

CTD Data RV Heincke HE598

Data Processing Report

Contents

1	Introduction	1
2	Workflow	1
3	Expedition details	3
4	Sensor Layout	3
5	Processing	3
6	Results	5

Contact: Dr. Sandra Tippenhauer Alfred-Wegener-Institute Klußmannstr. 3d, D-27570 Bremerhaven, GERMANY Mail: info@awi.de

Processing Agency: FIELAX GmbH Schleusenstr. 14, D-27568 Bremerhaven, GERMANY Mail: info@fielax.de

Ref.: CTD-HE598-report.pdf	Vers.: 1	Date: 2022/07/11	Status: final	
----------------------------	----------	------------------	---------------	--

1 Introduction

This report describes the processing of CTD raw data acquired by Seabird SBE 911plus CTD on board RV Heincke during expedition HE598.

2 Workflow

The different steps of processing and validation are visualized in Figure 1. The CTD raw data are delivered from Dr. Sandra Tippenhauer (AWI). The station book of the RV Heincke cruise is extracted from the DAVIS SHIP data base (https://dship.awi.de). The first CTD station and cast is processed manually in SBE Data Processing to configure the *.psa Seabird routines Data Conversion, Wild Edit, Bottle Summary, Split, Translate, Cell Thermal Mass, Loop Edit and Bin Average. The Seabird routines are then run in a batch job CTDjob in ManageCTD to process the complete CTD data set. The downcast of each CTD station/cast is used for further processing. In CTDjob the start record and the lowest altimeter point of the downcast is selected. With the Utilities \rightarrow Dship Ebook function of ManageCTD the DAVIS SHIP station book extraction is used for getting the header information of all CTD stations/casts of the cruise. ManageCTD Utilities -> Find Profile function compares station times of the header with the entries in the station book to find out the correct naming of the stations and casts. In CTDheader in ManageCTD the header information of each CTD station/cast is displayed, controlled and corrected if necessary. CTDdespike in ManageCTD is used for a visual check of the data and to erase/interpolate spikes in the data if necessary. Additionally, a sensor pair (Temp1/Sal1 or Temp2/Sal2) is chosen for each station/cast of the RV Heincke cruise in CTDdespike.

ManageCTD *Utilities* \rightarrow *CheckDoubleSensors* controls the quality of temperature and conductivity sensors. For this purpose outliers of too high sensor pair differences could be removed. The data is then converted to spreadsheet format with *dsp2odv* for visualization of the data in Ocean Data View (ODV). The second visual inspection of the CTD data allows a comparison with data from other CTD casts from close-by stations to verify the oxygen sensor data. Therefore, potential reference cruise data is downloaded from PANGAEA (http://www.PANGAEA.de). The reference data is converted to *.mat format. In the ManageCTD Final Processing the CTD data is displayed together with the reference data. Bad data points, sensors or casts are interpolated or erased from the data set and filters are applied if necessary. The processed CTD data are written to text files and imported to PANGAEA (http://www.PANGAEA.de) for publication.

