polygons (presented in section 3.1.1) at the centre

of the image for the extraction. For negative labels, control images are extracted based

on 2.56 km2 squares centred around random points, that are checked for intersection

with RTS polygons and any overlapping random features are removed.

This method has the limitation of introducing bias towards positive pixels always

being in the centre of the image. This is a type of selection bias, as the subsample

of images the model is being trained on does not represent the overall population of

images, leading to a poor generalisation of the model. For example, if the positive RTS

pixels are anywhere else but the centre of the image, the model would display poor

performance.

All GeoTiff files have the 10m resolution bands (RGB, NIR channels) plus the RTS

mask with the ground truth labels. These correspond to the original Sentinel 2A bands

B4, B3, B2 (RGB), NIR (B8) plus an additional thaw slump mask. This RTS mask

indicates pixels within thaw slump polygons, plus a 20 m (approximately two pixels)

edge buffer, with value 1 and all other pixels set as 0 in other parts of the image (in

control images this band is all zeros). The reason why only these four bands were taken

was due to the extra challenge of resampling other 20-meter or 60-meter resolution

bands to 10-meter or vice-versa, given the limited timeframe of this project, doing this

would have introduced extra complexity to the problem.

Each satellite image has been collected to match the polygon image date as closely

as possible, within a +/− two-week window. This range is wide as the images extracted

exclude any images with cirrus and clouds. This dataset will be hereby referred to as

GEE data. Files are in GeoTiff format with pixel values that have not been scaled, so are

in raw format at this stage, these values returned by the GEE API that can reach values

of 10,000 or more in some instances. This is the case as even though reflectances are

typically percentage values between 0 and 100 (or 0-1), these are often scaled by a

certain factor (e.g. 1e4) to be able to use integer values instead to save disk space.

The Coordinate Reference System (CRS), which associates numerical coordinates

with a position on the Earth’s surface, is defined by organisations such as the European

Petroleum Search Group (EPSG).

The projections are identified through an “authority: code” format, where the

authority is, for example, “EPSG” and the code is a unique number for a given CRS.

For example, EPSG:32607 was used for this project’s data extraction for RTSs located

in Herschel Island.

This method of data collection came with its limitations. The GEE UI would crash

for more than 30 images extracted at any one time and would freeze while extracting

those images, taking hours at a time. This method was not automatable, which explains

why the number of images collected is so low compared to the number of features

present in the ground truth polygons.

27

CHAPTER 3. SEMANTIC SEGMENTATION MODELS - INPUT DATA,

ALGORITHM AND HYPERPARAMETERS

3.1.3 Google Cloud Storage (GCS) and JPEG 2000 (JP2) data

To address both the bias and automation limitations of the GEE method, download-

ing images directly from GCS was explored later in the project.

Sentinel-2 data is made free and available on Google Cloud Platform (GCP) by the

European Commission and the European Space Agency (ESA) as part of the Google

Public Cloud Data program. The data is made available in a GCS public bucket

(gs://gcp-public-data-sentinel-2) in the JPEG 2000 (JP2) format, it is stored as tiles of

approximately 100 km2, according to the Sentinel-2 tiling grid (based on the Military

grid reference system) at a particular point in time, referred to as a granule (Google

Cloud, 2021).

This method involved downloading granules that contained sites used for the col-

lection of the merged thaw slumps validated labelled data presented in section 3.1.1.

The date of the granules corresponded to the date the labels were delineated +/- one

month, with a filter to guaranty low (0− 10%) cloud coverage was applied.

The polygons were reprojected from EPSG:4326 to the respective CRS associated

with each of the extracted tiles, data was then consolidated in a data cube containing

the same 10 m resolution bands (RGB, NIR channels) shown in Figure 3.2 after nor-

malisation, plus the thaw slump mask shown in Figure 3.3. The data was split using

sliding windows of 64x64 pixels. Following this, any empty tiles, ones without any

positive RTS pixels and ones with unexpected reflectance patterns, were discarded.

This pre-processed input data was kindly provided by Adam Wickenden as part of

Accenture’s collaboration with SEI and AWI and will be hereby referred to as JP2 data.

Figure 3.2: Example of the RGB chan-
nels normalised using z-score Figure 3.3: Example of a RTS mask

28

3.1. INPUT DATA

3.1.4 Data understanding and preparation

3.1.4.1 Scene classification labelled data

The original GEE data collection method extracted a total of 313 scenes containing

RTS positive samples (those containing a labeled polygon), and 311 control negative

samples containing only background pixels. These were split into train and validation

datasets with a 80/20 proportion, respectively. A stratified method was used to en-

sure class representation and avoidance of class imbalance in any one dataset. These

datasets were used in the training of the initial scene classification model:

Dataset Thaw Slump Control
Train 250 249

Validation 63 62
Total 313 311

Table 3.1: Distribution of GEE data for scene classification

3.1.4.2 Pixel-wise classification labelled data

In terms of pixel distribution in each image, there is an imbalance for semantic

segmentation models, that are given proportionally more negative background pixels

than positive RTS pixels. Figure 3.4 depicts the distribution of pixels with RTS positive

label in the GEE data, as it can be seen from the figure most images have less than 500

pixels of the positive class which is less than 1% of a 256×256 pixel image.

Figure 3.4: Distribution of GEE data RTS positive pixels

To train the segmentation models only the 313 images in the GEE data containing

positive RTS pixels were used for training, to avoid further imbalances in the model

towards background negative pixels, for training the data was split as follows:

29

CHAPTER 3. SEMANTIC SEGMENTATION MODELS - INPUT DATA,

ALGORITHM AND HYPERPARAMETERS

Dataset Thaw Slump Percentage of total
Train 250 80%

Validation 47 ≈ 15%
Test 16 ≈ 5%
Total 313 100%

Table 3.2: Train/ Validation/ Test split of samples for GEE data

Later in the project the JP2 data was introduced with a total of 807 64x64 slices

containing positive RTS pixels that can be used for the supervised DL model its distri-

bution is as follows:

Dataset Thaw Slump Percentage of total
Train 654 81%

Validation 114 ≈ 14%
Test 39 ≈ 6%
Total 807 100%

Table 3.3: Train/Validation/Test split of samples for JP2 data

Figure 3.5 depicts the distribution of pixels with RTS positive label in the JP2 data
across different datasets, to attempt a stratified sampling method the random seed was

changed until the distribution looked similar across the datasets.

Figure 3.5: Distribution of JP2 data RTS positive pixels across datasets

30

3.2. INTRODUCTION TO SEMANTIC SEGMENTATION MODELS

3.2 Introduction to semantic segmentation models

Given the literature on remote sensing DL problems, along with the labelled RTS

data available in a mask format, where each pixel is labelled, it makes sense to make

the focus of this project the semantic segmentation networks based on CNN models

that were introduced in section 2.4.

The different architectures, as well as the architecture parameters (kernel sizes,

stride, number of layers, number of filters among others), which nowadays are also

considered hyperparameters that feed into the learning process, won’t be described in

section 3.2.3 since these were already covered in section 2.4 and 2.3.1, respectively.

To evaluate the success of the task at hand, the ground truth is encoded as a mask

of values, 1 for thaw slump and 0 for background. The other input is the satellite

image itself. To bring the best out of the model architecture, this data needs to be

pre-processed to be turned into the input that the network is expecting, usually in

tensor form with values between 0 and 1.

The model architecture itself also plays an important part in the success of the

model, its complexity/depth, as well as, the architecture parameters described above

need to be adequate for the problem at hand.

In addition to this, the network hyperparameters also need to be defined before

the training can start. After this is done, the training process can start where the

model parameters i.e. weights are optimised so that the predictions of RTS or no-RTS

performed by the model match the mask ground truth as closely as possible.

3.2.1 Pre-processing of data

3.2.1.1 Resizing images

In segmentation models, the spatial size of the input tensor has an impact on the

performance of the model. With lower dimension sizes a more complex architecture

could be required (higher number of filters), however with greater dimensions more

training samples are likely to be needed.

So it is important to have input image dimensions (W x H) that are adequate for

the problem at hand, especially when the RTS only covers a small area (a few pixels,

since each pixel represents a 10m x 10m area.

There are a few ways of increasing the dimensions of an image through different

interpolation strategies, some of them are:

• Bilinear interpolation mentioned before as one of the segmentation model up-

sampling strategies, it takes the weighted average of the 4 nearest pixels for the

new pixel value

• Bicubic interpolation similar to bilinear, but instead uses the 4x4 neighbour-

hood i.e. 16 pixels to calculate the new value, again weighted more on the closest

31

CHAPTER 3. SEMANTIC SEGMENTATION MODELS - INPUT DATA,

ALGORITHM AND HYPERPARAMETERS

pixels.

• Nearest neighbour simply returns the value of the nearest pixel according to the

interpolation coordinates.

3.2.1.2 Normalisation techniques

Unlike natural images that have a known value between 0 and 255, remote sensing

imagery depends highly on the scale of the reflectance values varying widely and

reaching values of over 10,000 in some instances, therefore the normalisation of input

becomes quite important.

To feed input values into the NN it is better to normalise them between [0,1], this

is particularly challenging in remote sensing imagery as the spectral data has a big

variation of reflectance values across bands and images.

A naïve approach of simply converting any pixel x > 10,000 = 10,000 and then

dividing by 10,000 was the first method attempted, given that most band’s reflectance

values go up to 10,000 with a few outliers above 10,000.

There have been a couple of strategies presented in a few remote sensing papers

that could be possible solutions.

In other remote-sensing imagery normalisation the authors normalise the values

per spectral band (Benedetti et al., 2018) using in the interval [0,1], others use the

z-score to approximate the distribution of pixel values of the input to a normal distri-

bution (Zhong et al., 2017).

They are both converted to spectral band-wise normalisation using the below defi-

nitions (Belenguer-Plomer et al., 2021):

interval[0,1](x) =
x

max(b)
(3.1)

z − score(x) =
x −µ(b)
σ (b)

(3.2)

where x is any given pixel and b is any given spectral band of the image.

3.2.1.3 Data Augmentation

Due to the biased data collection method described in section 3.1.2, making the

RTS positive pixels the centre of the training patch, it is essential to apply data aug-

mentation techniques that will vary this feature of the training set, so that the model

is not biased towards finding positive labelled pixels only at the centre of the image

provided.

For that purpose and also the general purpose of introducing noise in the model to

make it more robust and less subject to overfitting due to the small sample size, the

following data augmentation techniques are presented:

32

3.2. INTRODUCTION TO SEMANTIC SEGMENTATION MODELS

• Random horizontal or vertical flipping Randomly flips the image and mask

horizontally or vertically.

• Cropping randomly crops the image and mask

• Scaling randomly rescales the image by shrinking it or stretching it keeping the

same ratio, in this case a square image.

• Blurring different satellites resolution could introduce blurring, so it is impor-

tant to introduce that to make the model more robust.

• Shifting shifts the coordinates of every pixel along the image axis, important to

avoid that centred Region of Interest (ROI) bias.

3.2.2 Preparing the data for modelling using Tensorflow

A bespoke script was created to code a data generator compatible with Tensorflow

models. The steps performed in this script are as follows:

1. Read GeoTiff file and convert it to tensor format

2. Select the m bands for X and thaw slump label/mask for y

3. Image normalisation technique applied

4. Generates batches of data for training

3.2.3 Deep Learning process

To successfully train any NN, there are a few key components that are necessary

to ensure any given model with its own architecture and parameters to enable it to

accurately perform the task of matching its predictions with the ground truth. These

will be covered in this section:

1. Loss/cost function that evaluates how well the model performs on any given

task, where the goal is usually to minimise the loss.

