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Foreword by Johann-Christoph Freytag

Over the last two decades, the idea of data-intensive computing, sometimes also
called Big Data, which then further developed into data science, has become the
foundation for many disciplines to perform data-centric research. While Big Data
often refers to the ability to transform, to manipulate, and to access large volumes of
data in a scalable manner, data science summarizes all activities that evolve around
acquiring, cleaning, integrating, transforming, accessing, analyzing, and visualizing
data. The latter activities have been part of numerous research activities in various
disciplines for many years. To be able to perform these complex tasks on (almost)
arbitrary large inputs has opened up new opportunities for many disciplines to
perform their research in an unprecedented manner. For example, it has become
feasible to digest vast amounts of incoming data from a large number of sensors in
(almost) real time to analyze and guide experiments while they are running. Further-
more, machine learning algorithms such as neural networks require a learning phase
which in the past took several months. Current hardware and software potentially
together with newly developed concepts reduce the learning phase to minutes or
hours, thus making this technology feasible and applicable for many disciplines in
finding solutions to complex problems. Examples for such newly developed concepts
are the MapReduce paradigm for parallel program execution, or workflows for orga-
nizing complex executions of individual tasks (“units of work”) in a distributed,
heterogeneous compute environment.

Still, using these new concepts and systems developed in computer science
becomes challenging when using and applying them in any discipline for various
reasons. First, there is the need to ensure a (mental) transfer of often non-trivial
concepts and systems into a discipline where they are the means to perform research,
rather than being the research subject itself. Second, building complex hardware and
software systems obviously goes beyond the skills of applying and programming
these for individual applications. They still pose a challenge and require special
skills especially when those systems must later deliver results in a reliable and robust
manner, and therefore go beyond research prototypes. Third, there is often much
effort needed to adapt and/or to extend the computer science concepts and systems
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vi Foreword by Johann-Christoph Freytag

in their general form to the specific needs and requirements of a particular application
domain.

Already in the book The Fourth Paradigm—Data-Intensive Scientific Discovery,
edited by Hey, Tansley, and Toll in 2009, the first chapter of the book presents Jim
Gray’s vision on a new paradigm for performing science in all areas in the future.
There, he outlines the clear path of how the progress in hardware and software
together with new concepts will transform other sciences through data-intensive
computation dramatically, using the term eScience. His vision has become reality in
many disciplines, including Earth sciences in particular.

This book is an excellent witness of how researchers in Earth sciences implement
Gray’s vision to accelerate the generation of new knowledge and insights about our
planet. Since the book reflects the results of a longer-term research project, it becomes
clear that the usage of computer science concepts and systems is not a straightforward
step. Using the new concepts needs clear understanding of domain experts of what
is required as a first step, to advance the state of the art in their field. However, the
authors master these challenges and clearly show that they understand the newly
developed computer science concepts and their use in Earth sciences. In particular,
they provide a holistic approach to combine already existing approaches and systems
in the different subfields of Earth sciences by the concept of (scientific) workflows.
The systematic approach and the detailed discussions and evaluations provided in
the different chapters clearly demonstrate the advantage of a holistic approach to
study system Earth.

Altogether, the book carefully presents the problems and the chosen solutions,
while providing an evaluation and self-assessment of the different phases during the
project. The careful reader will identify many challenges and problems left open,
which I consider as a strength rather than a weakness of the book. Therefore, one
should understand the book as the starting point for further studying system Earth as
a highly complex system, with several subsystems connected by many dependencies
using data science approaches. Only a holistic approach will advance the under-
standing of system Earth, for example when developing solutions for such complex
problems as the currently discussed climate change.

Enjoy reading this book with its many facets originating in Earth sciences and
computer science.

Johann-Christoph Freytag
Department of Computer Science
Humboldt-Universität zu Berlin

Berlin, Germany

Einstein Center Digital Future
Berlin, Germany



Foreword by Hans Pfeiffenberger

Intuitively, the term “Digital Earth” should appeal to contemporary scientists and,
evenmore so, to computer and information technology experts. The consortium from
Helmholtz Association’s Earth and Environment research area, which organized and
wrote this book, as well as other groups around the world striving to implement
concepts of Digital Earth, pursues this work mostly based on short-term funding
and thus, near-term objectives and deliverables. Research projects such as Digital
Earth can contribute substantially to the development of methods and algorithms.
When we envision, as a next step, Digital Earths as contributing to societal needs in
a comprehensive and sustained way, these projects’ resources would be too limited.

If the ultimate objective is not restricted to Digital Germany or other “digital
territory,” one can identify important societal targets among the UN’s Sustain-
able Development Goals (SDGs). Digital Earth facets might serve, for example, to
provide evidence about: climate, biodiversity, health, water and food supply, mineral
resources, etc. Major organizations such as the Helmholtz Association are provided
with the funding and charged with a mission and the multidisciplinary approaches
necessary for progress on finding solutions to these complex issues.

Occasionally, those building Digital Earths and those applying them to socially
relevant issues should take the time and philosophize. They should ask themselves:
what do our digitization concepts and their implementation aim at, what can they
achieve, what are their inherent limitations, or (most important but often most
difficult) what dangers might arise?

For millennia, individuals, countries, and institutions developed more precise,
more useful representations of the world surrounding them. Produced from perspec-
tives at the time, these representations would be expressed and shared (or, not) as
written text or as ever-more sophisticated maps.

“Gallia est omnis divisa in partes tres, quarum unam incolunt Belgae, aliamAqui-
tani, tertiamqui ipsorum lingua…”.This famousfirst sentence of JuliusCaesar’s “De
Bello Gallico” emphasizes the importance of knowing the world. Rome, in its role as
regional superpower, required up-to-date information about physical distances (and
obstacles), populations, customs, and languages to maintain military dominance.

vii
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Maps from the sixteenth century and seventeenth century CE demonstrate the
utility of continuously extended and corrected maps to support commercially moti-
vated travel on land or navigation at sea. Such graphic and narrative guides, produced
by and for competing countries, were often kept as military and economic secrets.

Digital transformations already deeply affect our perception of our world, even
into everyday life. We scientists must recognize that, beyond our traditional roles as
sources of research-quality texts andmaps, governments and corporations rapidly add
and exploit big datasets andmodels, computer-basedvisualization, data analytics, and
machine learning and Artificial Intelligence tools that influence and shape individual
and national perspectives of our world.

We can and must learn from historical precedents that contemporary worldviews
were shaped by particular perspectives and interests of those creating them. Caesar
and Roman predecessors established and promulgated an entity called Gallia, inhab-
ited by three major groups of people. Would people inhabiting Gallia have assigned
themselves to one of those three groups? Would they have recognized or named a
geographic entity of Gallia? Was the concept of Gallia of any relevance to them?

Likewise, maps in use before the modern era of commercial globalization feature
Europe or the Atlantic Ocean at the center. In particular, using Mercator projec-
tions for anything other than navigation can create biased geographic (areal) conclu-
sions. Limitations of these well-known projection quirks remain obvious to many
but underappreciated by most.

Which analogous traps will emerge and persist because of new Digital Earths?
Will terminologies and ontologies we create to describe and categorize data carry

and promote “western” views of the world and its interests? For example, will we
produce global remote-sensing-based maps using lists of large-scale globally traded
crops, while neglecting traditional small-holder crops which might be better at nour-
ishing self-sustaining communities? Will we perpetuate misleading terms such as
“rare diseases” which, too often, indicate economically unimportant diseases? Will
wemiss important opportunities to investigate non-pandemic diseases or to track their
zoonotic vectors?Will visualizations, dependent on interpolations and extrapolations
of globally patchy data, mislead or support misconceptions about under-served parts
of the world?

Many countries, for political, economic, or “status” reasons, withhold or manip-
ulate national data or delay delivery beyond a useful timeline. Patchy, delayed and
(by incompetence or worse) manipulated data will constitute some of the basis of
SDG-oriented Digital Earths. All data from all sources must be vetted for complete-
ness, accuracy, and trustworthiness and, to facilitate this level of scrutiny, must be as
openly accessible as technically and ethically feasible.

Organizations, including the Helmholtz Association, setting out to create or co-
create Digital Earths with far-reaching objectives must be prepared to invest heavily
in careful data collection, responsible development of algorithms and code, and
enhanced quality assurance. While these operations rarely qualify as research, and
thus rarely provide appropriate academic recognition and reward to skilled providers,
recent examples such as the consortium of researchers associated with the Global
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Carbon Project, producing much-lauded and fully citable annual global greenhouse
gas budgets, provide encouraging examples.

Digital Earth developerswill contribute to identifying essential products and glob-
ally agreed-upon “essential variables,” particularly those relevant to SDGs. They
need to engage constructively with collaborators around the globe to stimulate viable
long-term capabilities and capacities to both feed and use advanced concepts, digital
products, and technologies as described in this book.

Hans Pfeiffenberger
Independent Consultant

Bremen, Germany
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Chapter 1
Data Science and Earth System Science

Wolfgang zu Castell, Roland Ruhnke, Laurens M. Bouwer, Holger Brix,
Peter Dietrich, Doris Dransch, Stephan Frickenhaus, Jens Greinert,
and Andreas Petzold

Abstract Data-driven science has turned into a fourth fundamental paradigm of
performing research. Earth System Science, following a holistic approach in unrav-
eling the complex network of processes and interactions shaping system Earth,
particularly profits from embracing data-driven approaches next to observation and
modeling. At the end, increasing digitalization of Earth sciences will lead to cultural
transformation towards a Digital Earth Culture.

Keywords Data analysis · Data exploration · Earth System Science · Data
science · Digitalization ·Machine learning
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1.1 Introduction

When Al Gore coined the term Digital Earth about thirty years ago (Gore 1998), he
envisaged a holistic tool for Earth system understanding, exploration and education.
Imagining a child visiting an exhibition, he sketched the idea of a comprehensive
framework for data integration and analysis, allowing for an overall perspective of
planet Earth to dive into and refine with additionally enriched data wherever interest
is leading to. As far as maps and imagery are concerned, services such as Google
EarthTM becamewell established in the meantime.Whereas the ability to dive deeper
and deeper into details and to explore ever more datasets using this tool, a real Digital
Earth is still a vision to be realized.

1.2 Data Science

Integrative, exploratory data analysis has been established as a fourth paradigm of
science, next to theory, experiment and simulation (Gray 2009). Indeed, data-driven
analysis has led to new insights into several fields of research, in particular, in those
fields which by their very nature are lacking a comprehensive underlying theory.
Data science “focuses on the processes and systems that enable the extraction of
knowledge or insights from data in various forms, either structured or unstructured”
(Berman et al.‚ 2016 p. 2). As such, data science utilizes computer science, statistics,
machine learning, visualization and human–computer interaction to collect, clean,
integrate, analyze and visualize data, as well as to interact with data to create insight
into some problem(s) in the real world.

Data-driven approaches to knowledge discovery have penetrated into almost every
field of empirical science. Two major developments have paved the way for this
radical transformation: first, through the evolution of the World Wide Web, data
sources have become available on an unprecedented scale. Using the Internet, access
to data sources has been substantially facilitated with more and more data sources
becoming available. At the same time, the parallel development of computing tech-
nology allowed the processing of an increasing amount of data, allowing researchers
to incorporate more data into their models and ingest huge datasets in an automated
way. Both of these prerequisites eventually allowed researchers in artificial intelli-
gence to build models which otherwise would not have been feasible to train due to
their large number of parameters. Thus, sufficient computing power and the avail-
ability of huge amounts of data enabled a switch of paradigm, leading to models of
artificial intelligence, predicting possible patterns of interest without the need of an
underlying theory. This is particularly true for deep learning networks, the advance-
ment of which developed closely with massively parallel computing technology
reaching a commodity level.
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In the end, it seems like Al Gore’s vision of Digital Earth is but a fingertip away
from becoming reality. However, the complexity of a challenge cannot be assessed
without taking the first steps toward the goal.

1.3 Earth System Science

EarthSystemScience,with its historically subdivideddisciplines that are basedon the
Earth compartments, will significantly benefit from integrative data-driven science.
Environmental changes are the result of a complex interaction of natural and anthro-
pogenic processes on a wide variety of temporal and spatial scales. Understanding
and quantifying these changes must be based on trustworthy and well-documented
observations that capture the entire complexity of the Earth system. This includes the
manifold interactions between the atmosphere, land and ocean, including the impacts
on all forms of life. Targeted environmental research projects and continuously oper-
ating multivariate research infrastructures designed to monitor all components of
the Earth system are crucial pillars for environmental scientists in their quest for
understanding and interpreting the complex Earth system, together with numerical
simulations.

Therefore, data in Earth System Science readily complies with four of the 5 Vs of
Big Data: volume, velocity, variety and veracity. Space-based observation systems
produce a high volume of data at a speed of change (velocity), which increases with
every new mission being started. The variety of geospatial information is relying on
specialized infrastructures being capable of honoring the spatio-temporal structure
of the data (Schade et al. 2020). Due to the global scale and need for long time series,
Earth sciences, in particular climate research, have to deal with uncertainty of data
on a regular basis (veracity). However, the fifth V, value, can only be extracted when
data is turned into knowledge, helping to answer the pressing questions of society
(van Genderen et al. 2020).

Making accurate predictions and providing solutions for current questions related,
e.g., to climate change,water, energy, biodiversity, food security and the development
of scientifically based mitigation and adaptation strategies in the context of climate
change and geo hazards are important requests toward the Earth science community
worldwide. In addition to these society-driven questions, Earth System Sciences
are still strongly motivated by the eagerness of individuals to understand processes,
interrelations and tele-connections within small subsystems, between subsystems
and the Earth system as a whole. Understanding and predicting temporal and spatial
changes and their inherent uncertainties in the above-mentioned micro- to Earth
spanning scales are the key to understandingEarth ecosystems.Reliable, high-quality
and high-resolution data across all scales (seconds to millions of years; millimeters
to 1,000s of km) has to be utilized in an integrative approach enhancing the ability
to integrate data from different disciplines, between Earth compartments, and across
interfaces.
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1.4 Challenges

While embarking on the adventure toward building Digital Earth, wemust not stop at
collecting data and providing access to various data sources. Data acquisition needs
to resolve issues of metadata standards, referencing datasets as well as providing
tools for data conversions and data management. High-quality data also needs to
be enriched with information on data acquisition technologies, such as error toler-
ances of sensors and measuring artifacts. Following an Internet of Things (IoT)
paradigm, workflows have to be matured toward SMART monitoring, including
anomaly detection methods and spatio-temporal imputation.

Taking into account the substantial role of models in Earth System Sciences,
computational challenges follow. Simulations need to be run on a sustainable basis
with proper methods of parameter tuning. With computing technology changing at
a higher rate, legacy code and model libraries have to be adapted to new computing
hardware. Thus, Earth scientists providing highly optimized codes have to work in a
co-design manner with computer engineers (Schulthess 2015). Splitting code into a
backbone part which is obviously closer to the underlying technology platform and
a frontend library including application programming interfaces (APIs) will allow
scientists to concentrate on their data analysis tasks. At the same time, application
programmers can use descriptive programming languages such as Python, leaving
imperative programming to the backend.

In the future, geospatial information infrastructures will have to be adjusted in
order to cope with rapid changes in computing technology and at the same time
scale with an increasing diversity of applications (Bauer et al. 2021). Closely linking
model-based simulationwith data-driven analysis andpredictionwill allow to address
questions of increasing complexity as resulting from the incorporation of scientific
domains lacking an underlying theoretical foundation. Data-driven approaches may
also be used to avoid costly simulation runs on high-end HPC systems or to deal with
larger gaps in datasets.

However, within a data-centric approach‚ dealing with large, distributed datasets
bymeans of programming, is unavoidable. Minimizing data movement in algorithms
has to be considered as well as making use of data hierarchies (see Schulthess 2015).

Data alone is not sufficient for gaining new insight and knowledge.Manymachine
learning methods rely on high-quality, annotated data being available for training.
Obtaining high-quality, labeled data typically is a tedious task. In order to scale such
tasks to a global and just-in-time level, scientists have to be released from doing
repetitive, automatable work. Incremental learning techniques have to be developed,
filling gaps in data streams, providing reliable labels, as well as sorting out minor
quality measurements. Citizen science projects such as PlanktonID (Christiansen &
Kiko, 2016) have proven that getting the public involved, large gains can be obtained
in combining machine prediction with human perception. This is just one example
showing that successful data science approaches reach beyond classical data analysis.
At the end, it is the way we interact with data, which will push us to the next level.
Being visual beings, new approaches for visual data exploration, technology will
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enable users to explore complex datasets and set off to new exploration journeys.
For such technology to be developed, interdisciplinary teams of Earth scientists, AI
specialists and visualization experts have to join forces in modeling data exploration
workflows and identifying entry points for technological support.

1.5 Digital Earth Culture

Working in cross-domain teams, making use of the diversity of expertise will be
a key requirement of realizing Digital Earth. A new culture of scientific coopera-
tion has to be implemented (Dai et al. 2018). From a slightly broader perspective,
working toward Digital Earth will become an instantiation of digital transformation
in Earth System Sciences. Making use of digitalization in order to release humans
from automatable tasks, building on human creativity and supporting new insight by
data-driven hypothesis making will transform knowledge extraction in Earth System
Sciences.

Co-creative processes and agile cycles will become the new way of pursuing
science. Cross-disciplinary cooperation will advance tools for scientific research,
and advanced tools will foster creativity in Earth System Sciences. In general, digi-
talization and open science will cross-fertilize each other. With results of scientific
work being shared, scientific progress will be fostered (Helmholtz Open Science
Office, 2021). The complexity of System Earth will never be captured by a single
domain perspective alone. To understand the interplay of Earth’s compartments and
to provide insight into consequences of anthropogenic influence, a combined effort
of scientific diversity is needed. At the end, a fully operational digital twin of System
Earth might result, seamlessly fusing data from various sources and allowing users to
interact with the data, to explore, to learn and to admire the wonder of planet Earth.
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Chapter 2
The Digital Earth Project: Focus
and Agenda

Roland Ruhnke, Diana Rechid, Doris Dransch, Laurens M. Bouwer,
Holger Brix, Peter Dietrich, Stephan Frickenhaus, Jens Greinert,
Daniela Henkel, Andreas Petzold, and Wolfgang zu Castell

Abstract Digital Earth is a project funded by the German Helmholtz Association
with all centers of the research field Earth and Environment involved. The main
goal of the Digital Earth project is to develop and bundle data science methods in
extendable and maintainable scientific workflows that enable natural scientists in
collaboration with data scientists to achieve a deeper understanding of the Earth
system. This has been achieved by developing solutions for data analysis and explo-
ration with visual and computational approaches with data obtained in a SMART
monitoring approach and modeling studies, accompanied by a continuous evaluation
of the collaboration processes. In this chapter, the history, setup, and focus of the
Digital Earth project are described.
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2.1 History of the Project

The Digital Earth project was initiated by the Helmholtz Association (see Box 2.1)
in advance of the joint research program 2021–2028, to take some of the ideas and
challenges described in Chapter 1 regarding data science, digitalization, and Earth
SystemScience. The vision of the projectwas to foster interdisciplinary collaboration
and to identify and adapt in a strongly interrelated approach methods, workflows,
and applications that are true “game-changers” for studying the Earth system.

To achieve this, the eight Helmholtz Centers in the research field Earth and Envi-
ronment (AlfredWegener Institute Helmholtz Centre for Polar and Marine Research
Bremerhaven (AWI), Forschungszentrum Jülich (FZJ), GEOMARHelmholtz Centre
for Ocean Research Kiel, Helmholtz Centre Potsdam German Research Centre for
Geosciences (GFZ), Helmholtz-Zentrum Hereon, Karlsruhe Institute of Technology
(KIT), Helmholtz-Zentrum München German Research Center for Environmental
Health (HMGU), and Helmholtz Centre for Environmental Research (UFZ)) were
asked in 2016 to develop a joint proposal “Digital Earth” as part of a call on future
research topics within the Helmholtz Association Initiative and Networking Fund.

Already during the definition phase, it became obvious that focusing on a common
direction for a joint proposal was challenging: the involved scientists of each center
had different disciplinary backgrounds, expectations, and views on such a project.
While some were able to contribute precise geoscientific research questions related
to observation or model data from their discipline and their institutional background,
others were interested in contributing methods of data science or software engi-
neering for data exploration, and again, others were contributing a perspective on
developing data infrastructures for data-intensive science within the project. Conse-
quently, the heterogeneous interests and possible engagements were not fully harmo-
nized toward an effective proposal development, but they rather had to be integrated
into a common development and a common understanding of the project goals. To
achieve this, a cross-disciplinary and cross-compartment approach was identified
as useful, allowing for a holistic view on the coupled compartments of the Earth
system. The strength of such an approach is the diversity of perspectives resulting
in the challenge to create frameworks for fruitful long-term collaboration within the
project.

Box 2.1: The Helmholtz Association at a Glance

• Germany’s largest research organization.
• Named after Hermann von Helmholtz (1821–1894), one of the last great

scientific generalists.
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• Annual budget of ~ e 4.5 billion.
• ~ 39,000 employees.
• World-class science infrastructure.
• 18 independent research centers all over Germany.
• Research plays a key role in identifying reliable answers that benefit society,

science, and the economy.
• Six fields of research focus on the major societal challenges of our time—

such as the digital revolution, climate change, energy transition, transport in
the future, and the battle against severe and widespread diseases and work
on developing sustainable solutions for the future. In doing so, Helmholtz
covers the entire spectrum from basic to application-oriented research while
applying an interdisciplinary approach.

• The Helmholtz Association cooperates with leading research institutions at
the national and international level and is committed to the highest stan-
dards of talent management at all levels and the promotion of early-career
researchers.

• New knowledge can only benefit society and the economy if it is transferred
and therefore made usable. For this reason, transferring knowledge and
technology and promoting innovation are of extraordinary importance to
us.

• 400 new patents are filed every year.
• Approximately 20 new high-tech spin-offs per year.

With the knowledge of the aspects of digitalization described in Chapter 1 and
especially the challenges associated with it in mind, the discussion of redefining the
aims in favor of reusable, framework-based concepts, the potential of artificial intelli-
gence and advanced visualizationmethodswould play an important role in theDigital
Earth project. In addition, it appeared natural to manifest the goal of reusability and
sustainability to support the networking process and long-term collaboration explic-
itly in a dedicated task, since the long-termperspective of further collaborationwithin
the joint research program 2021–2027 was given immanently in the research field
Earth and Environment (see Box 2.2).

Box 2.2: Helmholtz Research Program “Changing Earth – Sustaining
Our Future”
Climate change, the extinction of species, environmental pollution, and the
increasing vulnerability of a technological society to natural disasters are
among the greatest challenges of our time. We take a systemic approach to
researching our natural environment—from the land surface and the oceans to
the most remote polar regions. After all, it will only be possible to plot a course
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into a sustainable future with in-depth knowledge of the Earth system, inno-
vative technologies, strategic solutions, and evidence-based recommendations
for policymakers.

Seven Helmholtz Centers are collaborating to gather deep insights into the
complex relationships between the processes that take place on our planet.
What are the causes and effects of global environmental changes? How can
natural resources be used sustainably? How can we protect ourselves more
effectively from disasters and natural hazards like droughts, heavy rainfall,
storms, floods, and earthquakes? We aim to develop solutions and strategies
to help humankind adapt to changing environmental conditions, to minimize
global threats like climate change, and to understand the potential impact of
these risks—not only for the environment but also for the economy and society.

2.2 Focus of Digital Earth

The Digital Earth project addresses the challenge of digital transformation in Earth
science. The central goal of the project is to enable Earth scientists to (a) develop
methods to link data across compartmental boundaries across spatial and temporal
scales; (b) establish coherent data flows and analysis workflows; and (c) develop
approaches to guide data acquisition in the field by linking various field and model
data. The central question of the project is: How can data science contribute to the
goals and improve scientific results? This is the fundamental question asked by the
natural scientists toward data science.

Therefore, the Digital Earth project is not directed to develop entirely new data
science methods and technologies such as new machine learning algorithms or visu-
alization techniques. The innovative aspect is to link natural science and data science
and to develop cross-boundary approaches focusing on three main areas, as they are
essential: (i) data analysis and exploration; (ii) data collection and monitoring; and
(iii) collaborative interdisciplinary working, which is of special importance for the
digital transformation.

Developing, advancing, and adopting means that enable this vision are the tasks
of Digital Earth to transfer knowledge and close gaps between the two disciplines of
Earth science and data science. Here, two scientific ambitions merge, one from the
Earth science community that wants to have data science approaches available for
their investigations, and the other ambition from data scientists that wants to advance
data sciencemethods in itself, but also tomake themmore easily adaptable to specific
scientific requirements. A dialogue is required, and a long-term and sustainable
cooperation and problem-solving culture need to be established, in which questions
can be put forward and iteratively worked on, solutions get tested and finally adopted.
This approach, which is tailored to the needs of the Earth scientists, includes faster
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Fig. 2.1 Three cornerstones of the Digital Earth project

and easier-to-use applications, the development/promotion of best methodologies,
the adjustment and extension of existing applications, and the implementation of
automatization.

Within the focus triangle of Digital Earth (Fig. 2.1), we address several issues: the
reuse of data and methods/tools by a broad scientific community reaching far beyond
the researchers directly involved in the generation of data and methods/tools, FAIR
principles (Findable, Accessible, Interoperable, and Re-usable), quality assessment,
visual and computational data exploration, interpolation and integration of data from
in situ measures and simulation models, and scientific workflows.

Within several showcases, we adapted and enhanced several data science methods
to address challenges we have to face in the investigation of the System Earth. We
address challenges related to the following three topics:

• Data analysis and exploration;
• Data collection and monitoring;
• Collaborative interdisciplinary working.

These three topics and their challenges are discussed in the next sections, and the
separate chapters in this book that are dedicated to solutions developed in Digital
Earth for addressing these challenges are introduced.

2.2.1 Data Analysis and Exploration

Challenges for data analysis and exploration addressed with visual approaches (see
Chapter 3): The incessant processes shaping our Earth’s environment are determined
by an interplay of diverse phenomena of physical, chemical, and biological nature,
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with ranges of action that span from planetary scales into the microscopic realm.
As such, the study of the geoscientific processes and the interplay of determining
phenomena rely on the analysis of highly diverse kinds of data from many sources.
The following challenges arise for analysis and exploration:

• The need to establish connections between causes and consequences of geosci-
entific processes: The connections become evident only when observations from
various disciplines and sources are brought into the relationship.

• The need to retain a sense of spatial and temporal coherence across different
scales: The sense of spatial and temporal coherence is easily lost, when simulta-
neously regarding information at different scales such as sediment samples that
encode information at cm scale, while remote sensing data does so in km scale.
In the temporal dimension, an underwater sediment plume can arise and settle in
a matter of minutes, while global climatic phenomena are compared with each
other across decades.

• The need for suitable means to integrate a variety of heterogeneous spatio-
temporal datasets: Scientists have to be supported in creating a “holistic view”
on processes and related phenomena.

Digital Earth addresses these challenges with visualization. A main advantage of
visualization is its ability to parallel display data even if the data is heterogeneous in
scale, variables or accuracy.We applied various visualization techniques and environ-
ments and adopted them to our geoscientific requirements. The outcomes are tools
for interactive data exploration based on (a) multiple linked view techniques; (b)
web-based technologies for real-time exploration of data across spatial and temporal
scales; and (c) immersive visualization.

Challenges for data analysis and exploration addressed with computational
approaches (see Chapter 4): artificial intelligence and machine learning methods
are increasingly applied in Earth system research, for improving data analysis, and
model performance, and eventually system understanding. Digital Earth focuses on:

• The need to extract relevant information/features using machine learning:
For various observational features, no labeled data collections exist. Such labels
are, however, important to classify specific observations using prior knowledge,
for instance. Using sparse datasets and machine learning methods, alternative
ways were found to broaden data availability and derive new, crucial information
from existing data. We used examples to map river levees in Germany for which
no consistent data was available, and for locating ammunition on the sea-bed.

• The need to approximate complex processes with machine learning: Some
processes in the Earth system are too complex or computationally costly for large-
scale or multiple simulations in models. Here, machine learning alternatives can
replace some of these (partly unknown) processes. We present applications for
atmospheric methane and ethane concentrations through a neural network and
for combining highly heterogeneous data to simulate relations between extreme
temperatures and health outcomes.
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• The need of point-to-space extrapolation: For many applications in Earth
systems research, the extrapolation of point to space and local measurements
to regional or global fluxes are essential. We employ different computational
approaches, for analysis and processing of point observations of methane
emissions in order to be comparable with global atmospheric emissions as
observed/estimated in global databases, and the functionalities of advanced
approaches for point-to-space extrapolation.

• The need of anomaly and event detection across heterogeneous datasets:
Events and anomalies are important to detect in Earth systems for scientific and
practical applications. The huge amount of data and the associated heterogeneity,
requires analytic approaches that automate data analysis and still provides rele-
vant results. We present two approaches to detect and understand events in coastal
and river waters that are based on this principle: one to assess the similarity of
river flood events using multiple atmospheric, hydrologic, and other variables and
another that combines observational and model data to detect river plumes at sea
at the end of a riverine flood event chain and tracks their spatial and temporal
extent.

Challenges for data analysis and exploration addressed with scientific workflows
(Chapter 5). The challenges include:

• The need for enhanced work environments that integrate methods and tools
into seamless data analysis chains which allow scientists to comprehensively
analyze and explore heterogeneous, distributed datasets. Currently, scientific data
analysis is often characterized by performing the analytical tasks in single isolated
stepswith several isolated tools. This isolatedwork environment hinders scientists
to extensively exploit and analyze the available data.

• The need for sharing and reuse of analytical methods and tools: Scientific data
analysis and exploration often require specific, highly tailored methods and tools;
many of them are developed by geoscientists themselves. Often the methods and
tools can hardly be shared and re-used since they lack state-of-the-art computer
science methods. The analysis methods and tools are not available for others and
have to be invented again and again.

