

Impact of the atmospheric circulation on the Arctic snow cover and ice thickness variability

M. L. Athanase^{1*}, M. Schwager¹, J. Streffing^{1,2}, M. Andres-Martinez¹, S. Loza¹, H. F. Goessling¹

1: Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany. 2: Jacobs University Bremen, Bremen, Germany.

* contact: marylou.athanase@awi.de

Motivation

Snow on sea ice \rightarrow insulating barrier, driving sea-ice thickness variability Accurate sea-ice (& plausibly snow) thickness initialization \rightarrow crucial for skilful sea-ice forecasts

But

Snow depth scarcely measured "Very limited predictive skill" according to the IPCC

Free-running models

Random weather, determined by the initial state.

In consequence, specific weather events are not reproduced, and forecasting skills are limited by the "random weather" of the initial state.

VS.

Spectrally nudged model

Atmosphere model no longer free but "nudged" towards observations (reanalysis). \rightarrow At each time step,

"nudging increment" added to "push" the model parameter X towards the observed state X^{reana}.

$$\frac{\partial X_n^m(\eta, t)}{\partial t} = F_n^m(\eta, t) + G_n^m(\eta) \Big[X_n^{m(\text{reana})}(\eta, t) - X_n^m(\eta, t) \Big]$$

Model forcing
Nudging increment
From
Sánchez-Benítez et al. 2022

From

Spectrally nudged model

Atmosphere model no longer <u>free</u> but "<u>nudged</u>" towards <u>observations</u> (reanalysis). \rightarrow At each time step,

"nudging increment" added to "push" the model parameter X towards the observed state X^{reana}.

$$\frac{\partial X_n^m(\eta, t)}{\partial t} = F_n^m(\eta, t) + G_n^m(\eta) \Big[X_n^{m(\text{reana})}(\eta, t) - X_n^m(\eta, t) \Big]$$

Model forcing
Nudging increment
From
Sánchez-Benítez et al. 2022

Model Set-up

AWI-CM-3, new version of the AWI-Climate Model, global coupled model composed of:

OpenIFS (cycle 43r3) + FESOM2

Atmosphere component Ocean component

Spectrally nudging OpenIFS winds (\leftrightarrow constraining atmosphere dynamics) towards ERA5.

Observations vs. 1979-2020 experiments

Observations:

ERA5 Reanalysis data (SIC, T2M) NSIDC snow thickness data CS2-SMOS ice thickness data

"Soft nudging" (SONU):

Relaxation time-scale: 24H

Nudged wavenumbers below **T20** (= only large-scale atmospheric patterns)

Free run (Free):

No nudging

"Strong nudging" (STNU):

Relaxation time-scale: 1H

Nudged wavenumbers below **T159** (= model resolution, all scales)

Nudged winds impact Arctic mean winter state

- **Free run:** Colder Arctic than in ERA5, slightly larger SI extent
- Nudged run: Even colder Central Arctic, larger SI extent

SONU: Soft nudging STNU: Strong nudging

6

EGU General 2022

Nudged winds impact Arctic mean winter state

- Free run: Too thick snow and ice in Canadian Arctic ; Inaccurate Greenland-Siberia gradients
 - Nudged run: Better snow and ice thickness distribution ; Biases in Canadian/Siberian Arctic remain

SONU: Soft nudging STNU: Strong nudging

EGU General Assembly 2022

7

2-m air temperature (T2M)

Despite biases, variations of T2M and SIC well captured when nudging atmospheric circulation

EGU^{General} Assembly 2022

Sea-ice cover (SIC)

SONU: Soft nudging

8

Stringent comparison: snow-on-ice depth variations depend on snowfall, wind advection and sea-ice motion

EGU General Assembly 2022

Well reproduced when nudging atmospheric circulation (r = 0.4 to 0.7 with nudging)

Snow-on-ice depth

Stringent comparison: snow-on-ice depth variations depend on snowfall, wind advection and sea-ice motion

Well reproduced when nudging atmospheric circulation (r = 0.4 to 0.7 with nudging)

Sea-ice thickness (SIT)

When nudging atmospheric circulation, SIT variations reproduced in Eurasian Arctic and along continental margins

SIT variations not captured in Siberian Sea and along the Transpolar drift: cause?

EGU General Assembly 2022

Sea-ice thickness (SIT)

When nudging atmospheric circulation, SIT variations reproduced in Eurasian Arctic and along continental margins

SIT variations not captured in Siberian Sea and along the Transpolar drift: due to **remaining model biases**

1. Nudged winds impact the Arctic mean winter state:

Under investigation: Arctic cold bias leading to too much sea-ice. Improved snow and ice thickness distributions in the Eurasian Arctic. In the Canadian Arctic, model biases remain.

2. Atmospheric circulation shapes sea-ice and snow variability:

Reproduction of observed variability of snow-on-ice, SIC and SIT despite background model biases. Spectral nudging has potential to improve initial state of snow & sea-ice thickness for forecast systems.

Ongoing work:

Find drivers of the cold Arctic bias.

Nudging impact on ensemble spread and forecasting skills.

12

Climatology adjustment: sea ice drift

Nudged run: Free run: Slower TPD, better BG TPD too south, BG too large Realistic TPD and BG AWI-CM-3 a) AWI-CM-3 AWI-CM-3 b) c) SONU Free STNU 3 4 Ice drift speed (cm/s)

Free Run ice drift biases cannot explain unrealistic SIT distribution

Nudging improves the ice drift patterns

EGU General 2022

Snow-on-ice depth

Snowfall

Sensitivity to nudging strength of precipitation(-dependant) parameters (e.g. snowfall and snow-on-ice).

SIT and SIC less sensitive.

Precipitations and snowfall also reproduced, very sensitive to nudging strength

Stringent comparison: snow depth variations depend on snowfall, wind advection and sea-ice motion

Well reproduced when nudging atmospheric circulation (r = 0.4 to 0.7 with nudging)

