

Geophysical Research Letters

RESEARCH LETTER

10.1029/2020GL090896

Key Points:

- Summer NEEM ¹⁰Be concentrations are generally higher than winter ¹⁰Be concentrations due to the stratospheric intrusion
- Erroneous Dye 3 ¹⁰Be data can bias solar activity estimates for the past toward too low
- ¹⁰Be and sunspot data suggest higher solar activity than extensions of the neutron monitor data before 1951

Supporting Information:

- Supporting Information S1
- Data Set S1

Correspondence to:

M. Zheng, minjie.zheng@geol.lu.se

Citation:

Zheng, M., Adolphi, F., Sjolte, J., Aldahan, A., Possnert, G., Wu, M., et al. (2021). Solar activity of the past 100 years inferred from ¹⁰Be in ice cores—Implications for long-term solar activity reconstructions. *Geophysical Research Letters*, 48, e2020GL090896 https://doi.org/10.1029/2020GL090896

Received 23 SEP 2020 Accepted 23 DEC 2020

Author Contributions

Minjie Zheng, Raimund Muscheler, and Florian Adolphi initiated the study. Minjie Zheng performed the analysis and wrote the first manuscript in correspondence with Raimund Muscheler, Florian Adolphi, Jesper Sjolte, Ala Aldahan and Mousong Wu. Minjie Zheng prepared the ice samples with the help of Peng Chen. Göran Possnert conducted the ¹⁰Be measurements at the Uppsala University. All authors discussed the results and edited the manuscript.

© 2021. The Authors.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Solar Activity of the Past 100 Years Inferred From ¹⁰Be in Ice Cores—Implications for Long-Term Solar Activity Reconstructions

Minjie Zheng¹, Florian Adolphi^{1,2,3}, Jesper Sjolte¹, Ala Aldahan⁴, Göran Possnert⁵, Mousong Wu⁶, Peng Chen^{7,8}, and Raimund Muscheler¹

¹Department of Geology, Lund University, Lund, Sweden, ²Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany, ³Department of Geosciences, University of Bremen, Germany, ⁴Department of Geology, United Arab Emirates University, Al Ain, United Arab Emirates, ⁵Tandem Laboratory, Uppsala University, Uppsala, Sweden, ⁶International Institute for Earth System Science, Nanjing University, Nanjing, China, ⁷School of Earth Sciences and Engineering, Hohai University, Nanjing, China, ⁸State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China

Abstract Differences between ¹⁰Be records from Greenland and Antarctica over the last 100 years have led to different conclusions about past changes in solar activity. The reasons for this disagreement remain unresolved. We analyze a seasonally resolved ¹⁰Be record from a firn core (North Greenland Eemian Ice Drilling [NEEM] ice core project) in Northwestern Greenland for 1887–2002. By comparing the NEEM data to ¹⁰Be data from the NGRIP and Dye3 ice cores, we find that the Dye3 data after 1958 are significantly lower. These low values lead to a normalization problem in solar reconstructions when connecting ¹⁰Be variations to modern observations. Excluding these data strongly reduces the differences between solar reconstructions over the last 2,000 years based on Greenland and Antarctic ¹⁰Be data. Furthermore, ¹⁰Be records from polar regions and group sunspot numbers do not support a substantial increase in solar activity for the 1937–1950 period as proposed by previous extensions of the neutron monitor data.

1. Introduction

Cosmogenic radionuclide records (e.g., ¹⁰Be in ice cores) have commonly been used as proxies for past solar and geomagnetic variations prior to the direct observational period. Due to its cosmic ray origin, the production rate of ¹⁰Be is modulated by the solar and geomagnetic shielding, hence providing a physical link to past changes in solar activity. After production, ¹⁰Be attaches to aerosols then resides about 1–2 years in the stratosphere and a few days to weeks in the troposphere (e.g., Heikkilä, 2007; McHargue & Damon, 1991). Subsequently, it gets scavenged from the air by wet and dry depositions. Therefore, the interpretation of ¹⁰Be data from natural archives, such as ice cores, is complicated by the transport and scavenging processes of ¹⁰Be. These climate effects on ¹⁰Be add significant uncertainties to solar activity reconstructions, leading to different results (e.g., Bard et al., 2000; Muscheler et al., 2007; Usoskin et al., 2003). Muscheler et al. (2016) illustrated the disagreements between solar activity reconstructions depending on the use of Antarctic or Greenland ¹⁰Be data for the last 2,000 years. They suggested that this most likely reflects different climate/ weather influences on these records for the past 100 years. As the most recent decades are important for normalizing the radionuclide records to modern observations, such differences affect the estimates of solar activity levels further back in time.