• The need to exploit data across the various scientific disciplines in Earth
System Science: To answer complex scientific questions, data from various
sources has to be integrated, but also the data analysis approaches itself that
extract information from the data have to be integrated across disciplines. Inte-
gration is necessary on two levels: integration on the technical executable level,
but also on the conceptual scientific level.

• The need to transform science into digital science: The transformation of
science into digital science has been an ongoing process for many years. Suitable
means are required to facilitate this transformation and to support collaboration
of computer- and geo-experts.

Digital Earth applied the concepts of scientific workflows and component-based
software engineering to address these challenges and needs. We adapted and proved
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the concepts in our geoscientific work environment and assessed how the approaches
can tackle the challenges. Within the showcase “cross-disciplinary investigation of
flood events,” we developed (a) several data analysis workflows on a conceptual
and digital level and (b) the component-based Data Analytics Software Framework
(DASF). The outcome is the Digital Earth Flood Event Explorer that allows inves-
tigating floods from several perspectives and that exemplarily shows how scientific
workflows and component-based software engineering can improve scientific data
analysis.

2.2.2 Data Collection and Monitoring

Challenges for data collection and monitoring addressed with SMART monitoring
approaches (Chapter 6). The challenges include:

• The need for SMART Sensors: Advancing and developing sensors that have
real-time data (pre)processing capacities and are linked in a self-organizing sensor
network is still a challenging technological task. Automated event detection, drift
correction, and failure detection are possible but still rarely done. Real-time data
connections and centralized visualization and analyses are more and more estab-
lished, but the real challenge is that such SMART sensors and sensor networks
become easy to use and the standard way of acquiring multiparameter data in the
field.

• The need for a SMART DataFlow: An easy to use, scalable and adaptable way
of receiving data from sensors and re-distributing them through various channels
and means also in real time is the challenge for an efficient SMART Monitoring
DataFlow. Standardized and largely automated procedures are needed to obtain
reliable data. As an essential part of the live cycle of data is the DataFlow crucial
for acquiring high-quality data at the right time and location.

• The need for SMART MetaData: Columns of numbers of a time series alone are
not useful without the context these numbers have been generated. The suitable
description of data is a prerequisite for any secondary use of data.Apart fromFAIR
descriptions, the data trustworthiness also needs to be assessed and described to
allow a correct evaluation of the data. Compiling this data in a complete manner
and raising the awareness again, that MetaData are crucial for the correct use of
data, is the real challenge for SMART MetaData.

• The need for SMART Sampling: Objectively finding the best possible sample
location in space and time (most informative information for the respective
research question), ideally in an automated and adapting way, is a challenging
task. SMART sampling strategies are supporting this challenge. Applying state-
of-the-art statistical and AI methods jointly with interactive visualization and
analyses is increasing in the community. The challenge is to spread the knowl-
edge about these methods and present easy ways of using them to lower the hurdle
of their application.
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Addressing these challenges was the main objective of the SMART Monitoring
effortswithin theDigital Earth project. The involved research centers started, iterated,
and further developed the idea of an expanded SMART Monitoring Concept that
finally integrates four conceptual groups of tools, each tackling one of the above-
stated challenges.

2.2.3 Collaborative Interdisciplinary Working

Collaboration is essential for the success of the Digital Earth endeavor. Collaboration
has to be managed on several levels: between various Earth science disciplines,
between data science and Earth science, and between the involved research centers.
We identified the following crucial issues in the project that we had to find solutions
for:

• Establish topical working groups to shape a framework for collaboration across
disciplines. For this, we defined two showcases: (a) the analysis of flood events at
the Elbe River along the process cascade event generation, evolution and impact
across atmosphere, and terrestrial and marine disciplines; and (b) quantification
of methane emission fluxes into the atmosphere from gas exploration in the North
Sea.

• Establish and implement digital collaboration platforms for information manage-
ment and exchange. Mainly, we applied confluence for information sharing and
GitLab for collaborative software development.

• Promote existing or upcoming infrastructures, agreements, and policies such as
standards, licenses, or eScience infrastructures.

Chapter 7 presents a social science-oriented evaluation in which aWorld Cafe and
a survey were used to evaluate the interdisciplinary collaboration and opportunities
for improvement.

As Digital Earth is a pilot project, all process steps in collaboration, scientific
workflow setup, method and tool development and hence scientific progress have
been evaluated regularly throughout the project period using different measures
(see Chapter 8). These evaluations during the project lifetime improved the process
steps and produced an added value for the investigation of the Earth system and
interdisciplinary collaboration.

To summarize, Digital Earth is designed as a pilot project that integrates data
science methods, such as machine learning or visual data exploration into Earth and
environmental science, and thus expands and enhances traditional analytical proce-
dures. Digital Earth advances data science with the concrete application field in Earth
science. Research in data science is necessary to tailor and enhance existing methods
to the specific requirements resulting fromEarth sciences. Furthermore, Digital Earth
is a kind of a socio-cultural and organizational pilot project on collaboration between
institutions and disciplines with a continuous evaluation of the progress.
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In order to make the results of the described main topics of Digital Earth known to
the communities of Earth sciences as well as data sciences, we have compiled them in
this book. The aim of the book is to present themethods and solutions for overcoming
the challenges of the three main topics in a compact way. In the following chapters,
the book deals with the visual approaches (Chapter 3), the computational approaches
(Chapter 4), and the developed scientific workflows (Chapter 5) of the data anal-
ysis and exploration. The collection of data using the Digital SMART monitoring
approaches is described in Chapter 6. The concepts of interdisciplinary collaboration
are conveyed in Chapter 7 and the evaluation of the Digital Earth approach for digi-
talization in Chapter 8. Finally, the lessons learned from the project are presented in
Chapter 9.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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Chapter 3
Data Analysis and Exploration with
Visual Approaches

Everardo González Ávalos, Doris Dransch, Nicola Abraham, Valentin Buck,
Daniel Eggert, Tom Kwasnitschka, Daniela Rabe, Flemming Stäbler,
and Viktoria Wichert

Abstract A comprehensive study of the Earth system and its related processes
requires a holistic examination and understanding of multidimensional data acquired
with a large number of different sensors or produced by various models. To this end,
the Digital Earth project developed a set of software solutions to study environmental
data sets using visual approaches. In the following chapter, we present three data
visualization products developed to deal with the challenges of the analysis and
exploration of environmental data.

Keywords Data visualization · Data exploration · Spatiotemporal exploration ·
Linked views · Immersive visualization

3.1 Challenges

The incessant processes shaping our Earth’s environment are determined by an inter-
play of diverse phenomena of physical, chemical, and biological nature, with ranges
of action that span from planetary scales into the microscopic realm. As such, the
study of the geoscientific processes and the interplay of determining phenomena rely
on the analysis of highly diverse kinds of data frommany sources. Several challenges
arise from this situation:

1. The need to establish connections between causes and consequences of geosci-
entific processes. The mechanisms that link these processes together might be
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few and scattered; thus, the connections become evident only when observa-
tions from various disciplines and sources are brought into relationship with
each other.

2. The need to retain a sense of spatial and temporal coherence across different
scales. The sense of spatial and temporal coherence is easily lost when regarding
information across different scales simultaneously. This can be the case with
sediment samples that encode information in cm scale, while remote sensing
data does so in kmˆ2 scale. In the temporal dimension, an underwater sedi-
ment plume can arise and settle in a matter of minutes, while global climatic
phenomena are compared with each other across decades.

3. The need for suitable means to integrate a variety of heterogeneous spatiotem-
poral data sets. Scientists have to be supported in creating a “holistic view” on
processes and related phenomena.

Digital Earth addresses these challenges with visualization. A main advantage of
visualization is its ability to simultaneously display data even when it differs in scale,
variables, or accuracy.We use interactive visualization to display heterogeneous data
sets in a unified 4-dimensional environment and to interactively explore the data with
respect to context and connections.

We applied different visualization techniques and environments and adapted them
to our geoscientific requirements: We developed and respectively utilized following
visualization tools:

– The Data Analytics Software Framework (DASF) which provides linkable
visualization components (multiple linked views),

– The Digital Earth Viewer, an engine for 4D data contextualization and visualiza-
tion, and

– The ARENA2, an immersive visualization infrastructure.

3.2 The Data Analytics Software Framework (DASF)
Providing Linkable Visualization Components

3.2.1 Introduction

The Data Analytics Software Framework (DASF) (Chapter 5.2.3) which we have
developed in Digital Earth aims at implementing scientific data analysis workflows.
Besides the module to integrate components into a scientific data analysis workflow,
it also provides a visualization module to present the data and results that are used
and created in the workflow.
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3.2.2 Visualization Concept

In order to enable scientists to simultaneously show and explore the data in its
multiple dimensions (space, time, different variables, accuracy), the DASF visu-
alization module consists of a variety of visualization components that are linked
according to the multiple linked view visualization approach (Roberts 2005; Spence
2007). The visualization components can be all types of views on data: maps,
diagrams, tables, animations, or calendar maps to name a few. The visualization
components are presented in several windows simultaneously. The windows are
linked; this means that operations in one window affect all other related windows.
For example, if a user selects a subset of data in one window (e.g., in a map), all other
windows visualize information for the same selected data subset. The operations are
executed interactively with mouse-based interaction techniques, such as brushing,
highlighting, or filtering. Multiple linked views are a widely used technique in data
and information visualization to present multivariate and multidimensional data sets.

3.2.3 Technical Implementation

Our architecture to technically implement the DASF visualization module utilizes
well-established techniques. To create the single visualization components, we used
for instanceOpenlayers, (https://openlayers.org) or leaflet (https://leafletjs.com/) for
maps, D3 (https://d3js.org/) or chartjs (https://www.chartjs.org/) for charts (e.g.,
histogram, time diagram, radarplot), and Vueftify (https://vuetifyjs.com/en/compon
ents/data-tables/) for tables. To implement the multiple linked view approach, we
applied the “reactive properties” concept which is provided by theVuejs and Vuetifyjs
software package (https://vuejs.org/v2/guide/reactivity.html). For more information
on the complete DASF implementation see, Chapter 5.2.3.

3.2.4 Application

The DASF visualization module has been applied in all workflows contributing to
the Digital Earth Flood Event Explorer (Chapter 5.3). For each workflow, an aligned
visual interface was assembled from the various visualization components and the
multiple linked view approach. Exemplarily, we show the visual interface of the
“River Plume Workflow” which supports geoscientists to investigate the impact of
river floods on the marine environment (Chapter 5.3.3). It should enable scientists
to detect the spatiotemporal influence of the river plume on the sea due to chemical
anomalies and to answer the question: Where and when can we detect the flood river
plume in the sea? Several data sets have to be used and combined to answer this
question. These include observations of chemical characteristics of the waterbody,

https://openlayers.org
https://leafletjs.com/
https://d3js.org/
https://www.chartjs.org/
https://vuetifyjs.com/en/components/data-tables/
https://vuejs.org/v2/guide/reactivity.html
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such as salinity, which are collected by a sensor at regular intervals along a ferry
route, and a data set from a physical model that calculates model trajectories of the
waterbodies observed on the ferry route up to 10 days into the past and 10 days into
future from a reference day. On the basis of these data sets, anomalies of salinity,
chlorophyll or surface temperature, and thus the spatiotemporal behavior of the river
plume can be detected. Chlorophyll anomalies related to the river plume occur when
the deviation is above the expected range, while salinity and surface temperature
anomalies occur when the deviation is below the expected range.

The multiple-view visualization consists of following components (Fig. 3.1): The
map view (V1) shows the spatial distribution of the observed ferry box data and
calculated model data; the color encodes the concentration of a chemical or physical
parameter such as salinity. Another view presents a comparison of the quantities for
each chemical or physical parameter measured inside and outside of a user-defined
region of interest. The bar chart (V3) gives an overview of all chemical/physical
parameters; the table below (V4) shows detailed information for one selected param-
eter. A further view (V5) presents temporal information and visualizes the occurrence
of anomalies of the parameters in time in a calendar-heatmap. These anomalies are

Fig. 3.1 Multiple linked views to determine the spatiotemporal behavior of the flood’s river plume
in thewaterbody, such as theNorth Sea (Interface-in-ActionVideo: https://youtu.be/yl8ngubBxYY)

https://youtu.be/yl8ngubBxYY
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candidates for detections of the river plume in the observational data and are deter-
mined automatically through a Gaussian Regression algorithm (Chapter 4.5.1). In
the calendar-heatmap, days with deviations from the expected range of each vari-
able are shown with different color intensity. More details about the anomaly can be
added for each entity in the heatmap through a mouse-over action to load the relevant
observational and model data into the interactive map (V7). An additional overview
presentation (V6) shows the whole data set and puts the data subset presented in V5
into context. The links between the single views are realized with interactive opera-
tions like the filtering of a region of interest (V1), the selection of a continuous time
interval (V2a), or discrete time step (V2b), or by mouse-over actions for presenting
additional information (V7).

Added Value: The visual interface of the “River PlumeWorkflow” supports scien-
tists to visually put the various data sets into context: anomalies of chemical/physical
parameters and their spatial and temporal distribution. The overall view on the one
hand and the capability of interactive data exploration on the other hand assist scien-
tists to finally detect the river plume and its behavior in space and time. The combi-
nation of the visual interface and the Gaussian Regression algorithm to detect the
river plume that was also developed in Digital Earth (Chapter 4.5.1) provides a novel
approach for scientists to comprehensively analyze the various data sets and to detect
the river plume.

3.3 The Digital Earth Viewer

3.3.1 Introduction

The Digital Earth Viewer is a web application for spatiotemporal contextualization
and visualization of heterogeneous data sources. It was developed with the goal of
enabling real-time exploration of geoscientific data sets across spatial and temporal
scales. To this end, it is capable of ingesting data from a large variety of types that
are usually found in the geosciences, and it deploys a user interface, which allows
for interactive visual analysis. At the same time, online and offline deployment,
cross-platform implementation, and a comprehensive graphical user interface are all
capabilities that make the Digital Earth Viewer particularly accessible to scientific
users.

3.3.2 Visualization Concept

This infrastructure provides a framework in which new visualizations for heteroge-
neous data set can be created with relative ease. Since no reduction in dimensionality
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is undertaken and the four-dimensional data (space and time) is displayed in a four-
dimensional context, temporal or spatial distortions are mostly avoided; this leads to
an improved interpretation capability and supports the understanding and contextu-
alizing of information in an intuitive process. The Digital Earth Viewer enables the
user to visualize assorted geoscientific data in three spatial dimensions and across
time. It projects the spatial coordinates latitude, longitude, and altitude into a virtual
globe and builds an ordered registry of temporal events. Both of these features can
be accessed through user interface elements in real time.

Different data sources can be added simultaneously to form individual layers,
each with its own data basis and transformation pipeline. Global parameters, such as
the position in time and space or the intrinsic scale of the visualization, are implicitly
and explicitly communicated to the user in the graphical interface while specialized
parameters can be set through a menu. The transformations for each data source
happen independent from one another and are composed together into one final
result, allowing the blending of multiple data sources.

Data is grouped into several different categories for display. Traditional 2D maps
can be projected onto a spherical surface and displacement along the sphere’s normal
vector can be applied. Scalar values aremapped onto one of a set of color maps, while
precolored maps are passed through. Sparse data can be displayed as a point cloud
which is projected, colored, and culled according to the global projection parameters.
For the intuitive representation of vector fields, an animated particle system is created
in which the particles follow the vector field which is projected onto the virtual globe.

3.3.2.1 Technical Implementation

The tool is a hybrid application, which is split into a server back-end and a client
front-end. The rust (https://www.rust-lang.org/) back-end handles data extraction
from different file formats as well as re-gridding into viewable areas and caching. It
can be hosted remotely on a server or locally for offline access. The front-end consists
of an HTML interface component and is responsible for the 3D data rendering using
the WebGL API (https://www.khronos.org/webgl/) and the implementation of the
graphic user interface controls which uses Vue.js (https://vuejs.org/).

For each data type that the server needs to ingest, a specific data type is built that
transforms the incoming data format into an internal representation optimized for
computation operations. This representation is then passed over to the client, which
applies graphical transformations to compute a visual representation of it.

A running instance of the application can be accessed under the following web
address: https://digitalearthviewer.geomar.de.

The Digital Earth Viewer is an open-source software licensed under the EUPL
(https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12).

https://www.rust-lang.org/
https://www.khronos.org/webgl/
https://vuejs.org/
https://digitalearthviewer.geomar.de
https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12
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3.3.3 Applications

3.3.3.1 Methane Budget in the North Sea

The Digital Earth showcase “Methane Budget in the North Sea” set up to build a
methane gas budgeting for the North Sea region. The showcase makes use of the
Digital Earth Viewer to unify a large number of data sets under a single visualization
interface. Boreholes from fossil fuel production are known to be important sources of
methane that is released into the atmosphere. The GEBCO (https://www.gebco.net)
bathymetry from the North Sea region is displayed in a 3D elevation model. The
aerosol and trace gases dispersion model ICON-ART (Rieger et al. 2015) is used
to calculate the contribution of these boreholes to the atmospheric methane concen-
tration. The viewer’s interface allows to quickly compare the resulting data product
with existing methane estimates from the EDGAR (https://data.jrc.ec.europa.eu/col
lection/edgar) emissions database and provides a visual assessment of their accuracy.
In a similar way, measurements of geochemical water properties from the expedi-
tion POS 526 (https://oceanrep.geomar.de/47036/) are displayed in spatial context
of other measurement compilations from the Pangea (https://www.pangaea.de) and
MEMENTO (Bange and Bell 2009) databases. The observation of their develop-
ment over time is further supported by the visualization of three-dimensional phys-
ical water properties like current velocities and pycnocline depth obtained from the
NEMO Model (Madec 2016). An instance of the Digital Earth Viewer displaying
the Methane showcase can be found under following web address: https://digitalea
rthviewer-methane.geomar.de.

Added value:Using the Digital Earth Viewer, scientists can simultaneously access
and visualize data from all the sources mentioned above. Seamless spatial navigation
allows them to directly compare the global impact that regional methane sources
have in the atmosphere, while temporal components enable them to do so across the
different seasons of an entire year (Fig. 3.2).

3.3.3.2 Explorable 4D Visualization of Marine Data

The expedition Mining Impact-II started a series of experiments to answer some
of the most important questions regarding profitability and sustainable exploitation
of resources in deep sea mining, such as mining for manganese nodules. Deep sea
exploration is a challenging endeavor that can be greatly aided by the use of modern
visualization techniques. In this work, we aim to recreate a sediment plume which
resulted from an underwater dredging experiment. This will help to quantify similar
sediment depositions from mining that could impact deep sea ecosystems at a depth
of 4,000 m. Sensor data fusion allows for the virtual exploration of experiments
on the seafloor; the following is an overview of the different data sources acquired
during the expedition that come together within one visualization:

https://www.gebco.net
https://data.jrc.ec.europa.eu/collection/edgar
https://oceanrep.geomar.de/47036/
https://www.pangaea.de
https://digitalearthviewer-methane.geomar.de
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Fig. 3.2 Digital Earth Viewer used to display theNorth Sea area, atmosphericmethane calculations
from the ICON-ART model, and methane flows from oil and gas wells

• Turbidity sensors calculate this optical property of water by measuring the
scattered light that results from illuminating the water.

• Current sensors use the Doppler effect to measure the velocity of particles
suspended in the water column and thus calculate the speed and direction of
water currents.

• Multi-beam echosounders emit fan-shaped sound waves and use time of flight to
reconstruct the seafloor bathymetry.

For the dredging experiment, an array of 8 turbidity sensors and 8 current sensors
was placed on the sea floor in an area previously scannedwith a high-resolutionmulti-
beam echosounder mounted beneath an autonomous underwater vehicle. Moreover,
a virtual sediment plume was modeled and integrated into the experiment. The
spatiotemporal contextualization of all data sources took place allowing for a real-
time simultaneous analysis of heterogeneous data sources in 3D and across time. An
instance of the Digital Earth Viewer displaying the Sediment Plume showcase can
be found under following web address: https://digitalearthviewer-plume.geomar.de.

Added value:Using the Digital Earth Viewer, the experiment grounds were recre-
ated. This virtual environment allowed scientists to peer beyond the darkness of the
deep sea and explore the impact of a simulated mining endeavor. The numerical
model of the sediment plume was superimposed and compared to the in situ data
obtained by the turbidity and current sensors resulting in a visual confirmation of
the sensor placement and model correctness. Deployment as a web-based applica-
tion accounted for cross-platform portability across devices and operating systems,
allowing scientists to visually explore the phenomena that take place in this virtual
abyssal plain, and to share their discoveries with a wider audience (Fig. 3.3).

https://digitalearthviewer-plume.geomar.de
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Fig. 3.3 Parallel exploration of multiple marine data types: the Digital Earth Viewer is used for
the visual corroboration of a 3D plume model. This is done comparing the plume dispersion values
(small orange dots) with the readings of the turbidity sensors (larger green and red dots) and the
water currents (green lines)

3.4 Spatially Immersive Visualization of Complex Seafloor
Terrain

3.4.1 Introduction

To a large extent, field geologists derive their mental models of complex outcrops and
depositional features (e.g., volcanoes) from situational awareness and the first-person
perception of an environment via the bodily senses. To date, this is still reflected in the
way geologists are trained, even in light of emerging digital technologies. Moreover,
economies of scale (e.g., geospatial correlation of small outcrops) unfold only across
large “industrial scale” survey areas, as opposed to isolated, confined demonstrator
missions. In order to bridge the scales of these two different planes of operation
and to retain a true sense of dimensionality while doing so, the ARENA2 spatially
immersive visualization laboratory was developed at GEOMAR.

3.4.1.1 Visualization Concept

The ARENA2 projects geospatial data onto an elevated dome and allows one or
multiple users to navigate freely across all three dimensions of a virtual environment.
A faithful recreation of live exploration of the geological features is enabled by this.
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Notably, most of the ARENA2 applications are also available in desktop envi-
ronments, or even through web browsers. This creates a continuum of visualization
infrastructure scaling from opportunistic, personal access all the way to collabo-
rative, structured visualization campaigns serving the entire spectrum of academic
use cases: data sets that were previously cured and preprocessed using commonly
available software applications on a desktop PC can be displayed and analyzed by
multiple users with a new sense of immersion.

3.4.2 Technical Implementation

The ARENA2 features a tilted, stereoscopic projection dome covered by a five-
channel projection system, which is in turn fed by a node-based visualization cluster
of five computers. We follow a three-tiered approach on visualization software:
First, the graphical output of the photogrammetric post processing software itself
is ported to the dome environment by means of OpenGL buffer distribution and re-
interpretation across the cluster, known as openGL-hooking. Second, a dedicated,
distributed visualization software loads a statically exported point cloud in a georef-
erenced virtual globe context. Third, parallel WebGL-based visualization tools are
synchronized across the cluster, with dome-specific warping and blending applied
on the operating system level. Here, a preprocessed level-of-detail pyramid of the
point cloud is dynamically streamed to all web clients.

3.4.3 Application

To exemplify the procedure, an inaugural data set demonstrator was created: We
surveyed a 500×500×80m volcanic crater in 2016, hosting an extensive, active
hydrothermal field at the Niua South Volcano, Tonga, by means of the remotely oper-
ated vehicle (ROV) ROPOS (https://www.ropos.com/index.php/ropos-rov). During
100 hours of a methodical survey, some 220.000 photographs of the seafloor were
collected using a single-lens reflex camera and transformed into a 3D, color textured
terrain model. Its scale and detail form a considerable challenge for agile, interactive
visualization procedures.

Added value: Scientists studying these hydrothermal vents will be able to do so in
life-like detail. The virtual environment can be freely explored without the physical
constraints of the ROV used for the original acquisition. For the wide majority of the
population that will never be able to take part in an expedition such as the one where
these geological features were captured, the ARENA2 can help bring these people
closer to the richness of the underwater landscapes with an immersive experience
(Fig. 3.4).

https://www.ropos.com/index.php/ropos-rov
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Fig. 3.4 ARENA2 projection dome displaying a bathymetric relief of the deep sea. The infras-
tructure provides an immersive experience for the presenter and the audience alike, opening new
narrative possibilities and discussion planes

3.5 Assessment of the Three Visualization Approaches
and Techniques

The three data visualization techniques developed in the Digital Earth Project
respond to the challenges formulated in 3.1. All integrate a variety of heteroge-
neous spatiotemporal data sets, but each does so in a different way. The linked views
of the DASF relate directly to the first challenge and propose an efficient answer
with the use of graphs and charts for data conceptualization. These provide rapid
access to insights of interlaced behaviors which a user can then recognize as causal
links. The 3D data representation capabilities are the core strength of the Digital
Earth Viewer which excels at exploring all dimensions of spatiotemporal data from
multiple sources. It addresses specially the second challenge, which is to retain a
sense of spatial and temporal coherence across different scales. Both the applica-
tions based on DASF and the Digital Earth Viewer are deployed as web applications
and thus are accessible across platforms. Considering the ARENA2 consists of a
building-sized infrastructure, accessibility and deployment are by far its largest limi-
tations. Tomake up for this, it provides unparalleled data immersion capabilities and a
revolutionary way of experiencing data, during both the exploration and presentation
of geoscientific data sets. With this, it also addresses challenges 1 and 2.
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Abstract Artificial intelligence and machine learning (ML) methods are increas-
ingly applied inEarth system research, for improving data analysis, andmodel perfor-
mance, and eventually system understanding. In theDigital Earth project, severalML
approaches have been tested and applied, and are discussed in this chapter. These
include data analysis using supervised learning and classification for detection of
river levees and underwater ammunition; process estimation of methane emissions
and for environmental health; point-to-space extrapolation of varying observed quan-
tities; anomaly and event detection in spatial and temporal geoscientific datasets. We
present the approaches and results, and finally, we provide some conclusions on the
broad applications of these computational data exploration methods and approaches.
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4.1 Introduction and Challenge

Computational data exploration and analysis can help to substantially improve
modelling and understanding of Earth system processes. In this chapter, we provide
an overview of the developments in the Digital Earth project that focus on employing
such innovative techniques to improve our process understanding, to derive new
insights from a variety of existing datasets and to make the investigation of complex
processes more feasible. Diverse sub-disciplines in the Earth sciences are using
computational methods to solve some of the major issues identified for the Earth
science community. The issues for which computational applications have been
developed in Digital Earth and that are presented in this chapter are as follows:

• Extracting relevant information and features using machine learning approaches:
For various features, no labelled data collections exist, as these are too labour
intensive to develop. Labels are important for supervised learning algorithms, for
example, to classify specific observations using prior knowledge. Using sparse
datasets and machine learning methods, alternative ways can be found to broaden
data availability and derive new, crucial information from existing data. Here,
examples are provided that map river levees in Germany, for which no consis-
tent data were readily available for research before and for detecting underwater
ammunition locations.

• Approximating complex processes with machine learning: Although models are
successfully used to understand complex processes in the Earth system, for some
applications the computational cost is too high to embed this information in a
broader framework and to answer questions that are more challenging. In these
cases, approximating these same processes through machine learning algorithms
can be a means for scientists to tackle those problems. We present an approach to
estimate methane and ethane concentrations through a Neural Network and give
an example of how machine learning algorithms can be used to combine highly
heterogeneous data to answer pressing questions related to climate change and
health research.

• Point-to-space extrapolation: For many applications in the Earth sciences, single-
point observations need to be inter- and extrapolated across space to arrive at
consistent estimates of total matter fluxes. This chapter presents an example
where point observations of methane emissions are analysed and processed in
order to be consistent with global atmospheric emissions as observed/estimated
in global databases. A second application provides insights into the functionalities
of advanced approaches for point-to-space extrapolation.

• Anomaly and event detection across heterogeneous datasets: In some applications,
process understanding can be improved considerably when data from diverse
sources are combined through computational methods. Detection of events and
anomalies is important in Earth systems for scientific and for practical applica-
tions. We present an approach that combines observational and model data to
detect river plumes at sea at the end of a riverine flood event chain and tracks their
spatial and temporal extent.
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4.2 Object Recognition Using Machine Learning

4.2.1 Deep Learning Support for Identifying Uncharted
Levees in Germany

Germany has a large network of levees to manage flood events. Unfortunately, data
on the locations of these levees are not always directly available to the public or to
researchers. Due to the importance of these levees in the analysis of flood events,
approaches are needed to derive the levees’ location and height from available infor-
mation. However, such methods are not readily available, and neither are commonly
accepted nor standardized approaches. Advances in computational methods, namely
deep learning, and the release of awide range of geodata to the publicmake it possible
to find levees automatically and on a large scale.

In this research, we have started to develop such a framework and appropriate
methods to delineate levee features from such data. As data sources, we combined
aerial images and LIDAR-based digital elevation models. The raster format of this
data is comparable to image data, and as such, we apply deep learning methods,
which is providing state-of-the-art solutions for various computer vision problems.
For example, in medical image analysis, deep learning models are used for cell
classification and the tumour detection.

Our approach relies on semantic segmentation, a common task in deep learning.
Semantic segmentation refers to the classification of individual pixels to different
predefined classes. The output has the same raster shape as the input features. To train
a semantic segmentation model, a mask with a classification of the input features
is needed. In our case, these input features are the pixels from the aerial images
and digital elevation model. We choose a common architecture for our semantic
segmentationmodel, theU-Net (Ronneberger et al. 2015). AU-Net consists of blocks
of convolution layers in combination with pooling (to reduce the data size by a factor
of two) or upscaling (to increase the data size by a factor of two) layers. There is
an equal number of pooling and upscaling blocks. The pooling blocks come first,
followed by the upscaling blocks, transferring the information from input to output.
Additionally, the output of the first pooling blocks is used as an input for the last
upscaling block, and the output from the second pooling block is used as an input
for the second to last upscaling block. This schema continues for the other blocks in
the network.