2. Activation function will define how the activation map is calculated after convo-

lution and fully connected layers. These were covered in detail in section 2.3.2,

the ones most widely used in pixel-wise classification architectures in remote

sensing are ReLU and its variants.

3. Optimiser that is responsible for updating the model parameters at each itera-

tion to optimise the cost function. To learn the model parameters (a.k.a. weights

in a NN) efficiently, essential hyperparameters that estimate the parameters need

to be adjusted manually as depicted in Figure 3.6:

33

CHAPTER 3. SEMANTIC SEGMENTATION MODELS - INPUT DATA,

ALGORITHM AND HYPERPARAMETERS

a) Batch Size determines the frequency of updates influencing convergence

and generalisation.

b) Initialiser a good initialisation can accelerate optimisation and enable con-

vergence.

c) Regulariser introduces noise to reduce overfitting.

d) Learning Rate influences the optimisation’s convergence.

Figure 3.6: NN hyperparameter optimization cycle (Stock et al., 2020)

3.2.3.1 Loss function

The loss function is one of the essential components in the learning process of DL

models, since it enables the DL algorithms to learn and optimise the objective through

gradient descent. The loss function is responsible for ensuring that the mathematical

representation of the objective is accurate, so that it can assess how well the predicted

values match the ground truth.

Ma (J. Ma et al., 2021) breaks down known segmentation loss functions into cate-

gories according to different optimisation objectives, which can be seen in Figure 3.7.

Some of these will be described in this section.

Binary Cross Entropy (CE) Cross Entropy (CE) is an example of a distribution-based

loss, it is derived from Kullback-Leibler (KL) divergence, which measures the dissimi-

larity of two distributions (J. Ma et al., 2021). This makes the objective of this category

of loss to minimise this dissimilarity.

For this project, the most relevant CE for binary classification tasks is the Binary

CE, which can be defined as follows:

LBCE = −1
n

n∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (3.3)

34

3.2. INTRODUCTION TO SEMANTIC SEGMENTATION MODELS

Figure 3.7: Overview and relationship among the existing loss functions. (J. Ma et al.,
2021)

As in this project’s data positive RTS pixels are always underrepresented compared

to background pixels, therefore the DL network can get stuck in local minima, trigger-

ing early stopping and be very biased towards the background pixels. It is relevant

to mention re-weighted loss functions, where positive pixels get more importance

(Ronneberger et al., 2015) as a potential solution.

Focal loss can be highlighted as a potential derivation to deal with extreme pixel

class imbalance, as it reduces the relative loss of well-classified pixels by adding a

factor to standard CE, binary focal loss is implemented as a custom loss function in

section 4.3.7.

All the other functions depicted under the distribution-based loss in Figure 3.7 are

derivations of CE, therefore will not be covered in detail.

Dice Loss Dice Loss is the key element of region-based loss functions, which aim to

minimise the mismatch between predicted ŷ and ground-truth y regions (J. Ma et al.,

2021). It can directly optimise the Dice coefficient, which is defined in section 3.2.4,

this was implemented as a custom loss function hereby known as dice coef loss.

Ldice = 1−
2
∑N

i ŷiyi∑N
i ŷ2

i +
∑N

i y2
i

(3.4)

Interseciton over Union (IoU) loss The Intersection over Union (IoU) a.k.a. Jaccard

index is used to directly optimise the segmentation class metric, it can be seen as a

similarity measure between two sets A and B is defined as the following:

J(A,B) =
| A∩B |
| A∪B |

=
| A∩B |

| A | + | B | − | A∩B |

0 ≤J(A,B) ≤ 1

(3.5)

35

CHAPTER 3. SEMANTIC SEGMENTATION MODELS - INPUT DATA,

ALGORITHM AND HYPERPARAMETERS

However, the IoU is not differentiable, it can nonetheless be generalised for pre-

dicting probabilities, making it differentiable and therefore suitable for optimisation

by gradient descent and allow for backpropagation in a NN. This is implemented as a

custom loss function and referred to later as IoU loss.

LIoU (y, ŷ) = 1−
n∑
i=1

yi · ŷi
yi + ŷi − yi · ŷi

(3.6)

It has been argued that IoU loss is better for binary segmentation than those trained

with the standard softmax loss (Rahman and Wang, 2016), making it a very relevant

loss function for this project.

Compound loss There are many compound losses that combine and transform some

loss functions introduced above. A Compound loss function, inspired by a paper

(Vladimir Iglovikov, 2017) that applies semantic segmentation to satellite imagery,

appears to also be a feasible solution. In this paper, their compound loss function is

defined as a combination of Eq.3.3 and Eq.3.6, this will be referred to as ce jaccard loss
during implementation:

LCEIoU = LBCE − log(
1
n

(−LIoU + 1)) (3.7)

Another compound loss function used in this project, is a combination of Eq.3.3

and Eq.3.4, which will be referred to hereafter as CE dice loss:

LCEDice = LBCE +Ldice (3.8)

3.2.3.2 Optimiser

In Deep Learning, optimisation refers to the process of finding the parameters θ of a

NN that attempt to minimise a loss function J(θ) (Goodfellow et al., 2016). This process

usually involves using a subset of data to calculate each update to the parameters based

on an expected value of the cost function. The optimiser also takes into account any

regularisers, weight initialisation, learning rate and batch size, which influence the

success of the optimisation strategy.

Most algorithms used for DL use more than one but less than all the training

examples a.k.a. mini-batch. Even though they do not use only one example, they

are nowadays referred to as just stochastic methods rather than mini-batch stochastic

methods. In a similarly confusing way, even though that Batch Gradient Descent (BGD)

implies the processing of the whole training set, the term batch size is usually referring

to the mini-batch size, which Goodfellow et al. (Goodfellow et al., 2016) clarify very

well.

36

3.2. INTRODUCTION TO SEMANTIC SEGMENTATION MODELS

Stochastic Gradient Descent (SGD) Stochastic Gradient Descent (SGD) and its vari-

ants are probably the most popular algorithms in DL as it can converge even when the

training dataset gets very large, however it has slower asymptotic convergence then

BGD for example.

SGD aims to get an unbiased estimate of the gradient by averaging the gradient

in the mini-batch drawn randomly from the training data and follow the gradient

downhill (Goodfellow et al., 2016).

The learning rate is an essential parameter in the gradient descent process, so it is

advised that it gradually decreases during training time, through strategies described

in more detail in section 3.2.3.6. It is known that stochastic gradient descent has slower

asymptotic convergence than BGD for example.

Momentum Momentum has been designed to overcome SGD’s limitations by acceler-

ating learning, it accumulates an exponentially decaying moving average of previous

gradients and keeps moving in their direction (Goodfellow et al., 2016), creating SGD

with momentum.

Momentum helps accelerate SGD in the right direction and reduces oscillations

(Ruder, 2017), defined by a new momentum hyperparameter α between zero and one,

determines how quickly this moving average decays.

Common values of α used in practice are 0.5, 0.9, and 0.99, for the semantic seg-

mentation models introduced in section 2.4, the most common momentum parameter

value is approximately 0.9 (Sultana et al., 2020).

The next few variations of stochastic gradient descent have adaptive learning rates,

so it is recommended not to change its default parameters.

Root Mean Square Propagation (RMSProp) Root Mean Square Propagation (RM-

SProp), is an unpublished optimiser created by Tijemen Tieleman and Geoffrey Hinton

in 2012. It divides the learning rate by an exponentially decaying average of squared

gradients to discard history from the extreme past so that it can converge rapidly. It

has been shown it is effective and practical for DL problems (Goodfellow et al., 2016).

Adaptive Momentum Estimation (Adam) The Adaptive Momentum Estimation

(Adam) optimiser (Kingma and Ba, 2017) is a variation of the combination of momen-

tum, which points the model in a better direction and RMSProp, which adapts how

far the model goes in the direction to converge quickly.

Unlike the previous algorithms, Adam includes bias correction to both the first-

order moments (the momentum term) and the (uncentered) second-order moments

(also in RMSProp) making Adam fairly robust to the choice of hyperparameters (Good-

fellow et al., 2016).

The authors (Kingma and Ba, 2017) show that Adam works well in practice and

compares well with other adaptive learning-method algorithms.

37

CHAPTER 3. SEMANTIC SEGMENTATION MODELS - INPUT DATA,

ALGORITHM AND HYPERPARAMETERS

Nestrov-accelerated Adaptive Momentum Estimation (NAdam) Nesterov-accelerated

Adaptive Momentum Estimation (NAdam) showed dramatic improvements in this pa-

per (Dozat, 2016) the authors argue that it is a no-brainer to incorporate Nesterov

momentum into Adam, specially where combining momentum and RMSProp is con-

cerned, this was actually present in Chapter 8 of Goodfellow et al.’s book (Goodfellow

et al., 2016).

It was also derived and explained by Ruder (Ruder, 2017), who also emphasizes

that Nesterov Accelerated Gradient (NAG) is superior to vanilla momentum, thus

combining Adam and NAG seems to make sense theoretically.

Despite this claim, not much other evidence of the use of NAdam was found in

practice. Nonetheless, a technical report (Vladimir Iglovikov, 2017) uses NAdam as

the optimiser to train a multi-spectral image U-Net to accurately perform semantic

segmentation of different classes in satellite imagery, making it quite relevant to this

project.

3.2.3.3 (Mini-)Batch size

Batch size is the number of data points used to train a model in each iteration. It is

important to ensure that the algorithm converges since it determines the frequency of

updates of the network.

The larger the batch size, the more accurate cost gradient with respect to (w.r.t.)

parameters and faster training speed (Katanforoosh, 2019). Large batch sizes can

however negatively impact the generalisation of the network (Keskar et al., 2017).

Common mini-batch sizes range between 50 and 256, but vary for different appli-

cations (Ruder, 2017), for the semantic segmentation models introduced in section 2.4

it tends to be between 12 and 20 images, with for example U-Net (Ronneberger et al.,

2015) being an exception by using only one image making it a pure stochastic gradient

optimisation process.

3.2.3.4 Initialisation

Some algorithms are very sensitive to weight initialisation and the success of its con-

vergence depends a lot on the chosen initialiser. To prevent gradients from vanishing

(weight initialisation too small) or exploding (too large), as a rule of thumb, the mean

of the activations should be 0 and the variance of the activations should stay consistent

across all layers.

For simplicity, let us assume the same initialisation methods are usually applied to

both the forward propagation (activations) and backward propagation (cost gradients

w.r.t. activations).

Random normal initialiser The weights are randomly initialised usually from a

zero-mean normal distribution, however other values of mean and standard deviation

38

3.2. INTRODUCTION TO SEMANTIC SEGMENTATION MODELS

can be defined.

It has been used with the default configuration of zero mean and unit standard

deviation in remote sensing applications by Kemker et al. (Kemker et al., 2018) in

initialisation experiments using Deep NNs for Semantic Segmentation.

Uniform initialiser In Uniform initialisation, known to work well with the sigmoid

activation function (see equation 2.5), where the weights X draw values from the

uniform distribution: X ∼ U(a,b)

Xavier (Glorot) initialiser The Xavier (Glorot and Bengio, 2010) initialisation, known

to work well with the tanh activation function (see equation 2.7), picks the weights of

layer l randomly from a normal distribution with mean µ = 0 and variance σ2 = 1
n[l−1] ,

where n[l−1] is the number of neurons in layer l − 1. Biases are initialized with zeros:

W [l] ∼N(µ = 0,σ2 =
1

n[l−1]
)

b[l] = 0
(3.9)

There is also a Xavier uniform variation, where the weights are chosen from a

random uniform distribution, which will not be covered in detail.

He (Kaiming) initialiser In an attempt to discover the best initialiser to work well

with ReLU (see equation 2.8 like activations, He et al. (He et al., 2015b) adapted

Xavier initialisation to achieve better performance with rectified units, this proved

quite successful as seen in Figure 3.8.