To assess the atmospheric circulation and depositional influences on ¹⁰Be, one approach is to study high-resolution (subannual) ¹⁰Be data, which permits the understanding of the seasonal influence of different climatic conditions on ¹⁰Be. For example, Zheng et al. (2020) found different meteorological influences on summer and winter ¹⁰Be records from a North Greenland Eemian Ice Drilling (NEEM) firn core in Northwestern Greenland for the period 1951–2002. They also suggested that the tropopause over the mid-latitudes in Northern Hemisphere plays an essential role in ¹⁰Be deposition in Greenland. Besides, multiple ¹⁰Be records are helpful to detect discrepancies between records and reduce uncertainties arising from climate influences or data quality issues. There are two existing annually resolved ¹⁰Be records from Greenland covering the last several hundred years: the North Greenland Ice Core Project (NGRIP) record

Figure 1. (a) ¹⁰Be concentrations for 1887–2002 together with their measurement uncertainties. ¹⁰Be concentrations for 1951–2002 are from Zheng et al. (2020). Summer values are indicated in red, while winter concentrations are shown in blue. (b) Box-whisker-plots of ¹⁰Be data. The box encompasses quartiles from 25% to 75%, and the central horizontal line indicates the median. Whiskers indicate the upper and lower limits excluding outliers shown by crosses (greater than 1.5 times the interquartile range). (c) Histograms of winter and summer ¹⁰Be data.

from Berggren et al. (2009) and the Dye3 record from Beer et al. (1990). These records, however, do not agree well. The Dye3 ¹⁰Be concentrations show a decrease of 53% from the year 1885 to 1985, while the NGRIP data exhibit only a decrease of 29%. This difference can lead to different conclusions regarding the present solar activity level compared to the past. The reason for this difference has not been resolved yet. Additional ¹⁰Be records covering this period could contribute to identifying the underlying reasons for the difference and help improve reconstructions of past solar activity.

In this study, we analyze a seasonally resolved ¹⁰Be record from a NEEM firn core covering the period 1887–2002 (77.45°N, 51.06°W, 2450 m.a.s.l., Figure S1), extending the previously published record (1951–2002) from the same core (Zheng et al., 2020). We discuss the production influences on the ¹⁰Be record. Subsequently, we compare the NEEM ¹⁰Be record with (bi-)annually resolved data from other Greenland ice cores and investigate the reasons for different trends of NGRIP and Dye3 ¹⁰Be records over the last 100 years, as well as the possible implications for solar reconstructions over the last 100 years and the last 2,000 years. Finally, together with available ¹⁰Be records from Greenland and Antarctica and group sunspot numbers, we further discuss solar activity changes for the period 1937–1950, where the extension of the neutron monitor data suggest a substantial increase in solar modulation (McCracken & Beer, 2007).

2. Data and Analytical Methods

The ¹⁰Be data used here arise from a firn core (NEEM07S1) drilled at the NEEM site in Northwestern Greenland covering the period 1887–2002 (Figure 1a). ¹⁰Be measurements of the top part core (1951–2002) were published (Zheng et al., 2020), and the rest (1887–1950) are new measurements. Seasonal layers in the firn core are identified using the analysis of NEEM δ^{18} O measurements in the same core (Zheng et al., 2018). The winter season is defined from November to April and summer from May to October. The annual ¹⁰Be concentration is calculated using the accumulation weighted average of the seasonal ¹⁰Be data. The year is defined starting from November to October of the subsequent year (e.g., November 1887–October 1888, for the year 1888). The ¹⁰Be preparation at the Lund University and the accelerator mass spectrometry measurement at the Uppsala University were conducted following procedures given in Sturevik-Storm et al. (2014). Standard errors of ¹⁰Be concentrations (1887–1950) range from 3.2% to 11.8% with a median of 4.8%. Unfortunately, samples of the year 1931–1933 and 1938–1942 were missing and could not be found at the ice storage facility at the Copenhagen University. The ¹⁰Be flux is calculated using ¹⁰Be concentration times the corresponding ice equivalent accumulation rate and ice density (Figure S2b). The ice equivalent accumulation rates in the firn core are calculated as defined by Steen-Larsen et al. (2011).

Spearman rank correlation is used to quantify the strength of the relationship between datasets since it is less sensitive to outliers and the distribution of the investigated datasets compared to Pearson correlation coefficients.

3. Results

The results indicate significant correlations between seasonal ¹⁰Be concentrations and fluxes (R > 0.7, p < 0.05, Figure S3) and between fluxes and respective accumulation rates on seasonal and annual scales (R > 0.5, p < 0.05, Figure S4b), but insignificant correlations between seasonal and annual ¹⁰Be concentrations and snow accumulation rates (p > 0.05, Figure S4a). Furthermore, we calculate the residual record by linearly detrending the accumulation dependency from the ¹⁰Be flux record, and the resulting residual record is highly correlated with the NEEM ¹⁰Be concentration (R = 0.9, Figure S2c). Therefore, the calculation of ¹⁰Be fluxes likely introduces a spurious signal via the multiplication of ¹⁰Be concentrations with local snow accumulation rates. This result supports a previous study suggesting NEEM ¹⁰Be concentrations on such time scales and during a relatively stable climate are independent of the local accumulation rates while the flux is not (Zheng et al., 2020). In addition, ¹⁰Be concentration is the parameter directly measured in the ice. Consequently, we mainly focus on ¹⁰Be concentrations rather than fluxes in the subsequent data analysis and discussion.

