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Abstract. With the increase in computational power, ocean
models with kilometer-scale resolution have emerged over
the last decade. These models have been used for quantify-
ing the energetic exchanges between spatial scales, inform-
ing the design of eddy parametrizations, and preparing ob-
serving networks. The increase in resolution, however, has
drastically increased the size of model outputs, making it dif-
ficult to transfer and analyze the data. It remains, nonetheless,
of primary importance to assess more systematically the real-
ism of these models. Here, we showcase a cloud-based anal-

ysis framework proposed by the Pangeo project that aims to
tackle such distribution and analysis challenges. We analyze
the output of eight submesoscale-permitting simulations, all
on the cloud, for a crossover region of the upcoming Sur-
face Water and Ocean Topography (SWOT) altimeter mis-
sion near the Gulf Stream separation. The cloud-based anal-
ysis framework (i) minimizes the cost of duplicating and stor-
ing ghost copies of data and (ii) allows for seamless sharing
of analysis results amongst collaborators. We describe the
framework and provide example analyses (e.g., sea-surface
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height variability, submesoscale vertical buoyancy fluxes,
and comparison to predictions from the mixed-layer instabil-
ity parametrization). Basin- to global-scale, submesoscale-
permitting models are still at their early stage of develop-
ment; their cost and carbon footprints are also rather large.
It would, therefore, benefit the community to document the
different model configurations for future best practices. We
also argue that an emphasis on data analysis strategies would
be crucial for improving the models themselves.

1 Introduction

Traditionally, collaboration amongst multiple ocean model-
ing institutions and/or the reproduction of scientific results
from numerical simulations required the duplication, indi-
vidual sharing, and downloading of data, upon which each
of the interested parties (or an independent group) would
analyze the data on their local workstation or cluster. We
will refer to this as the “download” framework (Stern et al.,
2022a). As realistic ocean simulations with kilometric hor-
izontal resolution have emerged (e.g., Rocha et al., 2016;
Schubert et al., 2019; Brodeau et al., 2020; Gula et al., 2021;
Ajayi et al., 2021), such a framework has become cumber-
some, with terabytes and petabytes of data needed to be
transferred and stored as ghost copies. Nevertheless, a real
demand exists for collaboration to inter-compare models to
examine their fidelity and quantify robust features of subme-
soscale and mesoscale turbulence (the former on the horizon-
tal spatial scales of O(10 km) and the latter on O(100 km),
from here on referred to jointly as (sub)mesoscale; Hallberg,
2013; McWilliams, 2016; Lévy et al., 2018; Uchida et al.,
2019; Dong et al., 2020). The Ocean Model Intercompari-
son Project (OMIP), for example, has been successful in di-
agnosing systematic biases in non-eddying and mesoscale-
permitting ocean models used for global climate simulations
(Griffies et al., 2016; Chassignet et al., 2020).

Here, we would like to achieve the same goal as OMIP
but by inter-comparing submesoscale-permitting ocean mod-
els, which have been argued to be sensitive to grid-scale
processes and numerical schemes as we increasingly push
the model resolution closer to the scales of non-hydrostatic
dynamics and isotropic three-dimensional (3D) turbulence
(Hamlington et al., 2014; Soufflet et al., 2016; Ducousso
et al., 2017; Barham et al., 2018; Bodner and Fox-Kemper,
2020). Considering the enormous computational cost and
carbon emission of these submesoscale-permitting models, it
would also benefit the ocean and climate modeling commu-
nity to compile the practices implemented by each modeling
group for future runs. In doing so, we analyze eight realis-
tic, submesoscale-permitting ocean simulations, which cover
at least the North Atlantic basin, run with the code bases of
the Nucleus for European Modelling of the Ocean (NEMO;
Madec et al., 2019, https://www.nemo-ocean.eu/, last ac-

cess: 8 July 2022), Coastal and Regional Ocean COmmu-
nity model (CROCO; Shchepetkin and McWilliams, 2005,
https://www.croco-ocean.org/, last access: 8 July 2022),
Massachusetts Institute of Technology general circulation
model (MITgcm; Marshall et al., 1997, https://mitgcm.
readthedocs.io/en/latest/, last access: 8 July 2022), HYbrid
Coordinate Ocean Model (HYCOM; Bleck, 2002; Chas-
signet et al., 2009, https://www.hycom.org/, last access:
8 July 2022), Finite volumE Sea ice-Ocean Model (FE-
SOM; Danilov et al., 2017, https://fesom2.readthedocs.io/
en/latest/index.html, last access: 8 July 2022), and First In-
stitute of Oceanography Coupled Ocean Model (FIO-COM,
http://fiocom.fio.org.cn/, last access: 8 July 2022). Consider-
ing the amount of data, however, the download framework
becomes very inefficient. Therefore, we have implemented
the “data-proximate computing” framework proposed by the
Pangeo project where we have stored the model outputs on
the cloud and brought the computational resources adjacent
to the data on the cloud (Abernathey et al., 2021a; Stern et al.,
2022a).