In He initialisation, weights of layer l are initialised with a zero-mean Gaussian

distribution with a standard deviation σ =
√

2
nl

, where nl is the number of activations

of layer l. Biases are also initialized with zeros.

The difference between this He and the Xavier initialisation is the 1
2 that comes

from the ReLU activation function.

Figure 3.8: Convergence of a 30-layer CNN in He et al.’s paper (He et al., 2015b)

39

CHAPTER 3. SEMANTIC SEGMENTATION MODELS - INPUT DATA,

ALGORITHM AND HYPERPARAMETERS

3.2.3.5 Regulariser

When fine-tuning pre-trained models, it is very likely that overfitting will become a

problem. To help address this, either l1 or l2 regularisation can be helpful with early

stopping, as well as, the introduction of Dropout or Batch normalisation.

l1 and l2 regularisation Performing l2 regularisation a.k.a. weight decay constrains

weight values towards 0 (but not actually zero) whereas l1 regularisation a.k.a. Lasso

regression drives the weights to be 0 and so tends to work well as a feature selection

technique.

Regularisers are usually attached to the loss function as a penalty term, l1 penalises

the absolute value whereas l2 penalises the square value of the weights (Shanmuga-

mani, 2018.

l2 is more popular, as l1 can remove relevant information from high-dimensional

data where these are correlated, leading to underperforming models. Most of the

segmentation models introduced in section 2.4 use weight decay with values between

0.0001 and 0.0005 (Sultana et al., 2020).

Dropout The idea of Dropout (Srivastava et al., 2014) is to randomly turn off neurons

(along with their connections) with some probability p from the NN during training.

This is usually applied at each step of forward propagation and weight update step,

neurons turned off in one step can become active in the following step.

This can make this method quite computationally expensive when applied to the

entire model and less effective when there are very few labelled training examples. It

does have the advantage of working well with any model and with other regularisation

techniques (Goodfellow et al., 2016).

In Figure 3.9 it can be seen that after dropout is applied in 3.9(b) the network

becomes less complex after being subsampled from the original NN in 3.9(a).

Figure 3.9: (a) Regular 2-layer NN (b) Example of NN after dropout applied. Crossed
neurons have been turned off. (Shanmugamani, 2018)

40

3.2. INTRODUCTION TO SEMANTIC SEGMENTATION MODELS

Batch Normalisation Its main purpose, as discussed in section 2.3.1, is to make

optimisation better through reparametrisation, this introduces both additive and mul-

tiplicative noise.

This noise introduced in the hidden units during training can have a regularisation

effect, so that there is no need for Dropout (Goodfellow et al., 2016).

Early Stopping The use of early stopping is probably one of the most efficient and

easy to implement regularisation methods in deep learning applications (Goodfellow

et al., 2016). It involves monitoring the parameters and validation set error, so that

the best parameters at the point of the lowest validation error can be returned when

the training stops.

The training stops when none of the parameters have improved over the best vali-

dation error stored (when monitoring validation loss) for a certain number of iterations

(a.k.a. patience parameter).

It is argued that early stopping is advantageous over weight decay as it automati-

cally figures out the correct amount of regularisation while weight decay needs several

training experiments to ensure the networks does not get trapped in a local minimum

(Goodfellow et al., 2016).

3.2.3.6 Learning Rate

(Goodfellow et al., 2016) suggests that the best way of choosing an initial learning

rate is to monitor learning curves, plots of loss function as a function of learning time,

usually epochs.

There are a couple of things to watch out for: big oscillations, where the loss

increases drastically, indicate the learning rate is too high; small oscillations are okay,

especially if the loss function contains stochastic features such as dropout.

If the initial learning rate is too small, the function might be stuck with high loss

values, getting stuck and potentially triggering early stopping. As a rule of thumb, it

is advised that the initial learning rate is higher than the best performing rate after

approximately 100 iterations (Goodfellow et al., 2016).

Linear Decay It is common to decay the learning rate until it makes a couple of

hundred passes through the training dataset (until iteration τ) (Goodfellow et al.,

2016). Therefore, we define learning rate at iteration k as ϵk :

ϵk = (1−α)ϵ0 +αϵτ (3.10)

where α = k
τ . After iteration τ , it is usual to leave ϵ constant.

Step Decay Step decay drops the learning rate by a factor every few epochs. For

example, in the DeepLab model’s original paper (Chen et al., 2017) uses a ϵ0 = 0.001

41

CHAPTER 3. SEMANTIC SEGMENTATION MODELS - INPUT DATA,

ALGORITHM AND HYPERPARAMETERS

and an ϵτ = 0.01 in the final classification layer. It drops it 10% by multiplying it by

0.1 at every 2000 iterations.

Exponential Decay As the name implies, an exponential decay function is applied

to the initial learning rate ϵ0:

ϵk = ϵ0e
−αk (3.11)

where α is the exponential decay parameter.

For example, in a paper that introduces the FCN-DenseNer103 (Jegou et al., 2017)

the authors use ϵ0 = 0.001 with an exponential decay of 0.995 every epoch.

Polynomial a.k.a. poly decay policy Starting with ParseNet (Liu et al., 2015), where

the authors improved the performance of their model by 1.5% with the same iterations

(80k), ϵ0 = 1e−9 and power = 0.9, it is proved to converge faster than step decay.

ParseNet inspired the authors of Deeplab model’s follow-up paper in 2017 (Chen

et al., 2017) to also use poly (power = 0.9), using the same batch size and training

iterations they also achieve better performance (1.17%) than step, reinforcing the

trend.

The creators of the Pyramid Parsing Network (PSPNet) (Zhao et al., 2017), another

popular semantic segmentation model, yet again inspired by DeepLab, also use poly

learning rate with ϵ0 = 0.01 and power = 0.9. This popular learning rate policy among

state-of-the-art semantic segmentation model is defined in Equation 3.12 below:

ϵk = ϵ0(1− k
Tk

)power (3.12)

where Tk is the total number of iterations and power term controls the shape of the

learning rate decay. In the case of polynomial learning rate policy, Tk is equal to total

number of epochs times number of iterations in an epoch (Mishra and Sarawadekar,

2019).

There are many other learning rate policies such as the constant learning rate,

manual step learning rate and cosine decay learning rate that are self-explanatory, so

will not be covered in detail.

3.2.4 Measurement of model performance

During training, it is usual to monitor certain metrics that measure how well the

model is performing, ones typically used in semantic segmentation problems are out-

lined in this section.

Dice coefficient The dice coefficient (Milletari et al., 2016), ranging between zero and

one, is the most commonly used segmentation evaluation metric. The Dice coefficient

(Dice) between two binary volumes, which the aim is to maximise, can be written as:

42

3.2. INTRODUCTION TO SEMANTIC SEGMENTATION MODELS

Dice =
2
∑N

i pigi∑N
i p2

i +
∑N

i g2
i

(3.13)

Intersection over Union (IoU) From the definition of the two metrics, we have that

IoU and Dice score are within a factor of two of each other F/2 ≤ IoU ≤ F. It has been

defined in section 3.2.3.1 with Equation 3.5.

In general, like l2 penalises the biggest mistakes more than l1 regularisation, the

IoU metric penalises a single instances of wrong classification more than the Dice

score. The IoU metric has a squaring effect on the errors in comparison with the Dice

score, making it more focused on the worst performance, rather than the average.

3.2.5 Transfer Learning

Due to the small training set, it is advisable to use pre-trained weights on other

datasets to accelerate the training process, this is known as transfer learning and it

as become a widely used technique in accelerating progress in the field of Computer

Vision (CV).

It is the process of initialising a model using the weights of another model pre-

trained on a much larger dataset, this usually ensures faster convergence. (Shanmuga-

mani, 2018)

As a rule of thumb, one can either use the pre-trained model as is, or pick and

choose which layers to re-train or fine-tune depending on the problem at hand as

outlined in table 3.2.5.

Sample size Dataset Similarity Dataset Difference

Small Data Fine-tune output layers Fine-tune hidden layers

Big Data Fine-tune whole model Re-train model

43

4

Modelling Experiments

In this chapter, experiments will be performed to identify the best pre-processing

and training parameters to increase the classification performance of the model of

choice. All the below experiments were carried out using this author’s personal com-

puter with Intel(R) Core(TM) i7-10750H Central Processing Unit (CPU) @ 2.60GHz,

16GB Random Access Memory (RAM) with a GeForce RTX 2070 8GB GPU with Max-Q

Design.

4.1 Choosing the most appropriate classification model

4.1.1 Pixel-wise classification model

After framing the problem as a scene classification problem and getting quite good

results, it was decided by the author to frame the problem as a pixel-wise classification

problem. This was done in the search for a more challenging problem and due to the

availability of data labels for each pixel from polygons.

The decision to use a U-Net architecture as baseline came from a lot of the literature

on remote sensing images being modified U-Net architectures, below is a description

of the U-Net architecture this project implements as a baseline.

In this project a convolution block(x, z) consists of:

1. 2D convolutional layer with x channels with 3x3 filter dimensions, stride of 1

and same padding so that if you use a stride of 1, the layer’s outputs will have

the same spatial dimensions as its inputs.

2. Dropout layer with z rate of input units to drop.

3. 2D convolutional layer with x channels with 3x3 filter dimensions, stride of 1

and same padding so that if you use a stride of 1, the layer’s outputs will have

the same spatial dimensions as its inputs.

4. 2D Maximum Pooling layer with a 2x2 pooling dimension.

45

CHAPTER 4. MODELLING EXPERIMENTS

This can be seen as Python Tensorflow Keras code in Figure 4.1

Figure 4.1: Example of convolution block(x = 16, z = 0.1)

In this project a transpose convolution block(x,z) consists of:

1. 2D transpose convolutional layer with x channels with 2x2 filter dimensions,

stride of 2x2 and same padding.

2. Skip connection concatenate weights of 2D transpose convolutional layer with

x channels and the weights of the previous 2D convolutional layer with the same

number of x channels.

3. 2D convolutional layer with x channels with 3x3 filter dimensions, stride of 1

and same padding so that if you use a stride of 1, the layer’s outputs will have

the same spatial dimensions as its inputs.

4. Dropout layer with z rate of input units to drop.

5. 2D convolutional layer with x channels with 3x3 filter dimensions, stride of 1

and same padding so that if you use a stride of 1, the layer’s outputs will have

the same spatial dimensions as its inputs.

This can be seen as Python Tensorflow Keras code in Figure 4.2

Figure 4.2: Example of transpose convolution block(x = 16, z = 0.1)

With the above concepts and the U-Net architecture diagram introduced in Figure

2.18 in mind, the initial baseline U-Net architecture used in this project is composed

of the following blocks in sequential order:

1. convolution block(16, 0.1), convolution block(32, 0.1), convolution block(64, 0.2),

convolution block(128, 0.2).

2. convolution block(256, 0.3).

46

4.1. CHOOSING THE MOST APPROPRIATE CLASSIFICATION MODEL

3. transpose convolution block(128,0.2), transpose convolution block(64,0.2), trans-

pose convolution block(32,0.1), transpose convolution block(16, 0.1).

4. an output layer of a 1x1 2D convolutional layer with a sigmoid activation func-

tion to create the per-pixel class probability map.

This is depicted in a lower level of detail by Figure 4.3, where yellow shade rep-

resents a Convolutional layer, darker yellow shade its activation function, red shade

represents a Pooling layer, blue shade represents a Transpose Convolutional layer and

arrows represent the skip connection.

Figure 4.3: U-Net architecture used in this project

4.1.2 Evaluating the use of transfer learning

Given the small labelled dataset and the difference compared to ImageNet, since we

are dealing with aerial shots of landscapes, the rule of thumb would be to fine-tune

the hidden layers.