Winter NEEM ¹⁰Be concentrations range between 0.45×10^4 and 2.16×10^4 atoms/g with a mean of 0.99×10^4 atoms/g, summer concentrations range between 0.54×10^4 and 2.72×10^4 atoms/g with a mean of 1.25×10^4 atoms/g, and the annual range is between 0.55×10^4 and 2.47×10^4 atoms/g with a mean of 1.16×10^4 atoms/g (Table S1 and Figures 1b and 1c). The winter ¹⁰Be concentration is significantly correlated with the summer ¹⁰Be concentration (R = 0.35, p < 0.05). The summer ¹⁰Be concentrations are, on average, about 26% (p < 0.05, t-test, Figure 1a and Table S1) higher than the winter values. Note that the accumulation rates are about twice as high in summer than in winter, which again supports that ¹⁰Be concentrations are little influenced by varying dilution effects due to changing accumulation rates during the investigated period. The higher ¹⁰Be values during summer could be attributed to the intrusions of stratospheric air enriched with ¹⁰Be, therefore elevating ¹⁰Be concentrations. Beer et al. (1991) found two peaks in subseasonally resolved Dye3 ¹⁰Be data for late spring and mid-autumn. The first peak is attributed to the local stratospheric intrusion, while the second peak is proposed to arise from the delayed transport of ¹⁰Be from mid-latitude stratospheric intrusions. Here, the summer for NEEM ¹⁰Be is defined from May to October. Therefore, the high NEEM ¹⁰Be values during summer could be the combined influence of local stratospheric intrusions and the delayed transport of ¹⁰Be from mid-latitude stratospheric intrusions. Higher ¹⁰Be values in austral summer were also noticed in Antarctic records and linked to enhanced stratospheric input (Heikkilä & Smith, 2013; Pedro et al., 2011). Both winter and summer ¹⁰Be records show a significant decreasing trend for 1887–2002 (Figure S5; p < 0.05, tested by Mann-Kendall method, Gilbert, 1987). The winter ¹⁰Be data (-2.8%/decade) shows a similar decreasing trend as the summer ¹⁰Be (-2.9%/decade).

4. Discussion

4.1. Periodicity Analysis

To evaluate the solar signal in the ¹⁰Be data, we compare the ¹⁰Be data with the periodicities found in the group sunspot number (GSN; Svalgaard & Schatten, 2016). The GSN record is reconstructed by a reassessment of historical and modern sunspot observation data and does not depend on other proxies (e.g., cosmogenic radionuclides). Bandpass filtering shows that summer and winter ¹⁰Be records exhibit the solar 11-year cycle as known from the group sunspot number record (Figure 2), although the phases are shifted

Figure 2. (a) Bandpass filtered $(1/8-1/15 \text{ year}^{-1})$ winter and summer NEEM ¹⁰Be concentrations compared to the group sunspot numbers focusing on the Schwabe 11-year cycle. (b and c) Fourier spectrums of the detrended winter and summer NEEM ¹⁰Be with the 90% and 95% red-noise false-alarm levels.

in the early 1900s. This is supported by the FFT-spectra showing significant (summer = 95%, winter = 90%, chi-square test) peaks at around 10.5 years. The NEEM ¹⁰Be records are significantly correlated with group sunspot numbers with and without a 1-year lag that could be expected from atmospheric transport and mixing (Table S2). The significant correlations agree well with the correlations to ¹⁰Be production rates based on neutron monitor data for 1951–2002 in our previous study (Zheng et al., 2020).

4.2. Greenland ¹⁰Be Records for the Period 1887–2002

Now, we compare the annually resolved NEEM data with two annually resolved ¹⁰Be records from the NGRIP (Berggren et al., 2009) and Dye3 ice-cores (denoted as Dye3_{long}; Beer et al., 1990) and a bi-annually resolved Dye3 ¹⁰Be record from the Dye3 site (denoted as Dye3_{short} record; Beer et al., 1985) (Figure 3). It should be noted that Dye3_{long} and Dye3_{short} are from two separate cores from the same site in southern Greenland. The data are normalized to their common period (1900-1977) before comparison. We found the ¹⁰Be records agree well with each other for the period 1887–1957, while after 1958, the Dye3_{long} ¹⁰Be record shows unusually lower ¹⁰Be concentrations compared to the other three records (Figure 3a). It should be noted that the Dye3 accumulation rates do not change significantly after 1958 and, therefore, the too low ¹⁰Be values after 1958 cannot be explained by a dilution effect due to increased accumulation rates (Figure S6a). Most importantly, the $Dye3_{long}$ ¹⁰Be concentrations after 1958 are also lower than the $Dye3_{short}$ record (Figure S7). The average ratio of Dye3_{long}/Dye3_{short} is 0.99 for the period 1900–1957, but 0.66 for the period 1958–1977. The Dye3_{long}¹⁰Be record also shows higher correlations to Dye3_{short}¹⁰Be for the period 1900–1957 (R = 0.48, p < 0.05) and their root mean square error is lower (RMSE = 0.18) than between 1958 and 1977 (R = 0.38, p > 0.05; RMSE = 0.47). Since those two ¹⁰Be records are from the same location, it is unlikely that the unusually low values of $Dye3_{long}$ ¹⁰Be after 1958 can be attributed to meteorological influences. Indeed, we have compared Dye3_{long}¹⁰Be concentrations with snow accumulation rates and the North Atlantic Oscillation (NAO) circulation pattern, a major mode of atmospheric variability that can influence the ¹⁰Be transport and deposition processes in Southern Greenland (e.g., Hurrell & Deser, 2009; Pedro et al., 2012). The NAO index is derived as the leading principal component of the pressure anomalies (500 hPa) over the Atlantic sector (20-80°N, 90°W-40°E) from the 20th-century reanalysis V3 data set