Many of these simulations were developed ahead of the
Surface Water and Ocean Topography (SWOT) satellite
launch (Morrow et al., 2019), now projected to be in Novem-
ber 2022, in order to allow for the instrumental calibration of
SWOT (Gomez-Navarro et al., 2018; Metref et al., 2020) and
to disentangle the internal wave signals from (sub)mesoscale
flows; SWOT is expected to observe the superposed field of
the two dynamics (Savage et al., 2017a; Torres et al., 2018;
Yu et al., 2021). During its calibration phase, SWOT will
pass over the same site every day for 6 months and have
tracks that will cross over with each other. In order to show-
case the data-proximate computing framework and its po-
tential for collaborative, open-source, and reproducible sci-
ence, we provide example diagnostics for one of the SWOT
Crossover (Xover) regions around the Gulf Stream separa-
tion (Region 1 in Fig. 1). We leave the detailed diagnostics
of (sub)mesoscale flows including other SWOT Xover re-
gions and the potential impact of modeling numerics on the
resolved flow for a subsequent paper.

The paper is organized as follows. We describe the data-
proximate computing framework in Sect. 2 and showcase
some example analyses using this framework in Sect. 3. Cau-
tionary remarks regarding sustainability into the future for
open-source reproducible science are given in Sect. 4, and
we conclude in Sect. 5.

2 Data-proximate computing framework

In order for the data-proximate computing framework to
work for collaborative, open-source, and reproducible sci-
ence, it requires two components to work together simultane-
ously: (i) public access to analysis-ready data and (ii) open-
source computational resources adjacent to the data.
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Figure 1. SWOT tracks during its calibration phase and strategic
Xover regions in the Atlantic sector. The regions cover the Gulf
Stream separation and its extension (Regions 1 and 2), the western
Mediterranean Sea (Region 3), and the Agulhas Rings (Region 4).

2.1 Analysis-ready cloud-optimized data

In the field of Earth science, model outputs are often archived
and distributed in binary, HDF5, or NetCDF formats. While
we have greatly benefitted from these formats, they are not
optimized for cloud storage or for parallelized cloud com-
puting. However, as Earth scientists, commonly, we do not
possess the training in cloud infrastructure or the data en-
gineering required to efficiently convert large-scale archival
datasets into formats which allow us to leverage the full
performance potential of the commercial cloud. Data engi-
neers, on the other hand, do not know the scientific needs
of the data. In collaboration with Pangeo Forge (Stern
et al., 2022a, https://pangeo-forge.readthedocs.io/en/latest/,
last access: 8 July 2022), we have therefore attempted to
fill this niche by streamlining the process of data preparation
and submission. To transform their data into analysis-ready
cloud-optimized (ARCO) formats, data providers (ocean
modeling institutions in our case) need only specify the
source file location (e.g., as paths on an ftp, http, or OPeN-
DAP server) along with output dataset parameters (e.g., par-
ticular ARCO format, chunking) in a Python module known
as a recipe. The recipe module, which is typically a few
dozen lines of Python code, relies on a data model defined
in the open-source pangeo-forge-recipes package.
Once complete, the recipe is submitted via a pull request on
Github to the Pangeo Forge staged-recipes repository
(https://github.com/pangeo-forge/staged-recipes, last access:
8 July 2022). From here, Pangeo Forge automates the pro-
cess of converting the data into ARCO format and storing
the resulting dataset on the cloud, using its own elastically
scaled cloud compute cluster. The term “analysis-ready” here
is used broadly to refer to any dataset that has been pre-

processed to facilitate the analysis which will be performed
on it (Stern et al., 2022a). An example of such a recipe for
eNATL60 described in Sect. 3 is given in Appendix A. We
refer the interested reader to Abernathey et al. (2021a) and
Stern et al. (2022a) for further details on the technical imple-
mentation.