However, given that most models are only trained on a depth of three channels, the

weights of such pre-trained models are not compatible with the choice of four channels

or more. Therefore, this author deemed it better to re-train the model even though

there is a small labelled dataset present.

4.1.3 Pixel-level class imbalance

Given the process of data collection adopted initially in this project where the area

of interest i.e. the RTS positive pixels are in the centre of the image and an area of

256x256 is cropped around it to create a patch.

47

CHAPTER 4. MODELLING EXPERIMENTS

The large area of the patch created a pixel-wise class imbalance which led to the

model’s poor performance when identifying positive RTS sample. This is due to the

low level of RTS pixels, 75% of images have less than 360 pixels, which when compared

with the area size of a 256x256 image is less than 0.55% of the image, a needle in a

haystack as some would say. For example, by reducing the image area by 16 times to

4096 pixels in total (the area of a 64x64 image) that is now almost 9% of the image.

It also made accuracy a very misleading metric to follow, since the model would be

rewarded for the hundreds of negative sample pixels it correctly identified, but would

not absorb the cost of misclassifying the pixels this project is most interested in finding

the RTS pixels.

For example, say that 1% of the image is made up of positive RTS pixels while

the rest is made up of background negative pixels, if the model predicts negative

background pixel for the whole image it would still be 99% accurate, even though

it did not classify a single RTS pixel correctly, this can be very misleading. This

unsuitability of accuracy as a performance measure, is also part of the justification for

using the dice score introduced in section 3.2.4 as the performance measure of choice

in the experiments that follow. Being the harmonic mean between precision and recall,

it makes it one of the best candidates for unbalanced class problems.

Following this realisation, the size of the input patch was reduced to create a more

even pixel-wise class distribution, the results of this experiment will be described in

detail in section 4.2.1.

4.1.4 Experiment set up

In order to identify a baseline model, trial runs for only 20 epochs were performed

in a grid search methodology to identify a suitable baseline model to use in the follow-

ing experiment sections. After evaluating the dice coefficient, the parameters of the

baseline model are:

Parameter Value

Patch Size 64x64

Normalisation naïve

Augmentation Method None

Activation Function Exponential Linear Unit (ELU)

Loss Function CE Dice Loss

Optimiser Adam

Batch size 4

Initial Learning Rate 0.0001

Learning Rate Schedule ReduceLROnPlateau

Initialisation method He Normal

Regulariser Dropout with varying rates

48

4.2. PREPROCESSING EXPERIMENTS

For each of the experiments, there will be trial runs of each potential value for 50

epochs to identify the best value, keeping everything else as the baseline value. The

objective is to maximise the performance measure of choice, the dice coefficient (coef)

by minimising the loss.

4.2 Preprocessing experiments

The experiments in this section ran for 50 epochs, due to the non-deterministic na-

ture of neural networks the results are not always of comparable performance between

experiments, but were run within the same Tensorflow session within each experiment

for comparability.

4.2.1 Size of the input patch

As described in section 4.1.3, class imbalance became an issue with model perfor-

mance, in order to test if cropping the image to create a more balanced pixel-level

class distribution could be linked to model performance, experiments were carried

out. This was done by cropping the input patch from 256×256 to 128×128, 64×64 and

finally 32×32 pixels, which would be reflected in the input layer dimensions of the

model as well.

Figure 4.4: Input patch size Dice Coefficient comparison

The model with the highest validation dice coefficient was the one where the image

was cropped to a 64×64 pixel area, with a validation dice coefficient of 0.7 vastly

outperforming the other patch sizes, shown in figure 4.4.

49

CHAPTER 4. MODELLING EXPERIMENTS

Dice Coefficient Loss
Patch size Validation Training Test Validation Training Test

32 0.38 0.59 0.34 1.2 0.82 1.27
64 0.7 0.82 0.78 0.5 0.26 0.3

128 0.53 0.6 0.62 0.57 0.48 0.43
256 0.2 0.31 0.14 0.84 0.72 0.9

Table 4.1: Input patch size comparison of Dice Coefficient and Loss

The results shown in table 4.1, indicate increasing performance with the decrease

of the patch size, up until the 64×64 patch size, which would indicate that at 32×32

patch size the context surrounding the larger thaw slumps (which just fit in the 64×64

patch) is lost leading to decreasing performance, therefore the remaining experiments

of this project will use a 64×64 patch size and input layer dimensions.

4.2.2 Normalisation of input

Another key factor in the success of the training of the model is adequate normali-

sation of the inputs, especially with the extremely high reflectance values that remote

sensing images can take, as described in section 3.2.1.2. Getting this wrong can lead

to explosive gradients ,as well as, invalid (NaN) loss and performance metrics when

training the model, as witnessed in this project.

The naïve approach of simply converting any pixel x > 10,000 = 10,000 followed

by x = x/10,000 was the one used for the initial experiments.

In order to implement the other two transformations [0,1] interval and z-score,

introduced in detail in section 3.2.1.2, the maximum, mean and standard deviation of

all 64×64 training set images were calculated across each band/channel independently.

This is done using only the training set images to prevent the distribution of the

validation and test set leaking into the model.

It is interesting to see the z-score method performing better in the earlier epochs

but droppping in performance towards the final epoch. Given the better performance

of the naïve normalisation method seen in Figure 4.5, it will be used for the rest of the

experiments here onward.

Dice Coefficient Loss
Normalisation method Validation Training Test Validation Training Test

max 0.69 0.87 0.71 0.49 0.18 0.41
naive 0.75 0.89 0.8 0.39 0.16 0.27

z score 0.7 0.92 0.8 0.5 0.13 0.28

Table 4.2: Normalisation method comparison of Dice Coefficient and Loss

50

4.2. PREPROCESSING EXPERIMENTS

Figure 4.5: Normalisation method Dice Coefficient comparison

4.2.3 Data Augmentation

Data Augmentation can be invaluable when the dataset is small, and even more

when the data collection is biased. The main purpose of data augmentation in this

project is to correct the bias of RTS positive pixels always being in the centre of the

image.

In that sense, the most useful data augmentation transformation is translation or

shift, where the image is translated to the right or left according to a certain parameter.

The implementation of this was done in the NN itself and has one of the initial layers

with Keras’s “RandomTranslation” layer. One layer with an output shifted vertically

and horizontally by a random amount of 20% in each direction, to fill the pixels left

blank by this translation the fill mode of choice was bipolar interpolation of the nearest

pixels.

At this stage a rotation augmentation method was also implemented for compari-

son, in the same way with the same parameter settings but using Keras’s “RandomRo-

tation” layer instead, which rotates the image clockwise or anti-clockwise instead by

the random amount of 20%, with the same fill method.

The experiment results can be seen in Figures 4.6, no augmentation (baseline)

yields better results than rotation, translation, or both implementations at once.

This could be due to changes in the geometry or lighting causing the ROI or im-

portant contextual background pixels in the image to lose the original features that

helped identify the RTS pixels correctly.

51

CHAPTER 4. MODELLING EXPERIMENTS

Figure 4.6: Augmentation method Dice Coefficient comparison

The following experiments will not use any augmentation. Although using different

augmentation techniques could have proved beneficial this author did not have time to

fully any others. The bias in the data will be addressed instead by training the model

on JP2 data, as will be seen in Chapter 5.

4.3 Training experiments

4.3.1 Network Hyperparameters

Given the complexity of an optimiser’s performance and its interaction with the

learning rate and batch size parameters, a comprehensive grid search experiment was

performed to avoid a misleading evaluation of the parameters to follow.

For simplicity, the same approach of only varying one parameter at a time, to ease

interpretation, will be presented in the following sections.

4.3.2 Optimiser

As introduced in section 3.2.3.2, there are several optimisers that could significantly

affect the performance of the model. Even though SGD seems to be the algorithm used

by all the state-of-the-art segmentation models presented in section 2.4, the results of

varying four different optimisers will be presented to see how the model is impacted

by it.

Contradicting the literature, perhaps given the small dataset in this project com-

pared with the millions of examples used to train state-of-the-art models, RMSProp

52

4.3. TRAINING EXPERIMENTS

Figure 4.7: Optimiser Loss comparison

Dice Coefficient Loss
Optimiser Validation Training Test Validation Training Test

adam 0.75 0.89 0.72 0.55 0.16 0.4
nadam 0.77 0.9 0.72 0.55 0.15 0.38

sgd 0.56 0.62 0.62 0.78 0.57 0.51
rmsprop 0.79 0.9 0.76 0.53 0.15 0.34

Table 4.3: Optimiser comparison of Dice Coefficient and Loss

outperforms the other optimisers when it comes to loss minimisation as seen in Figure

4.7.

Figure 4.7 shows similar validation loss coefficient between RMSProp, NAdam and

Adam, in order of minimisation performance, with SGD lagging behind significantly,

given the baseline learning rate of 0.0001 and mini-batch size of 4.

This may be due to the fact that the default parameters (apart from learning rate)

of the Tensorflow implementation of all the optimisers are being used and need tuning

for better performance and perhaps that Adam is better used in problems with a lot of

data and/or parameters (Kingma and Ba, 2017).

Given its performance, RMSProp will be the optimiser of choice in the experiments

to follow.

53

CHAPTER 4. MODELLING EXPERIMENTS

4.3.3 Learning rate

The Keras method ReduceLROnPlateau was applied, this involved reducing the learn-

ing rate by a factor of 10, if there is no improvement in the validation set loss for 10

epochs. This is enabled by the callback method that monitor loss and other metrics for

each epoch.

The initial learning rate was chosen from 0.01, 0.001, 0.0001 for this experiment

based on the literature introduced in section 3.2.3.6. The results can be seen in Table

4.4.

Dice Coefficient Loss
Learning rate Validation Training Test Validation Training Test

0.01 0.35 0.35 0.33 1.03 0.91 0.9
0.001 0.75 0.92 0.8 0.86 0.11 0.28

0.0001 0.79 0.9 0.76 0.53 0.15 0.34

Table 4.4: Learning rate comparison of Dice Coefficient and Loss

Figure 4.8: Learning rate Dice Coefficient comparison

Figure 4.8 shows a big difference between the performance of 0.01 learning rate

and the other values, this could be due to the large learning rate overshooting the

global or a local minimum and arriving at a suboptimal final set of weights. In the

grid search experiment, the initial learning rate of 0.01 seemed to only perform well

with the SGD optimiser and vice versa, the SGD optimiser only performed well with

the 0.01 learning rate. This could be because the initital large learning rate allows

SGD to do exploration of the search space early on and later on reducing through the

54

4.3. TRAINING EXPERIMENTS

ReduceLROnPlateau learning rate schedule allowing for the exploitation of the search

space in later epochs to get closer to the optimal loss.

The top learning rate for the RMSProp optimiser was 0.0001, therefore this will be

used for the experiments.

4.3.4 Batch size

Varying the mini-batch size has great implications in the convergence of the model,

given its small labelled dataset, this project is working with smaller batch sizes than it

is standard in the industry.

This is validated by the results of the experience, as it can be seen in Table 4.5 the

batch sizes that show the worst performance are the three highest values of 10, 16 and

20 mini-batch size. The best performance is yielded using a stochastic approach of

using a batch size of one.

Dice Coefficient Loss
Learning rate Validation Training Test Validation Training Test

1 0.85 0.93 0.8 0.47 0.1 0.29
2 0.79 0.88 0.77 0.46 0.17 0.31
4 0.68 0.84 0.71 0.6 0.23 0.39
6 0.67 0.83 0.73 0.61 0.25 0.37

10 0.58 0.65 0.64 0.65 0.51 0.49
16 0.55 0.7 0.5 0.63 0.45 0.7
20 0.49 0.65 0.66 0.82 0.51 0.48

Table 4.5: Batch size comparison of Dice Coefficient and Loss

4.3.5 Initialisation

As presented in section 3.2.3.4, the He initialisation methods outperform the Xavier

(Glorot) initialisation methods. According to the literature, He initialisation works

better mathematically by adressing the nonlinearities of the ReLU activation function,

which are also present in the ELU activation function.