To train our model, we used the publicly available data from North Rhine-
Westphalia (NRW 2021), which contains the relevant information. As features, we
use the LIDAR-based digital elevationmodel (1m resolution in two by two-kilometre
tiles) and the aerial photographs (0.1 m resolution in one by one-kilometre tiles). The
levees are available as shapefiles for the crest of the levees. Several pre-processing
steps are applied.

The first step is to rescale the aerial images to the resolution of the digital eleva-
tion model and to split the digital elevation model into one by one-kilometre tiles.
Afterwards, we rescale the pixel values for all inputs to a range of zero to one. The
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processing of the labels is more complex, as we need to create a mask from the line
shapes. The lines themselves only cover a small subset of the pixels; therefore, we
use the entire width of the levees, which is not given in the dataset. To derive the
width of a levee, we take orthogonal sections to each line segment and look for the
maxima in the second derivative of the digital elevation model along the sections.We
use these maxima as the boundaries of the levees. In addition to the derived masks
for levees, we also include a mask for the bodies of water which is derived from
publicly available polygon shapes. The training itself is run on GPUs and includes
common data augmentation techniques such as rotations.

The results must be in the same format as the original input, so we have to process
the output of the neural network and extract the information. This post-processing
consists of multiple steps. The first step is to assign contiguous areas of pixels to
different groups. This is based on a threshold value as the neural network output is the
probability of a pixel to be of one class.We also apply amaximumfilter of size four to
remove some noise which can be induced by applying the threshold. For each group
of pixels, we then look for the highest points as we want to find the crest of the levee.
These points should all fall in the same height range, a criterion we use to exclude
unlikely levees. The next step is to merge groups of adjacent tiles to get the entire
levee as one object. Additionally, we analyse the length of the crests and discard short
sections. All points of the merged groups are then transferred to a line shape. The
shape is simplified using standard tools to reduce the number of points specifying
the shape. These output shapes can then be used for analyses. We additionally use
the pre-processing method to create polygons for the entire levees (c.f. Fig. 4.1).
Overall, the methodology detects a high percentage of the charted levees, where

Fig. 4.1 Exemplary output of the deep learning model after post-processing. The input data (aerial
image on top left and digital elevation model at the bottom left) together with the output, the aerial
image with the predicted shapes as overlays
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precision and recall can be balanced by adjusting the selection threshold. The next
step is to evaluate the methodology and model using data from a different state, e.g.
Saxony. In general, this approach is applicable to a wide range of problems in remote
sensing. The fusion of different data sources is still uncommon in combination with
deep learning models. Our use case highlights the benefit of such an approach.

4.2.2 Machine Learning Support for Automated Munition
Detection in the Seabed

Both the North Sea and Baltic Sea have been used as dumping grounds for munitions,
especially after the Second World War. Nowadays, various infrastructure projects
are planned and built in these waters, including offshore wind farms and pipelines.
Before construction can begin, the area must be cleared of munitions. Multi-beam
echo sounders, side-scan echo sounders, magnetometers and sub-bottom profilers are
used to explore the construction sites. It is, however, very time consuming to analyse
the data generated by the instruments. We propose the use of machine learning to
detect munitions in the data.

For our analysis, we rely on the multi-beam echo sounder. The echo sounder
dataset provides the water depth and the backscatter, giving information on the
composition of the seafloor, at a horizontal resolution of 25 cm (where depths are
below 20 m). The integration of other data sources, e.g. magnetometer data, into one
model is possible, but comes with a number of challenges. The most important one is
getting an accurate spatial alignment of the datasets. A mismatch of even one metre
can cause many objects not to overlap in the combined dataset.

The machine learning method we applied is deep learning. As with the previous
application for levee detection, we face a semantic segmentation problem. The
model class we use to approach this problem is a U-Net (Ronneberger et al. 2015).
After testing various model configurations with depth (number of layers) and width
(number of filters in a layer), we can conclude that the problem can be solved with
relatively small models (with respect to both the depth and width). These models can
be trained on the CPU within less than an hour.

To create a training dataset for our machine learning model, a few steps are
necessary. First, we need a labelled dataset to be able to train a model. The second
step is the preparation of the labels for the model type. In our case for multi-beam
echosounder data, we need to create a mask for the map, based on available point
labels. We achieved this by labelling an area around the point label as targets. This
way we sometimes falsely label data as targets, but also account for imprecisely
placed labels. To facilitate the training of a model, we scale and standardize the data
in terms of the range of values. Here, we keep track of the exact steps and parameters
used to be able to apply the model and processing steps to other datasets in the
future. Additionally, we use standard machine learning practices like train-test splits
and augmentation techniques like rotations and mirroring.
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Fig. 4.2 Prediction of the neural network on top of the backscatter. Red areas indicate a high
predicted probability for munitions, and clear areas indicate a low predicted probability. The green
dots are the original labels

The results of themodel (Fig. 4.2) look very promising aswe can detectmost of the
labelled objects (>95%). However, we get several false positives, at least according
to the labels, which might not be complete. The second important consideration is
that the labels are not validated and might be false. Therefore, the number of false
positives might be even higher.

We transferred this approach to a sub-bottom profiler. In both cases, we have
two-dimensional data. The difference is that the data in this case are not in latitude
and longitude direction but along a transect in latitude and longitude with the depth
as the second dimension. One observation is that the models must be more complex
to get good results. An important difference is in the training process where rotations
are not a viable augmentation technique because objects create a distinct bell-shaped
curve in the sub-bottom profiler images. The training can be done on a CPU as well.
Overall, the issue of false positives persists while most labelled objects are found.
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4.3 Approximating Complex Processes with Machine
Learning

4.3.1 Estimation of Methane and Ethane Concentrations
in the Atmosphere Over Europe by Means of a Neural
Network

Methane is an important atmospheric greenhouse gas that has a substantial impact
on climate and air quality (Van Dingenen et al. 2018). Chemical transport models
(CTMs) are the most widely used tools allowing us to predict its concentration in air
and its possible effects on the environment. A typical CTM accepts emissions and
meteorological data as input data and calculates the concentration changes of atmo-
spheric methane (and other gases) in time. Although CTMs have been continuously
improved, they require a significant amount of computational resources (CPU time,
RAMand disc space). Neural networksmay become a cheaper alternative toCTMs in
terms of these resources. The idea of a neural network (NN) is to fit a combination of
simple mathematical functions (neurons or activation functions) so that for a given
set of predictors and predictands, a NN, receiving predictors as inputs, estimates
outputs that have minimal difference with the corresponding observed predictands.
After training, the NN should be able to predict unknown output based on any given
input. To verify its predictive skill, the NN is tested on an independent set of known
inputs and outputs that were not employed in training.

To estimate methane concentrations, we developed two neural networks. Note
that 19% of atmospheric methane is associated with fossil fuel production, mainly
related to oil and gas mining (Van Dingenen et al. 2018); more than half of it leaks
directly from the gas or oil fields. To detect these leakages from the offshore fields,
we developed the first NN that estimates local anomalies in methane concentration
directly frommeasurements near the potential (or known) natural gas source.Webuilt
thisNNusingKeras/Tensorflowpackage (Abadi et al. 2016). It consists of three dense
layers with a hyperbolic tangent activation function, eight inputs (latitude, longitude,
the temperature at two-metre height, time, humidity, latitudinal and longitudinal
wind components at ten metres, sea surface temperature) and one output (methane).
The NN was trained on the cruise measurements POS-526 (Greinert and Schoening
2019) that took place from 07.23.2018 to 11.08.2018 on a route: Bergen (Norway)—
Dogger Bank (Netherlands)—Hirtshals (Denmark)—Tisler (Norway). The cruise
data contain all input and output variables. Note that having geographical coordinates
as inputs, the NN “learned” during the training the positions (and the corresponding
emissions) of wells and oil fields by fitting its estimates to the methane concentration
at different locations in the training data. After training, this NN, installed on a
laptop, can estimate methane concentration at the current location from the current
physical parameters of the surrounding atmosphere. If this estimate does not match
the measured concentration, one may suspect to have detected an anomaly possibly
associated with new oil or gas fields, or substantial changes in the known ones.
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Note that measured methane anomaly may originate from other sources. To
exclude the impact from other sources, we developed a second NN, which esti-
mates daily mean ethane concentration anomalies in the atmosphere. Natural gas
contains up to several per cent of ethane, giving 62% of atmospheric ethane (Franco
et al. 2016). The concentration ratio of ethane/methane is unique for each oil or gas
field and constant in time, serving as a kind of fingerprint (Visschedijk et al. 2018).
Since the methane/ethane ratios near oil or gas fields are known (Yacovitch et al.
2020), we can estimate the fraction of atmospheric methane leaking from the gas
or oil fields just from ethane. The second NN was developed on the basis of the
network described in (Vlasenko et al. 2021). We trained and tested the second NN on
the ethane anomalies estimated from the Consortium Multiscale Air Quality Model
(CMAQ) (Appel et al. 2013) in the European domain for the period 1979–2009
using the same emission data for the year 2012 (Bieser et al. 2011) for the entire 30-
year period. We define ethane anomalies as the deviation of the current value from
its climatological mean. For the second NN, we again used the Keras/Tensorflow
package (Abadi et al. 2016), choosing a NN that consists of one recurrent layer
followed by two dense layers. It accepts wind anomalies in the European domain
and estimates the corresponding ethane anomaly in the same area. All layers have
hyperbolic tangent activation functions.

To train and test the NN, we split the data for both NNs as follows. The training
set for the first NN contains 90% of samples, which is 14,400 inputs and outputs,
randomly picked up from the POS-526 cruisemeasurements (Greinert andSchoening
2019). The remaining 10% of data, i.e. 1600 samples, were used for testing. For the
second NN, we took estimated wind and ethane anomalies from 1979 to 2006 for
training and anomalies from 2007 to 2009 for testing. Developing the second NN,
we found that the inter-seasonal variability in the data resulted in errors. To minimize
these errors, we created and trained the NN for each season separately.

To evaluate the accuracy of both NNs, we used the R2 measure that shows how
much of the observed data variability is explained by the model (which is the NN in
our case). Note that for the second NN, anomalies obtained from CMAQ estimates
play the role of observations.

The estimates ofmethane and ethane obtained from the first and the secondNNare
shown in Figs. 4.3 and 4.4, respectively. Note that the estimates of the first network
(blue line) and the measured methane concentration (red line) almost coincide. As a
result, R2 for the first network equals 0.91. The R2 for the second NN equals 0.565,
0.48 and 0.57 for summer, spring and winter, respectively. Although the second NN
has lower R2 than the first NN, it reconstructs the ethane anomaly patterns’ main
features. This can be seen in comparison with the summer mean ethane anomalies
estimated by the NN (Fig. 4.4, left panel) and CMAQ (Fig. 4.4, right panel). Note that
except for small details, the NN succeeds in reconstructing the pattern of the CMAQ
simulations. Other deteriorations ofR2 are causedmainly by a slight underestimation
of the anomaly amplitude. Relying on these results, we conclude that the first and the
second neural networks predict the corresponding methane and ethane concentration
anomalies with a high degree of accuracy and can be used as a smart monitoring
tool during the researcher campaigns. Combining these neural networks into one
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Fig. 4.3 Estimated
(blue) and observed
(red) methane
concentrations,
corresponding to the
measurements in cruise
POS-526 in the North Sea

Fig. 4.4 Mean summer ethane concentration anomalies estimatedwithCMAQ(left) andNN (right)

predictive system, enabling themore accurate determination of the source ofmethane
leaks is the next step in their development.
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4.3.2 Fusing Highly Heterogeneous Data to Facilitate
Supervised Machine Learning in the Context of Health
and Climate Research

Heat waves can significantly affect human health. Examples include increased trans-
mission of vector-borne diseases as well as increased susceptibility to metabolic
conditions and higher mortality during episodes of severe heat. It is there-
fore paramount to investigate climate change in terms of potential-related health
outcomes. To that end, the focus of our research is on temperature extremes, such
as encountered during heat waves, and myocardial infarction (MI). Data from the
region of Augsburg, Germany, are used as a case study. Epidemiological studies have
shown that temperature extremes may indeed lead to an increased occurrence of MI
(e.g. Chen et al. 2019). In future, frequency, duration and intensity of heat waves
are expected to increase due to anthropogenic climate change, even at levels limited
to 1.5° or 2° global warming (Sieck et al. 2020). Therefore, assessing health risks
in the context of climate change is important for supporting more climate-resilient
societies, public planning and adaptation strategies for human health.

Machine learning (ML) is a powerful tool for investigating complex and unknown
relationships between environmental conditions and their adverse impacts and has
already been applied in other fields (e.g. Wagenaar et al. 2017). ML is a data-driven
approach, and meaningful results depend on consistent and high-quality data. To
investigate climate change and MI, not only climate and meteorological data are
required, but confounding effects of other well-known risk factors must also be
accounted for by additional environmental, demographic, behavioural and socio-
economic data. This makes this research challenging, as availability, provenance,
and detail or resolution (temporal and spatial) of the data are highly variable. Here,
we present a dedicated approach, designed to fuse such heterogeneous data into a
consistent input dataset for ML algorithms.

Themain pillar of our data-driven approach is the KORA cohort study (Holle et al.
2005) and the MI Registry in the Augsburg region of Bavaria, Germany. This dataset
comprises detailed information on MI occurrence and underlying health conditions.
Based on the registry data, a daily time series of MI incidence in Augsburg and two
adjacent districts can be derived. This provides the target values for the training data
for the ML algorithms.

To learn about the association of MI and the diverse risk factors such as expo-
sure to heat, demographic structure, confounding health factors and air quality, these
must be provided as predictors for the algorithms. Currently, weather and climate
data (temperature observations and climate projections from the EURO-CORDEX
initiative see Jacob et al. 2014); air pollution data (e.g. PM10, PM2.5, nitrogen oxides
and ozone; from regional environmental governments, such as BLFU, 2021); distri-
bution of green spaces based on NDVI; demographic characteristics (age and sex,
from regional statistical agencies, such as BLFS 2021); pre-existing illnesses (e.g.
diabetes and obesity as recorded in the MI registry data); and socio-economic data
(e.g. household income, education) are planned to be used within the project.
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The raw data for these predictors are extremely heterogeneous for many reasons.
First, the data come from different providers and is presented in various file formats,
some of which are proprietary. Second, the representation of data can differ as well.
Some data are of gridded/raster type (e.g. NDVI), some are point data (weather
observations, air quality) and some are time series data, aggregated at the district
level (e.g. demographic data). Third, the spatiotemporal scales (e.g. regional vs.
local, coverage in time) and resolutions differ substantially.

The MI registry data are given in the form of individual cases with information
on the date of the MI, the district where it happened and additional information on
patient health. In a first step, a daily time series ofMI incidence, aggregated at district
level, is derived. The procedure is designed to produce compatible time series from
the predictor data while addressing the three dimensions of heterogeneity outlined
above. Afterwards, ML algorithms can readily be used to learn the relationship
between incidence and the various predictors.

Figure 4.5 shows a schematic of the fusion procedure. Different predictors enter
the pipeline and are subjected to a number of processing steps. The result is district-
aggregated time series that can readily be used together with the MI data as input
to ML algorithms. Depending on the nature of the predictor, only a subset of the
processing steps may apply. First, the raw data are converted to a common format
(csv). In many cases, the spatial scale is much larger than the region of interest. For
instance, the NDVI data are global. The second step is therefore to reduce the data
to the region of interest (ROI), namely Augsburg and surroundings.

Point sources, such as station data, are converted to a 1 km grid using a Kriging
method. To account for the different resolutions in time interpolation to a common
target frequency is conducted. The frequency is based on the highest resolution
supported by the MI registry which is daily.

Finally, the data are aggregated to the district level to arrive at a daily time series for
each of the predictors. Together with the ground truth, it can be used with all standard
ML algorithms for time series prediction. The procedure has been implemented with
the Python programming language. Figure 4.5 lists the packages used to carry out
the processing steps.

The next step is to apply supervised ML techniques (e.g. Decision Trees, ANN)
to the fused data to regress the incidence of MI based on the prepared environmental,
socio-economic and climatic predictors. From this, we expect to gain first insights
into the importance of heat stressors relative to other risk factors (Marien et al. 2022).
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Fig. 4.5 Schematic of the
fusion process chain
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4.4 Point-To-Space Extrapolation

4.4.1 Estimation of Missing Methane Emissions
from Offshore Platforms by a Data Analysis
of the Emission Database for Global Atmospheric
Research (EDGAR)

Disused and active offshore platforms can emit methane, the amount being difficult
to quantify. In addition, explorations of the sea floor in theNorth Sea showed a release
of methane near the boreholes of both, oil and gas-producing platforms. The basis
of this study is the established Emission Database for Global Atmospheric Research
(EDGAR) (Janssens-Maenhout et al. 2019). While methane emission fluxes in the
EDGAR inventory and platform locations are matching for most of the oil platforms,
almost all of the gas platform sources are missing in the database. We develop a
method for estimating the missing sources based on the EDGAR emission inventory.

EDGAR is an inventory from the EC-JRC and Netherlands’ Environmental
Assessment Agency (Saunois et al. 2016). National reports of greenhouse gas emis-
sions are the basis for emission inventories like EDGAR which is used as emission
input for the simulations in this work. It covers sector- and country-specific time
series of the period 1970–2012 with monthly resolution and a global spatial reso-
lution of 0.1° × 0.1° providing CH4, CO2, CO, SO2, NOx, C2H6, C3H8 and many
other species. Different source sectors in EDGAR are defined using the IPCC 1996
guidelines (Janssens-Maenhout et al. 2019). When calculating the sector-specific
emissions, a differentiation of emission processes improves and refines the estimates
of EDGAR. Therefore, technology-specific emission factors, end-of-pipe abatement
measurements, a modelling based on latest scientific knowledge, available global
statistics and IPCC-recommended data are used. The emissions are then distributed
on maps via proxy datasets based on national spatial data containing information
about population density, the road network, waterways, aviation and shipping trajec-
tories (Janssens-Maenhout et al. 2012). A global 0.1° × 0.1° grid is used on which
the emissions are assigned to, either as a single-point source (e.g. oil or gas plat-
forms), distributed over a line source (e.g. shiptracks) or over an area source (e.g.
agricultural fields) always depending on the source sectors and subsectors. For this
work, methane point source emissions from EDGAR are of a high importance. These
one-dimensional sources are allocated to a single grid cell of the 0.1°× 0.1° grid with
the average of all points that fall into the same cell (Janssens-Maenhout et al. 2019).
We are aiming to replace the gridded emissions from EDGAR with point source in
our atmospheric model by extrapolating them from point to space to adjust missing
emissions within EDGAR and improve the spatial accuracy of the current dataset.

For this study, the global atmospheric model ICON (ICOsahedral Nonhydrostatic
model) was used with EDGAR data as input for emissions. ICON is a joint devel-
opment of the German Weather Service (DWD) and the Max Planck Institute for
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Meteorology (MPI-M). Due to its dynamical core, which is based on the nonhydro-
static formulation of the vertical momentum equation, simulations with a high hori-
zontal resolution up to grid spacings of a few hundreds of metres are possible. ART
(Aerosols and Reactive Trace Gases) is an online-coupledmodel extension for ICON
that includes chemical gases and aerosols. One aim of the model is the simulation of
interactions between the trace substances and the state of the atmosphere by coupling
the spatiotemporal evolution of tracers with atmospheric processes (Schröter et al.
2018). The point source module in ART takes the prescribed emission fluxes as
point sources of substances and adds them to new or existing chemical tracers by
distributing the one-dimensional fluxes to the area of the corresponding triangular
grid cell in ICON. First of all, the emission factor is calculated through the source
strength of the emissions, the area of the grid cell and the model time step as shown
in Eq. (1) (Prill et al. 2019, p. 77).

emiss_fct = source_strength

cell_area
· dtime

[
kg

m2

]
(1)

As a next step, the above-calculated emission factor is added to the actual tracer
value of the grid. Equation (2) shows how emiss_fct is multipliedwith a height factor.
Also the density of air ρ in kg/m3 and the height of the corresponding ICON layer
dz in metres come to play. In our case, all the point sources are on the lowest model
level with a height of 20 m.

tracer = tracer+ h · emiss_fct

(ρ · dz)
[
kg

kg

]
(2)

The ICON-ART sensitivity simulations of this study aimed to investigate the
differences between simulations with gridded emissions from EDGAR and point
sources of ART. Therefore, the methane emissions in the North Sea Region that
are contained in EDGAR were distributed to all 956 point sources representing the
offshore platforms in this area. Figure 4.6 displays the procedure of how EDGAR
gridded emissions are replaced and adjusted by point sources.

If we compare simulations with gridded EDGAR and simulation with point
sources, it is remarkable that both fit quite well over the whole year. This can be
seen as a proof of concept that the point source module of ART adjusts the platform
emissions of EDGAR in a satisfying way. The maximum of the absolute difference
over the year on a global scale is 4.755 ppbv and the difference of the annualmean is−
0.342 ppbv, showing that the point source module slightly overestimates the gridded
emissions with a difference of less than 0.02%. These results show that the point
source module in ICON-ART can model methane emissions as well as conventional
gridded input data with the advantage that the spatial accuracy of this point-to-space
method is significantly better.

With the point source module of ICON-ART being a successful tool for point-
to-space extrapolation, we are now able to include the missing platforms into the
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Fig. 4.6 Illustrating the procedure of how point sourceemissions adjust EDGAR gridded emission.
The methane emission fluxes of original EDGAR (upper left) are removed within the North Sea
Region (white box) (upper right). From all the locations of the platforms (lower left), the ones
inside the North Sea Region are chosen and the EDGAR emission are equally distributed to them
as point sources (lower right)

EDGAR dataset and access their influence on the methane distribution on regional
(North Sea) and global scales.

4.4.2 Point-to-Space Methods

The aim of this subproject within the Digital Earth project is to develop a data-driven
machine learning (ML) and artificial intelligence (AI) method to advance currently
available datasets and maps, improve the resolution of observational datasets and
interpolate values for locations where no observations are available, infer patterns
from simulated data and improve estimations by combining the simulations with
measurements.

Data sources at scattered sites (in situ measurements) and gridded data (satellite
data, output of numerical models) are combined to construct a higher-resolutionmap,
or predict values at ungauged sites (interpolation, “downscaling”), or to develop
simulations for unobserved scenarios—locations and instance of time.

The project is designed as a close interdisciplinary collaboration between data
science and Earth scientists. The fundamental concept of a point-to-space problem is
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to find a solution in agreement with multiple data sources and to build a geographic
dataset (or map) based on them. The outcome is a more complete dataset derived by
extrapolating into space and time that can be used for further analyses.

This method can be used especially well to extend the sparsely scattered spatial
and spatiotemporal maps by the application of ML methods instead of physical
modelling approaches (Peng Xie et al. 2020; Amato et al. 2020, Volfová et al. 2012).

To build a procedure which can use multiple covariates from point or gridded
datasets as inputs and find an estimator for the outcome variable, the following steps
are required. First, in the pre-processing step, the data homogeneity and its ubiquity
is checked.

Similar to most methods dealing with observation data, the raw data can be
extremely heterogeneous and in various file formats, and adhere to different data
standards. They can also differ in spatial and temporal resolution; hence, choosing a
proper target grid resolution can be of utmost importance. In this step, all the data are
projected into the same format and same target grid since the sources are so diverse.
Often the first major issue is to pre-process and also check the observational data
for errors and outliers. However, this problem is becoming simpler to solve with
standardization of formats and metadata specification.

Normalization as second step in the pre-processing is another important factor,
since the covariates can be of a different order, and hence, error propagation can be
relevant to their scale (Singh et al. 2020). Determining the proper way to normalize
is important, since it will have a direct effect on the algorithm as well as the results.
In this step, all the variables, including dependent and independent variables, are
normalized and hence prepared for the regression algorithms.

Given the nature of the problem, the respective Earth science expert needs to be
consulted especially for the selection of the appropriate covariates. They need to be
selected in a way that if the information is not available directly then it can be inferred
from another variable or proxy. Moreover, the original point-to-space problemmight
extend similarly to other point-to-space subproblems for the selected covariates since
they might not be available in the higher resolution of the target grid either.

A predictive ML regression model for these subsets of the problem can be
trained and used to predict each of the covariates. For each of these covariates, a
different ML method can be applied based on its characteristics and physics of the
phenomena/covariate and the required precision. Consequently, after solving these
subsets, the selected covariates are approximated on the target grid. The trainedML’s
prediction method can be applied, and this means that all the necessary requirements
for the final step are now fulfilled.

In the final step, a more sophisticated ML regression method is applied for the
target variable by combining the previously estimated covariates. Here, methods
such as co-kriging to find optimal solutions for the outcome variable and covariates
simultaneously can prove useful.

Similar to all ML methods, data splitting methods are employed and a percentage
of the data is chosen as training data, with the remaining data used for testing and
validation.
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Fig. 4.7 Process chain schematic

Shown in Fig. 4.7 is a simplistic schematic of the suggested procedure. Any
typical regressor can be easily implemented and used here, even a modified kriging
method. Examples of the implemented and evaluated regression methods are linear,
K-nearest neighbours, bagging trees, extra trees, random forest and simple ordinary
kriging. Tree methods have been shown to have the advantage of high accuracy of
the prediction for interpolations in the point-to-space problem. (Wessel et al. 2018).

To apply the same procedure to other similar problems, the following considera-
tions need to be contemplated.

As with all ML regression problems, a regressor can lead to overfitting and some
mitigation needs to be considered. One way is to employ different data splitting
schemes and to check the number of features selected.

In co-kriging, similar to the normal kriging method, a kernel function is used
based on a covariance matrix. Co-kriging is a conditional random field generator
which superposes a method based on kriging with a multivariate Gaussian method
building on a covariance matrix (Volfová et al. 2012). Determining the covariance
function for co-kriging is not easy, since the methods with dependent covariates are
so sensitive to the input and the stability of the system depends on the condition
number of the prior (Putter et al. 2001; Ababou et al. 1994). Applying a co-kriging
method enables a flexible feature advantage and makes it trivial to utilize any other
data or information on new covariates/proxies which are available later, and as a
result, the accuracy of the method can always be improved in this way.
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Finally, uncertainty in data and methods should be evaluated to ensure that the
method is based on a proper stable solution. Again, the evaluation of results using
expert knowledge requires deep understanding of the problem, since data can be
visually appealing but extremely erroneous.

This research is an example of a successful new collaboration between multiple
centres involved in Digital Earth. It has been shown that it is indispensable to bring
together knowledge from different fields and applications for developing successful
applications.

4.5 Anomaly and Event Detection

In the Digital Earth Flood Showcase, we strive to understand hydrological extreme
events across disciplines, from river basins to the sea. Comprehending the complex
and often time-delayed chain of events surrounding a flood is a compartment-
spanning task in the Earth sciences. Here, we feature an example from the showcase
that illustrates how anomaly detection and investigation can be supported by suitable
data exploration and analysis methods.

4.5.1 Computational Methods for Investigating the Impacts
of the Elbe Flood 2013 on the German Bight

At the end of a hydrological extreme event chain, river water is discharged into the
ocean, transporting matter and thereby, unusual amounts of nutrients and pollutants
into the coastal system. To investigate the impacts of riverine floods on the marine
environment, several steps need to be undertaken: the river plume needs to be detected
and its spatial extent and development in time need to be determined to identify the
study region and time interval. The procedure relies on the combination of heteroge-
neous data sources, such as in situmeasurements,matchingmodel data and additional
satellite data for a wider spatial coverage. This article features three computational
methods that are crucial for successfully identifying and investigating the processes
in and around a river plume after a riverine flood event: automatic anomaly detection,
producing customized model trajectories and generating time series of productivity.
The complete workflow will be described in more detail in Sect. 5.3.3. under “The
River Plume Workflow”.

Automatic Anomaly Detection
An enhanced feature of the River Plume Workflow is the automatic detection

of parameter anomalies in both in situ FerryBox measurements during summer
operations and year-round satellite data.

Three separate definitions of anomalies caused by a flood event originating from
a freshwater river mouth are considered. They include: increased chlorophyll levels;
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decreased salinity; and, particularly during the winter where the river water may be
cooler than the sea, a decrease in sea surface temperature.

As an alternative to manually searching for anomalies in the River Plume Work-
flow’s interactive map (see Sect. 3.2), users can select years of interest to undergo a
Gaussian regression-based statistical analysis (Pedregosa et al. 2011),which provides
the user with a list of recommended dates of interest. Gaussian processes (GPs) are
powerful and flexible models for modelling time series data, which makes them
a practical option for anomaly detection. Here, a Gaussian regression analysis is
performed to generate a posterior probability distribution based on the daily param-
eters over the selected time period. This method requires a specified prior distribu-
tion, with the prior’s covariance given by a kernel, in this case, a generalized Matern
kernel with an amplitude factor and an observation noise component. The model
uses high smoothing capabilities for more efficient anomaly detection. Also gener-
ated are posterior standard deviations that create a 95% confidence region around
the posterior distribution. Anomalies are recorded when the measured data and its
associated uncertainties fall completely outside the confidence region, either above
or below depending on which parameter is being considered. Figure 4.8 gives an
example of the outputted results for chlorophyll during 2013.

Future developmentwould involve near real-time automatization to detect anoma-
lies as they occur based on previous established annual patterns. This would involve
taking an average of the posterior distributions over a number of years and detecting
an anomaly in near real-time data if it deviates from this average.

Produce Customized Model Trajectories

Fig. 4.8 Daily chlorophyll
measurements with one
region of interest (RoI) for
in situ FerryBox (upper) and
satellite (lower) data. The
continuous line represents
the Gaussian regression
generated distribution, while
the shaded grey band is the
confidence region. The red
circles indicate detected
anomalies
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A crucial component of the River Plume Workflow is the computation of model
trajectories for observational FerryBox data to not only detect the river plume, but
also determine its spatial and temporal extent in the ocean.

