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Abstract
Many governments and organisations are currently aligning many aspects of their policies and
practices to the sustainable development goals (SDGs). Achieving the SDGs should increase
social-ecological resilience to shocks like climate change and its impacts. Here, we consider the
relationship amongst the three elements—the SDGs, social-ecological resilience and climate
change—as a positive feedback loop. We argue that long-term memory encoded in historical,
archaeological and related ‘palaeo-data’ is central to understanding each of these elements of the
feedback loop, especially when long-term fluctuations are inherent in social-ecological systems and
their responses to abrupt change. Yet, there is scant reference to the valuable contribution that can
be made by these data from the past in the SDGs or their targets and indicators. The historical and
archaeological records emphasise the importance of some key themes running through the SDGs
including how diversity, inclusion, learning and innovation can reduce vulnerability to abrupt
change, and the role of connectivity. Using paleo-data, we demonstrate how changes in the extent
of water-related ecosystems as measured by indicator 6.6.1 may simply be related to natural
hydroclimate variability, rather than reflecting actual progress towards Target 6.6. This highlights
issues associated with using SDG indicator baselines predicated on short-term and very recent data
only. Within the context of the contributions from long-term data to inform the positive feedback
loop, we ask whether our current inability to substantively combat anthropogenic climate change
threatens achieving both the SDGS and enhanced resilience to climate change itself. We argue that
long-term records are central to understanding how and what will improve resilience and enhance
our ability to both mitigate and adapt to climate change. However, for uptake of these data to occur,
improved understanding of their quality and potential by policymakers and managers is required.
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1. Introduction

Projected increases in the frequency and/or intensity
of climate-related extremes and the imminent threat
of abrupt changes and tipping points (Cai et al 2016,
Steffen et al 2018, Lenton et al 2019, Brovkin et al
2021, IPCC 2021) increase the exigency of under-
standing the nature of social-ecological resilience to
past change. Tipping points represent an irrevers-
ible shift from one climate regime to another, and,
along with climate extremes and generally abrupt
climate change (but not necessarily tipping points),
their occurrence will have highly significant implica-
tions for adaptive resilience of social-ecological sys-
tems (for definitions, see table 1). Adaptive resili-
ence refers to the ability of a system to return to a
similar but not identical state to the previous one;
an ability to absorb shocks while maintaining func-
tion (Folke et al 2004, Walker et al 2004, Peregrine
2021). The 2030 Agenda for Sustainable Develop-
ment program of action can be viewed as a response
to issues impeding progress towards improved resili-
ence. Essentially, it aims to facilitate transformations
required to enhance sustainability and implicitly,
adaptive resilience (Andrijevic et al 2020), through
critical transformations (Sachs et al 2019).

As part of the 2030 Agenda, the sustainable devel-
opment goals (SDGs) comprise 17 non-legally bind-
ing goals (United Nations 2015a) consisting of 169
targets that are assessed against pre-specified indic-
ators. These goals are a mixture of ‘planetary’ (SDGs
6, 13–15) and ‘social’ (SDGs 1–12, 16–17) goals. By
design, the goals overlap so as to provide seamless
coverage of the key issues facing humanity and the
environment. For example, Target 1.5, 11.b and 13.1
cover the remit of climatic and other natural haz-
ards under different guises, Goal 1—Poverty allevi-
ation, Goal 11—Safe cities and Goal 13—Combating
climate change. Closely related to the Intergovern-
mental Panel on Climate Change reports (IPCC 2021,
2022), SDG13 specifically pinpoints the need for
urgent action to combat climate change and its long-
term effects and those of climate-related hazards.
It also recognises the need for widespread imple-
mentation of the Sendai Framework for Disaster
Risk Reduction (United Nations 2015b). Many inter-
national conventions, treaties and agreements are
aligned with the SDGs (e.g. the Ramsar Convention,
www.ramsar.org/).

Ostensibly, achieving the SDGs should improve
social-ecological resilience to both abrupt climate
changes and the persistent and growing impacts
of anthropogenically-induced climate change. How-
ever, the impacts of the COVID-19 shock on pro-
gress towards the SDGs demonstrates the complex-
ity of interrelationships, conflict even, amongst the
goals. While the pandemic has had negative impacts
on progress towards social SDGs, planetary health
temporarily improved (UnitedNations 2020) before a

rapid return to deteriorating planetary health as eco-
nomies re-opened (Sachs et al 2021). This raises fun-
damental questions about the robustness of the SDG
framework for improving resilience to anthropogenic
climate change (Skene 2021). The fact that taking
urgent action to combat climate change (SDG13)
presentsmajor challenges to 35 of the 37OECDcoun-
tries (Sachs et al 2021) adds to this concern. The inter-
action amongst SDGs, social-ecological resilience and
climate change and its impacts, can be represented as
a positive feedback loop (figure 1) in which the direc-
tion of flow is mediated by social and political struc-
tures and organisation.