The random normal initialiser has the same final performance as the He normal

method in Table 4.6, this result may have been due to a particularly good random

weight initialisation. To assess its validity it should be run several times to establish

its significance, however due to time and computational constraints this author did

not investigate this further.

In a complete opposite way, using the random uniform initialisation function leads

to a low stagnated validation dice coefficient, as can be seen from Figure 4.9. This may

be due to a bad initialisation which can make the backpropagation algorithm struggle

55

CHAPTER 4. MODELLING EXPERIMENTS

to identify the right direction to transform the weights to optimise the cost function,

which consequently stalls training.

Dice Coefficient Loss
Initialisation method Validation Training Test Validation Training Test

he normal 0.82 0.93 0.76 0.57 0.1 0.35
he uniform 0.8 0.92 0.77 0.65 0.11 0.34

glorot normal 0.79 0.87 0.71 0.47 0.19 0.4
glorot uniform 0.77 0.85 0.75 0.51 0.24 0.34
random normal 0.82 0.91 0.76 0.59 0.14 0.34
random uniform 0.69 0.72 0.67 0.64 0.45 0.45

Table 4.6: Initialisation method comparison of Dice Coefficient and Loss

However, by looking at Figure 4.9 He Normal seems to be more stable and achieve

a better performance at an earlier step than the Random Normal initialiser, therefore

going forward the He Normal initialisation method will be used.

Figure 4.9: Initialisation method Dice Coefficient comparison

4.3.6 Activation function

The discussion of the advantages and disadvantages of the different activation func-

tions has been discussed in detail in section 2.3.2.

From Figure 4.11 ReLU stands out since the validation loss completely stalls which

indicates that the entire network has died, leading to unsuccessful convergence de-

spite increasing the number of epochs. Dying ReLU is a known phenomena with many

56

4.3. TRAINING EXPERIMENTS

explanations on how neurons become inactive always outputting 0 for any given input.

Lu et al. argue that symmetric probability distributions such as He initialisation for ini-

tialisation is a big cause of dying ReLU and propose their own randomised asymmetric

initialisation (Lu, 2020).

On the contrary, ELU performs very well, having the highest Validation Dice coef-

ficient, as can be seen from Table 4.7. Since the constant value of 0 for any negative

input range is what causes dying ReLU, using one of its variations in this experiment

avoids the problem associated with the zero-slope segment.

The Scaled Exponential Linear Unit (SELU) function was also considered but as it

is self-normalising the NN (Klambauer et al., 2017) it deemed necessary yet another

implementation, LeCun Normal initialisation and a special version of Dropout called

Alpha Dropout, which this author did not perform at this point.

Figure 4.10: Activation function Loss comparison

Dice Coefficient Loss
Activation Function Validation Training Test Validation Training Test

ELU 0.85 0.93 0.78 0.26 0.11 0.31
ReLU 0.67 0.73 0.64 0.53 0.45 0.52
tanh 0.8 0.88 0.77 0.33 0.19 0.32

Table 4.7: Activation function comparison of Dice Coefficient and Loss

ELU proves to be the highest performing activation function, so it will remain

being used in the following experiments.

57

CHAPTER 4. MODELLING EXPERIMENTS

4.3.7 Loss Function

The chosen measure of performance for this project is the dice coefficient, an ade-

quate loss function needs to be implemented in a way that minimising it, maximises

the dice coefficient. To achieve this, the loss functions introduced in section 3.2.3.1

were implemented in Python and compared to identify the best suited function for

this project.

The implementation of the loss functions in Python under the Tensorflow Keras

framework required a substantial amount of effort, as they were custom losses and

required special attention to make sure matrix dimensions were correct for backprop-

agation to work and training to be successful.

Figure 4.11 shows that they are all successfully training the model as the chosen

model scoring metric is showing an increasing trend as the number of epochs increase

as would be expected if the gradient descent is working correctly.

Figure 4.11: Loss function Dice Coefficient comparison

Dice Coefficient Loss
Loss Function Validation Training Test Validation Training Test

dice coef loss 0.81 0.9 0.75 0.19 0.1 0.25
CE dice loss 0.82 0.93 0.81 0.57 0.1 0.28

iou loss 0.81 0.91 0.71 0.29 0.15 0.45
CE jaccard loss 0.78 0.93 0.8 1.06 0.18 0.51

binary focal loss 0.78 0.86 0.77 2.2 0.25 0.45

Table 4.8: Loss function comparison of Dice Coefficient and Loss

58

4.3. TRAINING EXPERIMENTS

The best loss function is still the CE dice loss, this could be because combining the

two losses allows for some diversity, whilst still benefitting from the stability of CE, so

it will continue to be used in the following experiments.

4.3.8 Preventing overfitting

4.3.8.1 Early Stopping (ES)

In the previous section the models ran for 50 epochs without Early Stopping (ES)

implementation, given the experiments performed what is the impact of running a

couple of the experiments applying ES and how it affects the performance of the model.

The early stopping strategy consisted of monitoring the validation set loss for

15 epochs (patience parameter) after which training will be stopped if there is no

improvement (absolute change of less than 0 (min delta parameter)) in the validation

loss.

In order to perform this experiment an arbitrarily large number of epochs was

set to 200, ES was triggered at 79 epochs when validation loss did not improve from

0.24, as can be seen from Figure 4.12 ES was successful at preventing an overfitting

situation, as the loss increased after epoch 79.

Figure 4.12: ES usage Loss comparison

4.3.8.2 Dropout

As part of the base network architecture introduced in section 4.1.1, Dropout has

been implemented at different degrees starting at 0.1 dropout rate and increasing by

0.1 as one progresses deeper into the network.

59

CHAPTER 4. MODELLING EXPERIMENTS

As an experiment, the network with the same architecture with one change, all the

dropout values introduced will be reduced to 0, so there is no Dropout in the network.

Figure 4.13: Removal of Dropout Loss comparison

Without dropout in place the validation loss starts increasing drastically which

triggers ES much earlier, as we can see from Figure 4.13 this could be due to exploding

gradients.

4.4 Learnings from conducting experiments

In summary, there are a few things that have been concluded from the experiments

conducted with the GEE data and will motivate the decisions made for the section that

follows where the model will be trained on the JP2 data .

1. When there is a background and foreground class, where the foreground class

represents the ROI, in this case the RTS pixels, it is important to adjust the patch

size of the image as a way of reducing pixel imbalance between the negative more

frequent background class and the positive more valuable foreground class. De-

pending on the size of the ROI this has to be done taking into consideration that

context around the ROI is also valuable in its correct identification. For example

in the context of this thesis reducing the patch size showed improvement until

the 64x64 patch size, but once it was further reduced to 32x32 the performance

was worst.

2. The relationship between the learning rate hyperparameter and the optimiser is

very strong, this was particularly evident with a higher learning rate of 0.1, which

60

4.4. LEARNINGS FROM CONDUCTING EXPERIMENTS

incredibly benefitted the SGD optimiser but drastically reduced the performance

of the other optimisers, perhaps more experiments with the other parameters

of optimisers and different learning rate schedules would be interesting, given

more time.

3. The relationship between mini-batch size and learning rate also seems to be very

important, despite changing optimiser, it was observed through the grid search

experiment that the batch size of one works better with 0.0001 learning rate,

whereas batch size of 10 performs better with 0.001 learning rate, this may be

due to the fact that by seeing more data with a bigger batch size the model is less

likely to overshoot a minimum and hence can tolerate a higher initial learning

rate and vice-versa.

4. The correct technical implementation of loss functions is challenging, especially

when dealing with bespoke data ingested from GeoTiFF file format but essential

for the successful training of the model.

5. ES is very effective in preventing overfitting.

6. Dropout is very effective in preventing exploding gradients.

61

5

Training the model on more data

and model performance evaluation

In section 3.1.2 JP2 data is introduced as a larger dataset sourced to address the

issues of bias in data collection. This chapter is dedicated to the evaluation of the

impact of using such data on the model fine-tuned on the smaller GEE dataset through

the experiments in Chapter 4.

5.1 Using transfer learning to train the model on more data

The model was frozen using the best hyperparameters at the end of the Chapter 4

and the model was trained on new data using those weights, this will be compared

with the performance of training the model from scratch on new data in section 5, the

same ES strategy will be used for this experiment to prevent overfitting. Using the

weights of the previous model trained on the GEE data to retrain using new JP2 data

is in essence the same as using transfer learning techniques.

Using the frozen weights did not improve model performance, it had the opposite

effect which is expected since the original model has a smaller dataset than the one it

was trained on now. It can be seen from Figure 5.1 that up to 20 epochs the transfer

learning, by using frozen weights from the model trained on less data, is performing

better than the model training from scratch.

Early stopping is also triggered in the model using frozen weights around 30 epochs

before the model being trained from scratch, which makes sense since when there is

less data the model has a greater likelihood of overfitting.

5.2 Training the model from scratch on new data

5.2.1 Comparison with the Google Earth Engine (GEE) dataset model -
same parameters

With the same model architecture and hyperparameters as in the previous Chapter,

the DL model was trained on the JP2 data for the same number of epochs to evaluate

63

CHAPTER 5. TRAINING THE MODEL ON MORE DATA AND MODEL

PERFORMANCE EVALUATION

Figure 5.1: Retraining with frozen weights Dice Coefficient comparison

the effect of using more data on the model performance.

Figure 5.2: Retraining from scratch Loss comparison

As can be seen from Figure 5.2 the model trained on more data has a lower valida-

tion loss consistently after 20 epochs despite initialising with a higher validation loss,

which shows its better performance.

In terms of evaluation metrics, it can be seen from Table 5.1 that the improvement

in performance is the most evident in the Test dataset where there is an improvement

64

5.3. FINAL MODEL

of 0.08 in the dice coefficient metric when using ES to prevent overfitting.

Dice Coefficient Loss
Model type Validation Training Test Validation Training Test

Training from scratch 0.89 0.96 0.88 0.16 0.05 0.28
Training from scratch with ES 0.86 0.94 0.86 0.2 0.08 0.3

Baseline model 0.88 0.97 0.82 0.27 0.05 0.27
Baseline Model with ES 0.88 0.96 0.78 0.26 0.07 0.33

Table 5.1: Retraining on new data comparison of Dice coefficient and Loss

5.2.2 Hyperparameter tuning from scratch

What works well for a dataset in terms of hyperparameters may not work well for

another, especially when there is a considerable difference in sample size. With this in

mind, hyperparameter tuning using random search was performed on the new data

with the following parameter variations using the same Early Stopping strategy as

before, restoring the weights of the best performing epoch w.r.t. Validation Loss:

• Learning Rate: 0.0001 and 0.001

• Optimiser: RMSprop, Adam and Nadam

• Loss Function: CE Dice Loss

• Batch Size: 1 and 10

• Activation Function: ELU

• Initialisation Method: He Normal

Results were logged using Tensorboard, the best validation dice coefficient combi-

nations of hyperparameters are shown in Figure 5.3, the best hyperparameters for the

JP2 data were batch size of 10, RMSProp optimiser and learning rate of 0.001.

As it can be seen from Table 5.2 the difference in performance with regards to the

Validation Dice Coefficient is marginal between the different hyperparameter combi-

nations, showing that the previous experiments in Chapter 4 provided good insights

that generally apply to a different bigger dataset.