FerryBox transects provide, often regular, observational data on the study region.
The data are made available in near real time via the COSYNA (Coastal Observing
System forNorthern andArctic Seas) data portal (Baschek et al. 2017;Breitbach et al.
2016). The PELETS-2D code (Callies et al. 2021) is used to compute model trajec-
tories for each FerryBox transect. These model trajectories consist of the measured
water bodies’ positions up to ten days before and after the actual measurement as
simulated by the numeric model. The simulated positions are then recombined into
synoptic maps, featuring time shifted positions of all observations at one point in
time. While the model trajectories are useful to investigate an anomaly’s origin, the
synopticmaps show the spatial and temporal extent of the river plume on its presumed
path across the ocean.

The simulations and their combination in synoptic plots are too computation-
ally expensive to be done in real time. Therefore, they are currently only produced
for specific events. However, work is currently underway to optimize the code for
operational use and make the model data available in near real time.

Generate Time Series of Productivity
Combining observational data with specifically produced model trajectories

allows users to determine the spatial and temporal extent of a river plume in the
ocean, but does not help with understanding the processes that happen inside these
waterbodies. For that reason, another method of the River Plume Workflow focuses
on blending the spatial information of the model trajectories with the parameter
information from satellite data. We use integrated satellite datasets taken from the
Copernicus Marine Environment Monitoring System (CMEMS 2021). The datasets
give daily average chlorophyll, salinity and sea surface temperature measurements
after full processing, which includes the reconstruction of cloud-covered areas. The
chlorophyll datasets have a 1 km2 tiled resolution, while salinity and sea surface
temperature have a 7 × 11.6 km2 tiled resolution.

Our method automatically extracts parameter values from satellite data for the
locations on a selectedwaterbodies’ modelled trajectory, thus producing a time series
of values along the modelled pathway of the waterbody. As an example, this method
enables researchers to produce chlorophyll time series for waterbodies associated
with the river plume and therefore to investigate chlorophyll degradation rates inside
the river plume.

The methods described here were implemented into the River Plume Workflow,
a scientific workflow prototype (see Sect. 5.3.3), and tested for the Elbe flood event
from2013.A ferry equippedwith a FerryBox regularly covers theBüsum-Heligoland
line during the period from April to October. These transects are highly relevant for
our example as they cover a region close to the Elbe outflow. Using the anomaly
detection algorithm, several instances where the Elbe river plume potentially crossed
the FerryBox transect were determined, such as on 23 June 2013, where an anomaly
in salinity and temperature was visible (see Fig. 4.9). Simulated trajectories of the
relevant water bodies across the North Sea point to the Elbe River as the anomaly’s
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Fig. 4.9 Screenshot of the River PlumeWorkflow’s interactive map. The selected region marks the
area of the suspected river plume on the FerryBox transect on 23 June 2013. Blue dots highlight
one water body’s modelled trajectory originating in the Elbe River

origin. The generated time series of chlorophyll gives an overview of productivity
changes in the region during and after the flood event. This helped identify promising
study regions in the North Sea regarding noteworthy biological events, e.g. unusual
algae blooms after a riverine flood event. In general, the River Plume Workflow
helped to give better understanding of the sequence of events of the Elbe river flood
of 2013 and its impacts on the marine environment of the North Sea.

For more information on the River Plume Workflow, please see https://digitalea
rth-hgf.de/results/workflows/flood-event-explorer/#accordion-4.

4.6 Conclusions

All examples provided in this chapter have in common that they apply advanced
computational approaches to gain new insights from existing data and help to further
our process understanding through innovative data analysis. Regardless of the scien-
tific question or exact context, the presented computational approaches address
problems that occur frequently in modern Earth and Environmental sciences.

They typically fall into one or more of the following groups:

https://digitalearth-hgf.de/results/workflows/flood-event-explorer/#accordion-4
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• There are not enough data available to solve the problem at hand. Modern compu-
tational methods can enable scientists to derive information from the combination
of related data and provide more context for the scientific question.

• In contrast, some scientific workflows face the opposite problem, namely an abun-
dance of available data. In these cases, insightful data analysis cannot be achieved
with classical approaches due to data size and distributed storage. The use of
algorithms for automatically classifying events and providing context can greatly
improve scientists’ process understanding.

• For some scientific questions, the way to a better process understanding involves
the comparison or combination of different kinds of existing data. The difficulties
here lie in the fact that different datasets of interest are usually not fully compa-
rable in terms of spatial and/or temporal resolution or method of measurement.
Computational methods such as the ones described here can take these differences
into account and therefore ensure meaningful and correct scientific results.

The applications presented in this chapter demonstrate how computational data
exploration and data analytics can help overcome these common problems. Although
there is no one-size-fits-all approach to any of the problems we face, the example
applications in this chapter show that modern computational approaches can help
handling the current paradoxical situation of having access to more data than can be
handled by classical methods, while simultaneously needing to overcome a lack of
data in other contexts. Moreover, the examples show that those approaches enable us
to create additional benefit from the available data and improve our understanding
of the complex system Earth.
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Abstract Geoscientific data analysis has to face some challenges regarding seam-
less data analysis chains, reuse of methods and tools, interdisciplinary approaches
and digitalization. Computer science and data science offer concepts to face these
challenges. We took the concepts of scientific workflows and component-based soft-
ware engineering and adapted it to the field of geoscience. In close collaboration
of computer and geo-experts, we set up an expedient approach and technology to
develop and implement scientific workflows on a conceptual and digital level. We
applied the approach in the showcase “Cross-disciplinary Investigation of Flood
Events” to introduce and prove the concepts in our geoscientific work environ-
ment, and assess how the approach tackles the posed challenges. This is exemplarily
demonstrated with the Flood Event Explorer which has been developed in Digital
Earth.

Keywords Workflow · Digitalization · Component-based software · Software
engineering · Reusability · Data Science

5.1 Challenges and Needs

Thedigitalization of science offers computer science anddata science approaches that
can improve scientific data analysis and exploration fromseveral perspectives.Digital
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Earth applies and adapts the concepts of scientific workflows and component-based
software engineering to address the following challenges and needs:

1. Scientific data analysis and exploration can be seen as a process where scien-
tists fulfil several analytical tasks with a variety of methods and tools. Currently,
scientific data analysis is often characterized by performing the analytical tasks
in single isolated steps with several isolated tools. This requires many efforts
for scientists to bring data from one tool to the others, to integrate and analyse
data from several sources and to combine several analysismethods. This isolated
work environment hinders scientists to extensively exploit and analyse the avail-
able data.Weneed enhancedwork environments that integratemethods and tools
into seamless data analysis chains and that allow scientists to comprehensively
analyse and explore spatio-temporal, multivariate datasets from various sources
that are common in geoscience.

2. Scientific data analysis and exploration often requires specific, highly tailored
methods and tools; many of them are developed by geoscientists themselves.
Often the methods and tools can hardly be shared since they miss state-of-
the-art concepts and techniques from computer science. In consequence, the
analysis methods and tools are not available for others and have to be invented
again and again. This costs time and money that cannot be spent for scientific
discovery. Therefore, a further requirement for advanced scientific data analysis
is to facilitate the sharing and reuse of specific analytical methods and tools.

3. Scientific data analysis and exploration is more and more embedded in an inter-
disciplinary context. To answer complex questions relevant to society, such
as concerning drivers and consequences of global change, sustainable use of
resources, or causes and impacts of natural hazards, needs to integrate knowl-
edge from different scientific communities. Data from various sources have to
be integrated, but also the data analysis approaches itself that extract informa-
tion from the data have to be linked across communities. This is similar to the
concept of coupling physics-basedmodelswhich is awell-establishedmethod in
geoscience to investigate and understand related processes in the Earth system.
Integrating the analytical approaches across disciplines requires efforts at two
levels: integration on the technical executable level, but also integration on the
conceptual scientific level. On the one hand, we need technical environments
that facilitate the integration of methods and tools; on the other hand, we need
suitable means to support the exchange of scientific knowledge. Means are
required that make apparent the data analysis approaches of other scientific
communities, their scientific objective, the data that are needed as input, and
the output that is generated, the methods that are applied, and the results that
are created.

4. The transformation of science into digital science has been an ongoing process
for many years. To get the best possible results out of the process, a close
collaboration of geo- and computer experts is needed. Geoscientists have to
clarify and communicate comprehensibly their scientific needs, and computer
and data scientists have to understand these requirements and transform them



5 Data Analysis and Exploration … 57

into their own approaches and solutions. Suitablemeans are required to facilitate
this transformation. This is especially true since both disciplines have rather
different working concepts: geoscientists workmostly application-oriented, and
computer scientists work on a more generic, formal and abstract basis.

The concepts of scientific workflows and component-based software engineering
provide a suitable frame to tackle these needs. Workflows have been applied in
science for more than a decade; today, they extend to data-intensive workflows
exploiting diverse data sources in distributed computing platforms (Atkinson 2017).
Component-based software engineering is a reuse-based approach to defining, imple-
menting and composing loosely coupled independent software components into
larger software environments such as scientific workflows (McIlroy 1969; Heineman
et al. 2001). We applied the concepts in a showcase, the cross-disciplinary investi-
gation of flood events to introduce and prove the concepts in our geoscientific work
environment, and assess how the approaches can tackle the addressed challenges.

5.2 Scientific Workflows

5.2.1 The Concept of Scientific Workflows

The concept of workflowwas formally defined by theWorkflowManagement Coali-
tion (WfMC) as “the computerized facilitation or automation of a business process,
in whole or part” (Hollingsworth 1994). Workflows consist of a series of activi-
ties with input and output data and are directed to a certain objective. Originally
geared towards the description of business processes, workflows have been increas-
ingly used to describe scientific experiments and data analysis processes (Cerezo et al
2013).At the beginning, scientificworkflowswere focused on authoring and adapting
processing tasks to distributed high performance computing. Today, they extend
to data-intensive workflows exploiting rich and diverse data sources in distributed
computing platforms (Atkinson et al 2017).

Scientific workflows provide a systematic way of describing data analysis with its
analytical activities, methods and data needed. Cerezo et al (2013) distinguish three
abstraction levels of scientific workflow descriptions: the conceptual, abstract and
concrete levels (see Fig. 5.1). On the conceptual level, a workflow is described as
a series of activities with input and output data in the language and concepts of the
scientist; on the abstract level, the conceptual workflow is mapped to methods and
tools to execute the activities; the concrete level provides an executable workflow
within a concrete IT infrastructure.

The description of workflows on different abstraction levels provides a number of
benefits. It enables scientists to document and communicate scientific approaches and
knowledge creation processes in a structured way. It provides the interface between
scientific approaches and computing infrastructures. And it allows for sharing, reuse
and discovery of workflows or parts of it (Cerezo et al. 2013).
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Fig. 5.1 Three abstraction levels of scientific workflow descriptions adapted from Cerezo et al.
(2013)

A recent review paper about past, presence and future of scientific workflows
points out the strength and needs of scientific data-intensive workflows: “With the
dramatic increase of primary data volumes and diversity in every domain, workflows
play an ever more significant role, enabling researchers to formulate processing and
analysis methods to extract latent information from multiple data sources and to
exploit a very broad range of data and computational platforms” (Atkinson et al.
2017, p. 2016).

Several scientificworkflow systems have been developed so far to enable scientists
making use of the mentioned advantages. Examples are Galaxy, Kepler, Taverna and
Pegasus [Workflow Systems 2021].

5.2.2 Scientific Workflows in Digital Earth

We predominantly applied the concept of workflows to structure and describe scien-
tific data analysis approaches in a systematic way and to implement seamless data
analysis chains as executable digital workflows. Our objective was not to develop or
introduce big workflow engines to model and automatically create scientific work-
flows. Our focus was the elicitation and description of conceptual workflows and
the development of digital workflows facilitating the integration of any data analysis
method and tool.

We described and implemented scientific workflows according to the three
abstraction levels shown in Fig. 5.1.We slightly adapted the second level to our needs.
Since we do not apply workflow engines but manually transform and implement
scientific workflows, we consider it as a digital implementation level. To implement
the digital workflows, we developed the component-based Data Analytics Software
Framework (DASF) (chapter 5.2.3). It facilitates the definition of reusable software
components and integrates them into seamless digital workflows.
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Our process of developing workflows covered the following steps. First, we
created conceptual workflows. Several approaches exist to model and describe
conceptual workflows such as flowcharts, Petri-Nets, BPMN- or UML-Diagrams
(BPMN = Business Process Model and Notation, UML= Unified Modeling
Language). We decided on flowcharts since geoscientists are familiar with this
straightforward type of presentation. The conceptualworkflows are clearly structured
records of scientific approaches and knowledge. We used them for communication
and discussion between geoscientists, and to figure out how data analysis approaches
can be integrated across disciplines. Conceptual workflow descriptions also served
as communication means to bridge approaches from geo- and computer science.
To elicit the conceptual workflows, we conducted a structured task analysis to deter-
mine the scientists’ goals, the analytical tasks (which are the activities in a workflow)
and the input/output data. Structured task analysis is a well-established approach in
requirement analysis (Jonassen et al 1998; Schraagen et al 2000). Interviews, record
keeping and activity sampling are methods to gather the required information; tables
and diagrams are means to document the results. Figure 5.2 shows exemplarily the
River Plume Workflow as one of the conceptual workflows we have modelled and
implemented for the Digital Earth Flood Event Explorer (Sect. 5.3).

In the next step, we transformed the conceptual workflow into a digital workflow.
First, wemapped each analytical task of the conceptualworkflow to a suitablemethod
that fulfils the task.Wedocumented this in amapping list. Table 5.1 shows themapped

Fig. 5.2 Conceptual workflow description: It documents objective (red), analytical tasks (green),
input/output data (blue) of a workflow, in this case the River Plume Workflow of the Digital Earth
Flood Event Explorer



60 D. Dransch et al.

Table 5.1 Task to methods mapping list

Step Subtask Method Input Data Output (Data)

Task: DETECT

1 Identify regions with
low salinity

Visualize
observation data
with colour-coded
salinity on the
background map

- Reference date
- FerryBox transects

Visualization of
water body
measurements

2 Confirm riverine
origin of water body
measurements

Visualize forwards
and backwards
projected data on
the background
map

- Time range
- Synoptic
(projected) data

Visualization of
projected water body
measurements

3a Manually define the
river plume extent as
a polygon

Define the river
plume extent by
clicking a polygon
on the map

- Visualization of
projected water body
measurements
- User input

River plume polygon

3b Automatically detect
the river plume

Trigger automatic
anomaly detection
via button

- Observation data River plume polygon
and reference date

steps for the “DETECT” task of the River Plume Workflow. In order to address the
goal of the task “detection of the river plume”, it is broken down into three subtasks.
Each of the subtasks is mapped to a certain method, e.g. “Manually define the river
plume extent” is mapped to “clicking a polygon on a map” with its corresponding
input and output data. All methods defined by this mapping are then implemented as
components of the digitalworkflowbased on theDataAnalytics Software Framework
(DASF) (chapter 5.2.3). Methods that are implemented with the DASF can be shared
and reused in other digital workflows. Finally, we deployed the digital workflows to
the available infrastructure. In our Digital Earth project, the workflows of the Flood
Event Explorer have been deployed to the distributed infrastructure of the various
Helmholtz research centres. Figure 5.3 shows the concrete deployment of the River
Plume Workflow.

5.2.3 Digital Implementation of Scientific
Workflows with the Component-Based Data Analytics
Software Framework (DASF)

In the Digital Earth project, we decided not to apply the already existing workflow
engines such as Galaxy, Kepler, Taverna and Pegasus [Workflow Systems 2021]
to model and implement scientific workflows. Although these workflow systems
are powerful tools, they have some shortcomings. The intellectual hurdles to be
mastered when dealing with workflow systems are high and the systems often do not
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Fig. 5.3 Distributed deployment of the River Plume Workflow modules and components

offer the flexibility that is necessary for the highly exploratory data analysis work-
flows we have in science (Atkinson et al 2017). For that reason, we decided to follow
another approach that is less complex and of higher flexibility. We developed the
Data Analytics Software Framework (DASF) to manually implement digital work-
flows. DASF facilitates the integration of data analysis methods into seamless data
analysis chains on the basis of the component-based software engineering paradigm
and it enables extensive data exploration by interactive visualization. The integra-
tion of data analysis methods into seamless data analysis chains on the basis of the
component-based software engineering is described in this chapter. The extensive
data exploration by interactive visualization is presented in chapter 3.2 in this book.

The Digital Earth “Data Analytics Software Framework DASF” is targeted to
specific requirements of scientific data analysis workflows derived from the chal-
lenges formulated in chapter 5. This is the ability to (a) deal with highly explorative
scientific workflows, (b) define single data analysis methods and combine them into
digital workflows, (c) reuse single methods and workflows or parts of it, (d) inte-
grate already existing and established methods, tools and data into the workflows,
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(e) deal with heterogeneous software development and execution environments and
(f) support parallel and distributed development and processing of methods and
software.

In order to meet these requirements, we combined several approaches that are
well established in computer science. The basic concept for our Data Analytics
Software Framework (DASF) is the paradigm of “separation of concerns, SoC”
(Dijkstra 1982) which is well established in computer science and many other fields.
This paradigm is based on the idea that almost anything can be broken down into
smaller pieces and each piece is addressing a distinct concern. A concern in this scope
can belong to any level of abstraction; it can be a single workflow component (from
web services and resources to atomic functions), a workflow or also a more complex
linked workflow. Since this paradigm can cover any degree of complexity, it is one of
the most important and fundamental principles in sustainable software engineering.
One technique applying the SoCparadigm is component-based software engineering,
CBSE (McIlroy 1969; Heineman 2001). An individual software component is a
software package, a web service, a web resource or a module that encapsulates a set
of related functions (or data); each component provides interfaces to utilize it. It is
a reuse-based approach to defining, implementing and composing loosely coupled
independent components into systems.

We adapted the CBSE concept to the specific needs of data analysis and developed
the Digital Earth Data Analytics Software Framework (DASF). DASF supports to
define single data analysis components and to connect them to scientific workflows.
As initially described, the concept of a component can be applied to any degree of
abstraction.Within theDASF,we define six levels of abstraction, as shown in Fig. 5.4.
They are, from bottom to top, methods, packages, modules, workflows, coupled
workflows and applications. This means, everything is considered a component,

Fig. 5.4 DASF component-based approach on six levels of abstraction
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Fig. 5.5 Exemplarily implementation of the general component-based approach: The Flood
Similarity Workflow as part of the Flood Event Explorer

while each component uses or accesses various other components from the levels
below, indicated by the dashed lines. The usage of individual components is not
exclusive, meaning a component can be used by multiple other components from
higher levels; for example, Module X and Module Y are using Package A.

An implementation of this general component-based approach is presented in
Fig. 5.5. It shows the components involved in the Flood Similarity Workflow as part
of the Flood Event Explorer application. It allows the comparison of flood events
on the basis of several flood indicators (chapter 5.3.3). On the bottom level, several
methods for flood event extraction, event indicator calculation and statistical analysis
are implemented, they are combined into packages, and packages are wrapped into
modules, which are finally linked by the workflow “Flood Similarity”. The Flood
Similarity Workflow can also be coupled with other workflows, such as the Climate
ChangeWorkflow in the example below. The coupledworkflows allow for answering
the more complex scientific questions “How could hydro-meteorological controls of
flood events develop under projected climate change” (Chapter 5.3.3).

Since all components are independent entities, we need to provide one or several
techniques of combining and integrating these components (implementing the dashed
lines fromFig. 5.4 and 5.5). For this, we rely on different techniques depending on the
abstraction level of the component. The main focus of DASF is the combination of
methods to create an integratedworkflow. In order to provide a standardized access to
any kind ofmethod implementation,we introduce amodule layer thatwraps packages
with their methods. These “wrapper”modules provide a remote procedure call (RPC,
White 1976) protocol implementation, harmonizing the access to individual methods
across platforms and programming languages.Once the neededmethods are provided
via individual RPC modules, a workflow can utilize/integrate them by connecting
their corresponding inputs and outputs. In the case of other abstraction levels, we
rely on programming language-specific integration techniques, like object-oriented
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Fig. 5.6 RPC module communication scheme of DASF to integrate methods into workflows

programming. Figure 5.6 shows a comprehensive example of a workflow connecting
various methods via RPCmodules. Step 1 of the workflow involves the connection of
Methods I and II, which are provided by Module X, while Step 2 and 3 are covered
by Methods III and IV, respectively. The individual modules expose the methods
only through the DASF RPC protocol, so the corresponding input and output data of
the combined methods will not be directly passed to one another but always through
a connecting mediator.

As discussed above, the DASF RPC approach relies on an appropriate mediator
entity passing the actual data between different modules and their exposed methods.
In order to support heterogeneous and distributed deployment environments, our
RPC communication approach uses a Publish-Subscribe Message Broker technique
as a mediator. Within DASF, we use Apache Pulsar [Pulsar 2021] as a ready-to-use
message broker implementation. The RPC/Message Broker approach also provides
a certain flexibility when it comes to deploy and execute individual components
on different IT platforms and systems and to execute an individual component in a
distributed IT environment, in our case variousHelmholtz centres (compare Fig. 5.3).
It also supports reusability and integration of new and existing distributed compo-
nents and facilitates collaborative development of several methods at the same time,
without interfering with each other; the “clear separation of concerns” allows for the
design and implementation of any number of components in parallel.

The presented CBSE approach implemented by DASF enables us to address the
initially formulated requirements. In contrast to common workflow engines, the
shown approach requires some additional effort to implement a workflow and its
methods. Yet it provides the necessary flexibility for the highly exploratory data
analysis workflows we have in science. In order to show the framework’s capabil-
ities, we used it to implement the Digital Earth Flood Event Explorer, presented
below. All DASF components (Eggert 2021) are registered in the corresponding
language-specific package repositories, like npm (e.g. https://www.npmjs.com/pac
kage/dasf-web) and pypi (e.g. https://pypi.org/project/demessaging/). The frame-
work’ sources are available via gitlab (https://git.geomar.de/digital-earth/dasf) and
licensed under the Apache-2.0 license.

https://www.npmjs.com/package/dasf-web
https://pypi.org/project/demessaging/
https://git.geomar.de/digital-earth/dasf
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5.3 The Digital Earth Flood Event Explorer—A Showcase
for Data Analysis and Exploration with Scientific
Workflows

5.3.1 The Showcase Setting

We applied the concept of scientific workflows and the component-based Data
Analytics Software Framework (DASF) to an exemplary showcase, the Digital
Earth Flood Event Explorer (Eggert et al. 2022). The Flood Event Explorer should
support geoscientists and experts to analyse flood events along the process cascade
event generation, evolution and impact across atmospheric, terrestrial and marine
disciplines. It aims at answering the following geoscientific questions:

• How does precipitation change over the course of the twenty-first century under
different climate scenarios over a certain region?

• What are the main hydro-meteorological controls of a specific flood event?
• What are useful indicators to assess socio-economic flood impacts?
• How do flood events impact the marine environment?
• What are the best monitoring sites for upcoming flood events?

Our aimwas to develop scientificworkflows providing enhanced analysismethods
from statistics, machine learning and visual data exploration that are implemented in
different languages and software environments, and that access data from a variety
of distributed databases. Within the showcase, we wanted to investigate how the
concept of scientific workflows and component-based software engineering can be
adapted to a “real-world” setting and what the benefits and limitations are.

We chose the Elbe River in Germany as a concrete test site since data are avail-
able for several severe and less severe flood events in this catchment. The collabo-
rating scientists are from different Helmholtz research centres and belong to different
scientific fields such as hydrology, climate, marine, and environmental science, and
computer science and data science.

5.3.2 Developing and Implementing Scientific Workflows
for the Flood Event Explorer

We developed and implemented scientific workflows for each question that has to be
answered within the Flood Event Explorer; Figure 5.7 gives an overview about the
workflows.

We established interdisciplinary teams with geo- and computer scientists to
provide all the particular expertise that is needed. The development and imple-
mentation of the scientific workflows was an iterative co-design process. Geosci-
entists developed the conceptual workflows. They had to deal with the following
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Fig. 5.7 Overview on the workflows of the Digital Earth Flood Event Explorer

issues: What analytical approaches are suitable to answer the geoscientific ques-
tions?What data and analysis tasks andmethods are needed?What enhancedmethods
can improve traditional analysis approaches? The conceptual workflows are docu-
mented in flowcharts; chapter 5.3.3 gives an overview about it. Computer scientists
had to contribute their particular expertise: What approaches are suitable to inte-
grate the analysis methods? How to realize the highly interactive exploration of
data and results? How to enable reusability of the methods? They developed the
Data Analytics Software Framework (DASF) with its integration and visualization
module (chapter 5.2.3 and 3.2) to implement exploratory scientific workflows. They
also transformed the conceptual workflows into digital ones.

Additionally, geo- and data scientists developed and implemented several
enhanced analysis methods as part of the workflows that go beyond traditional
analysis approaches. They are described in this book in chapters 3.2 and 4.5.1.

A further idea we followed in the showcase was to combine single workflows to
answer more complex geoscientific questions within the Flood Event Explorer. By
coupling data and methods of single analysis workflows into a larger data analysis
chain—a combinedworkflow—wewant to integrate knowledge fromdifferent scien-
tific communities to give answers to more complex questions that go beyond single
perspectives. Combined workflows have the potential to facilitate a more compre-
hensive view to processes in the Earth system, in our case flood events. Based on
the conceptual workflow descriptions, we identified the following three complex
questions that can be answered by combining single workflows:

• How could hydro-meteorological controls of flood events develop under projected
climate change?

• Can large-scale flood events be detected as exceptional nutrient inputs that lead
to algae blooms in the North Sea?

• How should an optimal future groundwater monitoring network be designed by
incorporating future climate scenarios?



5 Data Analysis and Exploration … 67

The flowcharts presented at the end of chapter 5.3.3 show the combination of
single workflows to give answers to the questions.

5.3.3 The Workflows of the Flood Event Explorer

This chapter gives a brief overview about the workflows we have developed for the
Flood Event Explorer. The first part presents the workflows shown in Fig. 5.7 with
(a) a short textual description of each workflow’s objective, functionality and added
value, (b) the flowcharts of the conceptual workflows and (c) the visual user interface
of the digital workflows. The second part introduces the combined workflows that
allow us to answer more complex geoscientific questions.

Access to all workflows as well as their documentation, additional media and
references is provided via a mutual landing page (http://rz-vm154.gfz-potsdam.de:
8080/de-flood-event-explorer/). The landing page provides an interactive overview
of the environmental compartments along the process chain of flood events and the
involved workflows.

5.3.3.1 The Climate Change Workflow

The goal of theClimateChangeWorkflow (Fig. 5.8, Fig. 5.9) is to support the analysis
of climate-driven changes in flood-generating climate variables, such as precipitation
or soil moisture, using regional climate model simulations from the Earth System
Grid Federation (ESGF) data archive. It should support to answer the geoscientific
question “How does precipitation change over the course of the 21st century under
different climate scenarios, compared to a 30-year reference period over a certain
region?”

Extraction of locally relevant data over a region of interest (ROI) requires climate
expert knowledge and data processing training to correctly process large ensembles
of climate model simulations; the Climate Change Workflow tackles this problem. It
supports scientists to define the regions of interest, customize their ensembles from
the climatemodel simulations available on the Earth SystemGrid Federation (ESGF)
and define variables of interest and relevant time ranges.

The Climate Change Workflow provides: (1) a weighted mask of the ROI; (2)
weighted climate data of the ROI; (3) time series evolution of the climate over the
ROI for each ensemble member; (4) ensemble statistics of the projected change; and
lastly, (5) an interactive visualization of the region’s precipitation change projected
by the ensemble of selected climate model simulations for different Representative
Concentration Pathways (RCPs). The visualization includes the temporal evolution
of precipitation change over the course of the twenty-first century and statistical
characteristics of the ensembles for two selected 30-year time periods for the mid-
and the end of the twenty-first century (e.g. median and various percentiles).

http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/
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Fig. 5.8 Conceptual workflow description of the Climate Change Workflow

Fig. 5.9 Visual User Interface of the Climate Change Workflow
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The added value of the Climate Change Workflow is threefold. First, there is a
reduction in the number of different software programs necessary to extract locally
relevant data. Second, the intuitive generation and access to the weighted mask allow
for the further development of locally relevant climate indices. Third, by allowing
access to the locally relevant data at different stages of the data processing chain,
scientists can work with a vastly reduced data volume allowing for a greater number
of climate model ensembles to be studied, which translates into greater scientific
robustness. Thus, the Climate Change Workflow provides much easier access to an
ensemble of high-resolution simulations of precipitationover a given ROI, presenting
the region’s projected precipitation change using standardized approaches, and
supporting the development of additional locally relevant climate indices.

Additional Climate Change Workflow Media

Workflow-In-Action Video:
https://youtu.be/MuX-oH1W2wk
Conceptual workflow description Chart:
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/images/1_clim

ate_change_flowchart.svg
Source Code Repository:
https://git.geomar.de/digital-earth/flood-event-explorer/fee-climate-change-wor

kflow
Registered Software DOIs:
de-esgf-download (https://doi.org/10.5281/zenodo.5793278)
de-climate-change-analysis (https://doi.org/10.5281/zenodo.5833043)
Digital Earth Climate Change Backend Module (https://doi.org/10.5281/zenodo.

5833258)
The Climate Change Workflow (https://doi.org/10.5880/GFZ.1.4.2022.003)
Accessible via the Flood Event Explorer Landing Page:
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/

5.3.3.2 The Flood Similarity Workflow

River floods and associated adverse consequences are caused by complex interactions
of hydro-meteorological and socio-economic preconditions and event characteristics.
The Flood Similarity Workflow (Fig. 5.10, Fig. 5.11) supports the identification,
assessment and comparison of hydro-meteorological controls of flood events.