Historical, archaeological and palaeoenviron-
mental data are pivotal to scholarship on the history
of climate and society (Guillet et al 2017, Degroot et al
2021). As the only natural laboratory we have, they
provide critical insight into responses of the phys-
ical environment, social and political organisation,
religious practices, diet and agricultural practices to
complex and abrupt change (figure 1). We argue that
these long-term records can make a central contri-
bution to understanding, and developing measures
of, resilience and progress towards resilience (Berkes
et al 2000, Folke et al 2002, Gómez-Baggethun et al
2013, Weiberg and Finnè 2018, Petzold et al 2020).
Insights from these records should help shape policy
approaches to implementing the SDGs, not least
because local, regional and national framings of
climate change impacts are commonly constructed
in light of historical precedents (e.g. the fall of the
Roman Empire). A more specific level of utility is the
contribution long-termmemory can have to develop-
ing, or understanding what constitutes, appropriate
indicators and baselines for the SDGs (figure 1). This
is especially relevant because while the SDGs may
be considered multi-decadal in their outlook, the
dynamics of physical and social systems are under-
pinned by ‘slow variables’ such as, for example, soil
health, the education or health system, or water qual-
ity. Further, understanding the likely reactions of
these slow variables to interventions, or ‘fast vari-
ables’ (Walker et al 2012), also requires information
that extends beyond recent decades. It is therefore not
possible to build resilience to change, or to adequately
identify where thresholds for tipping points exist if
these slow variables are not well understood (Folke
et al 2010).

Reference to, or integration of, palaeo-
environmental, archaeological or historical records
in the formulation of the SDGs or their indicat-
ors, however, is currently lacking. Collectively, these
records provide warnings of the social-ecological
costs of, and stories of long-term social-ecological
resilience to, past abrupt change. This long-term data
provides policy-relevant information to all three ver-
tices of the feedback loop (figure 1) and their lack
of consideration highlights the need to demonstrate
how and why they deserve serious consideration by
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Table 1.Working definitions of terms used in this manuscript. Note that there are a number of different versions of resilience
(Walker et al 2004, Folke 2006, Folke et al 2010, Cote and Nightingale 2012, Wilson et al 2013, Fedele et al 2019).

Term Description

Tipping point The passing of a threshold at which small changes can lead to nonlinear change
processes driven by internal system dynamics and that lead to a different system
state. These changes can, but do not always occur much faster than changes in the
relevant forcing (Williams et al 2011, Brovkin et al 2021). Realisation of impacts
may take time (Dearing et al 2015, Kopp et al 2016).

Adaptive resilience The ability of a system to return to a similar but not identical state to the previous
one; an ability to absorb shocks while maintaining function (Walker et al 2004).

Social-ecological system An open and interdependent system that encompasses climate, the biophysical and
human interactions (see Folke et al 2004, Colding and Barthel 2019).

Abrupt change An abrupt change can be associated with what Williams et al (2011) define as
factors external to the system, or a result of non-linear responses to, for example,
climate change. Changes due to factors internal to the system will typically be
locally/regionally heterogeneous (Williams et al 2011). Abrupt change may occur
over longer (e.g. multi-decadal- centennial) or shorter (annual—decadal) time
scales. It may also occur as a result of nested processes or press and pulse pressures
(Harris et al 2018) that may be largely due to internal or a mixture of external and
internal factors.

Slow variables Slow changing variables (relative to fast variables) within a system (Walker et al
2012). Generally controlled by external drivers, but also by intrinsic drivers.

Fast variables These types of variables control the dynamics of a system (Walker et al 2012).
Vulnerability Predisposition to be adversely affected by a change, includes sensitivity/

susceptibility to harm and lack of capacity to adapt (IPCC 2022).
Exposure Livelihoods, species, ecosystem, environmental function, service and resources,

infrastructure or economic/social/cultural assets that could be adversely affected by
change (IPCC 2022).

Figure 1. Simplified positive feedback loop between the sustainable development goals framework, social-ecological resilience and
climate change. Contributions of historical, archaeological and paleo-data are central to understanding past environmental
change, including responses to climate change and social-ecological resilience. Palaeo-data can also provide input into developing
suitable indicators for some targets. If proceeding in a clockwise direction (red line), achieving the SDGs should enhance
social-ecological resilience which then supports action on climate change and limitation of warming which then enhances the
ability to achieve the SDGs. However, an anticlockwise (purple line) direction indicates that progress towards the SDGs falters
which then negatively impacts on social-ecological resilience and impairs the ability to limit anthropogenic climate change.
Escalating changes and reaching tipping points further undermines the ability to achieve the SDGs.