Figure 3. (a) Normalized ¹⁰Be concentrations from Greenland ice cores (normalized to the overlap period of 1900–1977). The dashed line indicates the annual data, while the solid line indicates the 11-year running average data. (b) 11-year running averaged solar modulation function based on neutron monitor data and its extension (NM; Herbst et al., 2017), group sunspot numbers (GSN) and solar modulation based on 11-year running averaged ¹⁰Be records (normalized to 1951 to 1977). Details of the group sunspot number-based solar modulation calculation are described in supplementary. The black dashed line indicates the modulation reconstructed by the extension of the neutron monitor data. The shaded area indicates the period after 1958.

(Slivinski et al., 2019). We do not find any significant correlations or changes for meteorological data after 1958 (Figure S6). Therefore, we suggest that the unusually low $Dye3_{long}$ ¹⁰Be values after 1958 are likely connected to a data quality issue instead of being related to production or meteorological changes. This data issue could be due to the fact that ¹⁰Be measurements were in its infancy when the Dye3 samples were prepared and measured in the 1980s. For example, the isobar background (¹⁰B) could be less well separated with the AMS machines at that time and its correction was challenging. However, it is hard to pin down the actual reason for this potential data problem (Jürg Beer, personal communication).

4.3. Implication for Past Solar Reconstructions

It should be stressed that an accurate estimation of the ¹⁰Be-production rate after 1951 is crucial for solar reconstruction. This period forms the direct overlap to modern neutron monitor measurements and is crucial for connecting (normalizing) paleo-cosmogenic radionuclide records to direct measurements of the galactic cosmic ray flux into the atmosphere (Muscheler et al., 2016). Here we calculate the solar modulation function from ¹⁰Be following Muscheler et al. (2016). All ¹⁰Be data are normalized to the overlap period with the neutron monitor period (1951–1977). In this calculation, we assume that the ¹⁰Be concentrations reflect the globally averaged relative changes in ¹⁰Be production rates. Records are calculated with the production rate model from Poluianov et al. (2016) using the local interstellar spectra by Herbst et al. (2017). The geomagnetic field changes are small on annual to decadal timescales and are ignored for the solar reconstruction over the last 100 years (e.g., Muscheler et al., 2007). Since we focus on decadal variations, ¹⁰Be records are smoothed by an 11-year running average first. We compared the ¹⁰Be-based solar modulation to solar modulation based on neutron monitors (adopted from Herbst et al., 2017) and group sunspot numbers (Figure 3b). We convert the group sunspot numbers (Svalgaard & Schatten, 2016) to solar modulation based on the method by Solanki et al. (2000) and Usoskin et al. (2002). The details of solar modulation calculation based on group sunspot number data are described in the supplementary (Text S1).

Geophysical Research Letters

Figure 4. Solar modulation reconstructions over the last 2,000 years based on polar ¹⁰Be data. Records are calculated with the geomagnetic-field model result from Nilsson et al. (2014) and the production-rate calculation from Poluianov et al. (2016). For details, see Muscheler et al. (2016) and supporting information. The horizontal-thick dotted line shows the average solar modulation inferred from the instrumental data from 1951 to 2000 AD.

NEEM ¹⁰Be-based and NGRIP ¹⁰Be-based solar modulations show good agreement with the GSN-based solar modulation (RMSE = 145 MeV for NGRIP for 1887–1994 and 110 MeV for NEEM for 1887–2002). While Dye3_{long}-based and Dye3_{short}-based solar reconstructions show less agreement with GSN-based solar modulation (RMSE = 240 MeV for Dye3_{long} for 1887–1985 and RMSE = 268 MeV for Dye3_{short} for 1900–1977). The unusually large decrease in Dye3_{long} ¹⁰Be data after 1958 leads to a strong increase in solar modulation toward today. In consequence, the solar modulation potential derived from Dye3_{long} is much lower before 1958 compared to NEEM, NGRIP, and group sunspot numbers (even negative values in the early 1890s). The reconstruction based on Dye3_{short} ¹⁰Be, however, shows much higher values for 1900–1940 compared to the solar modulation based on group sunspot numbers.