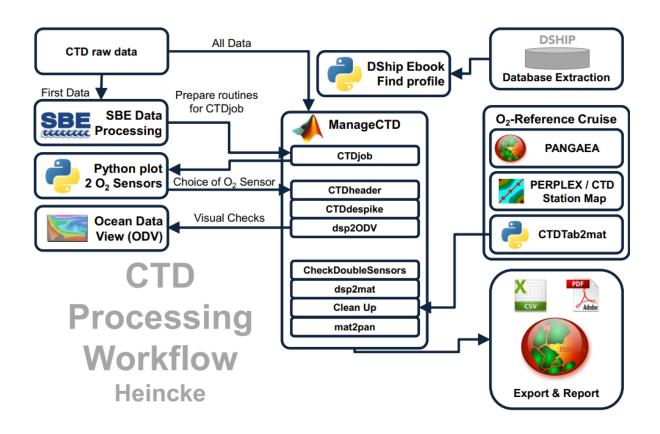


Figure 1: CTD data Processing Workflow

3 Expedition details

Vessel name	RV Heincke
Expedition number	HE598
Expedition leader	Wurl, Oliver
Expedition start	30.04.2022 Bremerhaven
Expedition end	22.05.2022 Bremerhaven
Duration	22 days
No. of CTD casts	106
BSH ID	20220158
Expedition report	https://doi.pangaea.de/10.48433/cr_he598
Expedition map	https://download.pangaea.de/reference/113265/attachments/HE598_nav.jpg
Event list	https://www.pangaea.de/expeditions/events/HE598

4 Sensor Layout

This chapter describes the CTD sensors mounted during this cruise: SBE 911plus CTD (SN: 1015), SBE Instrument Configuration Version 7.23.0.1.

ID	Sensor Name	Serial No.	Calibration Date
55	TemperatureSensor	4918	05-Mar-21
3	ConductivitySensor	3810	09-Feb-21
45	PressureSensor	1015	26-Jan-17
55	TemperatureSensor	5110	05-Mar-21
3	ConductivitySensor	3827	02-Feb-12
0	AltimeterSensor	Valeport	None
71	WET_LabsCStar	435	None
20	FluoroWetlabECO_AFL_FL_Sensor	1365	7.1.2022

5 Processing

Details of processing procedures and processing parameters are described in *CTD Processing Logbook of RV Heincke* (hdl:10013/epic.47427).

Density Inversions and Manual Validation

Obvious outliers were removed manually. For the visual check density inversions > 0.005 kg/m^3 and > 0.01 kg/m^3 were flagged differently for display but not removed automatically. Decisions whether the flagged values were manually removed or not are based on the description in *CTD Processing Logbook of RV Heincke* (hdl:10013/epic.47427).

Sensor Differences

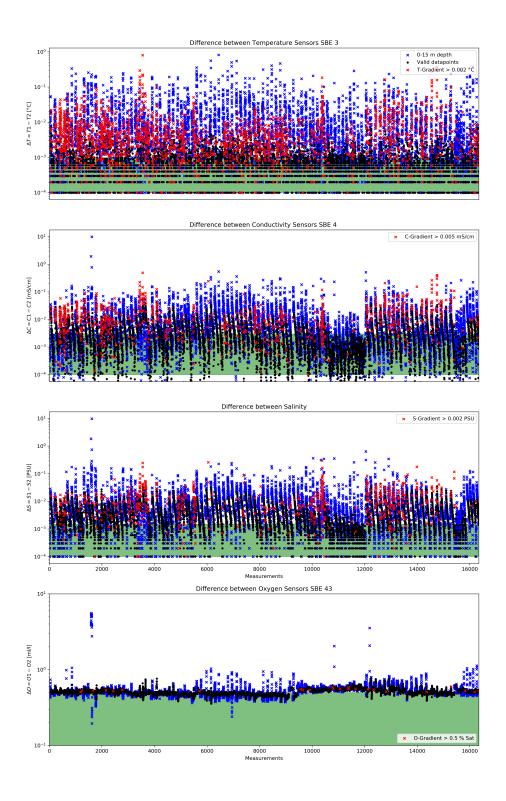


Figure 2: Data accuracy of sensor pairs HE598

6 Results

A complete processing overview for each sensor at each station is summarized in the table in the Appendix (Figure 3).

Double Sensor Check

In Figure 2, the absolute residuals between the two sensorpairs are shown for the measured parameters *Temperature* and *Conductivity* and the derived parameter *Salinity*. Measurements in shallow water depths < 15 m (blue crosses) and gradients between two datapoints exceeding a defined threshold (red crosses) were omitted for accuracy calculation.