policy makers and managers. The need for long-
term information is particularly acute if the res-
ulting prognoses look beyond the most commonly

modelled horizon of 2100 (Lyon et al 2021),
now merely a single human lifetime away (Thiery
et al 2021).
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1.1. Towards resilience of physical environments:
understanding the context of extremes and
measuring long term variability and change
Palaeo-data has been extensively used to explore a
variety of environmental changes (figure 1; table 2;
Mills and Jones 2021), providing regional and global
scale information about abrupt change due to both
external forcing and non-linear responses to cli-
mate change (Williams et al 2011). Investigated
changes include natural and anthropogenic vegeta-
tional changes (Ruddiman 2003, Kaplan et al 2010,
Stephens et al 2019, Ellis et al 2021), temperature
(e.g. PAGES2k Consortium 2012), hydroclimate (e.g.
Steiger et al 2018), ocean acidification (Hönisch et al
2012), first human impacts on fresh surface water
resources (Dubois et al 2018), groundwater variability
(Gouramanis et al 2010), disturbance including fire
(Mooney et al 2011, Codding et al 2014, Bliege Bird
and Bird 2021), changes in pH and eutrophication
(Smol et al 2001a), salinity (Smol et al 2001b), agri-
cultural initiation and diversification (Barthel et al
2013, Guttmann-Bond 2010), human colonisation
and settlement (Rolett and Diamond 2004, Seara et al
2020), greenhouse gas emissions (Masson-Delmotte
et al 2013; indicators 9.4.1 and 13.2.2; table 3) and
elemental and particulate contamination (Rose 2015,
Chen et al 2016, 2020). These types of environmental
changes have affected ancient societies such as the
Khmer in Cambodia, the Akkadians in Mesopotamia
and lowland Maya of southern Mexico and north-
ern Central America (Weiss et al 1993, Hodell et al
1995, Buckley et al 2010). Although not referenced
in relation to the SDG indicators, palaeo-information
has already proven useful in water resources man-
agement and scenario planning (Smith et al 2007,
Phillips et al 2009, Gurrapu et al 2022), stakeholder
inclusion (Kerr et al 2022) or in improving risk or
uncertainty estimates around extreme events (Lam
et al 2017).

Importantly, placing recent extreme events
described as ‘unprecedented’ over documented his-
torical timeframes, like for example, the 2004 Indian
Ocean Tsunami (Janakew et al 2008) or the south-
western North American megadrought (Williams
et al 2022), into a long-term context is crucial for
improving analyses of recurrence and/or frequency,
magnitude (e.g. Klinger et al 2011, Lam et al 2017,
Wilhelm et al 2019, Allen et al 2020). It is also useful
for better understanding modes of environmental or
social recovery and adaptative resilience (Wingard
et al 2017). In this context, palaeo-data also provides
the baseline canvas against which to evaluate the
degree to which increasing human modifications of
the environment have exacerbated hazards and, spe-
cifically, their contribution to hazard cascades (e.g.
the 2018 Palu Earthquake; Bradley et al 2019).

Operationally, the SDGs rely on a variety of
indicators against which to measure progress. Defin-
ing appropriate baselines for these indicators can

be difficult, with many indicators relying on short-
term baselines firmly rooted in the most recent dec-
ades. This means they may be premised on fun-
damentally flawed assumptions that a short and
recent period sufficiently represents ‘average’ con-
ditions. For example, Target 6.6 (‘By 2020, pro-
tect and restore water-related ecosystems’) relies on
a 2000–2004 baseline to evaluate Indicator 6.6.1,
‘Change in the extent ofwater-related ecosystems over
time’, and a 2016–18 baseline to specifically assess the
extent of inland wetlands (www.unstats.un.org/sdgs/
metadata/files/Metadata-06-06-01a). Target 6.6 is far
from being achieved at the global or national levels
(Convention on Wetlands 2021, van Denter 2021).

We use these indicators to discuss a number of
issues associated with a baseline grounded in short-
term data.

To do this, we selected ten areas hosting Ramsar-
listed wetlands (www.ramsar.org/) and extracted
the average reconstructed hydroclimate data (self-
calibrating Palmer Drought Severity Index; scPDSI)
from tree-ring based drought atlases (Cook et al 2007,
2010, 2016, Palmer et al 2015, Stahle et al 2016) for
a 3◦ × 3◦ area around each wetland. For each area
we then generated a probability distribution based
on 10 000 five year (for the 2000–2004 baseline) and
three year (for the 2016–18 baseline) bootstrapped
means drawn from the 605 years in common across
all drought atlases (1400−2005 CE). For each area,
average values for 2000–2004 and 2016–18 were com-
pared with their respective probability distributions
to see how unusual conditions for the 2000–2004 and
2016–18 periods were (figure 2).