The $Dye3_{long}$ and NGRIP records are commonly used for long-term solar reconstructions. They are usually the only two records used to connect Greenland ¹⁰Be records to absolute solar modulation estimated from the neutron monitor data (e.g., Muscheler et al., 2016). To investigate how the above-discussed $Dye3_{long}$ data quality issue can affect solar reconstructions, we reconstruct the solar modulation based on Greenland and Antarctic ¹⁰Be (denoted as ¹⁰Be_{Greenland} and ¹⁰Be_{Antarctica}) over the last 2,000 years following the same procedure as Muscheler et al. (2016). We use the production-rate calculation from Poluianov et al. (2016) and the geomagnetic data from Muscheler et al. (2016), which combines the geomagnetic model result (Nilsson et al., 2014) with the modern values (Jackson et al., 2000; Thébault et al., 2015). Details of reconstructions are described in the supplementary (Text S2) and Muscheler et al. (2016). We further create a "corrected solar modulation" based on Greenland ¹⁰Be records by excluding the Dye3_{long} data after 1958 (denoted ¹⁰Be_{Greenland_c}).

The ¹⁰Be_{Greenland_c}-based reconstruction shows a better agreement (smaller RMSE value) with the ¹⁰Be_{Antarctica} reconstruction compared to ¹⁰Be_{Greenland} (Figure 4). The averaged value of ¹⁰Be_{Greenland_c} (414 MeV on average) for the whole period is much closer to ¹⁰Be_{Antarctica} (447 MeV on average) than ¹⁰Be_{Greenland_c} (305 MeV on average). The ¹⁰Be_{Greenland_c}-based reconstruction shows fewer negative values compared to ¹⁰Be_{Greenland}. The low Dye3_{long} data after 1958 lead to a relatively higher normalization value of Greenland ¹⁰Be data and, thus, a too low inferred solar modulation in the past. Therefore, differences in solar modulation reconstructions from Greenland and Antarctica can be, at least partly, attributed to the low Dye3_{long} data, the reconstruction from

Greenland ¹⁰Be does not support earlier claims of unusually high recent solar activity over the last 100 years (e.g., Solanki et al., 2004; Usoskin et al., 2003), but it supports the conclusions based on Antarctic ¹⁰Be data (e.g., Raisbeck & Yiou, 2004) and ¹⁴C (e.g., Muscheler et al., 2005). This also suggests that previous studies that mainly rely on the Dye3 data for the past 100 years (e.g., Solanki et al., 2004; Usoskin et al., 2003) are influenced by this data problem. However, it should be noted that sporadic differences between reconstructions (e.g., the 1800s) still exist that could be attributed to regional climate influences on ¹⁰Be transport and deposition or data quality issues.

4.4. Comparison With Neutron Monitor Extension for the Period 1937-1950

Another interesting point is that the reconstructed solar modulations based on the group sunspot number and ¹⁰Be records do not show a strong increase for the period 1937–1950, as suggested by the neutron monitor extension data by McCracken and Beer (2007) (Figure 3b). This pre-1951 extension of the neutron monitor data is crucial because it is commonly used to connect ¹⁴C records for solar reconstructions, since ¹⁴C after 1951 cannot be linked to neutron monitor data due to the influence of anthropogenic activities on atmospheric ¹⁴C. To further investigate the solar trend from 1937 to 1950, we include all available annually resolved ¹⁰Be records from Greenland covering this period: NGRIP (Berggren et al., 2009), NEEM (this project), Das2 (Pedro et al., 2012), Renland (Aldahan et al., 1998) and Dye3long (Beer et al., 1990). The Dye3long data after 1958 are excluded due to the above-discussed data quality issue. To reduce site-specific noise, we averaged all Greenland ¹⁰Be records (referred to Greenland ¹⁰Be_{stack}) after normalizing the data over the overlap period (Figure S8a). To further reduce the weather noise, the Greenland ¹⁰Be_{stack} record is smoothed by a 3-year running average before calculating the solar modulation. The Greenland ¹⁰Be_{stack} based solar modulation shows higher values (926 MeV on average) than the one based on the extension of the neutron monitor (476 MeV on average) for the period 1937–1950 and does not suggest the same strong increase (Figure S8b). We further look at the only available annually resolved ¹⁰Be record from the Antarctic ice core for this period, the DSS ¹⁰Be record (Figure S8a) (Pedro et al., 2012). Influences of atmospheric circulation and precipitation on ¹⁰Be differ between Greenland and Antarctica due to their geographical location, hence, we separately discuss ¹⁰Be records from these two regions. The DSS ¹⁰Be based solar modulation also shows no strong increase for the period 1937-1950, although lower (606 MeV on average) values than Greenland ¹⁰Be_{stack} based reconstruction (Figure S8b). Overall, polar ¹⁰Be and group sunspot number records do not support the strong increase of solar activity, as indicated by the extension of the neutron monitor data. Investigating the reasons for the strong trend in the neutron-monitor data extension is beyond the scope of the paper. However, this analysis and the sunspot-based solar modulation reconstruction imply that the previous extension of the neutron monitor data probably underestimates solar modulation before 1951 AD.