5.3 Final Model

The best model found was that from the hyperparameter tuning performed on the

new JP2 data in Section 5.2.2, the performance of this model was summarised in Table

65

CHAPTER 5. TRAINING THE MODEL ON MORE DATA AND MODEL

PERFORMANCE EVALUATION

Figure 5.3: Subset of hyperparameter experiments with new data Validation dice coef-
ficient

Dice Coefficient Loss
Hyperparameter combination Validation Training Test Validation Training Test

1 rmsprop 0.0001 0.86 0.94 0.93 0.2 0.07 0.15
1 adam 0.0001 0.87 0.93 0.91 0.19 0.09 0.14

1 nadam 0.0001 0.86 0.93 0.76 0.2 0.09 0.22
10 rmsprop 0.001 0.91 0.96 0.95 0.13 0.05 0.11

10 adam 0.001 0.6 0.68 0.64 0.55 0.44 0.36
10 nadam 0.001 0.59 0.72 0.84 0.56 0.38 0.33

Table 5.2: Hyperparameter combinations comparison of Dice Coefficient and Loss

5.2, which shows a Dice Score on the test dataset of 95%. More in-depth analysis per

epoch will now be performed in this section.

As it can be seen from Figure 5.5, there is no evidence of overfitting before the

Early Stopping strategy kicks off at the 88th epoch. It can also be seen from Figure

5.4, that the Training and Validation curve follow a similar shape with less fluctuation

towards the final epochs, as would be expected from a well-performing model.

5.4 Test Evaluation

During the Training/ Validation/ Test split process 39 images were assigned to the

test set, that is completely unseen data by the model. Using the best model’s frozen

weights (the best weights are restored as part of the ES strategy) and architecture,

66

5.4. TEST EVALUATION

Figure 5.4: Dice Score comparison Figure 5.5: Loss comparison

inference is performed of the test dataset to assess model performance by comparing

the predictions against the ground truth mask. The overall performance of the model

at image level is summarised in Table 5.3, where three categories are defined according

to model performance, the individual performance evaluation scores of each test image

are then compared in Figure 5.6 according to those categories.

Category Dice Score range Number of images

High Greater than or equal to 0.7 29
Medium Between 0.7 and 0.4 5

Low Smaller or equal to 0.4 5

Table 5.3: Dice score test image summary

A short image-by-image analysis will be performed for two images of each category,

where purple colour represents background (non-RTS) pixels and yellow represents

foreground (RTS) pixels. The pixels have varying opacity according to prediction

confidence where the lighter the shade the lower the confidence and there is also a red

contour which represents the ground truth mask outline.

As can be seen from Figure 5.7 the algorithm can deal with both simpler thaw

slump shapes (on the left) and more complex shapes (on the right), although the latter

shows lower confidence in the pixel prediction confidence, as can be seen by lower

intensity pixel shading and is also reflected in a lower dice score.

The model struggles with elongated thaw slumps as seen in Figure 5.8 on the left

and in some instances correctly predicts the thaw slump ROI but also predicts False

Positive RTS which then has an impact on the dice score (right side). This presence of

False Positives could be an indication of an actual RTS, which has not been labeled yet.

Due to the lack of expert knowledge, these False Positives have not been validated but

could point researchers in the right direction when looking for new RTS.

67

CHAPTER 5. TRAINING THE MODEL ON MORE DATA AND MODEL

PERFORMANCE EVALUATION

Figure 5.6: Dice Score vs. IoU Score Test images scatter plot

Figure 5.7: Test set predicted vs. ground truth high score examples

The really low performing test images can be seen in Figure 5.9, the model seems

to not be very good at predicting very small RTS, this could be due to the fact that

each pixel represents a 10 m2 area and some RTS may be smaller than that, or that the

image reprojection has a slight misalignment, as can be seen from the image on the

left which predicts a False Positive RTS to the left of the ground truth red contour.

Another level of analysis involves looking at the input images (X) next to the

ground truth and predictions (y and predicted y) to check if there is any visible ev-

idence to analyse, an example of this can be seen in Figure 5.10. By analysing the

input image (on the left), it can be seen that the image is corrupted at the top, this

could be perhaps due to an error in the multispectral instrument during the collection.

68

5.4. TEST EVALUATION

Figure 5.8: Test set predicted vs. ground truth medium score examples

Figure 5.9: Test set predicted vs. ground truth low score examples

When it comes to the RTS ROI, the lighter shading in the input image corresponds to

the predicted area on the right side, indicating that perhaps the reprojection of the

labelled data (red contour) to the input image’s CRS is incorrect and the algorithm is

indeed more accurate than the dice score of 58% seems to suggest. This could be likely

since the ground truth was sourced from Planet imagery whilst the input image was

sourced from Satellite-2.

Given more time, all the above assumptions would be investigated further.

69

CHAPTER 5. TRAINING THE MODEL ON MORE DATA AND MODEL

PERFORMANCE EVALUATION

Figure 5.10: Test set predicted vs. ground medium score example

70

6

Conclusions and Future Work

6.1 Conclusions

Two models trained on different datasets were fine-tuned and evaluated in this

project, during this process there were several conclusions made:

1. Despite the challenges of data extraction and preprocessing, once a script is in

place that does this processing in a semi-automatic way it is relatively easy to

improve it. The challenge comes in the time required to understand the open-

source APIs one can access the data through and the format of that data. For

example, GeoTiff files are not as common as JPEG or PNG files, so there is a

certain level of upskilling and understanding of these different files.

2. Training on a larger amount of data and ensuring the data was without data

collection bias greatly improved the generalisation of the model and allowed for

more complex scenarios of multiple RTS in each input patch to be successfully

identified anywhere in the patch, not just the center.

3. Changing input parameters has a great impact on the performance of the model.

For example, it was seen that the patch size was a very important hyperparam-

eter in the improvement of the model performance. The improvement in per-

formance came from getting the right balance between background (non-RTS)

pixels and foreground (RTS) pixels without losing too much context.

4. Satisfactory results were achieved with 10-meter resolution images for the iden-

tification of thaw slumps. For a more valuable task of monitoring the changes

in RTS, however, the model could benefit from higher resolution images, as the

change may be less than 10 m and therefore be hard to track. It could also help

improve the performance on smaller RTS or those with more intricate shapes, as

it would provide a more detailed view.

5. All the points above put a great emphasis on the input data. For this project, the

importance of having the correct data collected and preprocessed in the right

71

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

way is essential for the successful performance of the model. In hindsight, this

author would have spent more time getting this step correct to avoid having to

backtrack to get more data halfway through the project.

6. Learning rate and batch size hyperparameters are some of the most important

hyperparameters to tune in a model. This together with the correct regularisation

strategy to prevent overfitting were some of the most important aspects found

when conducting experiments.

6.2 Limitations

The data extraction part of the project came with many limitations. The dependency

on third-party tools to extract data led to a small dataset to work with, given the

limited time constraints, it was hard to focus on a more automated process for data

extraction.

The GEE and JavaScript data extraction method introduced bias and potentially a

misalignment between the input data and the mask. This was addressed by the second

batch of data extraction, where JP2 tiles were extracted directly and processed into

64x64 windows. This allowed for debiased images and larger sample size to work with,

improving generalisation. The misalignment between the input data and the mask

may still be present as this author did not have enough time or expert knowledge to

investigate this thoroughly.

Since this model was only trained on tiles containing positive labels, it does not

know how to identify tiles with no thaw slumps, which is an important characteris-

tic when performing inference across the Arctic. For example, there could be input

patches that do not contain any RTS positive pixels, this would lead to many false

positives being found in these patches.

No model architecture hyperparameter tuning was performed, that is the number

of filters, kernel size, padding type, stride, pooling stride, type of pooling were not

optimised and other model architectures were not evaluated, so potentially the solu-

tion presented may not be the most efficient or the network might be too deep for the

problem at hand.

6.3 Future Work

In the future, an approach that aims to measure the change in RTSs through time,

like in Huang et al.’s latest paper (L. Huang et al., 2021) would be more beneficial to

the problem this project aims to address. This increases the complexity of the task at

hand because it introduces an additional dimension of time and its sequence, however

it provides better means for estimation and prediction of permafrost thaw year on

year.

72

6.3. FUTURE WORK

Revisiting data augmentation techniques would be beneficial since the results on

the 64x64 pixel patches cannot be generalised and only a handful of techniques were

explored. For example, perhaps performing random cropping on the larger 256x256

input patches would have been more beneficial in reducing the data collection bias

and avoided the effort of collecting more data.

It would also be beneficial to try different architecture parameters such as filter

size and kernel size or even other architectures such as DeepLab v3+, UNet++ or FCN

and assess the impact on the model performance.

To improve the generalisation of the model, a wider research area, not limited to

the sites where labels were provided, should be covered so that the model can be used

in other geographical regions with different characteristics.

Given more time, there are considerations on model inference latency, throughput

and size that could be improved by simplifying the U-Net model to a simpler model

architecture. This could be useful if the model were to be used in edge devices or

applications that require low latency.

The use of Bayesian optimisation techniques or even Constraint Active Search

(Malkomes et al., 2021) to perform hyperparameter tuning rather than using Random

Search techniques, would likely lead to better model optimisation without the time-

consuming experiment set up presented in Chapter 4.

In the future, the model could be trained on higher resolution images such as

those available through Planet data (3 m resolution) to evaluate how it affects model

performance, especially when dealing with smaller RTS and those with more complex

shapes. CRF could also be used to adjust region boundaries in post-processing and

capture small details, like Chen et al. (Chen et al., 2017) does. To increase model

performance on tiles with a small number or no RTS at all, the model should be trained

on a balanced dataset of tiles containing thaw slumps, as well as some not containing

any.

73

Bibliography

Alvarez, J. L. H., Ravanbakhsh, M., & Demir, B. (2020). S2-cgan: Self-supervised ad-

versarial representation learning for binary change detection in multispectral

images.

Belenguer-Plomer, M. A., Tanase, M. A., Chuvieco, E., & Bovolo, F. (2021). Cnn-

based burned area mapping using radar and optical data. Remote Sensing of
Environment, 260, 112468. https://doi.org/10.1016/j.rse.2021.112468

Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of

applications and future directions. ISPRS Journal of Photogrammetry and Remote
Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011

Benedetti, P., Ienco, D., Gaetano, R., Ose, K., Pensa, R. G., & Dupuy, S. (2018).

M3Fusion: A deep learning architecture for multiscale multimodal multitem-

poral satellite data fusion. IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing, 11(12), 4939–4949. https://doi.org/10.1109

/JSTARS.2018.2876357

Bramhe, V. S., Ghosh, S. K., & Garg, P. K. (2018). Extraction of built-up areas using

convolutional neural networks and transfer learning from sentinel-2 satellite

images. The International Archives of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, XLII-3, 79–85. https://doi.org/10.5194/isprs-

archives-XLII-3-79-2018

Calel, R., Chapman, S. C., Stainforth, D. A., & Watkins, N. W. (2020). Temperature

variability implies greater economic damages from climate change. Nature
Communications, 11(1), 5028. https://doi.org/10.1038/s41467-020-18797-8

Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2017). Deeplab:

Semantic image segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs.

Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder

with atrous separable convolution for semantic image segmentation. Proceed-
ings of the European Conference on Computer Vision (ECCV).