The analysis of flood events requires the exploration of discharge time series data
for hundreds of gauging stations and their auxiliary data. Data availability and acces-
sibility and standard processing techniques are commonchallenges in that application
and addressed by this workflow.

The Flood Similarity Workflow allows the assessment and comparison of arbi-
trary flood events. The workflow includes around 500 gauging stations in Germany

https://youtu.be/MuX-oH1W2wk
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/images/1_climate_change_flowchart.svg
https://git.geomar.de/digital-earth/flood-event-explorer/fee-climate-change-workflow
https://doi.org/10.5281/zenodo.5793278
https://doi.org/10.5281/zenodo.5833043
https://doi.org/10.5281/zenodo.5833258
https://doi.org/10.5880/GFZ.1.4.2022.003
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/
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Fig. 5.10 Conceptual workflow description of the Flood Similarity Workflow

Fig. 5.11 (Parts of the) Visual User Interface of the Flood Similarity Workflow
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comprising discharge data and the associated extreme value statistics as well as
precipitation and soil moisture data. This provides the basis to identify and compare
flood events based on antecedent catchment conditions, catchment precipitation,
discharge hydrographs and inundation maps. The workflow also enables the analysis
of multidimensional flood characteristics including aggregated indicators (in space
and time), spatial patterns and time series signatures.

The added value of the Flood Event Explorer comprises two major points. First,
scientists work on a common, homogenized database of flood events and their
hydro-meteorological controls for a large spatial and temporal domain, with fast
and standardized interfaces to access the data. Second, the standardized computation
of common flood indicators allows a consistent comparison and exploration of flood
events.

Additional Flood Similarity Workflow Media

Workflow-In-Action Video:
https://youtu.be/3Z-3oyu8bP4
Conceptual workflow description Chart:
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/images/2_f

lood_similarity_flowchart.svg
Source Code Repository:
https://git.geomar.de/digital-earth/flood-event-explorer/fee-flood-similarity-wor

kflow
Registered Software DOIs:
Digital Earth Similarity Backend Module (https://doi.org/10.5281/zenodo.580

1319)
The Flood Similarity Workflow (https://doi.org/10.5880/GFZ.1.4.2022.003)
Accessible via the Flood Event Explorer Landing Page:
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/

5.3.3.3 The Socio-Economic Flood Impacts Workflow

The Socio-Economic Flood ImpactsWorkflow (Fig. 5.12) aims to support the identi-
fication of relevant controls and useful indicators for the assessment of flood impacts.
It should support answering the question “What are useful indicators to assess socio-
economic flood impacts?”. Floods impact individuals and communities and may
have significant social, economic and environmental consequences. These impacts
result from the interplay of hazard—themeteo-hydrological processes leading to high
water levels and inundation of usually dry land; exposure—the elements affected by
flooding such as people, build environment or infrastructure; and vulnerability—the
susceptibility of exposed elements to be harmed by flooding.

In view of the complex interactions of hazard and impact processes, a broad
range of data from disparate sources need to be compiled and analysed across the

https://youtu.be/3Z-3oyu8bP4
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/images/2_flood_similarity_flowchart.svg
https://git.geomar.de/digital-earth/flood-event-explorer/fee-flood-similarity-workflow
https://doi.org/10.5281/zenodo.5801319
https://doi.org/10.5880/GFZ.1.4.2022.003
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/
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Fig. 5.12 Conceptual workflow description of the Socio-Economic Flood Impacts Workflow

boundaries of climate and atmosphere, catchment and river network, and socio-
economic domains. The workflow approaches this problem and supports scientists
to integrate observations, model outputs and other datasets for further analysis in the
region of interest.

The workflow provides functionalities to select the region of interest, access
hazard, exposure and vulnerability-related data from different sources, identifying
flood periods as relevant time ranges, and calculate defined indices. The inte-
grated input dataset is further filtered for the relevant flood event periods in the
region of interest to obtain a new comprehensive flood dataset. This spatio-temporal
dataset is analysed using data science methods such as clustering, classification or
correlation algorithms to explore and identify useful indicators for flood impacts.
For instance, the importance of different factors or the interrelationships amongst
multiple variables to shape flood impacts can be explored.
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The added value of the Socio-Economic Flood Impacts Workflow is twofold.
First, it integrates scattered data from disparate sources and makes it accessible
for further analysis. As such, the effort to compile, harmonize and combine a broad
range of spatio-temporal data is clearly reduced. Also, the integration of new datasets
from additional sources is much more straightforward. Second, it enables a flexible
analysis of multivariate data, and by reusing algorithms from other workflows, it
fosters a more efficient scientific work that can focus on data analysis instead of
tedious data wrangling.

Additional Socio-Economic Flood Impacts Workflow Media

Conceptual workflow description Chart:
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/images/4_i

mpact_flowchart.svg
Source Code Repository:
https://git.geomar.de/digital-earth/flood-event-explorer/fee-socio-impact-wor

kflow
Registered Software DOIs:
Digital Earth ’Controls and Indicators for Flood Impacts’ Backend Module

(https://doi.org/10.5281/zenodo.5801815)
The Socio-Economic Flood Impacts Workflow (https://doi.org/10.5880/GFZ.1.4.

2022.005)
Accessible via the Flood Event Explorer Landing Page:
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/

5.3.3.4 The River Plume Workflow

The focus of the River PlumeWorkflow (Fig. 5.13, Fig. 5.14) is the impact of riverine
flood events on the marine environment. At the end of a flood event chain, an unusual
amount of nutrients and pollutants is washed into the North Sea, which can have
consequences, such as increased algae blooms. The workflow aims to enable users
to detect a river plume in the North Sea and to determine its spatio-temporal extent.

Identifying river plume candidates can either happen manually in the visual inter-
face (chapter 3.2) or also through an automatic anomaly detection algorithm, using
Gaussian regression (chapter 4.5.1). In both cases, a combination of observational
data, namely FerryBox transects and satellite data, and model data is used. Once a
river plume candidate is found, a statistical analysis supplies additional detail on the
anomaly and helps to compare the suspected river plume to the surrounding data.
Simulated trajectories of particles starting on the FerryBox transect at the time of
the original observation and modelled backwards and forwards in time help to verify
the origin of the river plume and allow users to follow the anomaly across the North
Sea. An interactive map enables users to load additional observational data into the
workflow, such as ocean colour satellite maps, and provides them with an overview

http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/images/4_impact_flowchart.svg
https://git.geomar.de/digital-earth/flood-event-explorer/fee-socio-impact-workflow
https://doi.org/10.5281/zenodo.5801815
https://doi.org/10.5880/GFZ.1.4.2022.005
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/
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Fig. 5.13 Conceptual workflow description of the River Plume Workflow

Fig. 5.14 Visual User Interface of the River Plume Workflow
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of the flood impacts and the river plume’s development on its way through the North
Sea. In addition, the workflow offers the functionality to assemble satellite-based
chlorophyll observations along model trajectories as time series. They allow scien-
tists to understand processes inside the river plume and to determine the timescales
on which these developments happen. For example, chlorophyll degradation rates in
the Elbe River plume are currently investigated using these time series.

The workflow’s added value lies in the ease with which users can combine obser-
vational FerryBox data with relevant model data and other datasets of their choice.
Furthermore, the workflow allows users to visually explore the combined data and
containsmethods to find and highlight anomalies. Theworkflow’s functionalities also
enable users to map the spatio-temporal extent of the river plume and investigate the
changes in productivity that occur in the plume. All in all, the River Plume Work-
flow simplifies the investigation and monitoring of flood events and their impacts in
marine environments.

Additional River Plume Workflow Media

Workflow-In-Action Video:
https://youtu.be/yl8ngubBxYY
Conceptual workflow description Chart:
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/images/5_river_p

lume_flowchart.svg
Source Code Repository:
https://git.geomar.de/digital-earth/flood-event-explorer/fee-river-plume-wor

kflow
Registered Software DOIs:
The River Plume Workflow (https://doi.org/10.5880/GFZ.1.4.2022.006)
Accessible via the Flood Event Explorer Landing Page:
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/

5.3.3.5 The Smart Monitoring Workflow

Adeeper understanding of theEarth systemas awhole and its interacting sub-systems
depends not only on accurate mathematical approximations of the physical processes
but also on the availability of environmental data across time and spatial scales.
Even though advanced numerical simulations and satellite-based remote sensing
in conjunction with sophisticated algorithms such as machine learning tools can
provide 4D environmental datasets, local and mesoscale measurements continue to
be the backbone in many disciplines such as hydrology. Considering the limitations
of human and technical resources, monitoring strategies for these types of measure-
ments should bewell designed to increase the information gain provided. One helpful
set of tools to address these tasks is data exploration frameworks providing quali-
fied data from different sources and tailoring available computational and visual

https://youtu.be/yl8ngubBxYY
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/images/5_river_plume_flowchart.svg
https://git.geomar.de/digital-earth/flood-event-explorer/fee-river-plume-workflow
https://doi.org/10.5880/GFZ.1.4.2022.006
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/
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methods to explore and analyse multi-parameter datasets. In this context, we devel-
oped a Smart Monitoring Workflow (Fig. 5.15, Fig. 5.16) to determine the most
suitable time and location for event-driven, ad hoc monitoring in hydrology using
soil moisture measurements as our target variable.

The Smart Monitoring Workflow (Nixdorf et al. 2022) consists of three main
steps. First is the identification of the region of interest, either via user selection or
recommendation based on spatial environmental parameters provided by the user.
Statistical filters and different colour schemes can be applied to highlight different

Fig. 5.15 Conceptual workflow description of the Smart Monitoring Workflow

Fig. 5.16 Visual User Interface of the Smart Monitoring Workflow (from Nixdorf et al, 2022)
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regions. The second step is accessing time-dependent environmental parameters (e.g.
rainfall and soil moisture estimates of the recent past, weather predictions from
numerical weather models and swath forecasts from Earth observation satellites) for
the region of interest and visualizing the results. Lastly, a detailed assessment of
the region of interest is conducted by applying filter and weight functions in combi-
nation with multiple linear regressions on selected input parameters. Depending on
the measurement objective (e.g. highest/lowest values, highest/lowest change), most
suitable areas for monitoring will subsequently be visually highlighted. In combi-
nation with the provided background map, an efficient route for monitoring can be
planned directly in the exploration environment.

The added value of the Smart Monitoring Workflow is multifold. The workflow
gives the user a set of tools to visualize and process their data on a background
map and in combination with data from public environmental datasets. For raster
data from public databases, tailor-made routines are provided to access the data in
the spatio-temporal limits required by the user. Aiming to facilitate the design of
terrestrial monitoring campaigns, the platform and device-independent approach of
theworkflowgive the user theflexibility to design a campaign at the desktop computer
first and to refine it later in the field usingmobile devices. In this context, the ability of
theworkflow to plot time series of forecast data for the region of interest empowers the
user to react quickly to changing conditions, e.g. thunderstorm showers, by adapting
the monitoring strategy, if necessary.

Finally, the integrated routing algorithm assists to calculate the duration of a
planned campaign as well as the optimal driving route between often scattered
monitoring locations.

Additional Smart Monitoring Workflow Media

Workflow-In-Action Video:
https://youtu.be/m5ivu86kpfg
Conceptual workflow description Chart:
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/images/3_s

mart_monitoring_flowchart.svg
Source Code Repository:
https://git.geomar.de/digital-earth/flood-event-explorer/fee-smart-monitoring-

workflow
Registered Software DOIs:
Digital Earth Smart Monitoring Backend Module (Tocap) (https://doi.org/10.

5281/zenodo.5824566)
The Smart Monitoring Workflow (Tocap) (https://doi.org/10.5880/GFZ.1.4.202

2.004)
Accessible via the Flood Event Explorer Landing Page:
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/

https://youtu.be/m5ivu86kpfg
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/images/3_smart_monitoring_flowchart.svg
https://git.geomar.de/digital-earth/flood-event-explorer/fee-smart-monitoring-workflow
https://doi.org/10.5281/zenodo.5824566
https://doi.org/10.5880/GFZ.1.4.2022.004
http://rz-vm154.gfz-potsdam.de:8080/de-flood-event-explorer/
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Fig. 5.17 Conceptual workflow description of the combined Flood Similarity and Climate Change
Workflow

5.3.3.6 Workflow Combinations

The combination of scientific workflows to foster data analysis and knowledge
creation across disciplines was one idea we followed in Digital Earth. The following
examples show how the workflows presented above can be combined to give answers
to more complex questions.

Combination of the Flood Similarity Workflow and the Climate Change
Workflow

A combination of the Flood Similarity Workflow and the Climate Change Workflow
(Fig. 5.17) can give an answer to the question “How could hydro-meteorological
controls of flood events develop under projected climate change?”. The Flood Simi-
larity Workflow provides a set of flood indices that allow for a comparison of flood
events. These indices describe the antecedent catchment soil moisture and catchment
precipitation, amongst other properties. The Flood Similarity Workflow determines
the flood indices for the historical and present period for a region of interest. These
flood indices are then calculated from climate projections from the Climate Change
Workflow. The Climate Change Workflow provides information for projected future
conditions regarding how the precipitation and soil moisture characteristics change
under different future scenarios for mid- and end of the twenty-first century over a
region of interest. The combined workflows show how controls of flood events,
described by the indices, develop and how the probability of floods of a given
magnitude changes over a certain region.
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Fig. 5.18 Conceptual workflow description of the combined River Plume and Flood Similarity
Workflow

Combination of the Flood Similarity Workflow and the River Plume
Workflow

Combining the Flood Similarity Workflow and the River Plume Workflow
(Fig. 5.18) addresses the question, whether large-scale flood events can be detected
as exceptional nutrient inputs into theNorth Sea that lead to algae blooms. Next to the
start and end dates of the flood event, the Flood SimilarityWorkflow provides charac-
teristics like the return period and the total water volume during the event. Given the
temporal and hydrological characteristics, the River Plume Workflow evaluates the
impact of fluvial floods onwater quality anomalies in theNorth Sea. The combination
of bothworkflows allows investigating the connection between flood event indicators
and the marine impacts caused by said flood event. Results from this analysis can be
used to improve the classification of flood events in future.

Combination of the Climate Change and the Smart Monitoring Workflow

Groundwater monitoring stations are essential for protecting the groundwater from
harmful pollutants and ensuring goodwater quality. As precipitation and temperature
patterns change under different climate evolutions, so will groundwater recharging
rates and quality. These changes need to be monitored adequately to ensure that
countermeasures start on time and are efficient. Currently, groundwater monitoring
wells are unevenly distributed across the German aquifer systems. By combining the
Climate Change Workflow and the Smart Monitoring Workflow (Fig. 5.19), we can
assist to improve the groundwater monitoring network design required in future for
different climate projections.

The Climate Change Workflow provides information on precipitation changes
over a region of interest based on regional climate model projections at a resolution
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Fig. 5.19 Conceptualworkflowdescription of the combinedClimateChange andSmartMonitoring
Workflow

of 144 km2. These data help to assess where the largest climate-driven changes
in groundwater resources are expected and combined with the Smart Monitoring
Workflow; it can determine whether there are a sufficient number of groundwater
monitoring wells installed and can further assist in determining suitable locations
for the installation of new monitoring wells.

5.4 Assessment of the Scientific Workflow Concept

Our assessment of the concept of scientific workflows focuses on the challenges
and needs we addressed in chapter 5.1. Along these challenges, we present our
experiences with benefits, limitations and efforts of scientific workflows.

Challenge 1: Seamless data analysis chains to extensively analyse and explore
spatio-temporal and multivariate data.

As we could show in our Flood Event Explorer, scientific workflows provide an
analysis environment that integrates different analysis methods and tools into seam-
less data analysis chains and facilitates integration of data from various sources; the
visual front ends of the digital workflows enable detailed exploration of the multi-
variate spatio-temporal data. This is a clear benefit. In more detail, our exemplary
workflows of the Flood Event Explorer attain the following benefits:

• Reduction in the number of different software programs;
• Much easier access to data and ensembles of simulations;
• Ease with which users can combine datasets of their choice;
• Intuitive generation and access to spatial or temporal subsets of data allow for

further analysis;
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• By allowing access to spatial subsets of data (e.g. locally relevant data) at different
stages of the data processing chain, scientists can work with a vastly reduced data
volume allowing for a more comprehensive analysis (e.g. a greater number of
model ensembles to be studied), which translates into greater scientific robustness.

Scientific workflows have proven to be helpful means to create improved work
environments with seamless data analysis chains to extensively analyse and explore
spatio-temporal and multivariate data.

Besides this benefit, scientific workflows have one major limitation; this is the
effort for its development and implementation. The use of workflow engines and
the manual implementation of workflows need additional effort and expertise. The
manual implementation we have chosen in the Digital Earth project requires knowl-
edge from software engineering and consequently various expertise. Although our
Data Analytics Software Framework (DASF) allows reuse of workflow components
and thus eases the implementation process, a minimum of software development
expertise is still required.

Another limitation of our scientific workflows is their predefined data anal-
ysis approach with a set of predefined analysis methods. Due to the component-
based approach of our Data Analytics Software Framework (DASF), methods can
be substituted easily; however, this also needs particular expertise in software
development.

Challenge 2: Sharing and reuse of methods and software tools.
The systematic description of scientific workflows and its implementation with

the Data Analytics Software Framework (DASF) enable sharing and reuse of all
workflows and workflow components we have developed for the Flood Event
Explorer. Several of our workflow components (data analysis and visualization
methods) could already be used again in other projects without any difficulties and
so could save time and costs for reimplementation. Examples are the GFZ Earth-
quake Explorer (https://geofon.gfz-potsdam.de/eqexplorer/test/) or the Geochem-
ical Explorer (http://rz-vm154.gfz-potsdam.de:8080/gcex/). The DASF also allowed
reusing already existing data analysis software and integrating it into the workflows
of the Flood Event Explorer independent of the programming language. A further
benefit is the sharing of extensive analysis approaches with other scientists. Scien-
tific workflows go beyond sharing single methods and tools; they implement whole
analysis approaches and so support more standardized and comparable analysis and
results. Examples within our Flood Event Explorer are the approaches to determine
projected precipitation change of defined regions, to generate common flood indi-
cators for a consistent comparison and exploration of flood events or to identify the
best monitoring sites and time (chapter 5.3.3). Conceptual workflow descriptions can
also be used as metadata providing suitable information for reuse and sharing.

The benefits that scientificworkflows and theDataAnalytics Software Framework
(DASF) provide for sharing and reuse of single analysis methods and extensive
analysis approaches require some additional effort and work. First the RPC wrapper
module, described in chapter 5.2.3, has to be added to the actual method. The effort to
do so depends on the used programming language. In case of the widely used Python

https://geofon.gfz-potsdam.de/eqexplorer/test/
http://rz-vm154.gfz-potsdam.de:8080/gcex/
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programming language, we provide an easy-to-use annotation-based interface for
this. Furthermore, a message broker instance, as described in chapter 5.2.3, has to be
provided and maintained. Finally, the module wrapping the developed method has to
be deployed on a suitable host. In addition to the technical effort, a shared, reusable
module needs to be documented properly to ease the workload of the reusing party.
In general, we consider reuse and sharing of methods on the module level. However,
this always requires the use of the DASF in the scope of the reusing context. Since we
applied CBSE on all levels of abstraction, the individual methods could also directly
be reused without the advantages and disadvantages of DASF.

Challenge 3: Communicate and combine scientific approaches across disciplines.
The conceptual workflows we described in flow charts are a systematic documen-

tation of scientific knowledge and approaches; they show how scientists proceed to
answer a geoscientific question. In the Digital Earth project, it became very clear
that conceptual workflow descriptions can serve as significant means to under-
stand approaches of other scientists and to discuss how various approaches can
be combined. Examples in our Flood Event Explorer are the combined workflows
presented in chapter 5.3.3. Once it is clear on the conceptual level how scientific
approaches andworkflows can be combined, they also can be linked on the implemen-
tation level for the digital workflows. The concept of scientific workflows supports
linking approaches across disciplines on the conceptual as well as on the digital level.

Our experience also showed that describing conceptual scientific workflows is not
an easy task for geoscientists. The systematic documentation of scientific approaches
needs some experience. Scientists have to learn to represent their approaches in a
systematic way either in flow charts or in other forms; this requires additional effort
from geoscientists.

Challenge 4: Suitable interface between geo- and computer science.
The conceptual workflow descriptions largely support the communication

between geo- and computer scientists; they are recognizable means of translation
between the two worlds. The geo- and computer scientists collaborating in Digital
Earth assessed the task analysis and flowcharts to elicitate and document the concep-
tual workflows as essential for collaboration. Geoscientists are forced to systemat-
ically capture their requirements and analytical tasks; computer scientists receive
a sound basis to map analytical tasks to suitable methods that fulfil the task in the
digital workflows.

To summarize: The experience we made in Digital Earth with adopting the
concept of scientific workflows to geosciences can be summarized as following:
The concept of scientific workflows provides a suitable frame to tackle the needs
we have addressed for data analysis and exploration in Digital Earth: digital work-
flows enable seamless executable data analysis chains (challenge 1), and they also
support sharing and reuse of data analysis methods and tools (challenge 2). Concep-
tual workflow descriptions are suitable means to exchange and combine scientific
approaches and knowledge (challenge 3); they also serve as a suitable interface
between approaches from geo- and computer science (challenge 4). To utilize this
potential of workflows, some additional effort is necessary. First, geoscientists have
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to force thinking in workflows and gain skills and experience in describing concep-
tual scientific workflows. Second, state-of-the-art concepts from computer science
are needed to develop and implement highly explorative digital scientific workflows.
Third, a close collaboration and co-design of geo- and computer scientists is required
to develop suitable scientific workflows. This requires people who are willing and
able for border crossing and thinking out of the box. To shape such people was one
aim and success of the Digital Earth project.
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The Digital Earth Smart Monitoring
Concept and Tools
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Abstract Reliable data are the base of all scientific analyses, interpretations and
conclusions. Evaluating data in a smart way speeds up the process of interpretation
and conclusion and highlights where, when and how additionally acquired data in
the field will support knowledge gain. An extended SMART monitoring concept is
introduced which includes SMART sensors, DataFlows, MetaData and Sampling
approaches and tools. In the course of the Digital Earth project, the meaning of
SMART monitoring has significantly evolved. It stands for a combination of hard-
and software tools enhancing the traditional monitoring approach where a SMART
monitoring DataFlow is processed and analyzed sequentially on the way from the
sensor to a repository into an integrated analysis approach. The measured values
itself, its metadata, and the status of the sensor, and additional auxiliary data can be
made available in real time and analyzed to enhance the sensor output concerning
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accuracy and precision. Although several parts of the four tools are known, tech-
nically feasible and sometimes applied in Earth science studies, there is a large
discrepancy between knowledge and our derived ambitions and what is feasible and
commonly done in the reality and in the field.

Keywords Adaptive · Prediction ·Monitoring · Sensors ·Metadata · FAIR ·
DataFlow · SMART concept · SMART tools

6.1 Challenges

The understanding of the Earth system with all its different habitats, processes,
connections between spheres and feedback loops demands the repeated observation
of high number of parameters in high spatial and temporal resolution over long time.
Such kind of monitoring is e.g. the base of our understanding of climate change,
changes in biodiversity or on shorter time scales e.g. the development of a sediment
plume in the deep sea during deep sea mining. The base of all this knowledge gain
is monitoring of specific parameters in the field, be it in the atmosphere, the oceans
or on land. Conservation and long-term protection of the environment requires a
better understanding of the ecosystem through cross-domain integration of data and
knowledge fromdifferent disciplines.Currentmethods used in applied environmental
research and scientific surveys are often not sufficient to appropriately address the
heterogeneity and dynamic of ecosystem changes.

Thus, new technologies and methods for integrated in-situ and near real-time
monitoring with increased spatiotemporal resolution and adaptive functionalities are
needed. Recent developments in digital information processing, the internet of things
(IoT) or the improved analysis of complex datasets are opening up new possibilities
for data-based environmental research. Moreover, these rapidly developing fields
call for a paradigm shift towards a SMART monitoring concept that even stronger
couples modelling and data acquisition in the field. Having the none achievable goal
of “measuring everything, everywhere at any time” in mind sets some challenges to
the task of twenty-first-century environmental monitoring which are:

• SMART sensors: Advancing and developing sensors that have real-time data
(pre)processing capacities and are linked in a self-organizing sensor network is
still a challenging technological task. Automated event-detection, drift correction
and failure detection are possible but still rarely done. Real-time data connections
and centralized visualization and analyses are more and more established, but the
real challenge is that such SMART sensors and sensor networks become easy to
use and the standard way of acquiring multiparameter data in the field.

• SMART DataFlow: An easy to use, scalable and adaptable way of receiving
data from sensors and re-distributing them through various channels and means
also in real time is the challenge for an efficient SMART monitoring DataFlow.
Standardized and largely automated procedures are needed to obtain reliable data.
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As an essential part of the live cycle of data is the DataFlow crucial for acquiring
high quality data at the right time and location

• SMART MetaData: Columns of numbers of a time series alone are not useful
without the context these numbers havebeengenerated.The suitable descriptionof
data is a prerequisite for any secondary use of data. Apart from FAIR descriptions,
the data trustworthiness also needs to be assessed and described to allow a correct
evaluation of the data. Compiling these data in a complete manner and raise the
awareness again, that MetaData are crucial for the correct use of data, is the real
challenge for SMART MetaData.

• SMART Sampling: Objectively finding the best possible sample location in space
and time (most informative information for the respective research question),
ideally in an automated and adapting way is a challenging task. SMART sampling
strategies are supporting this challenge. Applying state-of-the-art statistic and AI
methods jointly with interactive visualization and analyses is increasing in the
community. The challenge is to spread the knowledge about these methods and
present easy ways of using them to lower the hurdle of their application.

Addressing these challenges was the main objective of the SMART monitoring
efforts within theDigital Earth project. The involved research centres started, iterated
and further developed the idea of aSMARTmonitoring concept, that finally integrates
four conceptual groups of tools, each tackling one of the above stated challenges.

6.2 SMART Monitoring Concept

6.2.1 An Expanded SMART Monitoring Concept

SMART monitoring typically refers to “Self-Monitoring, Analysis, and Reporting
Technology” which implies that sensors utilizes e.g. artificial intelligence and big
data analysis capabilities to provide an automated data acquisition, simultaneous
processing, standardized storage and retrieval of multiple data (Ullo & Sinha 2020;
Zhang et al. 2015; Spencer et al. 2004; Thakur et al. 2019; Alharbi & Soh 2019,
Lombard et al., 2019). We would like to expand the meaning of SMART monitoring
in such a way that measured environmental parameters and their values need to be:

• Specific/Scalable—Specific relates to accurate and precise and means also that
something is clearly defined or identified. Scalable refers to a hierarchical
monitoring approach combining multiple sensors measuring across scales and
parameters.

• Measurable/Modular—Measurable values imply that quantitative informa-
tion can be measured. Modular refers to a portfolio of different independent
methods available to measure a specific parameter to eliminate specific methods’
disadvantages/shortcomings.
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• Accepted/Adaptive—Accepted values are internationally defined in UNESCO
standards for the target parameters. Adaptive refers to an easy application to new
research questions and the combination of various sensors in a network.

• Relevant/Robust—Relevant values are commonly accepted as representative of
a specific measurement. Robust refers to self-repair calibration mechanisms in
operation in case of sensor failure and profound knowledge of the accuracy and
precision of the sensor data.

• Trackable/Transferable—Trackable data can be tracked by specific hardware
and software tools conveying information where the data’s status is at any point
in time. Transferable refers to concepts ofmethod combination applied to different
problems.

Tomeet these SMARTmonitoring criteria, we suggest an iterative SMARTmoni-
toring concept with methods, approaches and tools for SMART sensors, Data-Flow,
Metadata and Sampling technologies. Figure 6.1 shows this concept with its four
overlapping groups of tools.

1. SMART sensor tools enable the interconnection of a large number of sensors,
automated data access via standardized and well-documented interfaces, and
remote adaptation ofmeasuring schemes to the prevailingmeasuring conditions.
They meet the SMART criteria specific, measurable, robust and trackable.

Fig. 6.1 The SMART monitoring concept consisting of four overlapping groups of tools
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2. The SMART DataFlow approaches incorporate a variety of standardized data
flows within the data lifecycle. Analytical tools and methods provided in auto-
mated analysis workflows allow data exploration and analysis to determine
a suitable monitoring strategy; this includes methods to classify data, deter-
mine outliers, fill data gaps, recognize patterns in data and adapt data to
different spatial and temporal resolutions. SMART DataFlow approaches meet
the SMART criteria scalable, modular, accepted, adaptive and relevant.

3. SMART MetaData approaches enable a comprehensive description of newly
acquired data increasing their reliability. Standardized data descriptions are
important for data fusion, joint analysis and interpretation as well as for
the creation of training data sets for machine learning. SMART MetaData
approaches meet the SMART criteria specific, accepted, relevant and trackable.

4. SMART Sampling approaches. They, for example, support selecting the most
representative sampling points based on auxiliary or prior measured data. They
meet the SMART criteria scalable, modular, adaptive and transferable.