The crowd-sourcing approach of Pangeo Forge, to which
any data provider can contribute, not only benefits the im-
mediate scientific needs of a single research project, but also
the entire scientific community in the form of shared, pub-
licly accessible ARCO datasets which remain available for
all to access. This saves each scientist the cost of duplicating
and storing ghost copies of the data and allows for repro-
ducible science. The model outputs used for this study are
stored on the Open Storage Network (OSN), a cloud storage
service provided by the National Science Foundation (NSF)
in the US. The surface data were saved hourly and interior
data in the upper 1000 m as daily averages (due to cloud stor-
age constraints). To facilitate the access of data from OSN,
we have further made them readable via intake, a data ac-
cess and cataloging system which unifies the application pro-
gramming interface (API) to read and load the data (https:
//intake.readthedocs.io/en/latest/overview.html, last access:
8 July 2022). That is, the API to read and load the data is
the same for all of the data used in this project, regardless
of its distribution format (e.g., binary, HDF5, or NetCDF),
because each of the datasets has been converted by Pan-
geo Forge into the cloud-optimized Zarr format (https://zarr.
readthedocs.io/en/stable/, last access: 8 July 2022) and sub-
sequently cataloged with intake prior to analysis. This
is particularly beneficial for our case, where we would like
to systematically analyze multiple data collections. The en-
tire process of zarrifying the data, fluxing them to OSN,
and cataloging scaled well for the four regions shown in
Fig. 1; the net amount of data stored on OSN as of writ-
ing sums up to O(2Tb). While the amount of O(2Tb) may
seem small, the ARCO framework negates the generation
and storage of ghost copies and scales as the data size in-
creases. Jupyter notebooks for the results shown in Sect. 3,
including the Yaml file to access data via intake, are given
in the Pangeo Data swot_adac_ogcms Github repository
(Stern et al., 2022b, https://github.com/pangeo-data/swot_
adac_ogcms, last access: 8 July 2022). Regarding LLC4320,
the data were accessed via the Estimating the Circulation
and Climate of the Ocean (ECCO) data portal. While there
was no particular sub-setting applied to their dataset prior
to analyses, the data portal and cloud-based JupyterHub be-
ing within geographical proximity (within the US) facili-
tated the data access. The combination of llcreader of
the xmitgcm Python package to access their data in binary
format (as opposed to NetCDF) also enhanced the efficiency
(Abernathey, 2019; Abernathey et al., 2021b).
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2.2 Cloud-based JupyterHub

For data-proximate computational resources, we have imple-
mented JupyterHub, an open-source platform that provides
remote access to interactive sessions in the cloud for many
users (Fangohr et al., 2019; Beg et al., 2021), on the Google
Cloud Platform (GCP). This infrastructure is run in collab-
oration with 2i2c.org, a non-profit organization based in the
US that manages cloud infrastructure for open-source scien-
tific workflows. Authentication for each user/collaborator on
JupyterHub is provided via a white list of Github usernames,
meaning that the hub can be accessed from anywhere and is
not tied directly to an institutional account. This has allowed
for real-time sharing of Python scripts amongst collabora-
tors and exchange of feedback on the analytical results we
present in Sect. 3. Cloud computing also offers the scaling of
resources for improved I/O throughput and optimization of
network bandwidth and central processing units (CPUs).

3 Example analyses

The model outputs used for this showcase are from the
eNATL60 (Brodeau et al., 2020), GIGATL (Gula et al.,
2021), HYCOM50 (Chassignet and Xu, 2017, 2021),
FESOM-GS and LLC4320 (Rocha et al., 2016; Stewart
et al., 2018), ORCA36 (https://github.com/immerse-project/
ORCA36-demonstrator, last access: 8 July 2022), FIO-
COM32 (Xiao et al., 2022), and HYCOM25 (Savage et al.,
2017a, b; Arbic et al., 2018) simulations. The detailed
configuration of each simulation is given in Appendix B.
In order to motivate the reader on the necessity of inter-
comparing realistic submesoscale-permitting simulations,
we show in Fig. 2 the surface relative vorticity normalized
by the local Coriolis parameter on 1 February at 00:00 GMT
from each model. Despite their similar spatial resolutions,
the spatial scales represented vary widely across models.
Submesoscale-permitting ocean modeling is in its early stage
of development, and each modeling institution is still explor-
ing best practices. Therefore, we did not specify an experi-
mental protocol, as in OMIP, for the model outputs from each
institution. Each model uses different atmospheric products
and tidal constituents to force the ocean, and the initial con-
ditions and duration of spinup all vary (Appendix B). Never-
theless, we should expect statistical similarity in the oceanic
flow at the spatial scales of O(10km) if the numerics are ro-
bust.