This comparison highlights two key points.
Firstly, if it can be assumed that ‘average conditions’
are optimal, these baseline periods are not optimal
in many locations (figure 2; Higgs et al 2014, Falk
et al 2019). Both periods were very dry for west-
ern Mexico, western Tajikistan and eastern Australia.
Therefore, on the basis of these baselines, apparent
progress (expansion) may occur simply due to the
natural occurrence of wetter conditions regardless of
any management interventions. Conversely, choos-
ing an abnormally wet a baseline period can lead to
conclusions that declines have occurred when in fact
a return to drier conditions is simply part of nat-
ural variability rather than associated with any man-
agement intervention. For eastern Mexico, south-
ern Vietnam, southern New Zealand, eastern China
and southern Scandinavia, relative conditions dur-
ing the two periods differed greatly. These five cases
illustrate how high levels of interannual variability,
and /or significant influence of multi-decadal climate
oscillations—such as in Australia (Power et al 1999,
Peel et al 2004)—make it more likely that a five- or
three year period will fail to reflect average values.
Only for southern Spain were approximately average
conditions experienced in both baseline periods in
the context of 605 years of data (figure 2). Various
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Table 3. Specific indicators for which palaeo-data could provide input. Although the long-term data has generally not been directly
obtained using the methodology outlined for the Indicators (e.g. www.unstats.un.org/sdgs/metadata), and nor is it universally available
for all relevant locations in all countries, it nevertheless still provides vital background information that can inform the development of
indicators. It also provides long-term variability information, highly relevant for improving our understanding of slow variables and
how they respond to either external or internal change.

SDG Indicator Indicator description
Examples of relevant palaeo
studies

2. End hunger, achieve food
security and improved nutrition
and promote sustainable
agriculture

2.2.1 Prevalence of
undernourishment

Malnutirtion, health (Hegmon
et al 2008, Carson and Hung
2018)

2.4.1 Proportion of agricultural
area under productive and
sustainable agriculture

Land use systems (Carson et al
2015, Carson and Hung 2018)

6. Ensure availability and
sustainable management of
water and sanitation for all

6.3.2 Proportion of bodies of
water with good ambient
water quality;

Human impacts on water
resources (Gouramanis et al
2010, Batterbee et al 2012,
Dubois et al 2018)

6.4.2 Level of water stress:
freshwater withdrawal as a
proportion of available
freshwater resources;

Groundwater depth
(Gouramanis et al 2010)

6.6.1 Change in the extent of
water related ecosystems
over time;

Prevalence of drought/pluvial
conditions (Cook et al 2007,
Cook et al 2010, Palmer et al
2015, Cook et al 2016, Stahle et al
2016)

9. Build resilient infrastructure,
promote inclusive and
sustainable industrialization and
foster innovation

9.4.1 CO2 emission per unit of
value added

CO2 records through time
(Kaplan et al 2010,
Masson-Delmotte et al 2013)

11. Make cities and human
settlements inclusive, safe,
resilient and sustainable

11.3.1 Ratio of land consumption
rate to population growth
rate;

Reconstruction of population
change/density (Peros et al 2010,
Freeman et al 2020, Keenan et al
2021), land use change (Carson
and Hung 2018)

11.6.2 Annual mean levels of fine
particulate matter (e.g.
PM2.5 and PM10) in cities

Lead, atmospheric pollution
(Zennaro et al 2014, Chen et al
2016, Chen et al 2020, Rose 2015)

13. Take urgent action to combat
climate change

13.3.1 Number of countries that
have integrated mitigation,
adaptation, impact
reduction and early
warning into primary,
secondary and tertiary
education

Issues of Anthropocene
impacts integrated into
historical/archaeological
curricula (McCorriston and Field
2020, Riede 2022)

13.2.2 Total greenhouse gas
emissions per year

See IPCC 2021 and references
therein

14. Conserve and sustainably use
the oceans, seas and marine
resources for sustainable
development

14.1.1 (a&b) Index of coastal
eutrophication

Coastal eutrophication (Ivarsson
et al 2019), changes in lake health
(Smol et al 2001b)

14.3.1 Average marine acidity
(pH) measured at agreed
suite of representative
sampling stations

Ocean acidification (Hönisch
et al 2012)

15. Protect, restore and promote
sustainable use of terrestrial
ecosystems, manage forests,
combat desertification, and halt
and reverse land degradation,
and halt biodiversity loss

15.1.1 Forest area as a proportion
of total land area;

Deforestation, forest expansion
(Rolett and Diamond 2004,
Campbell 2016, Ellis et al 2021,
Kaplan et al 2010, Stephens et al
2019)