	Accuracy	Measurements re-	Remaining measure-
		moved	ments
Parameter	given by manufacturer	Surface 0-15m + gradi-	within accuracy specifi-
		ent filter	cations
Temperature	$\pm 0.001^{\circ}C$	51.39%	75.81%
Conductivity	$\pm 0.003 mS/cm$	42.88%	59.49%
Salinity	$\pm 0.0015 PSU$	41.55%	31.46%

Comments

- 106 CTD raw data sets delivered
- 1 CTD cast had no station book entry(HE598_11_11) but was processed using the information from the CTD header file.
- 1 station book entry had no corresponding CTD cast (HE598_2-15)
- 106 CTD casts processed and uploaded
- of these 10 processed CTD casts:
 - 0 oxygen profiles deleted (spiky and not matching to reference casts)
 - 437 data points interpolated
 - 59 data points erased

Result files

Text File (HE598_phys_oce.tab):

Column separator	Tabulator "\t"
Column 1	Event label
Column 2	Date/Time of event
Column 3	Latitude of event
Column 4	Longitude of event
Column 5	Elevation of event
Column 6	DEPTH, water
Column 7	Pressure, water
Column 8	Temperature, water
Column 9	Conductivity
Column 10	Salinity
Column 11	Temperature, water, potential
Column 12	Density, sigma-theta (0)
Column 13	Oxygen
Column 14	Oxygen, saturation
Column 15	Attenuation, optical beam transmission
Column 16	Fluorometer
Column 17	Number of observations

The format is a plain text (tab-delimited values) file.

Processing Report (CTD-HE598-report.pdf):

This PDF document.