5. Conclusion

We present and analyze a long time series of seasonally resolved ¹⁰Be for the period 1887-2002 from the NEEM07S1 firn core. We observe a seasonal cycle in the NEEM ¹⁰Be record with high concentrations during summer and low concentrations during winter. The high ¹⁰Be values during summer could be due to the local stratospheric intrusions and delayed transport of ¹⁰Be from mid-latitude stratospheric intrusions. Both summer and winter NEEM ¹⁰Be records are significantly correlated with group sunspot numbers, reflecting the solar modulation of cosmic rays. Summer and winter ¹⁰Be show a similar significant decreasing trend for the period 1887–2002. By comparing the NEEM ¹⁰Be record to two ¹⁰Be records from Dye3 (Dye3_{long} and Dye3_{short} records) and one from NGRIP, we find that the Dye3_{long}¹⁰Be data after 1958 are unusually low. By comparing to another ¹⁰Be record from the same location, we suggest that this low Dye3_{long} data can likely be attributed to a data quality issue, not local meteorological influences. By excluding the Dye3_{long}¹⁰Be data after 1958, differences in solar reconstructions based on Greenland and Antarctic ¹⁰Be data are significantly reduced. Furthermore, together with all available annually resolved ¹⁰Be records for the 1937–1950 period, we observe that ¹⁰Be records from polar ice cores and group sunspot numbers do not suggest a strong increase in solar activity, as seen in the previous extension of the neutron monitor data. We propose that future solar activity reconstructions should carefully assess the systematic differences between different ¹⁰Be records, especially when connecting radionuclide variations to modern neutron monitor data.

Data Availability Statement

The new NEEM ¹⁰Be data are available at the supplementary file and an online data repository at figshare. com (https://doi.org/10.6084/m9.figshare.13488792.v1). The NEEM ¹⁰Be data for 1951–2002 are available in Zheng et al. (2020).

References

Aldahan, A., Possnert, G., Johnsen, S. J., Clausen, H. B., Isaksson, E., Karlen, W., & Hansson, M. (1998). Sixty year ¹⁰Be record from Greenland and Antarctica. *Proceedings of the Indian Academy of Sciences*, *107*(2), 139–147. https://doi.org/10.1007/BF02840464

Bard, E., Raisbeck, G., Yiou, F., & Jouzel, J. (2000). Solar irradiance during the last 1200 years based on cosmogenic nuclides. *Tellus B: Chemical and Physical Meteorology*, 52(3), 985–992. https://doi.org/10.1034/j.1600-0889.2000.d01-7.x

Beer, J., Andree, M., Oeschger, H., Stauffer, B., Balzer, R., Bonani, G., et al. (1985). ¹⁰Be variations in polar ice cores. In: Greenland ice core: Geophysics, geochemistry, and the environment (Vol. 33, pp. 66–70). Washington, DC: American Geophysical Union.

Beer, J., Blinov, A., Bonani, G., Finkel, R. C., Hofmann, H. J., Lehmann, B., et al. (1990). Use of ¹⁰Be in polar ice to trace the 11-year cycle of solar activity. *Nature*, 347(6289), 164–166. https://doi.org/10.1038/347164a0

Beer, J., Finkel, R. C., Bonani, G., Gäggeler, H., Görlach, U., Jacob, P., et al. (1991). Seasonal variations in the concentration of ¹⁰Be, Cl-, NO₃-, SO₄²⁻, H₂O₂, ²¹⁰Pb, ³H, mineral dust, and σ¹⁸O in greenland snow. *Atmospheric Environment.*, 25(5–6), 899–904. https://doi. org/10.1016/0960-1686(91)90131-p

Berggren, A. M., Beer, J., Possnert, G., Aldahan, A., Kubik, P., Christl, M., et al. (2009). A 600-year annual ¹⁰Be record from the NGRIP ice core, Greenland. *Geophysical Research Letters*, 36(11), L11801. https://doi.org/10.1029/2009gl038004

Gilbert, R. O. (1987). Statistical methods for environmental pollution monitoring. New York, NY: Van Nostrand Reinhold Co. Inc..

Heikkilä, U. (2007). Modeling of the atmospheric transport of the cosmogenic radionuclides ¹⁰Be and ⁷Be using the ECHAM5-HAM general circulation model (Doctoral dissertation), Zurich, SW: ETH. https://doi.org/10.3929/ethz-a-005560259

Heikkilä, U., & Smith, A. M. (2013). Production rate and climate influences on the variability of ¹⁰Be deposition simulated by ECHAM5-HAM: Globally, in Greenland, and in Antarctica. *Journal of Geophysical Research: Atmosphere*, *118*(6), 2506–2520. https://doi. org/10.1002/jgrd.50217

Herbst, K., Muscheler, R., & Heber, B. (2017). The new local interstellar spectra and their influence on the production rates of the cosmogenic radionuclides ¹⁰Be and ¹⁴C. *Journal of Geophysical Research: Space Physics, 122*(1), 23–34. https://doi.org/10.1002/2016ja023207