75

https://doi.org/10.1016/j.rse.2021.112468
https://doi.org/10.1016/j.isprsjprs.2016.01.011
https://doi.org/10.1109/JSTARS.2018.2876357
https://doi.org/10.1109/JSTARS.2018.2876357
https://doi.org/10.5194/isprs-archives-XLII-3-79-2018
https://doi.org/10.5194/isprs-archives-XLII-3-79-2018
https://doi.org/10.1038/s41467-020-18797-8

BIBLIOGRAPHY

Cheng, G., & Han, J. (2016). A survey on object detection in optical remote sensing

images. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 11–28. https:

//doi.org/10.1016/j.isprsjprs.2016.03.014

Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis,

J., Dethloff, K., Entekhabi, D., Overland, J., & Jones, J. (2014). Recent Arctic

amplification and extreme mid-latitude weather. Nature Geoscience, 7(9), 627–

637. https://doi.org/10.1038/ngeo2234

Dozat, T. (2016). Incorporating nesterov momentum into adam.

Dumoulin, V., & Visin, F. (2018). A guide to convolution arithmetic for deep learning.

Fathi, E., & Maleki Shoja, B. (2018). Chapter 9 - deep neural networks for natural

language processing. In V. N. Gudivada & C. Rao (Eds.), Computational analy-
sis and understanding of natural languages: Principles, methods and applications
(pp. 229–316). Elsevier. https://doi.org/10.1016/bs.host.2018.07.006

Ferretti, J., Randazzo, V., Cirrincione, G., & Pasero, E. (2020). 1-d convolutional neural

network for ECG arrhythmia classification. Progresses in artificial intelligence
and neural systems (pp. 269–279). Springer Singapore. https://doi.org/10.1007

/978-981-15-5093-5_25

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedfor-

ward neural networks. In Y. W. Teh & M. Titterington (Eds.), Proceedings of the
thirteenth international conference on artificial intelligence and statistics (pp. 249–

256). PMLR. http://proceedings.mlr.press/v9/glorot10a.html

Goodfellow, I. J., Bengio, Y., & Courville, A. (2016). Deep learning [http : / / www.

deeplearningbook.org]. MIT Press.

Google Cloud. (2021). Sentinel-2 data public dataset documentation. https://cloud.

google.com/storage/docs/public-datasets/sentinel-2

Grosse, G., Jones, B., & Arp, C. (2013). 8.21 thermokarst lakes, drainage, and drained

basins. In J. F. Shroder (Ed.), Treatise on geomorphology (pp. 325–353). Aca-

demic Press. https://doi.org/10.1016/B978-0-12-374739-6.00216-5

Guo, Y., Cao, X., Liu, B., & Gao, M. (2020). Cloud detection for satellite imagery

using attention-based u-net convolutional neural network. Symmetry, 12(6).

https://doi.org/10.3390/sym12061056

He, K., Zhang, X., Ren, S., & Sun, J. (2015a). Deep residual learning for image recogni-

tion.

He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification. Proceedings of the IEEE
International Conference on Computer Vision (ICCV).

Hiep, P., & Joo, R. (2018). A deep learning approach for classification of cloud image

patches on small datasets. Journal of Information and Communication Conver-
gence Engineering, 16(3), 173–178. https://doi.org/10.6109/JICCE.2018.16.3.1

73

76

https://doi.org/10.1016/j.isprsjprs.2016.03.014
https://doi.org/10.1016/j.isprsjprs.2016.03.014
https://doi.org/10.1038/ngeo2234
https://doi.org/10.1016/bs.host.2018.07.006
https://doi.org/10.1007/978-981-15-5093-5_25
https://doi.org/10.1007/978-981-15-5093-5_25
http://proceedings.mlr.press/v9/glorot10a.html
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://cloud.google.com/storage/docs/public-datasets/sentinel-2
https://cloud.google.com/storage/docs/public-datasets/sentinel-2
https://doi.org/10.1016/B978-0-12-374739-6.00216-5
https://doi.org/10.3390/sym12061056
https://doi.org/10.6109/JICCE.2018.16.3.173
https://doi.org/10.6109/JICCE.2018.16.3.173

BIBLIOGRAPHY

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected

convolutional networks. 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2261–2269. https://doi.org/10.1109/CVPR.2017.243

Huang, L., Liu, L., Jiang, L., & Zhang, T. (2018). Automatic mapping of thermokarst

landforms from remote sensing images using deep learning: A case study in

the northeastern tibetan plateau. Remote Sensing, 10(12). https://doi.org/10.3

390/rs10122067

Huang, L., Liu, L., Luo, J., Lin, Z., & Niu, F. (2021). Automatically quantifying evo-

lution of retrogressive thaw slumps in beiluhe (tibetan plateau) from multi-

temporal cubesat images. International Journal of Applied Earth Observation and
Geoinformation, 102, 102399. https://doi.org/10.1016/j.jag.2021.102399

Huang, L., Luo, J., Lin, Z., Niu, F., & Liu, L. (2020). Using deep learning to map

retrogressive thaw slumps in the beiluhe region (tibetan plateau) from cubesat

images. Remote Sensing of Environment, 237, 111534. https://doi.org/10.1016

/j.rse.2019.111534

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network train-

ing by reducing internal covariate shift.

Jegou, S., Drozdzal, M., Vazquez, D., Romero, A., & Bengio, Y. (2017). The one hun-

dred layers tiramisu: Fully convolutional densenets for semantic segmentation.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops.

Katanforoosh, K. e. a. (2019). Parameter optimization in neural networks. deeplearning.

ai

Kemker, R., Salvaggio, C., & Kanan, C. (2018). Algorithms for semantic segmentation

of multispectral remote sensing imagery using deep learning.

Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M., & Tang, P. T. P. (2017). On

large-batch training for deep learning: Generalization gap and sharp minima.

Kingma, D. P., & Ba, J. (2017). Adam: A method for stochastic optimization.

Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing

neural networks.

Kokelj, S., Tunnicliffe, J., Lacelle, D., Lantz, T., Chin, K., & Fraser, R. (2015). Increased

precipitation drives mega slump development and destabilization of ice-rich

permafrost terrain, northwestern canada. Global and Planetary Change, 129,

56–68. https://doi.org/10.1016/j.gloplacha.2015.02.008

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep

convolutional neural networks. Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1, 1097–1105.

Lantuit, H., & Pollard, W. (2008). Fifty years of coastal erosion and retrogressive

thaw slump activity on herschel island, southern beaufort sea, yukon territory,

canada [Paraglacial Geomorphology: Processes and Paraglacial Context]. Geo-
morphology, 95(1), 84–102. https://doi.org/10.1016/j.geomorph.2006.07.040

77

https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.3390/rs10122067
https://doi.org/10.3390/rs10122067
https://doi.org/10.1016/j.jag.2021.102399
https://doi.org/10.1016/j.rse.2019.111534
https://doi.org/10.1016/j.rse.2019.111534
deeplearning.ai
deeplearning.ai
https://doi.org/10.1016/j.gloplacha.2015.02.008
https://doi.org/10.1016/j.geomorph.2006.07.040

BIBLIOGRAPHY

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https:

//doi.org/10.1109/5.726791

Lewkowicz, A. G., & Way, R. G. (2019). Extremes of summer climate trigger thousands

of thermokarst landslides in a high arctic environment. Nature Communications,
10(1), 1329. https://doi.org/10.1038/s41467-019-09314-7

Li, Y., Zhang, H., Xue, X., Jiang, Y., & Shen, Q. (2018). Deep learning for remote

sensing image classification: A survey. WIREs Data Mining and Knowledge
Discovery, 8(6), e1264. https://doi.org/10.1002/widm.1264

Lin, M., Chen, Q., & Yan, S. (2014). Network in network.

Liu, W., Rabinovich, A., & Berg, A. C. (2015). Parsenet: Looking wider to see better.

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic

segmentation.

Lu, L. (2020). Dying relu and initialization: Theory and numerical examples. Commu-
nications in Computational Physics, 28(5), 1671–1706. https://doi.org/10.4208

/cicp.oa-2020-0165

Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., & Martel, A. L. (2021). Loss

odyssey in medical image segmentation. Medical Image Analysis, 71, 102035.

https://doi.org/10.1016/j.media.2021.102035

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning

in remote sensing applications: A meta-analysis and review. ISPRS Journal of
Photogrammetry and Remote Sensing, 152, 166–177. https://doi.org/10.1016

/j.isprsjprs.2019.04.015

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve neural

network acoustic models. in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing.

Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez, P. (2016). Fully convolutional neural

networks for remote sensing image classification. 2016 IEEE International Geo-
science and Remote Sensing Symposium (IGARSS), 5071–5074. https://doi.org/1

0.1109/IGARSS.2016.7730322

Malkomes, G., Cheng, B., Lee, E. H., & Mccourt, M. (2021). Beyond the pareto efficient

frontier: Constraint active search for multiobjective experimental design. In

M. Meila & T. Zhang (Eds.), Proceedings of the 38th international conference on
machine learning (pp. 7423–7434). PMLR. https://proceedings.mlr.press/v139

/malkomes21a.html

Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-net: Fully convolutional neural net-

works for volumetric medical image segmentation. 2016 Fourth International
Conference on 3D Vision (3DV), 565–571. https://doi.org/10.1109/3DV.2016.7

9

78

https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/s41467-019-09314-7
https://doi.org/10.1002/widm.1264
https://doi.org/10.4208/cicp.oa-2020-0165
https://doi.org/10.4208/cicp.oa-2020-0165
https://doi.org/10.1016/j.media.2021.102035
https://doi.org/10.1016/j.isprsjprs.2019.04.015
https://doi.org/10.1016/j.isprsjprs.2019.04.015
https://doi.org/10.1109/IGARSS.2016.7730322
https://doi.org/10.1109/IGARSS.2016.7730322
https://proceedings.mlr.press/v139/malkomes21a.html
https://proceedings.mlr.press/v139/malkomes21a.html
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1109/3DV.2016.79

BIBLIOGRAPHY

Mishra, P., & Sarawadekar, K. (2019). Polynomial learning rate policy with warm

restart for deep neural network. TENCON 2019 - 2019 IEEE Region 10 Confer-
ence (TENCON), 2087–2092. https://doi.org/10.1109/TENCON.2019.892946

5

Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing:

A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259.

https://doi.org/10.1016/j.isprsjprs.2010.11.001

Nabiyev, N., & Malekzadeh, S. (2021). Anomalous sound localization estimation.

https://doi.org/10.13140/RG.2.2.25949.95201

Nitze, I., Grosse, G., Jones, B., Romanovsky, V., & Boike, J. (2018). Remote sensing

quantifies widespread abundance of permafrost region disturbances across the

arctic and subarctic. Nature Communications, 9. https://doi.org/10.1038/s414

67-018-07663-3

Noh, H., Hong, S., & Han, B. (2015). Learning deconvolution network for semantic

segmentation. 2015 IEEE International Conference on Computer Vision (ICCV),
1520–1528. https://doi.org/10.1109/ICCV.2015.178

Obu, J. (2021). How much of the earth’s surface is underlain by permafrost? [e2021JF006123

2021JF006123]. Journal of Geophysical Research: Earth Surface, 126(5), e2021JF006123.

https://doi.org/10.1029/2021JF006123

Osterkamp, T., & Jorgenson, M. (2009). Permafrost conditions and processes. Geologi-
cal Monitoring. Geological Society of America. https://doi.org/10.1130/2009

.monitoring(09)

Osterkamp, T., & Jorgenson, M. (2005). Response of boreal ecosystems to varying

modes of permafrost degradation in alaska. Canadian Journal of Forest Research,

35, 2100–2111. https://doi.org/10.1139/x05-153

Panchbhaiyye, V., & Ogunfunmi, T. (2020). A fifo based accelerator for convolutional

neural networks. ICASSP 2020 - 2020 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 1758–1762. https://doi.org/10.110

9/ICASSP40776.2020.9053228

Philipp, M., Dietz, A., Buchelt, S., & Kuenzer, C. (2021). Trends in satellite earth

observation for permafrost related analyses—a review. Remote Sensing, 13(6).

https://doi.org/10.3390/rs13061217

Rahman, M. A., & Wang, Y. (2016). Optimizing intersection-over-union in deep neural

networks for image segmentation. Advances in visual computing (pp. 234–244).