Comments										no cast for	Inis station																																T				
Offset	80	0.7	0.7	0.7	0.8	0.9	0.9	0.9	1.0		0.9	6.0	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.7	0.7	1.1	1.2	9.0	0.5	0.5	<u>, 1</u>	- 3	4.0	0.4	0.4	0.4	0.3	0.4	0.3	0.3	1.5	1.2	1.1	1.1	0.6	0.6	0.6	0.5	1.3	1.2
sss-cc_dist_(km)	10	2.1	3.3	4.8	10.6	1.1	1.0	1.3	2.9		21.3	21.7	21.5	21.4	21.1	21.1	21.1	21.1	21.1	21.1	25.4	26.6	27.7	27.9	25.5	25.5	28.8	30.9	31.0	20.8	30.3	32.7	33.8	16.6	17.6	17.3	14.6	32.0	31.8	33.9	33.9	56.2	56.9	59.5	59.7	22.9	18.5
cruise/sss-cc_c		3/14-1	3/14-1	HE443/14-1	HE443/14-1	HE443/08-1	HE443/08-1	3/08-1	HE443/43-1		HE443/45-1	3/45-1	HE443/45-1	HE443/45-1	3/45-1	3/45-1	3/45-1	HE443/45-1	HE443/45-1	3/45-1	HE443/48-1	3/48-1	HE443/21-1	HE443/21-1	3/48-1	HE443/48-1	HE443/48-1	3/21-1	HE443/21-1	HE443/50-1 HE443/50-1	3/50-1	3/50-1	3/50-1	3/25-1	HE443/25-1	3/25-1	HE443/25-1	HE443/01-1	HE443/01-1	HE443/44-1	3/44-1	HE443/48-1	HE443/48-1 HE443/48-1	3/48-1	HE443/48-1	HE443/47-1	HE443/47-1
	-	HF443/14-1	╋	┝	+	-	HE44:	HE443/08-1	H		HE44	+	+	HE44;	HE443/45-1	HE443/45-1		_	HE44:	HE443/45-1	HE44:	_	-	-	+	-	+	+	+	HE443/50-7 HE443/50-7	HE443/50-1			HE443/25-1	HE44	HE443/25-1	-	┝	HE44;		HE443/44-1	+	+	HE443/48-1	HE44:	HE44:	HE44
Sensor Offset	_	0.54	0.53	0.53	0.55	0.56	0.56	0.55	0.58		0.54	0.56	0.56	0.55	0.57	0.59	0.57	0.59	0.55	0.58	_		0.58	_	+	0.62	0.58	0.56	+	0.51	-	0.53	0.53		+	0.49	0.48	0.59	0.52	0.52	0.55	0.52	0.53	0.53	0.53	\square	0.51
-	+-	1597	1597	1597	1597	1597	1597	1597	1597		1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1961	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597	1597
ern erased																	2									e		_			2												_			e	
į	╋	, 					9	10	5				5		10		10			15	S	2	15			10		,	n 1	n	2	5	2	5		u	0 0					5	~ ~	+ 6	5	5	
ovy erased																										e					-															-	
intern	-						2	2	1				-		7		2			e	-		e			2		,		-	-	-	-	-		•						-	-	2	-	-	
n erased																															-																
intern	-	-					2	2	1				-		2		2			e	۲		e			2			-	-	-	Ł	-	٢		Ŧ						-	-	2	1	۲	
n erased																															1																
intern	- -	-					2	2	1				-		2		2			з	1		з			2		,		-	-	1	-	1		•						-	-	2	-	1	
erased																	1														-															-	
interp 6	-	-					5	2	+				-		2		2			e	-	-	e			2		,		-	-	-	-	-		•						. .		- ~	-	-	
erased																	٢														-												T		Γ	-	_
intern er		-					5	2	1				-		7		2			e	-	-	e			2		,		-	-	-	-	-		-						-		. ~	-	-	
pair	t			-	-	-	-	-	1		-		-	-	-	+	1	1	1	2	-	-	-	-	-	-	-	- ,				-	-	-	-			-	-	1	-	-			1	-	-
HE598	- -	- 2 2	23	2 5	2 7	2_9	2_10	2_11	2_13		3 1	3 2	33	3_4	3_5	3_6	3_7	3_8	3_9	3_10	4_1	4_4	4_5	4_6	4 8	4_10	4_11	4 12	4 13	1 9 9	22	5_6	5_7	6_1	6 4	6 5 6 5	6 7	7 2	7_4	7_5	7_6	83	8 4	9 8	8_7	11_3	11 4
	1.	24.1	27.3	28.5	22.3	30.1	30.8	31.0	35.6	36.4	29.8	30.4	30.1	31.2	30.5	30.5	31.7	31.6	32.4	31.2	34.7	35.7	35.8	35.5	34.8	34.8	36.4	36.1	35.4	37.5 38.6	38.7	39.2	39.6	39.3	38.9	39.8	39.1	17.6	15.3	18.9	21.0	24.6	25.3 26.2	27.4	25.7	33.4	32.7
Longitude	007° 47 897' F	007° 48,299' F	007° 47.217' E	007° 46,143' E	007° 42.302' E	007° 47,845' E	007° 48,022' E	007° 47,796' E	007° 46,016' E	007° 30,108' E	007° 15.229' E	007° 14.935' E	007° 15,026' E	007° 15,112' E	007° 15,385' E	007° 15,423' E	007° 15,419' E	007° 15,418' E	007° 15,411' E	007° 15,393' E	006° 51,114' E	006° 52,840' E	006° 54,958' E	006° 54,967' E	006° 51,149' E	006° 51,164' E	006° 53,854' E	006° 59,234' E	00/° 00,/78'E	006° 24,875' E	006° 23,577' E	006° 26,814' E	006° 27,537' E	005° 35,840' E	005° 35,754' E	005° 35,587' E	005° 36,943' E	007° 35,925' E	007° 36,078' E	007° 32,732' E	007° 32,520' E	007° 08,087' E	007° 08,156' E 007° 07 844' F	007° 07.537' E	007° 09,998' E	006° 52,461' E	006° 49,518' E
Latitude	Z	-	+	+	+	-	54° 12,393' N C	54° 12,420' N C	54° 12,239' N 0	54° 15,197' N 0	54° 04.375' N C	-	+	-	54° 04,450' N C	54° 04,459' N C		54° 04,461' N C		_		-	_	-	- 1	54° 38,933' N C		-	-	54° 53 473' N	-		\vdash	_	-	54° 51,818' N C	-	+	53° 50,502' N C		_	_	54° 53,464' N C	+			54° 13,120' N C
Time	17-08 52	10:33	11:43	14:19			10:26	13:07	15:01									10:56	11:32			10:03	11:58					12:02					12:56			10:00	13:07	06:01		10:02	12:03				14:23		11:04
Date	30.04.2022					02.05.2022 08:28	02.05.2022	02.05.2022	02.05.2022	02.05.2022 17:37	03.05.2022 06:11	03.05.2022	03.05.2022 07:29	03.05.2022 07:57	03.05.2022	03.05.2022 09:33			03.05.2022	03.05.2022	04.05.2022 08:01	04.05.2022	04.05.2022	04.05.2022	05.05.2022 06:11	05.05.2022 08:08	05.05.2022 10:03		2202.00.00	06.05.2022 06:05 06.05.2022 08:07	06.05.2022	06.05.2022 12:02		07.05.2022	07.05.2022 08:04	07.05.2022		09.05.2022 06:01	09.05.2022 08:02	09.05.2022	09.05.2022	10.05.2022 07:00	10.05.2022 08:01 10.05 2022 10:01	10.05.2022	10.05.2022	12.05.2022 10:01	12.05.2022
Abbr.	—	_	_	_	-	_	CTD 02	CTD 02	CTD 02	CTD 02	CTD 03		_	_	CTD 03	CTD 03	_	CTD 03	CTD 03	_	CTD 04	_	_	_	_	_	_	_			_	CTD 06	-	CTD 07		CTD 07	_	_	CTD 09	CTD 09	_	_	CTD 10	_	_	-	CTD 12
HE598	+	t	+	┢	+		2-10	2-12	2-14	2-15	3-1	+	┢		3-5	3-6		3-8	3-9	3-10					+	-	+	+	+		+			6-1	+	6-5 6 6	+	+	7-4	7-5	-	+	8-5 8-5	+		+	11-4