6.2.2 Pre-Conditions for SMART Monitoring

6.2.2.1 SMART Monitoring and Technological Advancements
of Sensors

SMART monitoring of the environment incorporates SMART sensors such as the
internet of things (IoT), SMART connected sensors, and smart devices, playing an
essential role within SMART monitoring. Sensor technology is improving from a
simple measurement sensor to a SMART sensor with local intelligence, decentral-
ized data pre-processing, digital output, and near real-time communication options.
Microsystems technology with micro- and nano-electronics low-power computing
capabilities, high data volume storage and better batteries are driving this develop-
ment. An ideal SMART sensor is a sensor in which the complete signal conditioning
and signal processing are combined in one unit in addition to the actual measure-
ment acquisition. Such sensors usually include a microprocessor or microcontroller
and provide standardized interfaces for communication, e.g. via field bus systems or
sensor networks. Thereby, such sensors’ complete sophisticated task is to be fulfilled
without an external computer to meet miniaturization demands, decentralization,
increasing reliability, reducing costs and improved flexibility. The characteristics of
a SMART sensor are (Sauerer, 2013):

• provides a digital output signal, often via a standardized interface; in stand-alone
systems also via a wireless data connection

• can be addressed via an address and has a bidirectional digital interface
• data transmission and information exchange among different devices and different

domains
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• executes commands and logical functions (complex measurement value
processing up to measurement evaluation) to allow (near) real-time decision-
making, service supporting and management

• existence of extensive calibration and diagnostic capabilities
• in self-sufficient systems existence of data memory
• self-sustaining sensor systems with wireless data transmission and energy

harvesting eliminate the need for cabling or battery replacement, allowing almost
unlimited operating time in hard-to-access locations

Therefore, a SMART sensor is suitable to meet the increasing demands on reli-
able monitoring tools such as miniaturization, the realization of high data sampling
rates with higher accuracy and reliability, acquisition and decentralized real-time
processing of spatially distributed measurement data, sensor fusion allowing the
combination of different sensor data, ease of integration, (wireless) self-sufficient
networking, higher reliability and less maintenance due to self-maintenance oppor-
tunities, low power and low latency (data transmission with minimal delay), the
possibility of mobile edge computing (MEC), especially for mobile crowdsensing
and cost reduction.

A vital facet addresses the monitoring of the sensor function itself. A service
reduced and reliable sensor operation, especially in long-term remote-controlled
applications, requires modern communication procedures between the sensor and
the control unit. Today, even the most straightforward I.T. equipment like printers
have fully automatic reconnection, self-analysis, and, if required, also calibration
procedures. Any necessary information like driver updates or serial number-related
information is available in repositories. The sensor should automatically connect
in case of malfunctions or even routinely checks if updates or improvements are
available. Unfortunately, this is not the case in most environmental sensors, which
often also do not even have the most basic plug-in connection procedures. Therefore,
significant technological innovations in sensor development are needed to provide
smart monitoring technologies with self-repair mechanisms if the control software
fails and reliable alerting functions in the event of contact failure (Fischer 2020).
We need to implement state-of-the-art I.T. technology in the field, working based
on plug-and-play technology, including fully automated transmission, verification,
storage, accessibility of sensor metadata and sensor actions such as deployment
or maintenance so that human interaction in sensor operation can be significantly
reduced.

6.2.2.2 SMART Monitoring and FAIR Principles

The availability of sensor data represents a prerequisite for parametrization and
model validation. Such data fusion and integration demonstrate the importance of
implementing FAIR principles for sustainable data management and allows inter-
operability among different data services (Wilkinson et al., 2016). These principles
primarily aim to generate the maximum benefit from data and their metadata by
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supporting machine-actionable data infrastructure processes making the data find-
able and accessible by machines and humans. However, it needs to be mentioned
that the FAIR principles do not require a detailed description of data quality and
do not cover content-related quality aspects. An assessment of data quality and the
data provenance is essential to preclude the possibility of inaccurate, incomplete or
even unsatisfactory data analysis applying and avoiding poorly derived,misleading or
wrong conclusions. For our SMARTmonitoring approach, the following information
needs to be part of any FAIR compliant data:

• available auxiliary or prior measured data
• essential information on smart sensor networks, including timing, ambient

conditions and data aggregation issues
• existent, general information regarding both sensor and measurement uncertain-

ties and calibration of sensors in a traceable way
• information on executed processing and analysis steps with their assumptions,

e.g. information on quality control/assurance steps or applied Proxy–Transfer
Functions to derive parameters of interest

• information on used methods and their assumptions (e.g. test and training data
set) of supervised and unsupervised machine learning generated data products

• information on gridding algorithm and their specific assumptions/parameter
settings especially for larger scale sensor data that have been converted into a
derived data product (grid/raster; correlation)

6.2.2.3 SMART Monitoring and Standardization

As crucial part for joint scientific activities SMART monitoring Data-Flow and
SMART Metadata tools will need to support scientific cooperation and data inte-
gration through standardized workflows and metadata schemes. Standardization is
often emphasized as important process, although there is little awareness about how
standardization should be carried out. Standards as expressions of consensus enable
in general safety, allow to control processes, increase transferability and also support
creativity. Standards can be established by geographical extent or reach (e.g. interna-
tional and national), by scope, by strength (e.g. regulation versus recommendation)
and by subject (e.g. devices, procedures and workflows).

Standards can ensure data reproducibility, a key element of interinstitutional
cooperation and joint data analysis. Many scientists mention standardization as the
means to make data interoperable, but many are not clear about the requirements
for the respective standardization process. Such a process requires a transparent
input into the corresponding workflows and daily work to those involved to achieve
high acceptance and develop the best possible standard. The smaller the affiliated
group, the easier it is to define standardized procedures and apply them within the
group/consortium. Therefore, there is a seemingly infinite number of standards for
different data workflowswhichmakes a reliable standardization difficult. TheVienna
agreement from 1991 allows cooperative standardization efforts between European
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Committee for Standardization (CEN) and the International Organization for Stan-
dardization (ISO). Many standardization activities are going on in so called tech-
nical committees at CEN or ISO. Another faster option is to prepare a CEN Work-
shop Agreement (CWA) at the European Committee for Standardization (CEN) to
reach a broad acceptance internationally (CEN, 2021). This kind of agreement must
follow specifically defined steps: preparation, the initiative’s announcement, kick-
off meeting, drafting, consensus, publication and implementation (CEN, 2021). The
advantage of such a standardization effort is that such “lower” standard is being
reviewed every 3 or 5 years allowing the consideration of novel developments.

Even with the understanding that standardization is essential within SMART
monitoring tools, we could not prepare and start such a CWA process within the
Digital Earth project lifetime for our SMART monitoring approach. Such standard-
ization efforts would need to include all steps from data acquisition, data processing
and data storage, all described as clear and reproducible as possible. Both, standard-
ized procedures in the data acquisition (monitoring set-up, acquisition, calibration,
data cleaning,) and standardized metadata, decide on the usability and trustworthi-
ness of monitoring data. Cooperation with existing initiatives and infrastructures
such as DataFlow Framework from Sensor Observations to Archives (O2A at AWI)
and Modular Observation Solutions for Earth Systems (MOSES) were intensified
to improve existing tools and bundle competencies (UFZ 2021; Koppe et al. 2015;
Gerchow et al. 2015).

6.2.2.4 SMART Monitoring and Data Quality

Data quality is a crucial, although not explicitly mentioned, requirement for data
FAIRness; it is essential to ensure reusability of data. A documented data quality
is required to enable meaningful data selection for data fusion and reuse. Due to
the versatile application of low-cost sensors in environmental science, informa-
tion on data quality has become increasingly important and scientists who acquire
and use monitoring data must be aware of the importance of data quality and
their trustworthiness. Even though data may be FAIR in terms of availability, the
data are not necessarily “good” with regards to accuracy and precision. Unfortu-
nately, there is still considerable confusion in science about what good or trust-
worthy data are (e.g. Dorgio et al. 2021). Trustworthy data may be achieved by
simple/automated data flagging algorithms, ensuring that data are plausible with
respect to specific criteria (e.g. threshold). But real trustworthy data imply more
when considering accepted standards for scientific data that have an uncertainty value
for each measurement. An accepted approach in providing an uncertainty range for
single data points/measurements is by providing accuracy and precision as defined in
ISO standard 5725–1(1994; accuracy evaluates the proximity ofmeasurement results
to an accepted reference value, precision considers repeatability or reproducibility
of measurements). This approach allows for a numerical expression of how close a
measured value lies with a certain statistical probability to the real value (e.g. 90%).
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Even though the uncertainty assessment is commonly accepted and good scientific
practice in most experimental studies and measurements, it is not yet a must-have
in many monitoring approaches where single sensor data or a time series is often
provided without assumptions of the associated uncertainty. Such assessments are
of significant importance when classifying data as relevant or good for a specific
application or scientific question. Discriminating, e.g. different water masses based
on temperature and salinity requires high accuracy and precision. Estimating the
presence or absence of a specific fish species based on the concept of fundamental and
realized ecological niches using the same two parameters, temperature and salinity,
allows for a much larger accuracy and precision range of the data. Therefore, the
same data cannot be used by e.g. an oceanographer but by the behavioural ecologist.
Each scientist must be enabled to decide if data are good or have to be rejected as
probably unfit for a specific scientific question; without an assumption of the data
uncertainty, this is practically impossible.

Modern data sciencemethods such asmachine learning can blend diverse datasets
evenwith lower quality to gain valuable information. However, to assess and interpret
such results, knowledge of data quality is required. Traditional repositories hosting
data from scientific or regulatory monitoring initiatives as well as from scientific
field campaigns could usually rely on more or less rigid quality assurance chains.
According to the international organization ASQ, quality assurance can be defined as
“part of quality management focused on providing confidence that quality require-
ments will be fulfilled.” Quality control as the “part of quality management focused
on fulfilling quality requirements” is essentially the inspection component of quality
assurance (ASQ, 2021). Quality control (QC) is distributed across data acquisi-
tion, data management and data curation tasks and should be discussed as such and
jointly executed by the involved people scientist check the validity of the data values
themselves whereas data manager and data curators possibly focus more on meta-
data quality (completeness, standardized terminology etc.). Similar quality control
issues occur in different monitoring domains, scientific disciplines and involve many
different data types. Recently, many projects and initiatives have begun to harmonize
data quality control efforts (e.g. ENVRI-FAIR andNFDI) and develop software tools
to assist in quality control across various environmental research domains (Schultz
et al., 2019; see also Sect. 6.4.1 for examples). Such initiatives may only affect the
data processing steps but have also considerable effects on entire monitoring set-ups.

6.2.3 Future Tasks to Further Increase Smart Monitoring
Efforts

The development of new and faster machine learning and generally AI tools will
undoubtedly bring new possibilities for advancing tools of SMART monitoring.
Despite the integration of these new methods we see a number of essential tasks as
important for future applications of SMART monitoring (Table 6.1). These must go
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Table 6.1 Future needs and challenges for SMART Monitoring Tools

SMART Sensors • fully automated transmission, verification, storage, accessibility of sensor
data and their metadata

• automated sensor maintenance and set-up
• powerful synchronization and data management system for wireless
sensor networks (real-time clock; data versioning, …)

SMART
DataFlow

• standardized approaches, e.g. documentation/reporting, QA/QC, data gap
filling, statistical analysis, quality assessment and visualization

• quality assurance routines and metadata description for supervised and
unsupervised machine learning algorithm to achieve reproducibility of
the results

• near real-time visualization with incorporated analysis tools

SMART MetaData • agreement on a shared vocabulary for the metadata elements and values
as an interdisciplinary approach

• automatic filling of metadata (e.g. electronic and paper documents,
software) and

• automatic error checking to reduce human errors automating metadata
management

SMART Sampling • automatic grabbing of all available web data for a selected area with
various resolution to save and visualize this data in a standardized format

• automated bundling of all available data (former monitoring data,
satellite data, auxiliary data) from a selected area and

• determine the representative sampling area or points accordingly

hand in hand with additional IT security when distributed dataFlows and IoT sensors
and data repositories become the new standard formonitoring the Earth environment.

6.3 SMART Monitoring approaches and tools

In Digital Earth, we developed several approaches and tools to enable the expanded
SMART monitoring concept we set up in Digital Earth.

6.3.1 Hard-and Software Tools for a Modern
Communication between Sensor and Control
to Enhance Traditional Monitoring Efforts

Environmental research is changing towards using monitoring strategies that are no
longer based on static data collection, but on the coupling of prediction and empirical
data that integrate sensors near real-time data stream for continuous modelling. The
challenge, that in practice, requires a sophisticated implementation of a decision and
control basis at sensor level. While sensors used to be rather one-dimensional and
stupid data suppliers, nowadays complex sensor systems where several sensors are
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interconnected are being used increasingly. An important aspect in this respect is
the implementation of a data model according to a holistic data processing e.g. the
Lambda architecture (e.g. Kiran et al., 2015). In this way, sensors do not just deliver
measured values but entire message packages (e.g. JSON) via defined protocols (e.g.
MQTT) and interfaces (e.g. HTTP). In addition to themeasured value, these message
packages contain various descriptive metadata about the sensor and the situation of
the measurement.

This procedure allows complex algorithms and analyses to be applied directly
to the data stream based on the message packets. Thus, the approach in applied
environmental monitoring shifts from pure data collection to adaptive measurement
in the context of an application or a specific scenario. The measured sensor value
is embedded in a context and thus receives a clear space–time reference as well as
a context-related allocation. The fusion even of heterogeneous data streams is thus
considerably simplified, since connecting descriptive parameters are available within
the metadata, which allow linking different message packets.

The main innovation of the process flow is that data collected in the course of
monitoring can be directly related to a-priori information. It is irrelevant whether the
context is based on modelling or accompanying measurements. Since the infrastruc-
ture and the underlying data model represent an always existing and complete solu-
tion space, the monitoring efforts can be constantly optimized, similar to a machine
learning approach, because the set of rules for data sampling/sensor measurement
(sampling interval, additional sensors on/off,…) are subject to constant proving. This
approach allows a broader or rather holistic assessment of varying, large-scale envi-
ronmental phenomena. To do so, there is a corresponding need for capable hardware
and software tools that are specialized to execute such an assessment in a tailored
way.

Figure 6.2 gives an illustration of a data stream architecture with real-time data
processing and IoT-capable sensors. Starting with the sensor technology, sensors
must not only transfer the results of the measurement conversion (e.g. calculating
turbidity from a voltage signal of a turbidity sensor based on light backscatter) but
obviously also needs to provide information about the context (e.g. calibration, appli-
cation conditions). In the next step, a gateway is needed to collect the sensor data and
harmonize them according to the data model and assign them to a reference system
with the information about place, time and sensor ID. The gateway also serves to
define global parameters such as the sampling rate or to ensure time synchronization.
The time base is the foremost quality assurance criterion for the implementation of
such a sampling paradigm.

Once the message packets are in the data stream, the downstream processing steps
are borrowed from other domains such as logistics or business informatics. Low-code
programming for event-driven applications can be achieved, for example, by using
Node-Red as a powerful and versatile platform (https://nodered.org/) for connecting
hardware devices, APIs and online services. Time series databases have proven to be
an efficient and robust solution for storing sensor data, e.g. influx DB (https://www.
influxdata.com/). Thanks to their own syntax and robust architecture, the query and
storage of even large amounts of data is very fast and allows establishing complex

https://nodered.org/
https://www.influxdata.com/
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Fig. 6.2 Data streamarchitecture for processing real-timedata based on IoT-capable sensor systems
and considering server-side services for the valorization and contextualization of environmental
monitoring data

query and processing procedures. As such, a data-driven architecture for service-
oriented observation methods and in-stream process modelling close to real time is
ready for use, available as open-source with powerful capabilities thanks to a large
user community. This makes such an approach rather low-cost with low overhead
for not directly necessary tasks.

6.3.2 SMART DataFlow

A SMART DataFlow from the sensor to the database is a central part of the SMART
monitoring concept as highlighted in Chapter 6. This DataFlow represents parts of
the data life cycle and plays an important role in data acquisition, data handling and
datamanagement (Fig. 6.3).Within a SMARTDataFlow standardized and automated
procedures are needed to obtain reliable data for subsequent analysis and application.

To gain reliable and trustworthy data, it is essential to develop and apply stan-
dard operating procedures within the DataFlow from the individual sensor to
the repository. The following prerequisites or conditions have been identified as
important:

• Availability of a portfolio of different independent methods measuring a specific
parameter

• Combination of various SMART sensors in a network allowing self-repair /
calibration mechanisms during operation
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Fig. 6.3 SMART DataFlow as backbone of the SMART Monitoring concept

• Possibility of applying a hierarchical monitoring approach across different scales
and parameters

• Possibility to transfer concepts of combinedmethods to further research questions
• Capacities for automatic data handling using standardized data transfer, data

storage, Q/A routines and data backup rules and routines in, e.g. traditional
repositories; important are:

o defined data or formats and standardized data format transformation proce-
dures

p standardized routines for Q/A to ensure identical data flagging; standardized
routines should correspond to existing internationally accepted and applied
Standard Operating Procedures (SOPs), e.g. from ICOS, ARGO, the World
Meteorological Organisation Global Atmosphere Watch programme or more
informal at GO-SHIP from the marine science (https://www.go-ship.org/Hyd
roMan.html)

q standardized, automated and interactive uncertainty analysis tools for data
and proxy transfer functions

r standardized processing routines for integrated data analysis or proxy transfer
functions

https://www.go-ship.org/HydroMan.html
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• Capacities for automated SMART data processing that allows data fusion, distri-
bution and visualization of all available data such as dashboards. Processing
should include:

o hierarchical data storage structure to combine and integrate relevant auxiliary
data, calibration protocols and data from intercomparison experiments of the
respective device

p standardized data analysis and visualization tools and software
q automated (near) real-time application of visual and interactive tools to: (1)

process various (near) real-time data; (2) apply multiple filters for data anal-
ysis; (3) combine different data sets; (4) connect to other software packages;
(4) enable joint data analysis by different users

• Standardized reporting routines which ensure that all processing steps are
precisely described and traceable and that all users can assess the data quality
of the parameters derived by proxy transfer functions, needed are:

o standardized metadata vocabulary and schema

In the following, we present a number of approaches and tools we have developed
in Digital Earth to address certain aspects of the SMART DataFlow.

6.3.2.1 Automated QA/QC pipelines (Quality Assurance/Quality
Check)

During the Digital Earth project, automated workflows for data processing have been
developed, focusing on the near real-time quality assessment and quality control of
the collected data. One major design criterion for the workflows was their compos-
ability with existing workflows of other users and their scalability to be easily adapt-
able to other requirements. In this subchapter, two examples of the successful imple-
mentation of the developed workflows in the European Research Infrastructures
IAGOS and TERENO are introduced

IAGOS: The European Research Infrastructure IAGOS (In-service Aircraft for
a Global Observing System; www.IAOGS.org) operates a global-scale observing
system for atmospheric composition and essential climate variables by deploying
automated instruments on passenger aircraft during their commercial flights. To
handle the immense DataFlow from the fleet of aircraft collecting data, IAGOS has
implemented an automatic workflow for data management, organizing the DataFlow
starting at the sensor towards the central data portal located in Toulouse, France. The
workflow is realized and documented using the web-based Django framework with
a model-based approach using Python (Fig. 6.4). In Fig. 6.1, the overall sketch is
shown.

A permanent active cronjob called Task Manager (outer box) activates an indi-
vidual task instance (dotted box) of a task class describing the complete data handling
process. This includes the following steps: (1) The Transfer Handler checks for new

http://www.IAOGS.org
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Fig. 6.4 Scheme of the IAGOS process chain including a QA/QC pipeline

data of the task-specific data type by using a RESTful API (Application Program-
ming Interface) operated at the data centre in Toulouse. The API handles the neces-
sary authentication by using an individual ssh256 encrypted token generated with a
pre-shared passphrase and unique token (timestamp).

If new data is transferred, the data is passed to the ImportManager (2). The Import
Manager reads and parses the raw files (pandas toolset) and processes the raw data to
meaningful values. In the end, the Import Manager stores the processed time series
to the instrument database for further processing. As the next step (3), the advanced
QA/QCHandler performs checks, flags the data and produces a report for the PI who
has to release the data for Level 1 and Level 2. (see Table 6.2).

In principle, step 2 and 3 are the same for all different data levels. In the end, the
data-level reached depends only on predefined requirements e.g. the availability of
the post-flight calibration. In step 4, the Export Manager writes the data to a specific
transport format (e.g. NetCDF, or API specific format) and passes it to the Transfer
Handler (6), which finally handles the transfer for a specific data type towards the
data centre, including the authentication process already described for the Transfer
Handler (1). TheTaskManager tracks the status of all tasks even if they are terminated
by reachingLevel 2 or stoppedby thePI.All information on tasks, including decisions
of the PI, is stored for later reprocessing if needed.

Table 6.2 Definitions of the level of maturity for IAGOS data

Level 0 Raw data checking

NRT Fully automated upload of processed raw data including automated QA/QC checks and
flagging within 3 days (Near Real Time)

Level 1 NRT grade data, approved by PI

Level 2 Fully reprocessed scientific grade data, including post flight calibration, automated
QA/QC and flagging approved by PI
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Fig. 6.5 Screenshot of the IAGOS Instrument Database application for visual quality check

This workflow performs all necessary data processing and QA/QC tests to auto-
mated upload NRT processed data and serves the PI as a basis for approval decisions.
This includes repeated cycles for different stages of datamaturity. The PI canmonitor
the status of all tasks through web-based reports produced by the Task Manager. An
automated reprocessing is possible by storing metadata on all steps as well as deci-
sions of the PI. Implementing the workflow is one big step to making IAGOS data
handling compliant with the FAIR principles (Fig. 6.5).

The automated QA/QC tests are accessed inside the workflow using the Python
framework Autom8QC developed and used by the DE community. It fulfils the
following prerequisites:

• Application of probabilistic approaches
• Easy adaptation of test strategies
• Adaptation to different environments
• Application of different test measures (e.g. logical-, statistical-measures)
• Combination of tests in groups
• Combination of tests in sequences

The following QA/QC tests are already implemented for common use (Table 6.3):
The described framework was successfully integrated into the IAGOS workflow

to create a QA/QC pipeline that generates an automated test report and automatically
flags themeasured and processed data. The PI uses these reports for the final approval
decision (data maturity Level 1 and Level 2).

TERENO is an initiative funded by the Helmholtz Association to create obser-
vation platforms to facilitate the investigation of the consequences of global change
on terrestrial ecosystems and the socioeconomic implications of these (Zacharias
et al., 2011). Four observatories have been set up in 2008, each operated by one
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Table 6.3 List of implemented test modules for the Auto8QC framework

Test type Test name Description

Value Flatline test Identifies repeated occurrence of one
value in a time series

NaN test Test for “Not a Number” values

Specific Value test Test for a specific value

Time ITT Increasing time test (monotonic
timeline)

Time Gap test Test for unexpected gaps in the timeline

Time Range test Test for specific timeline range

Limit Global Minimum test Test for values below specific minimum

Global Maximum test Test for values above specific maximum

Global Range test Test for values outside of specific range

Outlier ESD (extreme Studentized deviate) test Detects one or more outliers in a
univariate data set

LOF (Local Outlier Factor) test Compares the density of any given data
point to the density of its neighbours

IQR (Inter-Quartile Range) test Detects outliers using Inter-Quartile
Range

MAD (Median Absolute Deviation) test Detects outliers using Median Absolute
Deviation

OutlierZ test Detects outliers using the Z-score

Peak ScipyPeak test Uses the Python library SciPy to detect
peaks

HelmholtzCentre,whichmaintains its local data infrastructure. The individual infras-
tructures are interconnected into the distributed TERENO Online Data RepOsitORy
(TEODOOR), supporting the acquisition, provision, and management of observa-
tions via SWE specifications and several other OGC web services (Kunkel et al.,
2013).

For the Eifel observatory, operated by the Research Centre Jülich, about 180 mio.
mostly meteorological, aquatic and terrestrial observations are collected each year,
from which about 90 Mio. (54%) have to be quality checked. Each observation is,
among others, attributed to a processing status and a data quality flag. Following the
IOC of UNESCO (2013), we adopted a two-level scheme to assign the data quality
for each observation. The first level defines the generic data quality flags, while the
second-level complements the first level by providing the justification for the quality
flags based on validation tests and data processing history. In TERENO, the second-
level flags are specified by the domain experts. The processing status describes the
data type and determines the workflow for data editing and publication (Table 6.4).

Observation data are imported into the observational database and managed with
our time series management system (TSM 2.0) (Kunkel et al., 2013). The system
includes a highly configurable file parser, a data processor as well as a task manager
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Table 6.4 Data processing levels for TERENO data

Level Descriptions Data Source QC Data Editing Availability

Level 1 Raw data Automatic
importing or
manual upload

No Not allowed Internal (on
request)

Level 2a Externally quality
controlled data; an
approval is pending

Level 1 data
(manual upload)

Yes Not allowed,
flagging only
(except human
observations)

Internal (on
request)

Level 2b Quality controlled
data with automatic
QC procedures

Level 1 data
(automatic
upload)

Yes Not allowed,
flagging only

Internal (on
request)

Level 2c Externally quality
controlled data with
an expert approval

Level 2a data Yes Not allowed,
flagging only

Public

Level 2d Quality controlled
data with
semi-automatic QC
procedures
(automatically and
by human)

Level 2b data Yes Not allowed,
flagging only

Public

Level 3 Derived data One or more
Level 2 data

Yes Allowed Public

for internal and external procedures. It allows automated data pre-validation such as
transmission and threshold checks and flagging of the data along with the importing
process. After a visual examination by the responsible scientist or technician, data
of Level 2 or higher are made available online automatically via Sensor Observation
Services, which provide the data, the processing levels and the data quality flags
(Devaraju et al., 2015). The full process of data collection, transmission, processing,
QA/QC and management is fully documented and certified according to ISO 9001.

However, several issues and limitations arise with this QA/QC workflow, like:

• QA/QC is performed inside the TSM during the data import with the advantage
of very fast processing of the data under consideration of parameters and sensors.
In practice, however, the system is limited to basic QA/QC routines like threshold
checks.

• Implementing additional, more complex and/or site-specific QA/QC routines and
its application to specific data processing workflows requires significant program-
ming skills, making it almost impossible for scientists to develop these routines
by themselves.

• For these reasons, the scientists will usually download the data to develop and
perform their own QA/QC routines on their computer systems. In most cases,
processed and/or QA flagged data will not get back into the infrastructure.
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To overcome these limitations, we extended the workflows within the DE project
for automated data processing by Auto-QA. This browser-based flow editor that
allows users to develop, test and run their own processing chains to add their own
procedures to access the data infrastructure using standardized interfaces and to
run, visualize and upload the results. As a basis, we used the Node-Red software, a
flow-based development tool for visual programming. Node-RED, built on Node.js,
provides a web browser-based flow editor, which can be used to create JavaScript
functions. Elements of applications canbe savedor shared for reuse using JSON.Red-
Node uses “nodes”, which can be interconnected graphically to processing chains.
Each node can be characterized by individual properties, which can be used for
process control.

In order to use Node-Red for TERENO, we developed a library of modules
for importing, visualization and exporting data and included the QA/QC routines
from the Python framework Autom8QC. The framework was extended by a module
for automated conversion of PYTHON code into JAVASCRIPT to allow the
incorporation of custom PYTHON modules in Auto-QA.

Figure 6.6 shows a simple example of a global range test of an observed parameter.
The processwill be initiated by a trigger, whichmay be amanual start or, for instance,
a GET request via HTTP to this particular trigger. The trigger initiates the data to
be read from TEODOOR by an OGC-SOS client (CLISOS). The output produced
by this node will be sent to the variables and min_max node. “variables” will then
print all available variables to the debug panel. “min_max”, which is a global range
filter, flags the data according to the settings made in the node. The output will be
formatted in the “clisos_format” and then be outputted to the debug panel. The data
sent to the debug_panel can be visualized graphically, written to a “file” node or
uploaded directly into the infrastructure using a SOS-T. The whole process can be
parametrized by the GET parameters of the trigger and stored.

Fig. 6.6 Screenshot of a simple QA/QC workflow for a simple global range test of an observed
parameter
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This makes is possible to use the developed workflows as templates for the appli-
cation to other parameters and/or sites.Moreover, theAuto-QA can easily be initiated
automatically through the TSM, by calling the trigger through the CRON module
of the TSM followed by an automated import of the flagged and/or produced data.
Finally, Auto-QA is not exclusively used for QA/QC, but also for the development
of workflows for extended data processing, e.g. calculating runoff data from water
levels on surface water gauging stations or the calculation of soil moisture data from
Cosmic Ray stations.

6.3.2.2 Analytics of Big Geo-Social Data for Environmental
Monitoring: Exploring Microblogs to Spatiotemporally
Characterize Floods, Droughts and Typhoons in China

In order to better understand and respond to the occurrence and impacts of extreme
hydrological events, SMART monitoring should also integrate data and metadata
related to citizens’ perceptions of floods and droughts.

As the trend towards social media data has increased rapidly over the last decade
due to the simplicity and accessibility of social media platforms, it is obvious to
develop aweb scraper and data filtering tool for an environmental-hazards-analysis as
well, to automatically filter out their spatially and temporally distributed occurrence
from microblogging services such as Twitter. Citizen Science could thus serve, for
example, as first-hand information on the hydrological situation in communities.

Although more and more remote sensing data are being used to monitor hydro-
logic events in support of traditional hydrologic monitoring networks, observation
is limited by the coverage of monitoring networks and the spatiotemporal resolution
of satellite imagery, and thus its informative value. Alternatively, the highly diverse
and rich data from social networks contain valuable meta-information on hydrolog-
ical events and can be extracted using keyword-based sentiment analysis techniques
(Olteanu et al., 2015; Wang et al., 2016).

An automated approach that focuses on China in our study retrieves and processes
microblogs from Sina Weibo. This approach consists of an API-independent web
scraper to retrieve large volumes of microblogs, a data cleaning and filtering module,
a georeferencing module and a supervised machine learning approach to classify
content reliability (Fig. 6.7). Theworkflowwas applied to analyzemore than 700,000
microblogs on typhoons, droughts, and floods from 2018 to 2019. For validating the
extracted information, remote sensing data from International Best Track Archive
for Climate Stewardship (IBTrACS) (Knapp et al., 2010 and 2018), standardized
precipitation evapotranspiration index (SPEI) drought index (Vicente-Serrano et al.,
2010) and NASA Global Precipitation Measurement (Huffmann et al., 2014) were
utilized.