15.3.1 Proportion of land that is
degraded over total land
area.

Land degradation (Kiage and Liu
2009, Willis et al 2015, Fei et al
2019, Mischke et al 2019)
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Figure 2. Comparison of average hydroclimate conditions over the 2000–2004 and 2016–18 baselines relevant for Target 6.6 (By
2020, protect and restore water-related ecosystems’) with distributions of 10 000 five- and three year mean hydroclimate for
3◦ × 3◦ areas around selected RAMSAR-listed wetlands (www.rsis.ramsar.org). hydroclimate conditions obtained from tree-ring
based drought atlases (based on the self-calibrating palmer drought severity index) for North America (Cook et al 2007), Mexico
(Stahle et al 2016), Europe (Cook et al 2016), Asia (Cook et al 2010) and eastern Australia/New Zealand (Palmer et al 2015).
Green distributions are based on three year means (i.e. 2016–18 baseline), and grey distributions are based on the five year mean
(i.e. the 2000–2004 baseline). Dashed vertical lines show where the baseline value sits relative to the distribution. Selected areas
include: Yucatan/Campeche in Mexico (several wetlands); far northwest of Mexico includes several wetlands including Laguna
Hanson, Estero de Punta Banda, Hunedales Delta del Rio Colorado; Eastern USA area includes Delaware bay Estuary, Chesapeake
Bay Estuarine Complex and Edwin B Forsythe National Wildlife Refuge; Pyandi River area in Tajikistan; Awarua wetland in New
Zealand; Great Sandy Strait in eastern Australia; area including U Mint Thuong and CamMau National Parks in Vietnam; area
covering southern Sweden and eastern Denmark contains multiple wetlands; area around Cadiz in southern Spain contains
several wetlands.

hydroclimate reconstructions further demonstrate
that more severe and/or protracted droughts and
more severe floods than those observed over the past
century have previously occurred (Baker 1998, Cook
et al 2007, 2016,Wilhelm et al 2013, Palmer et al 2015,
Stahle et al 2016, St George et al 2020, O’Donnell et al
2021, Ionita et al 2021, Cook et al in review, and ref-
erences therein), or, in the case of South America,
that recent hydroclimate variability is unprecedented
over the past 600 years (Morales et al 2020).

Secondly, a universal baseline for Indicator 6.6.1
ignores the spatial heterogeneity of the impacts of
natural climate variability and change (figure 2;Willis
and Bhagwat 2009, Peterson et al 2013, Blaquez
et al 2015, Dearing et al 2015, Campbell 2016, Falk
et al 2019). This may result in potentially unreal-
istic comparisons across regions and inappropriate
policy prescriptions. Regionally specific baselines will
better contexturalise risk, and hence vulnerability to
events relevant for specific regions (e.g. floods in low-
lying areas or variation in major climate systems like

ENSO). These two issues demonstrate the import-
ance of considering how boundary conditions change
over both temporal and spatial scales when aim-
ing to build resilience (Gillson et al 2021; figure 1).
Data over long time frames is also required to assess
social-ecological impacts of nested climate events
(Harris et al 2018) and projected cascading crises
(IPCC 2022).

Moving (Folke et al 2010) and/or baselines
premised on periods when the environment has
already been heavily altered can also be highly prob-
lematic (Falk et al 2019, Gillson et al 2021). For
example, palaeo-data over 7000 years indicates that a
1985 baseline against which wetland salinity for one
wetland in the Australian Murray-Darling Basin was
measured was far too high. This inadvertently con-
tributed to ecological collapse rather than improved
resilience (Gillson et al 2021). In some cases, scale-
dependent notions of resilience rather than a single
reference point may be more appropriate because it
cannot be assumed that recent conditions have been

7
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optimal for a particular system (Falk et al 2019).
Building resilience requires flexibility, an openness
to learning and an understanding of the slow vari-
ables underlying system dynamics (Folke et al 2010,
Dearing et al 2015). Palaeodata can capture temporal
lags, internal and external variability to which slow
variables respond over long time frames (Wang et al
2012 amongst others) thus providing a clear rationale
for the serious consideration of pre-instrumental-era
records, especially in relation to SDGs 6, 9, 11, 13, 14
and 15.

As a reference for progress towards the relevant
SDGs, establishing appropriate means of measuring
progress against indicators has enormous import-
ance. This task requires a sound grasp of spatial
and temporal variability across scales and the com-
plexity of direct, indirect and lagged effects upon
which global, regional and local processes act and
respond to anthropogenic change (indicator 13.3.1).
This highlights a need for much greater palaeo-
literacy by planners and decision makers, and such
palaeo-literacy is an important part of an inclus-
ive education about climate change (SDG indicator
13.3.1; table 3). Improved palaeo-literacy would sup-
port development and implementation of global,
national, regional and local policies that encom-
pass pre-industrialisation environmental conditions,
natural versus non-natural variability and trajector-
ies, resilience and buffering capacities, and rates of
recovery post-disturbance (e.g. Rockstrom et al 2009;
table 3). Palaeo-data would also be useful in the global
south where observational data is scant or of very
short duration.