Springer International Publishing. https://doi.org/10.1007/978-3-319-50835-

1_22

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for

biomedical image segmentation.

Rowland, J. C., Jones, C. E., Altmann, G., Bryan, R., Crosby, B. T., Hinzman, L. D., Kane,

D. L., Lawrence, D. M., Mancino, A., Marsh, P., McNamara, J. P., Romanvosky,

V. E., Toniolo, H., Travis, B. J., Trochim, E., Wilson, C. J., & Geernaert, G. L.

79

https://doi.org/10.1109/TENCON.2019.8929465
https://doi.org/10.1109/TENCON.2019.8929465
https://doi.org/10.1016/j.isprsjprs.2010.11.001
https://doi.org/10.13140/RG.2.2.25949.95201
https://doi.org/10.1038/s41467-018-07663-3
https://doi.org/10.1038/s41467-018-07663-3
https://doi.org/10.1109/ICCV.2015.178
https://doi.org/10.1029/2021JF006123
https://doi.org/10.1130/2009.monitoring(09)
https://doi.org/10.1130/2009.monitoring(09)
https://doi.org/10.1139/x05-153
https://doi.org/10.1109/ICASSP40776.2020.9053228
https://doi.org/10.1109/ICASSP40776.2020.9053228
https://doi.org/10.3390/rs13061217
https://doi.org/10.1007/978-3-319-50835-1_22
https://doi.org/10.1007/978-3-319-50835-1_22

BIBLIOGRAPHY

(2010). Arctic landscapes in transition: Responses to thawing permafrost. Eos,
Transactions American Geophysical Union, 91(26), 229–230. https://doi.org/10

.1029/2010EO260001

Ruder, S. (2017). An overview of gradient descent optimization algorithms.

Schaefer, K., Lantuit, H., Romanovsky, V., Schuur, E., & Witt, R. (2014). The impact

of the permafrost carbon feedback on global climate. Environmental Research
Letters, 9, 085003. https://doi.org/10.1088/1748-9326/9/8/085003

Schuur, E. A. G., McGuire, A. D., Schädel, C., Grosse, G., Harden, J. W., Hayes, D. J.,

Hugelius, G., Koven, C. D., Kuhry, P., Lawrence, D. M., Natali, S. M., Olefeldt,

D., Romanovsky, V. E., Schaefer, K., Turetsky, M. R., Treat, C. C., & Vonk,

J. E. (2015). Climate change and the permafrost carbon feedback. Nature,

520(7546), 171–179. https://doi.org/10.1038/nature14338

Shanmugamani, R. (2018). Deep learning for computer vision: Expert techniques to train
advanced neural networks using tensorflow and keras. Packt Publishing. https:

//books.google.co.uk/books?id=6tRJDwAAQBAJ

Shao, Z., Zhou, W., Deng, X., Zhang, M., & Cheng, Q. (2020). Multilabel remote

sensing image retrieval based on fully convolutional network. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, 13, 318–328.

https://doi.org/10.1109/JSTARS.2019.2961634

Shenoy, A. (2019). Feature optimization of contact map predictions based on inter-residue
distances and u-net++ architecture (Doctoral dissertation). Stockholm University.

https://doi.org/10.13140/RG.2.2.16796.23688

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15(56), 1929–1958. http://jmlr.org/papers/v15

/srivastava14a.html

Stock, S., Armengol Urpi, A., Kovacs, B., Maier, H., Gerdes, M., Stork, W., & Sarma, S.

(2020). A system approach for closed-loop assessment of neuro-visual function

based on convolutional neural network analysis of eeg signals. Neurophotonics,
8. https://doi.org/10.1117/12.2554417

Sultana, F., Sufian, A., & Dutta, P. (2020). Evolution of image segmentation using deep

convolutional neural network: A survey. Knowledge-Based Systems, 201-202,

106062. https://doi.org/10.1016/j.knosys.2020.106062

Sun, W., & Wang, R. (2018). Fully convolutional networks for semantic segmentation

of very high resolution remotely sensed images combined with dsm. IEEE
Geoscience and Remote Sensing Letters, 15(3), 474–478. https://doi.org/10.1109

/LGRS.2018.2795531

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V., & Rabinovich, A. (2015). Going deeper with convolutions. 2015 IEEE

80

https://doi.org/10.1029/2010EO260001
https://doi.org/10.1029/2010EO260001
https://doi.org/10.1088/1748-9326/9/8/085003
https://doi.org/10.1038/nature14338
https://books.google.co.uk/books?id=6tRJDwAAQBAJ
https://books.google.co.uk/books?id=6tRJDwAAQBAJ
https://doi.org/10.1109/JSTARS.2019.2961634
https://doi.org/10.13140/RG.2.2.16796.23688
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.1117/12.2554417
https://doi.org/10.1016/j.knosys.2020.106062
https://doi.org/10.1109/LGRS.2018.2795531
https://doi.org/10.1109/LGRS.2018.2795531

BIBLIOGRAPHY

Conference on Computer Vision and Pattern Recognition (CVPR), 1–9. https :

//doi.org/10.1109/CVPR.2015.7298594

The European Space Agency. (2021). The european space agency website. https :

//sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi

van. Everdingen, R. O., & International Permafrost Association (USA). (1998). Multi-
language glossary of permafrost and related ground-ice terms in chinese, english,
french, german ... Arctic Inst. of North America University of Calgary.

Vladimir Iglovikov, V. O., Sergey Mushinskiy. (2017). Satellite imagery feature detec-

tion using deep convolutional neural network: A kaggle competition.

Xu, Y., Du, B., & Zhang, L. (2018). Multi-source remote sensing data classification via

fully convolutional networks and post-classification processing. IGARSS 2018 -
2018 IEEE International Geoscience and Remote Sensing Symposium, 3852–3855.

https://doi.org/10.1109/IGARSS.2018.8518295

Yang, J., Hines, E., Guymer, I., Iliescu, D., Leeson, M., King, G., & Li, X. (2008). A

genetic algorithm-artificial neural network method for the prediction of longi-

tudinal dispersion coefficient in rivers. Advancing Artificial Intelligence Through
Biological Process Applications, 358–374. https://doi.org/10.4018/978-1-59904

-996-0.ch019

Yi, Y., Zhang, Z., Zhang, W., Zhang, C., Li, W., & Zhao, T. (2019). Semantic seg-

mentation of urban buildings from vhr remote sensing imagery using a deep

convolutional neural network. Remote Sensing, 11(15). https://doi.org/10.339

0/rs11151774

Yu, F., & Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions.

Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., Xu, H., Tan, W., Yang, Q., Wang, J.,

Gao, J., & Zhang, L. (2020). Deep learning in environmental remote sensing:

Achievements and challenges. Remote Sensing of Environment, 241, 111716.

https://doi.org/10.1016/j.rse.2020.111716

Zeiler, M. D., & Fergus, R. (2013). Visualizing and understanding convolutional

networks.

Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network.

Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang,

C., & Torr, P. H. S. (2015). Conditional random fields as recurrent neural

networks. 2015 IEEE International Conference on Computer Vision (ICCV). https:

//doi.org/10.1109/iccv.2015.179

Zhong, Y., Fei, F., Liu, Y., Zhao, B., Jiao, H., & Zhang, L. (2017). Satcnn: Satellite

image dataset classification using agile convolutional neural networks. Remote
Sensing Letters, 8, 136–145.

Zhu, X. X., Tuia, D., Mou, L., Xia, G.-S., Zhang, L., Xu, F., & Fraundorfer, F. (2017).

Deep learning in remote sensing: A comprehensive review and list of resources.

IEEE Geoscience and Remote Sensing Magazine, 5(4), 8–36. https://doi.org/10.1

109/MGRS.2017.2762307

81

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi
https://doi.org/10.1109/IGARSS.2018.8518295
https://doi.org/10.4018/978-1-59904-996-0.ch019
https://doi.org/10.4018/978-1-59904-996-0.ch019
https://doi.org/10.3390/rs11151774
https://doi.org/10.3390/rs11151774
https://doi.org/10.1016/j.rse.2020.111716
https://doi.org/10.1109/iccv.2015.179
https://doi.org/10.1109/iccv.2015.179
https://doi.org/10.1109/MGRS.2017.2762307
https://doi.org/10.1109/MGRS.2017.2762307

BIBLIOGRAPHY

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. Lourenço, 2021

Lourenço, J. M. (2021). The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

82

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

I

Annex

The data and code used in this project is available in this author’s personal Github

repository: https://github.com/leolioness1/thesis. For access please contact this au-

thor via email: mleonorfurtado@gmail.com.

83

https://github.com/leolioness1/thesis
mleonorfurtado@gmail.com

	Front Matter
	Cover
	Front Page
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Project Objectives and Research questions
	1.2 The task of identifying Retrogressive Thaw Slumps using remote sensing data
	1.2.1 The relevance of identifying Retrogressive Thaw Slumps using Deep Learning and remote-sensing imagery
	1.2.2 Challenges and Opportunities

	1.3 Report Structure

	2 Theoretical Context
	2.1 Permafrost and its degradation
	2.1.1 Thermokarst landforms
	2.1.2 Retrogressive Thaw Slumps

	2.2 Artificial Intelligence Applications in Remote Sensing
	2.2.1 Conventional Machine Learning applications in Remote Sensing
	2.2.2 Deep Learning applications in Remote Sensing Imagery
	2.2.3 Deep Learning Models in Remote Sensing

	2.3 Convolutional Neural Network (CNN)
	2.3.1 Main Layers of a Convolutional Neural Network
	2.3.2 Activation Functions
	2.3.3 Classical Convolutional Neural Network Architectures and their evolution

	2.4 The various architectures used in Remote Sensing applications
	2.4.1 Fully Convolutional Network (FCN)
	2.4.2 DeepLab models
	2.4.3 U-Net

	3 Semantic Segmentation Models - Input data, algorithm and hyperparameters
	3.1 Input data
	3.1.1 Labelled data
	3.1.2 Sentinel-2 data collection
	3.1.3 Google Cloud Storage (GCS) and JPEG 2000 (JP2) data
	3.1.4 Data understanding and preparation

	3.2 Introduction to semantic segmentation models
	3.2.1 Pre-processing of data
	3.2.2 Preparing the data for modelling using Tensorflow
	3.2.3 Deep Learning process
	3.2.4 Measurement of model performance
	3.2.5 Transfer Learning

	4 Modelling Experiments
	4.1 Choosing the most appropriate classification model
	4.1.1 Pixel-wise classification model
	4.1.2 Evaluating the use of transfer learning
	4.1.3 Pixel-level class imbalance
	4.1.4 Experiment set up

	4.2 Preprocessing experiments
	4.2.1 Size of the input patch
	4.2.2 Normalisation of input
	4.2.3 Data Augmentation

	4.3 Training experiments
	4.3.1 Network Hyperparameters
	4.3.2 Optimiser
	4.3.3 Learning rate
	4.3.4 Batch size
	4.3.5 Initialisation
	4.3.6 Activation function
	4.3.7 Loss Function
	4.3.8 Preventing overfitting

	4.4 Learnings from conducting experiments

	5 Training the model on more data and model performance evaluation
	5.1 Using transfer learning to train the model on more data
	5.2 Training the model from scratch on new data
	5.2.1 Comparison with the Google Earth Engine (GEE) dataset model - same parameters
	5.2.2 Hyperparameter tuning from scratch

	5.3 Final Model
	5.4 Test Evaluation

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Limitations
	6.3 Future Work

	Bibliography
	I Annex
	Back Matter
	Back Cover