In addition, a data collection system was developed to capture large social media
data from SinaWeibo, a popular microblogging website in China. Microblog details,
including content, authors, time of publication and geotags, were captured by a
Python script that used packages to log in and parse HTML scripts from websites
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Fig. 6.7 Simplified process chain for utilizing microblogs to predict floods

to capture targeted data. Keywords related to floods, droughts, and typhoons were
prepared and sent as search queries to the SinaWeibo search engine, and the collected
data were stored.

In the analysis of microblogs related to typhoons, the method works qualitatively
very well and the spatiotemporal distribution of microblogs reflects the actual course
of typhoons. This makes this type of workflow a potential tool for tracking the
trajectory of meteorological events with sufficient social attention. In the case of
droughts, where our study is one of the first researches on this topic on Sina Weibo,
about three-quarters of the microblogs are located in areas classified as dry according
to the SPEI drought index, which shows that this approach could provide meaningful
information here as well. Interestingly, however, limitations were encountered in
the analysis of flooding, as the distribution of microblogs was highly dependent
on population density, and furthermore could not be correlated with precipitation
patterns and river flows over a wide area. Future improvements can be made by
including additional social media data sources to achieve even higher data density.

In conclusion, while not all microblogs were useful for our data analysis, and their
content needs to be better cleaned for analysis (e.g. removal of assumptions, past
events, advertisements, and reposts), the integration of social media into monitoring
approaches is a big step towards more data-based environmental research.

6.3.2.3 Establishing a Webgis Project for Hydrological Campaign
Planning and Data Sharing at the Mueglitz River Basin

Planning event-driven monitoring campaigns on spatial catchment scale requires a
comprehensive overview of existing measurement/monitoring locations, previous
campaigns, and the distribution of hydrological, geological, and geomorphological
features within the study area. In Germany, data and related meta-data are often
distributed among various institutions at the local, state and federal level, making
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them difficult to access. Additionally, datasets are stored in different file formats
(ASCII, MS Excel, MS Access, ESRI Shape) and typically have neither the same
geographic coordinate system or projection nor a consistent parameter labelling. To
optimize data access for campaign planning while minimizing working efforts and
storage capacities (several data requests to external data providers), better centralized
data handling, processing, and access approaches are needed.

For the MOSES intensive test site Mueglitz River Basin, a WebGIS project was
established via the AWI GIS infrastructure maps.awi.de. The framework’s signifi-
cant components are an ArcGIS Server, a PostgreSQL database including a Spatial
Database Engine (SDE), and a desktop GIS software. The WebGIS project was
based on datasets from state authorities (Sächsisches Landesamt für Umwelt, Land-
wirtschaft und Geologie), measurement campaigns, results of numerical models as
well as environmental datasets that are freely available via online data reposito-
ries. The links to the original datasets can be found within the AWIWebGIS. Dataset
projections, formats andmetadata descriptions have been standardized in close coop-
eration between the project partners following ISO standards. The data and metadata
provided by the WebGIS include:

• Locations of weather stations, monitoring gauges and drilling logs
• Modelling results from the OpenGeoSys groundwater flow model (Ver.

5.7; https://www.opengeosys.org/ogs-5/) and the DIFGA rainfall-runoff model
(Schwarze et al., 1991)

• Maps of soil, geology, rainfall and land use patterns in the study area
• Locations of sampling and installations during the MOSES campaign 2019

Rich metadata information is given for the “MOSES/Digital Earth Müglitz
Campaign” project on https://maps.awi.de/awimaps/catalog/ (Fig. 6.8). The current
collection of project data on maps.awi.de is not only for scientific purposes, but it
is also open to the public and enables the knowledge transfer to the non-scientific
community. All data are provided through Open Geospatial Consortium (OGC) stan-
dardizedWebMap Services (WMS) orWeb Feature Service (WFS), which facilitate
data exchange and data visualization among project partners. Based on the experi-
ence of the joint-work during related MOSES campaigns, the framework of such a
WebGIS project will support upcoming campaigns and serves as a good blueprint
for an “almost seamless” DataFlow for campaign planning.

6.3.3 SMART MetaData: Without Trustworthy Descriptions,
Data can be Un-FAIR

Documented information about why and how data were collected, their structure,
quality assurance, confidentiality, access possibilities and terms of use are typical
metadata information. The identification and tracking of different datasets versions
are essential in order to find, use, share and manage data especially over longer

https://www.opengeosys.org/ogs-5/
https://maps.awi.de/awimaps/catalog/
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Fig. 6.8 Screenshot of the Müglitz campaing at the maps.awi webpage

time in a sustained way. Metadata thus describe other data or information about an
object, be it physical or digital, to facilitate search, evaluation, acquisition and use of
resources (Duval 2001).Metadata can be descriptive and consist of information about
the data content and context (e.g. title, keywords, abstract); they can be structural
provide information on the relationship between different datasets and they can be
administrative which is essential to manage the data with respect to e.g. ownership
and rights management. Accurate and complete metadata are a prerequisite for data
sharing and interoperability across different data types. However, the process of
describing and documenting scientific data has remained a tedious, manual process
even when data collection is fully automated. Researchers are often reluctant to share
data with good metadata information even with close colleagues because creating
documentation takes much effort and time.

In SMART monitoring, the availability and incorporation of metadata and auxil-
iary environmental data play an important role for data and knowledge improvement.
Belowwe show an example of how good metadata information can be structured and
what might happen if metadata description is lacking and data become not usable
anymore.

The COVID-19 pandemic shows the importance of mathematical models for
understanding the spread of the disease which is at the base for deriving mitiga-
tion measures (Bjørnstad et al. 2020; Dehning et al. 2020). In this process, it is
essential to determine and validate relevant model parameters and data integration
from different sources is a prerequisite for parameterization and validation of predic-
tive tools or models. The needed data integration calls for having FAIR principles in
place for a reliable analysis and interpretation of the data (Wilkinson et al. 2016).
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Fig. 6.9 Daily and cumulative cases for theU.S. with an impressive example of a weekly periodicity
and for China with an example of a rapid increase of daily numbers due to changes in counting
(Dong et al. 2020)

COVID-19 data illustrate the importance of data description with respect to origin
and data quality to interpret data accurately. Figure 6.9 shows an example of reported
daily COVID-19 cases for two different countries, here the US and China. Visual
analysis of the curve of the daily cases reveals an approximately seven-day overlap
of a slow trend process and a higher frequency process of weekly periodicity. Today,
we know that the higher frequency process represents an artefact of data acquisition
as a result of that laboratories and authorities that collect the board’s data do not
work on weekends. The behaviour of such an artefact can change over time if the
data acquisition and communication processes changes/adjusts over time. A specific
kind of adjustment is a change in counting as visible in the curve provided for China.
The evaluation of the total number of covid cases with such sudden changes could
lead to doubts concerning the completeness of the data.

An assessment of data quality and data origin is essential to preclude the possi-
bility of inaccurate, incomplete or even unsatisfactory data analysis particularlywhen
automated methods are applied that may lead to misleading or incorrect conclu-
sions. The term “trustworthiness” of data summarizes all the aspects related to this
potential problem. The fundamental features of trustworthiness are validity, prove-
nience/provenance and reliability (Fig. 6.10). Using secondary data demand an addi-
tional detailed description and assessment of their reliability and validity which
causes an increase of data collection methods. Validity assessments apply defined
procedures to check for the accuracy of the observation findings. Data reliability anal-
yses evaluate the quality of research by indicating the observed data’s consistency
and stability (repeatability and reproducibility).

The data reliability evaluation, especially in environmental science, should assess
how precise and accurate individual measurements and with which uncertainty the
measured value reflects the real value. It is evident that all acquired data come with
an inherent uncertainty (Paasche et al., 2020). It is close to impossible to measure any
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Fig. 6.10 Components of data trustworthiness, which should be considered to avoidwrong analysis
and incorrect conclusions. A detailed description of the topic can be found in Koedel et al. (2022)

environmental variablewith 100%certainty due to numerous limitations such as non-
representative sampling schemes, improper sample handling, limited expertise of the
data collector, unspecified effects of environmental conditions on the observed data,
effects of specific electrical components of the measuring device on the data or data
collector’s bias. Even if this uncertainty cannot be assessed complete a description
of the “where, how, who” provides valuable information for further data analysis.

In the case ofCOVID-19 example, the information about the overall test number to
a country’s population, delivery time to laboratories, quality aspects of the test centres
(experience, analytics devices, number of confirmed invalid or incorrect tests), the
daily processing capacity of laboratories, laboratory operating hours, reporting lag
time and known test uncertainties is all important to understand and interpret the
data in a consistent and comparable way.

Especially for these data and the derivedmeasures, a comprehensive data analysis,
including the analysis of stationary trends (7-day trend) and possible anomalies and
uncertainties, is required to maintain the population’s support. For all kinds of data
collection, international efforts should be made to assess the data reliability in a
standardized way.

Data provenience and provenance supply important information on the data source
(provenience) and the applied processing steps (provenance), e.g. in the laboratory,
to understand the data and its trustworthiness. For the given example it makes a
difference if the data come from a certified laboratory that has consistently followed
standardized routines or not.

It should be all scientists’ task to request essential information on data quality
from the data provider and to support the authorities through internationally accepted
standardized workflows and metadata schemes. However, for most disciplines and
their observations there are not yet (universally) accepted standards such as Standard
Operating Procedures or suitable representation of uncertainty or other of indicators
of validity. All this detailed information on data trustworthiness allows scientists
to find appropriate tools and methods for FAIR data handling and a more accurate
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data interpretation. There is need for an ongoing discussion among scientists, data
managers and other data users to establish standardized criteria for trustworthiness
assessment.

6.3.4 SMART Sampling Approaches

Another important development concerning SMARTmonitoring is the adaptation of
statistical andAI-relatedmethods to evaluate the location and time of data acquisition
for implementing an adaptive sampling approach. A still very typical approach is that
sampling strategies of physical samples or sensor-based measurements in the field
are pre-determined following e.g. a random or targeted design (sampling at dedi-
cated locations of interest) or a temporal- and/or spatial grid-like sampling scheme.
Applying a SMART sampling approach means a pre-designed sampling strategy
is adapted based on the specific and additional/external continuously accumulating
data and knowledge during the sampling procedure itself.

When trying, e.g. to locate and quantitatively sample a plume of any substance
in a specific volume (typically the ocean or atmosphere), it will be SMART to
adapt sampling locations and sampling interval and density based on the measured
concentration gradients during the sampling itself. Following an arbitrary but regular
grid covering the assumed volume the substance might disperse in, can result in
incomplete data. Adaptive sampling requires both auxiliary and real-time data that
combinedwith advanced statistical or AI supported procedures and algorithms define
better sampling locations or times for a specific monitoring task. Such an advance-
ment in monitoring will not only support decisions about sensor locations but also
sensor settings and the monitor strategy in time and space in an iterative way. For
this kind of SMART Sampling approach additional supporting tool need to consider
other essential data like: previously measured data in the area, auxiliary data for
characterizing that area (land use, geology) potentially from remote sensing data,
real-time sensor measurements if exiting and ideally modelled data. The aim is to
apply mathematical and statistical methods and tools for deciding on where, when
and howoften sampling should happen, and how reliable sampling points, correlation
functions and interrelationships of processes can be derived.

The resolution of the result dependsmainly on the input parameters. The resolution
of the inhomogeneous data input (remote sensing data, soil map data, land use data,)
must be identical to run the clustering algorithm and the output only occurs on the
common, coarsest grid size.

Therefore, a cascading coupling of the algorithm should be aimed at. For example,
remote sensing data, representing data for large areas, often have a 10–50 km reso-
lution and e.g. a sensing depth of 0.01–0.05 m for soil moisture depending on
the measurement principle, frequency, and polarization direction. Within these data
representative areas can be determined but downscaling of such data is possible but
comes with an increase uncertainty during analysis and interpretation. Mesoscale
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data (10 to 1000 m) such as geophysical or hydrological data can be used to deter-
mine representative sampling points in areas of interest and/or areas derived from
clustering of remote sensing ormodel data. If predictions on representative depths are
necessary, as for soil moisture, direct sampling data or other depth-oriented measure-
mentmethods (e.g. direct pushmethods;Dietrich andLeven, 2006)must be included.
At which step model data are added depends on the resolution and representatives
of the modelled data. Three studies that aim at determining sampling points, extrap-
olate metal resources in the deep sea and predict organic carbon deposition in the
oceans give examples of typical SMART Sampling applications as part of SMART
monitoring efforts.

6.3.4.1 How to Determine Representative Sampling Points
at Meso-Scale

The determination of representative sampling points regarding the scientific question
and regarding already existing data is a prerequisite to save time and workforce and
to collect the best suitable data. The challenge is to achieve this in easy, quick and
reliable manner, even in the field for a quasi-instant use.

Machine learning tools can be applied to determine representative sampling points
in a specific area of interest. For example, clustering mechanisms, as the Fuzzy C
means (FCM) algorithm or weighted conditioned Latin Hypercube Sampling are
used for exploring multidimensional data with no prior knowledge of possible data
relations (Hoeppner et al. 2000, Paasche et al. 2006). Therefore, these methods are
applied to identify representative areas for sampling within the much larger area
of interest. The application of Fuzzy C-Means Clustering algorithm by Paasche &
Tronicke (2007) allows to identify areas of common features and to cluster multidi-
mensional data by assigning each point a membership in each cluster centre. FCM is
based on iteratively minimizing an object function for a defined number of clusters
and provides the optimum locations of the cluster centres and the degree of partial
membership of the clustered data points to the clusters (Paasche et al. 2006). The
normalized classification entropy (NCE) indicates the optimumnumber of clusters by
analyzing the membership distribution (Paasche et al. 2010). Previous experiments
showed that fuzzy c-means (FCM) with spherically shaped clusters and Gustafson-
Kessel clustering (GK) provides good clustering results. However, land use data as
categorical variables represent a challenge in implementing this cluster algorithm.
Heterogeneous data of this type are not directly usable to clustering methods. First,
grouping in larger groups was necessary. Then, the Gowers generalized coefficient
of dissimilarity was applied to calculate the distances with L1 (city block) (Gower,
1971; Gower & Legendre, 1986).

The area around Dittersdorf in the Müglitz river catchment area is a focus area
of the MOSES hydrological extremes campaigns and as part of this, well-informed
sampling locations were needed. To identify areas of common features, the Fuzzy C-
Means clustering algorithm was applied to two data sets describing large areas with
reasonable low resolution. These datasets were (1) digital elevation model, slope and
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Fig. 6.11 Cascading coupling of clustering algorithm with selection of optimal sampling points at
a medium scale

land use (as a categorical variable), and (2) mHM model data such as discharge,
recharge, soil moisture and evapotranspiration from 1950–2009 (Fig. 6.11). Spatial
representations of these clustering results are not suitable for the determination of
representative sampling points because the grid-scale was ~ 1000 m x ~ 1000 m for
all input data. Therefore, two meso-scale geophysical data (gamma ray, electromag-
netic induction) and cosmic raymeasurements were used to determine representative
sampling points in Dittersdorf. Gamma ray measurements detect the decay rates of
radionuclides with long decay times in soil using a scintillation detector with single
sodium iodide crystals to determine the potassium, thorium and uranium concentra-
tions and the natural gamma dose rate. The electromagnetic induction measurement
is a highly adaptable none-invasive technique that measures the apparent bulk elec-
trical conductivity of soil (ECa) to get information about field heterogeneity of soil
texture and soil water content (Schmidhalter et al., 2008,Viscarra Rossel et al., 2011).
Soil moisture content on a horizontal scale of hectometers and at depths of decime-
ters can be inferred from measurements of low-energy cosmic ray neutrons that are
generated within the soil, moderatedmainly by hydrogen atoms, and diffused back to
the atmosphere (Zreda et al., 2012). Cosmic Ray Neutron Sensing’s(CRNS) mobile
application is a promising approach to measure field soil moisture noninvasively by
surveying large regions with a ground-based vehicle (Schrön et al. 2018).

After standardization of existing georeferenced measurements, appropriate vari-
ables were defined and applied to the Fuzzy C-Means Clustering Algorithm. Finally,
representative sampling points could be chosen for the meso-scale area. Such a
cascading clustering allows the application of heterogeneous data scales and selecting
representative areas or points at different scales.

Such a cascading approach can also be called a hierarchical approach. A combina-
tion of themost representative areas and thenmost representative sampling points and
further most representative sampling depth allows an effective monitoring approach
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and saves costs and workforce. Eventually, the provision and use of additional cate-
gory variables such as passability or entry permits in the cluster algorithm also
improve the adaptive monitoring and sampling approach.

6.3.4.2 Using Machine Learning For Automated Site Detection
of Massive Seafloor Sulphides

Many current research questions in marine sciences are related to understanding
the complex processes that govern resource occurrences. Relationships between the
driving forces and response functions are complex, multi-faceted and usually non-
linear. Additionally, multivariate and multi-disciplinary data acquired in the marine
realm span disparate spatial scales and cross traditional geoscientific domains like
geophysics, geochemistry or geology. Integrative data assessment approaches will
play an essential role for amalgamating these cross-disciplinary interpretations, for
redefining acquisition procedures to close existing data gaps, and for optimizing
information extraction using image processingmethodologies tomake themost accu-
rate prognoses of where to find previously undiscovered natural resources. The key
task to establishing a foundation formultivariate data-driven analyses relies on devel-
oping integration concepts tailored to the available data on various spatial scales and
linking these within established data science workflows. The challenge is to acquire
all the needed data in a spatially correct context and apply ML on this small training
data set.

Here, we present an example from seafloor massive sulphide (SMS) detection at
the Trans-Atlantic Geotraverse (TAG) hydrothermal field. Various sources of marine
data including autonomous underwater vehicle (AUV) bathymetry and magnetics
(Petersen, 2019), and seafloor conductance data derived from Controlled-Source
Electromagnetic (CSEM) inversion models are used (Gehrmann et al., 2019).

SMS indicators include a distinct bathymetric manifestation, magnetic low, and
high electrical conductance. The latter is likely most indicative of mineral accumu-
lations on the seafloor but only exists along 2D profiles crossing the measurement
area due to the logistical expense of acquiring such data. As a result, robust extrapo-
lation of sparsely sampled conductance data onto a regional scale seems efficient for
predicting further occurrences of SMS by integrating the acquired bathymetric and
magnetic data into a data science framework. This can help improve current predic-
tions of available SMS on the seafloor and provide high-priority site predictions for
future validation and sampling campaigns.

The available data allows us to use both unsupervised and supervised machine
learning strategies to (a) classify the seafloor based on the spatially distributed
bathymetry and magnetic data helping to identify regions with similar character-
istics as the known SMS sites; (b) extrapolate conductance data to predict possible
SMS sites outside of the 2D CSEM profile lines. Additionally, the high-resolution
bathymetry data allows us to enhance our spatial feature matrix through image
processing techniques, i.e. edge detection, circular Hough-transforms, and Gabor
filtering to improve our spatial understanding of bathymetric features and feed these



114 U. Koedel et al.

into a sequential application of fuzzy clustering with random forest regression.
The spatially sampled maps are used to create a segmented map of the seafloor
combining regions of similar behaviour into common clusters. The pixel fuzziness,
which describes the affiliation of each pixel to the corresponding cluster, is then
used in a random forest regression approach at the defined locations of the sparsely
sampled conductivity data to derive a model that allows us to extrapolate the sparsely
sampled conductance data onto a regional scale (Fig. 6.12). Such two-step strategy
deprives the ML kernel any physical meaning and relates its predictions solely to the
learned patterns.

The results of this pilot study show that unsupervised and supervised machine
learning strategies can be used to not only classify the seafloor into regions with
similar behaviour, but also identify and predict known and unknown SMS sites
in almost real-time. Thus, machine learning provides a robust framework to inte-
grate multivariate data based solely on data-driven analyses, which will be of benefit
to marine sciences to (a) optimize marine sampling campaigns through targeted
point-scale measurements at regions of greatest interest defined through spatially

Fig. 6.12 Schematic of ML workflow for predicting SMS sites using multivariate spatial data. (a)
Enhanced input features for unsupervised fuzzy clustering, consisting of regional bathymetry data
and its derivatives (e.g. slope, ruggedness, aspect), feature enhanced image processed bathymetry
(i.e. edge detection, circular Hough Transform and Gabor filtering), and physical property data
(magnetic anomaly map). (b) Segmented output map imaging the main contributing component
of each pixel. (c) Extrapolated CSEM conductance derived from random forest regression and the
corresponding prediction variability assuming 5% Gaussian error. The black markers denote the
actual profiles of the CSEM conductance data
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distributed geophysical, geochemical, geomorphological, oceanographic or geolog-
ical data; (b) update first-order predictions of available strategicmetals on the seafloor
through guided geophysical interpretations (Galley et al. 2021).

6.3.4.3 Deep Neural Networks for Total Organic Carbon Prediction
and Data-Driven Sampling

The oceans comprise about 72% of the earth surface and due to its size and available
technology, direct seafloor samples collected so far are sparse in space. The existing
data sets on sediment composition are inadequate to quantify the fluxes of carbon and
other seawater constituents across the seabed globally. Sediment and ocean models
are strongly relying on these fluxes to simulate the uptake of atmospheric CO2 and
the biogeochemical cycles in the ocean. Moreover, sampling campaigns are often
restricted by ship time, funds, and the lack of consistent methodologies to collect
and process the data. Thus, the challenge is to find methods that allow to predict the
total organic carbon (TOC) content everywhere in the ocean and show the uncertainty
of this prediction with it.

To approach this problem, machine learning methods were adapted to marine
sciences to approximate the seafloor physical and biogeochemical properties without
the need of direct sampling. Some of these methods (e.g. k-Nearest Neighbours)
provide a sophisticated averaging tool to estimate the seafloor property based on
the data points nearest in space. However, this approach performs better in more
homogeneous environments, which does not apply to global-scale problems.

Over the past decade, deep learning has been used to solve various regression and
classification tasks (LeCun et al., 2015). Compared to classical machine learning
approaches (k-Nearest Neighbours, Random Forests, etc.), deep learning algorithms
excel at learning complex, non-linear internal representations in part due to the highly
over-parameterized nature of their underlying models. This advantage often comes
at the cost of interpretability. Exemplarily we used deep neural networks (DNN)
to assess the TOC content of the global seafloor surface (Fig. 6.13). Implementing
Softmax distributions on implicitly continuous data (regression tasks), we obtain
probability distributions which can be used to quantify the model’s intrinsic infor-
mation. A variation of the Dropout method, i.e. the Monte Carlo Dropout, is used
during the inference step providing a tool to model prediction reliability. Using
transfer learning techniques, the resultingmodel wasmodified to alsomake sedimen-
tation rate predictions; sedimentation rate ultimately relates to the problem related
of calculating seafloor TOC.

We used these techniques to create model informationmaps that are a key element
in developing new data-driven sampling strategies for data acquisition. Mapping
prediction probabilities provide a quantitative analysis of the model information
and allows us to define geographical locations that are under-sampled. By acquiring
new information at these selected coordinates during upcoming research cruises
potentially as part of new global sampling programmes will overall strongly and
quickly improve global predictions.
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Fig. 6.13 Top: A fully connected neural network with a Softmax activation layer outputs a prob-
ability distribution of which the maximum corresponds to the predicted regression value. Bottom:
Each prediction point is accompanied by an expected information gain sampling. Often times unex-
pected/counterintuitive prediction values are tied to a higher expected information gain values (here:
low TOC patch in the Pacific Coast of Central America). This points to a higher model uncertainty
for the region

Using the prediction probabilities to calculate the information gain from sampling,
we were able to generate global maps that can aid data-driven sampling in the future.
These information gain maps might be used by scientist to derive the most beneficial
decisions on next sampling locations and potentially supports scientific research
vessels of opportunity to collect data “during transit” when they pass one these
important locations.
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Chapter 7
Interdisciplinary Collaboration

Nike Fuchs and Gesche Krause

Abstract The Digital Earth Project aims at a strong interdisciplinary collaboration
of the various Earth science disciplines and data science, to foster digitalization
and the application of data science methods. As this is a highly complex interdisci-
plinary endeavour that involves eight research centres and many scientists, a success
evaluation was deployed after the first half of the project. A social science-oriented
evaluation was conducted, in which aWorld Cafe and a survey were used to evaluate
the success of the collaboration and opportunities for improvement. Results indicate
a strong need among participating scientists to more clearly understand and advo-
cate for the overarching goals, have more face-to-face interaction, optimize the use
of existing research infrastructure, and develop a sound perspective for knowledge
transfer and long-term continuation of the developed approaches. It was deduced
that individuals shape the process and that digitization is more than just a technical
matter, but depends heavily on individuals and the process of implementation.

Keywords Evaluation ·World Cafe · Survey · Collaboration · Interdisciplinary ·
Earth System Science

7.1 Challenges

For Digital Earth, one of the biggest challenges was bridging the gap between
different disciplines and achieving the project goals in an extremely heterogeneous
environment of project partners, scientific concepts and vocabularies. The consor-
tium decided to seek support from the authors as representatives of the social sciences
who are scientifically concerned with interactions in heterogeneous groups and to
examine and assess the interdisciplinary collaboration. This chapter presents the
results of a World Café conducted with Digital Earth scientists from a social science
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perspective to learn more about pitfalls, challenges, requirements and best practices
for successful collaboration.

Mankind on the threshold of the digital age is facing fundamental challenges in
the expansion of opportunities and further development of even more far-reaching
key technologies. The core characteristics of the digital age, namely networking,
cognition, autonomy, virtuality and the explosion of knowledge (Schieferdecker and
Messner 2019) have embraced the scientific world long since.

Over the recent decades, emphasis has been placed on making the scientific
process more open and inclusive for all relevant actors, within and beyond the scien-
tific community, as enabled bydigitalization (Dai et al. 2018). That said, digitalization
is changing science fundamentally. This poses the challenge that different scientific
communities have developed their own vocabulary, observation methods, concepts
and models that need to be brought together to advance on the required digitalization
and integration.

This growing plurality of knowledge can be also observed in the realm of Earth
system science, in which—the current research has branched off in multiple detailed
sub-disciplines that call for new forms of collaboration across the different research
strands. In this context, digitalization is believed to play a central role in this effort to
tie the “loose” ends.UndertakingdigitalizationwithinEarth systemscience, however,
involves large amounts of data, necessitating streamlining across different scientific
communities, which can offer new analytical possibilities and produces new sorts
of decision support tools. The moment an innovation process such as digitalization
is initiated, the organization on which it is brought onto undergoes an initial phase,
which may appear chaotic. This stage, dubbed as “fuzzy front-end of innovation”,
plays a decisive role in the further roll out of this innovation process (Berghaus and
Back 2017).

The speed of uptake of digitalization is determined by the way how the (science)
network community deals with the new demands (Clegg et al. 2016). As a case in
point, with starting the Digital Earth project, an already existing scientific commu-
nity was challenged with a completely new situation; to conduct and advance “data
science” with a set with unclear parameters. In general, such challenges entail the
adaptation and alteration of user behaviour (Brenner et al. 2014), and the accessi-
bility andusability of data andnewly introduced technologies (Dery andMacCormick
2012; Berghaus and Back 2017). On a social level, during the institutionalizing of
innovation, new practices, values, routines and social norms have to be developed;
networks are powerful carriers for this (Clegg et al. 2016).

While most challenges of the Digital Earth project were clear from the onset,
others surfaced through interaction with others and through collaborative reflection.
Avalidation on a personal level is thus required to link systemperspectives andworld-
views with research approaches and to assess efficacy of collaboration (Chiocchio
et al. 2012; Glassman et al. 2021). Indeed, engaging with other fields of research can
be a time-consuming process. To facilitate the gap-bridging of the different knowl-
edge realms, one tool is the world cafe method (Brown et al. 2010). It provides the
opportunity to jointly identify the challenges and gain shared consensus together as
a group. Furthermore, this consensus and related challenges are not only shared and
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validated, but also recorded and by that formally acknowledged among the group as
a whole.

The objective of this chapter is to present the results of an accompanying research
evaluation, focussing on the social dimensions on the collective and individual level
of the challenges in collaboration within the Digital Earth project. The results have
shown several issues that can be improved on and to help address several of the above
mentioned challenges.

7.2 Material and Methods

The present research was conducted by using a mixed-methods approach (Kelle
2014). An earlier survey, performed in April 2019 by the Digital Earth project for
success evaluation, addressed the collaboration success by the then present require-
ments for data science, the scientific and project successes and the usability of results
at that time (see also Chapter 6 in this book). The quality of collaboration was not
assessed at that time. To examine the success of collaboration within Digital Earth in
more detail, an online survey, more focussed on the social dynamic across different
scientific disciplines, was conducted prior the 2nd Interim Meeting of the project in
January 2020, as the was half-way. In this second survey, qualitative and quantita-
tive metrics were deployed to identify potential collaboration barriers after Hanson
(Hanson 2009). The findings of the online poll formed the pre-assessment stage
which acted as baseline for the successive assessment steps. As such, during the 2nd
Interim Meeting of the project in January 2020 itself, a World Cafe was conducted
to assess trends and nature of collaboration among all attendees in more depth. The
World Café, and to come up with proposals for potential improvements that would
lead to better collaboration is a large group method, which contains a sequence of
discussions at tables with 4–7 people seated at each table (Brown et al. 2010). The
Digital Earth World Café consisted of 3 rounds, with each 3 questions, two of them
in two versions, thus 5 questions in total. 49 scientists, engaged in Digital Earth,
devoted effort in addressing those questions during the World Cafe. The questions
evolved around the approaches and tools of collaboration, trajectories and trends,
as well as on potential next steps. Central focus of the exercise was to gain insights
on individual and collective views on the collaboration, and thus success, within the
project. Also, potential areas for improvement for collaboration were identified.

7.3 Results and Discussion

In the following, highlights of theWorldCafé discourses are collated and presented in
a summativemanner. In round 1 and 2, respectively, focuswas placed on approaches
and tools of collaboration aswell as emerging trajectories and trends of collaboration.