1.2. The relevance of archaeological and historical
information for the SDGs
Palaeoclimate data informs us that abrupt changes or
reaching major tipping points will have extensive cli-
mate impacts. For example, changes in the Atlantic
Meridional Overturning Circulation, affect the west
African and east Asian monsoons, the Amazon basin,
and contribute to heat build-up in the Southern
Ocean with cascading impacts on the Antarctic ice-
sheet, major fisheries and food production (Dahl et al
2005, Hu et al 2015). By itself, however, palaeocli-
mate data does not elaborate on the resilience of past
societies to abrupt change. Extensive historical and
archaeological data from across the Holocene (the
last ∼11 700 years) yields significant insight, how-
ever (Brovkin et al 2021). ‘Abrupt’ climate change can
occur across a variety of temporal (e.g. tens to hun-
dreds of years) and spatial (i.e. local, regional, and
global) scales. Additionally, as responses of social-
ecological systems to abrupt change can occur over
much longer time frames than decadal (e.g. Spate
2019), it is highly relevant to consider a variety of
time scales.

The overarching lesson that can be drawn
from historical and archaeological records is that

social-ecological responses to abrupt change are
always context dependent, with vulnerability and
exposure to even moderate climate shocks mediated
by social and political institutions. They often result
in marked social change even if some delay occurs
(e.g. Staubwasser and Weiss 2006, O’Brien et al 2007,
Hegmon et al 2008, Campbell 2016, Nelson et al
2016, Wang et al 2016, Flohr et al 2016, Allcock 2017,
Challinor et al 2017, Danti 2018, Di Cosmo et al 2018,
Haldon et al 2018, Bal 2019, Frenkel 2019, Kleijne
et al 2020, Yang et al 2019, Peregrine 2020, Burke
et al 2021, Degroot et al 2021). Moderate shocks such
as the Little Ice Age and Late Antique Little Ice Age
were associated with widespread famine and disease,
repeated harvest failure in many regions, geopolit-
ical shifts, regional migration, major changes in land
use and changing religious inclinations (see Gunn
2000, Høilund Nielsen 2005, Nunn et al 2007, Pfister
2009, Löwenborg 2012, Bondeson and Bondesson
2014, Tvauri 2014, Degroot 2015, Price and Graslund
2015, Büntgen et al 2016, Campbell 2016, Sadowski
2020). Yet, in many other cases, societies proved resi-
lient to abrupt (whether over decadal or centennial
scales) climate change (Yang et al 2019 and references
therein, 2021, Degroot et al 2021). Through analysis
of the cluster of volcanic eruptions occurring between
1637 and 1646, during the final stages of the Thirty
Years’ War (1618–1648), Stoffel et al (2022) offer a
textbook example of difficulties in attributing polit-
ical instability, harvest failure and famines solely to
volcanic climatic impacts. This example shows that
it is time to move past reductive framings in which
climate (and environment more broadly) either is
or is not deemed an important contributor to major
historical events. Below we briefly outline some spe-
cific points that repeatedly arise in the historical and
archaeological literature that are relevant to the SDGs
(figure 3).

2. Learning, experimentation and
innovation

Retaining, valuing, expanding and enriching cul-
tural knowledge while encouraging innovation are
fundamentally part of the SDG framework (SDGs
4 and 9, Target 13.3 and implicitly, SDGs 2–3, 6,
11–17; figure 3). Together, a wide range of palaeo-
climate and archaeological records highlight the
importance of learning and innovation. Changes
in land and water management practices, crops
grown, and technological change acrossmany regions
(e.g. the North Atlantic, Middle-East, Mediterranean,
South America, Asia, Europe) in response to abrupt
climatic downturns or sequences of downturns,
changes in seasonality at decadal to centennial-scales
throughout the Holocene contributed to resilience
of many societies (Szczesny 2016, Marsh et al 2017,
Warden et al 2017, Riris and Arroyo-Kalin 2019,
Cheung et al 2019, Crombe 2019, Deom et al 2019,
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Figure 3. Schematic showing pathways by which information in historical and archaeological records—as categorised in the
manuscript—become relevant to the SDGs.

Panyushkina et al 2019, Ran and Chen 2019, Klejines
et al 2020, Petraglia et al 2020, Grocutt et al 2021
amongstmany others). The lack of evidence for wide-
spread societal collapse along the Silk Road during the
8.2 and 9.2 ka events points to the success of local
adaptation (Yang et al 2019). Traditional ecological
knowledge based on retained knowledge, innovation,
social networks and bottom-up decision making has
also contributed to adaptation of Indigenous peoples
to climatic variability and abrupt change (figure 1;
Adger et al 2009, Pearce et al 2015).