- Hurrell, J. W., & Deser, C. (2009). North Atlantic climate variability: The role of the North Atlantic Oscillation. *Journal of Marine Systems*, 78(1), 28–41. https://doi.org/10.1016/j.jmarsys.2008.11.026
- Jackson, A., Jonkers, R. T., & Walker Matthew, R. (2000). Jonkers ArtFour centuries of geomagnetic secular variation from historical records. *Philosophical Transactions of the Royal Society of London*, 358(1768), 957–990. https://doi.org/10.1098/rsta.2000.0569
- McCracken, K. G., & Beer, J. (2007). Long-term changes in the cosmic ray intensity at Earth, 1428-2005. Journal of Geophysical Research, 112, A10101. https://doi.org/10.1029/2006ja012117
- McHargue, L. R., & Damon, P. E. (1991). The global beryllium 10 cycle. *Reviews of Geophysics*, 29(2), 141–158. https://doi.org/10.1029/91RG00072
- Muscheler, R., Adolphi, F., Herbst, K., & Nilsson, A. (2016). The revised sunspot record in comparison to cosmogenic radionuclide-based solar activity reconstructions. *Solar Physics*, 291(9–10), 3025–3043. https://doi.org/10.1007/s11207-016-0969-z
- Muscheler, R., Joos, F., Beer, J., Müller, S. A., Vonmoos, M., & Snowball, I. (2007). Solar activity during the last 1000yr inferred from radionuclide records. *Quaternary Science Reviews*, 26(1–2), 82–97. https://doi.org/10.1016/j.quascirev.2006.07.012
- Muscheler, R., Joos, F., Muller, S. A., & Snowball, I. (2005). Climate: How unusual is today's solar activity? Nature, 436(7050), E3-E4.
- Nilsson, A., Holme, R., Korte, M., Suttie, N., & Hill, M. (2014). Reconstructing Holocene geomagnetic field variation: New methods, models and implications. *Geophysical Journal International*, 198(1), 229–248. https://doi.org/10.1093/gji/ggu120
- Pedro, J. B., Heikkilä, U. E., Klekociuk, A., Smith, A. M., van Ommen, T. D., & Curran, M. A. J. (2011). Beryllium-10 transport to Antarctica: Results from seasonally resolved observations and modeling. *Journal of Geophysical Research*, 116(D23), D23120. https://doi. org/10.1029/2011jd016530
- Pedro, J. B., McConnell, J. R., van Ommen, T. D., Fink, D., Curran, M. A. J., Smith, A. M., et al. (2012). Solar and climate influences on ice core ¹⁰Be records from Antarctica and Greenland during the neutron monitor era. *Earth and Planetary Science Letters*, 355–356, 174–186. https://doi.org/10.1016/j.epsl.2012.08.038
- Poluianov, S. V., Kovaltsov, G. A., Mishev, A. L., & Usoskin, I. G. (2016). Production of cosmogenic isotopes ⁷Be, ¹⁰Be, ¹⁴C, ²²Na, and ³⁶Cl in the atmosphere: Altitudinal profiles of yield functions. *Journal of Geophysical Research: Atmosphere*, *121*(13), 8125–8136. https://doi.org/10.1002/2016jd025034
- Raisbeck, G. M., & Yiou, F. (2004). Comment on Millennium scale sunspot number reconstruction: evidence for an unusually active sun since the 1940s. *Physical Review Letters*, 92(19), 199001. https://doi.org/10.1103/PhysRevLett.92.199001
- Slivinski, L. C., Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Giese, B. S., McColl, C., et al. (2019). Toward a more reliable historical reanalysis: Improvements for version 3 of the twentieth century reanalysis system. *Quarterly Journal of the Royal Meteorological Society*, 145(724), 2876–2908. https://doi.org/10.1002/qj.3598
- Solanki, S. K., Schüssler, M., & Fligge, M. (2000). Evolution of the sun's large-scale magnetic field since the maunder minimum. *Nature*, 408(6811), 445–447 https://doi.org/10.1038/35044027
- Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M., & Beer, J. (2004). Unusual activity of the Sun during recent decades compared to the previous 11,000 years. *Nature*, 431(7012), 1084–1087. https://doi.org/10.1038/nature02995
- Steen-Larsen, H. C., Masson-Delmotte, V., Sjolte, J., Johnsen, S. J., Vinther, B. M., Bréon, F. M., et al. (2011). Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. *Journal of Geophysical Research*, 116. D06108. https://doi.org/10.1029/2010jd014311
- Sturevik-Storm, A., Aldahan, A., Possnert, G., Berggren, A. M., Muscheler, R., Dahl-Jensen, D., et al. (2014). ¹⁰Be climate fingerprints during the Eemian in the NEEM ice core, Greenland. *Scientific Reports*, 4, 6408. https://doi.org/10.1038/srep06408
- Svalgaard, L., & Schatten, K. H. (2016). Reconstruction of the sunspot group number: The backbone method. *Solar Physics*, 291(9–10), 2653–2684. https://doi.org/10.1007/s11207-015-0815-8