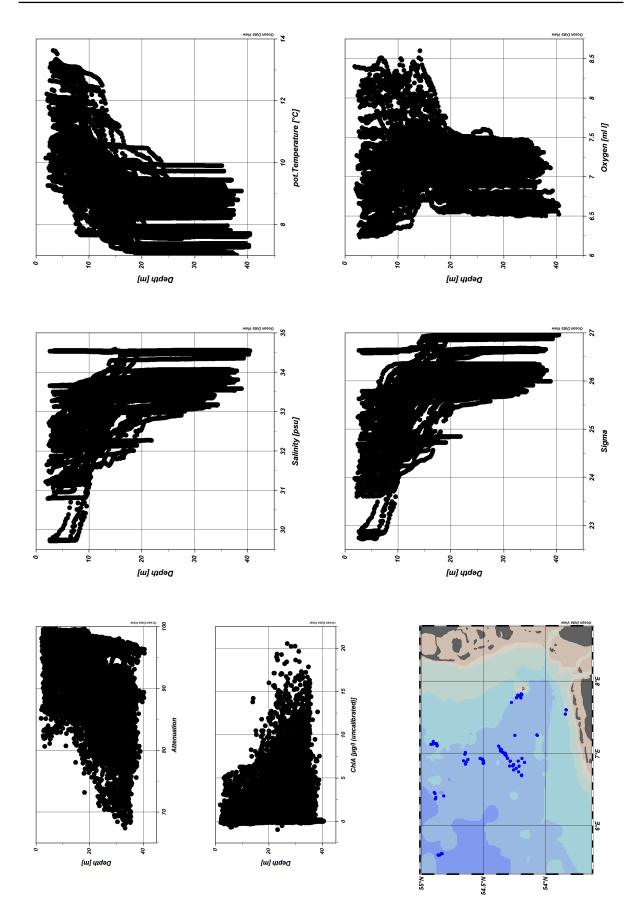


Figure 4: ODV Screenshot of HE598 CTD data Page 8 of 8