3. Diversity and inclusion

As a theme, broadening diversity and inclusion per-
meates the SDGs, both explicitly (SDGs 4-11, 14–15)
and implicitly (SDGs 1-3, 12, 16–17). Ample evidence
in archaeological and historical records supports
the core relevance of cultural diversity and inclu-
sion (Burke et al 2021; figure 3) in resilient social-
ecological systems (e.g. Hegmon et al 2008, Szczesny
2016, de Majo 2019, Klassen and Evans 2020, Burke
et al 2021, Grocutt et al 2021). Greater political par-
ticipation after disaster has resulted in less conflict
and helped preserve structures that bonded groups
together (Peregrine 2018). It has also improved flex-
ibility, experimentation, and matching of problems
and solutions (Mostert 2012, deMajo 2019), although
challenges exist (e.g. Mostert 2012). In contrast,
declining cultural diversity and inclusion and increas-
ing centralisation have often been observed imme-
diately prior to social-ecological collapse in many
instances (e.g. Hegmon et al 2008, Szczesny 2016,
Peregrine 2018, Klassen and Evans 2020, Sadowski
2020, Grocutt et al 2021, Scheffer et al 2021).

Recognition of the importance of spatial het-
erogeneity of the physical environment and impacts
of abrupt climate change is equally important (see
figure 2). This heterogeneity has facilitated food
diversification strategies and trade, important aspects
of promoting resilience (Riris andArroyo-Kalin 2019,
Spate 2019, Xu et al 2020, Hall 2021)—and is
today under pressure from, for instance, monocul-
tural cash-cropping, wage labour or herd expansion.
Greater inclusion of Indigenous peoples to develop
more holistic approaches that respect heterogeneous
landscapes, promote biodiversity and culture will also
promote biological and cultural diversity (figure 1;
Desjardins et al 2020, Petzold et al 2020, Burke et al
2021, Fletcher et al 2021).

4. Connectivity, flexibility and rigidity
traps

Sachs et al (2019) outline six critical and multifacet-
ted transformations required to achieve the SDGs.
These transformations require interrelated and com-
plex long-term changes and well-coordinated imple-
mentation (Sachs et al 2019). In other words, a high
degree of connectivity is required for the imple-
mentation of the SDGs. Extensive evidence demon-
strates the importance of connectivity for resilience
through cultivation of extensive trade, migration,
knowledge and cultural networks that provided sup-
port in times of need (Hegmon et al 2008, Cooper
and Peros 2010, Degroot 2015, Hall 2021, Nelson
et al 2016, Szczesny 2016, Waldinger 2015, Per-
egrine 2018, Weiberg and Finnè 2018, Bal 2019,
Klejine et al 2020, Torrence 2020, Grocutt et al 2021,
Jariel 2021, Yang et al 2021). Cessation or decline
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of connective networks has been associated with a
loss of resilience, decreased innovation and diversity
and increased conflict (Nunn et al 2007, Hegmon
et al 2008, Waldinger 2015, Sadowski 2020, Jariel
2021). Increasingly fragmented landscapes can lead
to biodiversity loss from which other impacts cascade
(Chase et al 2020). In some cases, however, increased
flexibility has resulted in self-serving local elites
(Campbell 2016).

Failure to manage complexity and interrelated-
ness through more favourable times, however, can
contribute to rigidity traps (Holling and Gunderson
2002, Rogers et al 2012, Allcock 2017). Over-reliance
on established and complex social, physical and/or
political infrastructure and procedures can pose sig-
nificant barriers to continued prosperity and wel-
fare of societies, especially as shocks—e.g. climate
change—occur (Holling and Gunderson 2002). The
extensive physical infrastructure buffering complex
societies such as Angkor or Mesa Verde against vari-
ability were ultimately short-term buffers that effect-
ively precluded required transformations (Hegmon
et al 2008, Klassen and Evans 2020). Such buf-
fers can shield parts of social-ecological systems
from collapse even as a business-as-usual approach
exhibits strong signs of slowing and increasing vul-
nerability (Hegmon et al 2008, Folke et al 2010,
Redman 2012, Penny et al 2018, Weiberg and Finnè
2018, Klassen and Evans 2020, Grocutt et al 2021,
Scheffer et al 2021).

Similarity in trajectories of societal decline or col-
lapse across multiple societies and time periods high-
lights the potential dangers of our highly interconnec-
ted and interdependent modern systems. COVID-19
and the rapid spread of other pests and diseases pose
challenges to this elevated interdependence, increas-
ing our vulnerability to abrupt change (Li 2020). Fail-
ure of a single link in highly interconnected trade
and production networks can create extensive disrup-
tions, increasing vulnerability to shocks (Challinor
et al 2017). Managing levels of connectivity and flex-
ibility is particularly relevant for SDGs 2, 6, 8, 9, 12–15
(figure 3) to avoid promoting short term buffers that
simply increase long-term vulnerability and reduce
intergenerational equity (Lim et al 2018). High levels
of complexity in administrative and implementation
structures for the SDGsmay be similarly problematic.

4.1. Discussion and conclusions
Our purpose here has been to demonstrate to policy
makers and managers that together, palaeo data,
archaeological and historical records point to a num-
ber of key factors that promote resilience and are rel-
evant to the SDG framework and its implementation.
We draw on the cited examples to outline three fun-
damental lessons from long-term memory.