Acknowledgment

Minjie Zheng is supported by the China Scholarship Council (CSC) under grant CSC no. 201606710087 (grant to Minjie Zheng) and the Royal Physiographic Society of Lund (2016, 2017, and 2018, grants to Minjie Zheng). This work was partially supported by the Swedish Research Council (Dnr: 2013-8421, grant to Raimund Muscheler). Florian Adolphi is supported by a grant of the Swedish Research Council (Dnr: 2016-00218). Jesper Sjolte is supported by the strategic research program of ModEling the Regional and Global Earth system (MERGE) hosted by the Faculty of Science at Lund University. Ala Aldahan acknowledges the UAEU through the UPAR funding. Mousong Wu is supported by the National Key Research and Development Program of China (2016YFA0600204), the National Natural Science Foundation of China (41901266), and the Natural Science Foundation of Jiangsu Province (BK20190317). The authors thank the many persons involved in logistics, drilling, and ice-core processing and analysis. NEEM is directed and organized by the Center of Ice and Climate at the Niels Bohr Institute and US NSF, Office of Polar Programs. It is supported by funding agencies and institutions in Belgium (FNRS-CFB and FWO), Canada (NRCan/GSC), China (CAS), Denmark (FIST), France (IPEV, CNRS/INSU, CEA and ANR), Germany (AWI), Iceland (RannIs), Japan (NIPR), South Korea (KOPRI), The Netherlands (NWO/ALW), Sweden (VR), Switzerland (SNF), the United Kingdom (NERC), and the USA (US NSF, Office of Polar Programs) and the EU Seventh Framework programs Past4Future and Water under the Ice.

- Thébault, E., Finlay, C. C., Alken, P., Beggan, C. D., Canet, E., Chulliat, A., et al. (2015). Evaluation of candidate geomagnetic field models for IGRF-12. *Earth, Planets and Space*, 67(1), 79. https://doi.org/10.1186/s40623-015-0273-4
- Usoskin, I. G., Mursula, K., Solanki, S. K., Schüssler, M., & Kovaltsov, G. A. (2002). A physical reconstruction of cosmic ray intensity since 1610. Journal of Geophysical Research: Space Physics, 107(A11), 745–751. https://doi.org/10.1029/2002JA009343
- Usoskin, I. G., Solanki, S. K., Schussler, M., Mursula, K., & Alanko, K. (2003). Millennium-scale sunspot number reconstruction: evidence for an unusually active sun since the 1940s. *Physical Review Letters*, 91(21), 211101. https://doi.org/10.1103/PhysRevLett.91.211101
- Zheng, M., Adolphi, F., Sjolte, J., Aldahan, A., Possnert, G., Wu, M., , & Muscheler, R. (2020). Solar and climate signals revealed by seasonal ¹⁰Be data from the NEEM ice core project for the neutron monitor period. *Earth and Planetary Science Letters*, 541, 116273. https://doi.org/10.1016/j.epsl.2020.116273
- Zheng, M., Sjolte, J., Adolphi, F., Vinther, B. M., Steen-Larsen, H. C., Popp, T. J., & Muscheler, R. (2018). Climate information preserved in seasonal water isotope at NEEM: relationships with temperature, circulation and sea ice. *Climate of the Past*, 14(7), 1067–1078. https:// doi.org/10.5194/cp-14-1067-2018

References From the Supporting Information

- Horiuchi, K., Uchida, T., Sakamoto, Y., Ohta, A., Matsuzaki, H., Shibata, Y., & Motoyama, H. (2008). Ice core record of ¹⁰Be over the past millennium from Dome Fuji, Antarctica: A new proxy record of past solar activity and a powerful tool for stratigraphic dating. *Quaternary Geochronology*, 3(3), 253–261. https://doi.org/10.1016/j.quageo.2008.01.003
- Muscheler, R., Beer, J., Wagner, G., Laj, C., Kissel, C., Raisbeck, G. M., et al. (2004). Changes in the carbon cycle during the last deglaciation as indicated by the comparison of ¹⁰Be and ¹⁴C records. *Earth and Planetary Science Letters*, *219*(3–4), 325–340. https://doi.org/10.1016/ s0012-821x(03)00722-2
- Nishiizumi, K. (2007). Cosmogenic radionuclides in the Siple Dome A ice core. Retrieved from http://nsidc.org/data/nsidc-0307
- Raisbeck, G. M., Yiou, F., Jouzel, J., Petit, J. R., Weiss, N. O., Allsop, J., et al. (1990). ¹⁰Be and δ²H in polar ice cores as a probe of the solar variability's influence on climate. *Philosophical Transactions of the Royal Society of London*, 330(1615), 463–470. https://doi.org/10.1098/ rsta.1990.0027
- Yiou, F., Raisbeck, G. M., Baumgartner, S., Beer, J., Hammer, C., Johnsen, S., et al. (1997). Beryllium-10 in the Greenland ice core project ice core at summit, Greenland. *Journal of Geophysical Research*, *102*(C12), 26783–26794. https://doi.org/10.1029/97jc01265