124 N. Fuchs and G. Krause

It is a noteworthy aspect, that it was possible to distil four major thematic aspects
across the first two rounds from the collected statement pieces. These 4 major groups
were confirmed and strengthened during the final prioritization round:

1. Project Goals: a frequent mentioning and a clear feedback in the voting session
suggested that not all participants were able to see the higher level and overall
goals thatwere set for the project and hence voiced awish for a clearer definition.

2. Individual Level: the wish for more personal interaction, interpersonal exchange
and cohesion was clearly voiced and appeared in the statements on all tables
and resurfaced in each World Café round.

3. Infrastructure: Although available access, clarity of structure within and under-
standing of the used platforms was identified as a major component of good
collaboration, the use of the digital infrastructure (closer defined as GITHUB,
Helmholtz Net, Confluence) and therefore the exchange of information between
Centres wasmentioned as a major barrier for collaboration. Themajor obstacles
here appear to be the optimal use of the infrastructure which has been devel-
oped for the project. This includes the lack of sufficient overview of the various
platforms, search options for people and information, guidelines for use and
communication about these infrastructures.

4. Knowledge Transfer and Continuation: the participants expressed repeatedly
the wish to see the application of the already produced project outcomes as
well as the outreach to increase visibility for their product, and furthermore the
continuation of the project after the prospective project end.

In round 3, a special focus was placed on the next steps in collaboration within
Digital Earth, the results given to the question “In terms of collaboration, what should
we do next?” showed the same prevailing dispositioning as in the first two rounds
and were sorted in strategic and methodological suggestions or advice (Table 7.1).

Some of the statements are at the interface between two dimensions, e.g. “Intro-
duce new members to everyone”, applies to the infrastructural dimension, helping to
find the right contact person, but also feeds into the personal dimension. “Develop and
implement long-term-legacy plans” touches not only outreach and the big picture,
but also the goals. The previously conducted online poll, aiming at the identification
of potential collaboration barriers, mirrored this finding, as it showed that half of
project members indicated that within a geographically wide-spread team, finding
the right contact person is difficult. Furthermore, it supported the finding of an abun-
dantly stated request for a clearer and more personal level networking as well as a
high commitment and willingness to collaborate. This was somewhat reflected in
the World Café’s last round, in which ideas about next steps for future collaboration
were collected and needed little support by the facilitator, as the notions seemed to
be clear to the participants and motivation was high. In conclusion, the participant’s
statements during the World Café showed an overall coherence in their professional
needs and the challenges which the project faces in the 2nd half. Intensified personal
contact and subsequently refined alignments towards the mentioned themes were
identified as prerequisites for the project’s success. Furthermore, the wish for clearer
defined goals and targetswere highly abundant throughout the entireWorldCafe. The
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way how the shared web spaces are organized and the overall information accessi-
bility was a common theme as well. The fourth threadwas the wish for more outreach
activities, the requirement to understand the future application and usage of the prod-
ucts from the project, as well as a clear perspective for the period after the direct
project life-time including a possible further development of ideas and products.

7.4 Conclusions and Outlook

The discourses and reflection within the Digital Earth project function as a case
study for the conditions in which human societies at large find themselves today;
digital participation and networking enable a manifold of potential but also need to
adhere to essential social mechanisms. These divergences also surface within science
and on the perspectives of how to collaborate and streamline different data towards
open science outcomes. The deployment of digital tools and methods alone does not
guarantee a successful digitalization.

Two central issues could be identified:

1. Individuals shape the process: In essence, the findings uncover the hidden
assumptions and biases each of the individual partaking scientists had regarding
digitalization in Earth System Sciences. The discussions in theWorld Café exer-
cise indicated that the background, experiences and personal knowledge of each
individual seem to determine the definitions and views on how to collaborate
in the project. Yet, tools may help to streamline some of the diverging initial
definitions and ideas expressed at the World Café. In this context, the World
Café proved to be a suitable method of positive engagement across different
disciplines.

2. Digitalization is more than solely a technical affair and relies heavily on indi-
viduals, their understanding of collaboration and a harmonization of disci-
plinary perspectives andworldviews.While therewas general agreement among
researchers that biophysical knowledge remains critical in their work, the need
for new digital capabilities and clear objectives on how to continue to merge
science towards digitalization. The findings indicate that at a high abstraction
level, the expectations of digitalizationwithin the projectwere quite unequivocal
across the different research disciplines. For instance, a similar understanding
was portended that digitalization potentially leads to more productive, efficient
and sustainable forms of data utilization and knowledge creation. However,
this understanding of digitalization was hampered by the formulated need for
a clearer definition of the related and required digitalization process within the
different research organizations, which suggests that the project was in some-
what earlier stages of “digi-grasping” (Dufva and Dufva 2019) or what has been
referred to as the “fuzzy front end of digitalization” (Berghaus and Back 2017).

In the light of the global challenges ahead, combined with the possibilities and
requirements of the dawn of the digital age, not enough emphasis can be laid on the
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investment in the underlying personal connections. The foundation of all interactions,
always had andmost likely will be for a long time, is the connection on an individual,
personal level. By acknowledging this, digitalization in Earth System Science can,
and most likely will be a highly potential tool for fostering meaning-making and
understanding of the complex world around us.

Acknowledgements The authors would like to express their gratitude to all members of the Digital
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Chapter 8
Evaluating the Success of the Digital
Earth Project

Laurens M. Bouwer, Diana Rechid, Bernadette Fritzsch, Daniela Henkel,
Thomas Kalbacher, Werner Köckeritz, and Roland Ruhnke

Abstract The Digital Earth project aims at a strong interrelation between Data and
Earth Science and a step-change in implementing data science methods within Earth
science research. During the project, the progress of interdisciplinary collaboration
and adoption of data science methods has been measured and assessed with the goal
to trace the success of the project. This chapter provides the set-up of this evaluation
and the results from two online questionnaires that were held after the start and before
the end of the project.

Keywords Evaluation · Collaboration · Digitalisation · FAIR · Data science ·
Capacities

8.1 Objective

The Digital Earth project addresses the challenge of digital transformation and
adoption of data science methods in Earth sciences. Therefore, its focus is on
linking natural science and data science and to develop approaches for (i) data
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analysis and exploration; (ii) data collection and monitoring; and (iii) interdisci-
plinary collaboration, which is of special importance in the digital transformation
(see Chap. 2).

During the Digital Earth project, the success of adopting data science methods
in the field of Earth sciences has been shown, as well as the scientific progress that
can be achieved by doing this. Chapters 3‚ 4‚ 5 and 6 of this book give several
examples of this. In addition, the collaboration between the different Earth Science
fields and the different research centres involved in the project, and specifically, the
collaboration between the Earth Sciences and data science disciplines was another
important focus. Thus,wewanted to evaluate the process of interdisciplinary research
and the application of data science methods and how this has evolved during the
project.

Project monitoring and evaluation are an important process, to identify chal-
lenges before and during the project, and to reflect and improve the research project
outcomes, learn and adjust activities during the project lifetime, and also to set clear
goals for follow-up activities or projects afterwards. Such an evaluation was also
deemed useful for the Digital Earth project, as it was the goal to deliver a step-change
in the use of data science methods within the different fields of Earth Sciences within
the Helmholtz Association. This activity can be seen in the context of the evaluation
of other efforts in digitalisation, such as the evaluation of the development of Virtual
Research Environments in the United Kingdom (see Junge et al., 2007).

The evaluation aimed at measuring the difference between what the research
centres could do at the start of the project, versus what has been achieved after
implementation of the Digital Earth project. We also wanted to learn in the course of
the project about possible challenges, and the progress and successes of the project,
and we wanted to identify possible needs for improvement in process, content and
tools during the project.

The approach for this evaluation consisted of the method of online questionnaires.
This chapter gives an overview about the online questionnaires; it provides the setting
and criteria for evaluation, as well as some of the evaluation results.

8.2 Approach for Evaluation in the Digital Earth Project

The first online questionnaire was done shortly after the start of the project, to estab-
lish the important capacities and needs of the research teams to reach success at the
start of the project, and to define suitable criteria for measuring such needs. The
overarching questions for the evaluation were:

• What are the requirements for data science?
• What is the scientific progress?
• What is the usability of the scientific workflows?
• What is the success of Digital Earth?
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These evaluation questions have been used to gather information about the current
and desired capacities at the research centres that are involved in the Digital Earth
project, as well as about current and anticipated collaboration between the centres,
available scientific workflows, digital data and tools and applications. In addition, an
assessment was made of the application of the FAIR principles and other measures
to enable transfer of results, data and information to other users. The building blocks
of the evaluation have included:

1. The development of criteria and indicators to be applied;
2. Development of survey questions;
3. Implementation of a questionnaire at the start of the project;
4. The analysis of the questionnaire results, including an analysis of the current

scientific and data standards applied at the centres;
5. Refinement of the criteria and evaluation questions;
6. The repeated monitoring of the progress through a second questionnaire;
7. Reporting in a final assessment report.

Afterwards the questionnaire was analysed, and questions were refined and
extended.

8.3 Evaluation Criteria

To develop the questionnaire, we adopted criteria for measuring the project status at
the beginning of the Digital Earth project. These overall criteria are listed in Table
8.1 and consist of several sub-criteria. For these sub-criteria, evaluation questions
have been formulated for the questionnaire (see Appendix) that have been answered
by the members of the Digital Earth consortium from all involved research centres.
The main categories are:

• Capacities for doing data science;
• Project success and scientific progress in Digital Earth;
• Usability of the results.

The capacities for doing data science were assessed in order to learn shortly
after the start of the project what additional capacities and collaborations may be
needed. In addition, wewanted to evaluate how the capacities have improved after the
implementation of the project. Therefore, the questions were repeated shortly before
the end of the project. The project success and scientific progress were assessed, in
order to evaluate expectations and status before and after the project implementation.

Finally, the usability of the results was an important topic. We wanted to assess
to what extent the methods, scientific workflows as well as the generated data are
usable for the scientific community, but also for other users within society. Here,
we used the FAIR principles for scientific data (Wilkinson et al., 2016; Stall et al.,
2019) to evaluate how data science implementation is done with the multitude of
environmental data that is being used and produced.
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Table 8.1 Criteria for assessing success in Digital Earth

Criteria Capacities for data science Project success and
scientific progress

Usability of results

Sub-criteria – Capacities
– Challenges
– Data, infrastructure,
models

– Data science methods
– Data exploration tools
– Project collaboration and
management

– Scientific goals
– Research process
goals

– FAIR: Findable,
Accessible,
Interoperable, Reusable

– Usability of results
beyond research

FAIR stands for Findable, Accessible, Interoperable and Reproducible. We focus
on both observational and model data, as well as the scientific software and tools, as
they are the essential basis for the research in the Digital Earth project. The FAIR
principles allow for a check on the accessibility, usability and quality of the research
results and have become an important basis for scientific practice in all research
areas worldwide. The implementation of the FAIR principles for the field of Earth
and environmental research has gained importance.Making sure that data are “FAIR”
is a major prerequisite for applying data science methods. This is in line with other
efforts to advance the FAIRness of digital assets and provide open and seamless
access to a set of interoperable FAIR data services, such as through the ENVRI-
FAIR project (https://envri.eu/home-envri-fair/). This latter project has developed
the “FAIRness” assessment methodology, to evaluate the findability, accessibility,
interoperability and reproducibility of provided digital assets, including the datasets
that are being provided, but also the scientific methods, workflows and software that
have been developed in Digital Earth.

In addition, we have assessed to what extent external users have access to project
results and are supported in using the data products, methods, workflows and tools.
This includes also users outside academia, thereby underlining the need that Earth
and Environmental Science research should also benefit society.

The questionnaire is structured according to the three criteria listed in Table 8.1.
In the following sections, we present the three main criteria categories and the related
sub-criteria: 1) Capacities for doing data science; 2) Project success and scientific
progress; and 3) Usability of results. In the Appendix, the text of the questionnaire
is provided with all questions related to the sub-criteria presented below.

8.3.1 Capacities for Doing Data Science

Table 8.2 presents the criteria for measuring the capacities to do data science, and
additional requirements for improving those capacities. Each sub-criterion is assessed
using a specific indicator. For instance, the sub-criterion “team size” is measured
using the indicator “number of persons”, which is a quantitative indicator. For other

https://envri.eu/home-envri-fair/
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Table 8.2 Criteria for capacities for doing data science

Sub-criteria Indicator Type

Scientific discipline Scientific discipline types Quantitative

Sub-discipline Sub-disciplines Quantitative

Team size Number of persons Quantitative

AI/ML/DL expertise Number of persons Quantitative

Advanced Data Visualisation expertise Number of persons Quantitative

Data management expertise Number of persons Quantitative

Data science capacity in house Self-assessment Qualitative

Data science collaboration within the Digital Earth
Project

Number of Centres Qualitative

Data science collaboration externally Research centres Qualitative

Data science need for more support Self-assessment Qualitative

Collaboration—current Research centres Qualitative

Collaboration—additionally required Research centres Qualitative

Limitations and challenges Open question Qualitative

Observational and model datasets to be used Open question Qualitative

Observational infrastructure to be used Open question Qualitative

Data and information infrastructure Open question Qualitative

Models and data Open question Qualitative

New models Open question Qualitative

Applied data science methods Closed question Qualitative

Data science methods to be applied Closed question Qualitative

Purpose for data science methods Closed question Qualitative

Data exploration tools Open question Qualitative

Requirements for data management Open question Qualitative

Best practices for data management Open question Qualitative

criteria, qualitative descriptions are used, such as for the description of available Data
Science capacities within each group, which is measured along a qualitative scale,
ranging from “We are doing fine within our Centre”, to “We may need more support
from Digital Earth partners or others”.

8.3.2 Scientific and Project Goals

Table 8.3 presents the criteria for assessing the scientific and project goals. These
criteria are related to the scientific goals that were set in the project and the extent to
which the participants in the questionnaires found they were relevant for their work,
or have been achieved towards the end of the project. In addition, we analysed the
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Table 8.3 Criteria for assessing the scientific and project goals

Sub-criteria Indicator Type

Scientific goals Different scientific goals Qualitative

Important scientific goals Ranking of scientific goals Qualitative

Scientific goals Key products and tools that will be / have been
produced*

Qualitative

Scientific goals Success in harmonisation and integration of data
from different disciplines*

Qualitative

Research process goals Process goals Qualitative

Overall success Planned/delivered joint output (publications,
proposals, summer schools, software, data services,
etc.)*

Quantitative

*Questions about delivering on goals were only investigated in the final questionnaire

project process goals, as intermediate steps in the research, including quality of data
and models, better guidance for field measurements, saving of resources and time,
and improved usability of data, information and workflows.

8.3.3 Usability of Results

Table 8.4 presents the criteria for assessing the usability of the project results. They
focus specifically on making project results, data and tools available and accessible
within and outside the research field. The criteria and indicators are largely based on
the FAIR criteria, and related indicators were developed or adopted from the FAIR
framework. In particular, we have used several of themetrics developed byWilkinson
et al. (2018).

Table 8.4 Criteria for assessing usability of results

Sub-criteria Indicator Type

Findable Use of DOI, ORCID, IGSN Quantitative

Accessible Repositories Qualitative

Accessible Metadata description Quantitative

Accessible Accessibility of code Quantitative

Interoperable Technical data standards Quantitative

Interoperable Scripts in formal language Quantitative

Reusable Open data and software policies Quantitative

Reusable Software and data availability beyond academia Quantitative

Reusable Support for data use, including user guidance and user
services/advice

Qualitative
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8.4 Results from the Questionnaires

The questions listed in Appendix were used to evaluate the status and results of the
Digital Earth project through a questionnaire, held after 10 months after the start of
the project, and shortly before the project end, after 31months. The questionnairewas
set up in the commercial digital online software package Survey Hero (https://www.
surveyhero.com). The questionnaire was filled in without personal details, except
for the institution and type of research expertise, and staff role. A total number of
54 respondents of the research staff submitted replies to the questionnaire on both
occasions. 47 of these respondents completed most questions in the first question-
naire, and 48 respondents during the second time. A total of 118 invitations were
sent in the first questionnaire, which implies a response rate of about 50%, which is
reasonable for this type of surveys.

About two-thirds of the research staff that responded identifies themselves asEarth
Scientist (Table 8.5). In the second questionnaire, the number of staff identifying as
data scientists has increased by half.

The most important results and conclusions from two questionnaires and
evaluation within the Digital Earth project include the following:

Several collaborations have been established during the Digital Earth project,
during the proposal writing process, and also through collaborations during the
project. This is documented through the responses from the researchers in Digital
Earth on their collaborations and exchanges with other research centres. In the final
questionnaire, each respondent indicated on average 1.7 collaborations with other
centres. Towards the end of the project, there was still evenmore potential andwishes
for collaboration reported in the responses. Collaboration with a few specific centres
working on data science was highlighted as these are desired for their competences
in the field of data science methods.

The project has also progressed on interdisciplinary approaches, showing collab-
orations between different fields of Earth and Environmental Science, but also tying
in data science expertise, in particular related to visual data exploration, Artificial
Intelligence, and scientific workflows. In terms of required capacities for doing Data
Science, about half of the participants indicate that they have found and benefited

Table 8.5 Scientific
disciplines of the
questionnaire participants

Scientific discipline Respondents

First questionnaire Second questionnaire

Earth Scientist* 36 32

Data scientist 15 22

Other** 3 -

Total 54 54
*Includes biologist and marine biogeochemist
**The category “Other” was not included in the second ques-
tionnaire, instead an additional question on precise expertise was
included

https://www.surveyhero.com
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from collaboration within the Digital Earth consortium. This has clearly improved
during the project, as initially only 32% of the respondents had found collabora-
tion within the consortium after 11 months and underlines the importance of Digital
Earth as a platform for inter-institutional cooperation. Considerably fewer respon-
dents indicate they could have done the work alone (23 and 5% of responses in the
first and second questionnaire, respectively). This may indicate that through collabo-
ration between centres many new developments have been made possible. The wish
for additional support in data science is also frequently mentioned, in about 26% of
the responses in the second questionnaire.

We also identified how the Digital Earth project has contributed to progress on
integrating data science methods in Earth System Science research, and for which
goals (Fig. 8.1). Especially visual data exploration methods have contributed to data-
gap closing, and improved scientific understanding within specific disciplines. AI
approaches have contributed to data-gap closing, improved scientific understanding
and to a lesser extent to data to proxy improvements. Other approaches such as other
statistical methods and data quality assessment and controls have contributed to data
to proxy approaches, and data quality and uncertainty specification, respectively.

As a very important requirement for data science, it was reported that appropriate
observation instruments, data collection as well as data infrastructure are indispens-
able for doing data science. The Digital Earth project therefore would not have been
possible without a strong basis of infrastructure and data. It builds on and profits from
several complementary efforts focused on field observations and data infrastructure
at the individual research centres, as well as targeted collaborative projects in this
field.

With regard to science practices, several aspects of FAIR Science were reported.
Most respondents make their data (77%) and Software code (67%) available, most

Fig. 8.1 Percentage responses to the question how different data science methods have contributed
to achieving the overall scientific goals in the Digital Earth project
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often through open-access repositories. However, licences and policies for the publi-
cation and use are not applied yet in several cases, and appropriate policy for
licensing at the researchorganisationswere reported as an important hurdle. Scientific
and observational data, software tools and information are made available beyond
academia, reported by about 50% of respondents in the final survey, which is a
surprisingly large extent. This availability is complemented by the publication of
guidelines for use, tailoring for specific applications and quality assessment.

The researchers report several important indicators that demonstrate the progress
and scientific success of Digital Earth. First of all, researchers aimed to increase the
usability of data, information and scientific workflows. In addition, they strived for
better integration and collaboration between Earth/Environment—and data science
disciplines. Joint scientific publications, conference presentations, new research
proposals, and (open) software and data publications are regarded as most important
signs of success for the Digital Earth project.

8.5 Conclusions

The evaluation reported here has been very useful in documenting the success of the
Digital Earth project. The evaluation made use of criteria and indicators to assess the
research capacities, goals and usability of results from the endeavour to adopt data
science methods for Earth System Science. The framework and questions that are
presented havemade it possible to demonstrate and analyse the progress made during
the project, as we have documented the capacities, goals and usability at the start
and close to the end of the project, and the progress made during the collaboration
between scientists from different disciplines. During the project, the criteria and
indicators have been updated and extended, based on the feedback and evolving
insights on what is required in terms of evaluation. In general, the criteria and sub-
criteria and indicators presented here can also be applied to other projects in Earth
System Sciences, but possibly also to other fields of research. We hope that other
researchers and projects also feel encouraged to apply such an evaluation, in order
to improve and progress in their research, and analyse and improve their success.
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Appendix: Survey Questions

Cate-
gory*

Included
in first
question-
naire

Included
in second
question-
naire

Question

C 1 1 Please indicate at which Helmholtz Center you are working

C 2 2 My role in Digital Earth is

C 3 3 My discipline is. Earth Scientist; Data scientist

C 4 What is your specific discipline?

C 4 How many persons do you have within your research team (team
= department, or researchers) working on the Digital Earth
project (DE)?

C 5 How many people in your team are working in the following
fields of data science: AI / ML / DL; Advanced Data
Visualisation; Data management

C 6 How are the capacities in your team for doing data science?

C 5 How are the capacities in your team for doing data science after
the Digital Earth project? Have they improved?

C 7 6 With which data science experts from the following centres have
you collaborated, within Digital Earth and externally?

C 8 With which Data Scientists and which data science institutes
would you like to collaborate, within DE and external?

P 9 Where do you see the limitations of and challenges for data
science?

P 7 In your opinion, on which of these limitations have we improved
as a result of the Digital Earth project? And which ones do you
still encounter?

P 10 What are the key observational and model (digital) datasets you
will be using or producing?

P 11 Which observational infrastructure will you be using?

P 12 Which data and information infrastructure will you be using?
This can be simulation infrastructure including HPC
infrastructure, data storage infrastructure, etc

P 13 Which computer models (software/published code) or model
output/data will you be using?

P 14 Will you develop new models or implement new model
concepts?

P 15 What data science methods have you used already in other
projects?

16 What data science methods would you like to apply in DE?

P 8 What data science methods have you used in Digital Earth?

P 17 What is the purpose of applying these data science methods?

(continued)
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(continued)

Cate-
gory*

Included
in first
question-
naire

Included
in second
question-
naire

Question

P 9 Which scientific goals will you achieve/have you achieved? And
which data science method(s) have helped to do this?

P 18 Which data exploration tools have you used already in other
projects?

P 19 Which data exploration tools would you like to apply in DE?

P 20 What requirements do you have for data management?

P 21 Do you know best practices for data management, and are you
using them?

P 22 Which scientific goals do you want to achieve by combining
data, methods and data products, tools and knowledge from
different disciplines (Earth Sciences, data science):

P 23 10 Which scientific goals of Digital Earth are most important to
you?

P 11 What are the key products and tools you have produced? These
include data, model (code), tools, workflows etc. Please provide
a name/names, or brief description, or repository location

P 12 Have you been harmonising and integrating methods, models
and/or data from different disciplines or research fields? If yes,
did the Digital Earth project help to find a solution for this task?

P 24 Which research process goals are most important to you?

P 13 Which research process goals have been most important to you?

P 25 Which measures could be appropriate to assess the success of
the overall goals of Digital Earth? Please specify the 4 most
important:

P 14 Which joint output have you achieved through your work in
Digital Earth?

U 26 Are your digital datasets (observations, raw data, model output)
findable through a DOI identifier (see https://www.doi.org)?

U 27 Are you and your co-authors using the ORCID (Open
Researcher and Contributor ID; see https://orcid.org) identifiers
for scientific authors?

U 28 Are you using the IGSN (International Geo Sample Number; see
http://www.igsn.org) identifier for geoscientific samples?

U 29 15 Are (parts of) your digital data (observational data, model
output, and samples) accessible for other users?

U 30 Are there specific repositories you are using for storing data,
accessible for other users?

U 31 Is there a metadata description for these data?

U 32 Will you develop specific DE computer code and scripts for data
analysis? If yes, will this be accessible for other users?

(continued)

https://www.doi.org
https://orcid.org
http://www.igsn.org
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(continued)

Cate-
gory*

Included
in first
question-
naire

Included
in second
question-
naire

Question

U 33 Are there technical standards (specific to your field of study) that
you will apply for the data you will be developing?

U 34 Are your computer code and scripts using a formal language?

U 35 Are there Open Data and Software policies for the data,
information and software tools you will be producing?

U 16 Has your computer code and scripts for modelling/analysis
become available for other users?

U 36 What other principles are important? Please specify below:

U 37 17 Will results including data and software/scripts be made
available for users beyond academia?

U 38 If yes, which of the following actions are taken? Usability
assessment; User specific quality assessments; Tailoring of data
products and methods; Guidelines for use and interpretation;
Further support and services; Interface for data and knowledge
of stakeholder actions; Other

P 39 Please give us any other comments, or ideas or suggestions for
this questionnaire

P 18 What have been the five most important communication and
information channels in Digital Earth for you? You can choose 5
at maximum

P 19 What has been the biggest obstacle for collaboration in Digital
Earth? (for instance: transfer of information or data between
centres)

P 20 What, in your opinion has been the biggest success of Digital
Earth? (you can also give us any other comments)

*Categories are:
C = Capacities for data science
P = Project success and scientific progress
U = Usability of results
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9.1 Introduction

A central question of the Digital Earth project is: How can data science contribute
to improving scientific results within the Earth sciences? This fundamental question
was posed by the scientists involved in the project, which has led to the research
set-up and aims as described in Chap. 2. Within the project, several methods and
tools have been developed and applied (see Chaps. 3, 4, 5, and 6). In addition, the
collaboration and success of the project were assessed and evaluated (see Chaps. 7
and 8). In this chapter, we present as a conclusion the four lessons learned that we
regard to be an essential basis for a fruitful interrelationship of data science and Earth
System Science.

9.2 Lesson 1: Interdisciplinary Collaboration

Moving from multidisciplinary to interdisciplinary collaboration is essential for the
adoption of data science methods and for making progress with digitalization in
Earth System Science. One obvious success of Digital Earth is the established inter-
disciplinary collaboration. The results achieved in the project have been created by
many scientists that before Digital Earth did not work together, did not know each
other and might not even have seen the need and advantage of extending their own
expertise before the project. Today, all project members agree that a sustainable
collaboration across many disciplines, with different ways of working and despite
the high number of obstacles and difficulties particularly in communicating with
each other and finding a common ground, is a precondition for novel solutions and
it is for sure worth the effort. A kick-start action, like the Digital Earth project, to
such an endeavour is essential. Digital Earth provides the needed time to develop the
collaboration and to establish a nucleus of knowledge and trust. Only this enables
joint problem solving and develops new research ideas and opportunities.

9.3 Lesson 2: Thinking Out of the Box

Investing in working ‘outside the box’, beyond your own comfort zone,
research centre and discipline is crucial. Communicating ‘my’ science to others
and learning from other disciplines and approaches are important and the only way
to expand our knowledge in Earth System Sciences. Cultural, language and impor-
tantly knowledge shortcomings hinder an effective communication and collaboration
between data scientists and Earth scientists. This needs to be overcome by suitable
means and strategies to help both sides acquire a good understanding of the other
disciplines (see Chaps. 5 and 7). These shortcomings need to be done even if the
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process takes time and does not immediately lead to the envisioned success. Scien-
tists with the explicit aim of bridging between disciplines, Earth compartments and
institutions have been identified as good nuclei and multiplicators for developing
and adapting novel data science approaches to improve Earth System Science. The
Digital Earth project provided a frame to enable the distribution of knowledge within
and across scientific disciplines and created an environment where people advanced
beyond their typical realm.

9.4 Lesson 3: Thinking in Workflows

To set a common ground for interdisciplinary collaboration and ‘thinking out of
the box’, the concept of scientific workflows was used in Digital Earth as a base
for communication. After initial hesitation primarily by the Earth scientists, the
concept helped to structure the processes of knowledge generation and to break it
down into exchangeable and reusable steps. These workflows made it much easier to
create a common ground between Earth and data scientists, to identify bottlenecks in
specific steps in theworkflowand tofind alternatives formethods and tools. ‘Thinking
in workflows’ (see Chap. 5) became the guiding principle in the project, where
natural scientists define their needs, identify the available input data and present
their wishes for output to the data and computer scientists. The computer scientists
add their expertise with regard to methods and approaches in artificial intelligence,
visualization, exploration of distributed data and software engineering. Thinking in
workflows and formalizing the way Earth scientists generate knowledge allows an
effective way of sharing and implementing scientific approaches and data science
methods. It supports the reuse of scientific software and enables a component-based
and collaborative framework for data-driven science. We identified the approach
of ‘Thinking in workflows’ as a suitable and modular way of communication and
scientific collaboration. Based on this approach, the next collaboration in smaller
and larger projects will be much easier.

9.5 Lesson 4: Sustainable Implementation of Scientific
Software, Data Infrastructure and Policies

The need for joined and professional software development and its maintenance is
obvious when data science should become a cornerstone in Earth System Science. So
far, such software is developed by small groups or individuals who train themselves.
There is a need for more professional and standardized scientific software devel-
opment. Software needs to be reusable and maintained to prevent scientists from
inventing the wheel again and again. Research centres need to acknowledge that
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software development and maintenance is an ongoing and important effort similar
to data management, running analytical facilities and the science itself.

Clear guidelines, policies and licensing rules for joint software development and
provision, and the use of data are still ‘under construction’. This creates problems
when it is envisioned that developed software tools should be shared with others.
More effort is required here.

There is no progress in data-driven science to be expected if infrastructure hurdles
exist. Examples are data access (authentication) difficulties and the transfer of
large data sets. This was experienced in the project and made collaboration and
interdisciplinary research unnecessarily complicated.

Finally, the work and effort that are related to the sustainable implementation
and development of scientific software, data infrastructure and policies have to be
appreciated and counted as valuable scientific contributions.
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