The first is the much-commented upon friction
between SDG8 and part of SDG9 (industrialisation)

with the planetary SDGs 6, 13–15 that has flow-
on consequences for environmental justice (Hickel
2018, Menton et al 2020, Skene 2021). Evidence from
the past shows that expansion of human activity has
adversely impacted the environment through desic-
cation and deforestation, and that these impacts can
be amplified by abrupt onset of adverse climate con-
ditions (see Campbell 2016, Cook et al in review,
Allcock 2017, Challinor et al 2017, Fei et al 2019,
Mischke et al 2019, Stephens et al 2019). Apparently
flourishing societies can persist beyond critical envir-
onmental tipping points despite their increasing vul-
nerability to collapse (Allen et al 2019, Weiberg and
Finnè 2018, Scheffer et al 2021). A piecemeal focus on
achieving individual SDGs ultimately ignores poten-
tial conflict inherent within the SDGs themselves and
their fragility vis-a-vis climate extremes and natural
hazards (Reichstein et al 2021).

Secondly, the SDGs are consistent with a view that
social-ecological systems will readily adapt to abrupt
climate change and its impacts given technological
and economic constraints (e.g. Reilly and Schim-
melpfennig 2000). However, the failure by the OECD
countries to overcomemajor challenges to combating
climate change, suggests our current direction around
the feedback loop is anti-clockwise (figure 1), retard-
ing progress towards several SDGs (cf IPCC 2022).
In the past, abrupt climate changes have typically
been associated with increased inequality (Scanlon
1988, Sheets 2020), and current climate change is
reversing progress made towards greater equity, food
and water security and improved health (Romanello
et al 2021, IPCC 2022). Incremental changes in cli-
mate are also increasingly challenging agricultural
potential, equality and health outcomes in many
regions (Ramankutty et al 2002, Lesk et al 2016,
Challinor et al 2017, Romanello et al 2021, IPCC
2022). Additionally, concerns exist that emissions
overshoots will occur due to COVID-19 recovery
plans while the epidemic continues to dispropor-
tionately affect the most disadvantaged (Romanello
et al 2021). Without an applied understanding of
long-term impacts of shocks, and long-term traject-
ories of change, adaptation, collapse and resilience,
and why some societies have succeeded or failed in
responding to these shocks, the capacity of the SDG
framework to improve resilience over medium—
long time frames may be compromised (see Quiggan
et al 2021).

Thirdly, using universal shallow baselines that do
not recognise inherent diversity in social-ecological
systems against which to measure progress in rela-
tion to specific targets is likely to result in inap-
propriate measures of progress in many cases, and
potentially environmental degradation (SDGs 6, 14–
16; Gillson et al 2021). This will especially be the case
when processes of change are underlain by long-term
variability.
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Projections indicate that within 50 years tem-
peratures will move outside the narrow de facto
human tolerance envelope of the past 6000 years
(Xu et al 2020), emphasising the urgency of com-
bating climate change. Climate change threatens
the resilience that increased diversity and inclusion,
improved equity and education, improved infrastruc-
ture, justice and a healthy physical environment can
provide. Even moderate climatic downturns in the
past have led to major societal decline. We must
therefore ask whether the current configuration of
societal and organisational structures and priorities,
and changes embodied in the SDGs, sufficiently sup-
port actions to provide the resilience and willing-
ness required to successfully address climate change
(clockwise direction, figure 1). Or, will that struc-
tural configuration, priorities and the scale of climate
change, overwhelm the resiliencemeasures embodied
in the SDGs (anti-clockwise direction, figure 1)? Our
assessment here is a timely reminder of the power of
the past to illuminate future directions as the SDGs
are being increasingly translated into policies, actions
and education agendas (Kelman 2017, Rees 2017,
Stewart andGill 2020). Although such long-termdata
cannot provide all answers, it does shine a critical
light on what has and has not previously promoted
social-ecological resilience and informs measures of
progress.

In conclusion, we highlight four key messages:

(a) The relationship amongst climate change, the
SDGs and resilience can be broadly considered a
positive feedback loop (figure 1). To achieve pro-
gress towards the resilience, we need to travel in
a clockwise direction.

(b) Variability and change over long time frames are
inherent in natural, and human, systems. It is
therefore essential to incorporate the informa-
tion from the wealth of palaeo-records available
into frameworks purporting tomeasure progress
towards resilience.

(c) Analysis of historical and archaeological records
over long time spans and in relation to specific
events is critical to informing policies that aim
to increase our resilience to the accumulating
impacts of change.

(d) We need to very carefully assess what records
of the past tell us about the potential conflict
between planetary and some social goals. Where
long-term records indicate persistent clashes
in objectives, we need to be sufficiently bold
to robustly address these challenges in order
to avoid promoting an anti-clockwise journey
around the feedback loop.
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