3.1 Surface diagnostics of the temporal mean and
variability

In light of the SWOT mission, the primary variable of in-
terest is the ocean dynamic sea level. The AVISO estimate
of this quantity is called the absolute dynamic topography
(ADT), while the closely related model diagnostic is the sea
surface height (SSH) after correcting for the inverse barom-

eter effect if atmospheric pressure variability was simulated.
Technically, SSH is defined as the geodetic height of the sea
surface above the reference ellipsoid, while ocean dynamic
sea level (or ADT) is defined relative to the geoid, but in
models typically the geoid and reference ellipsoid coincide,
so these two definitions are in practice the same (Gregory
et al., 2019). Furthermore, in the specific comparisons made
here, a regional average of the ocean dynamic sea level es-
timates is removed first, so that large-scale, slow changes
(e.g., ice sheet mass loss contributions) are excluded from
the comparison. From an ocean modeling perspective, one
of the key features to argue in favor of increasing resolu-
tion in the North Atlantic has been the improvement in rep-
resenting the Gulf Stream (GS) separation and the path of
the North Atlantic Current (Chassignet and Xu, 2017; Chas-
signet et al., 2020; Chassignet and Xu, 2021). In assessing
the models, it is common to examine the mean state, which
we define as the time mean and variability about the mean.
From the perspective of computational cost, the time mean
of surface fields is the lightest, as the reduction in dimension
allows for the download framework where the collaborators
can share the averaged data. Variability about the time mean
requires access to the temporal dimension, making the com-
putational and data storage cost intermediate. We will further
show in Sect. 3.2 an example of 3D diagnostics of the sub-
mesoscale flow, which significantly increases the computa-
tional cost and burden of transferring data; the 3D diagnos-
tics will highlight the strength of the data-proximate frame-
work where we can consistently apply the same diagnostic
methods across different datasets.

In Fig. 3, we show the time mean and temporal standard
deviation of ocean dynamic sea level from the eight models
in the GS separation region. We also show the time mean
ocean dynamic sea level estimated as ADT from the Archiv-
ing, Validation and Interpretation of Satellite Oceanographic
(AVISO) data for reference. We do not show the standard de-
viation for AVISO as the spatiotemporal interpolation and
smoothing limit its effective resolution to O(100km) and
O(10 d) (Chelton et al., 2011; Arbic et al., 2013; Chassignet
and Xu, 2017). We provide the modeled standard deviations
of ocean dynamic sea level filtered in a manner similar to
the smoothing that goes into the AVISO products in Ap-
pendix C. The GS in most models tends to separate off of
Cape Hatteras on the eastern coast of the US, consistent with
AVISO (Fig. 3a, c, g, i, k, o, t). In terms of the magnitude
of mean SSH, HYCOM50 may be overestimating it relative
to AVISO across the path of the separated GS. The GS in
LLC4320 tends to separate relatively southwards, while in
FESOM-GS it separates northwards relative to AVISO ob-
servations, respectively (Fig. 3e and i). The separation in
FESOM-GS may be closer to the observed state in 2014
(Fig. 3s) rather than 2012, the actual year of model output.
Regarding the standard deviation, while expected, it is in-
teresting that the simulations without tides (FESOM-GS and
ORCA36; Fig. 3f and l) show significantly lower temporal
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Figure 2. A snapshot of surface relative vorticity normalized by the local Coriolis parameter on 1 February at 00:00 from each model in
Region 1.

variability compared to the other models. The low variability
in FESOM-GS could also stem from the lack of atmospheric
pressure variation in their atmospheric forcing (Table B6).
Although HYCOM25 is tidally forced, its standard deviation
is relatively low (Fig. 3p), which may be due to lower spatial
resolution than the region- and basin-scale models used here
(Table B2), the computational tradeoff of it being a global
simulation. HYCOM25 nevertheless has higher values than
FESOM-GS and ORCA36. The difference we find between
simulations tidally forced and not is consistent with previous
studies which argue that, in order to emulate the upcoming
SWOT observations, applying tidal forcing is a key aspect in
addition to model resolution (Savage et al., 2017a, b; Arbic

et al., 2018; Torres et al., 2018; Ajayi et al., 2021; Yu et al.,
2021). The benefit of having tidally forced simulations is that
we can develop and test such methods of removing tides.

To complement the temporal standard deviation, in Fig. 4,
we show the frequency spectra of SSH in the GS separa-
tion region. The frequency periodograms were computed ev-
ery ∼ 10 km using the xrft Python package (Uchida et al.,
2021) and then spatially averaged to compute the spectra.
The temporal linear trend was removed, and a Hann window
was applied prior to taking the Fourier transform of SSH as
commonly done in studies examining spectra (e.g., Uchida
et al., 2017; Savage et al., 2017a; Khatri et al., 2021). At fre-
quencies higher than the Coriolis frequency, LLC4320 shows
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Figure 3. The temporal mean and standard deviation of ocean dynamic sea level in the GS separation region (Region 1) during the months
of February, March, and April using hourly outputs of SSH from the models. The bottom row shows the seasonal mean of ADT fields from
AVISO during the months of February, March, and April. Daily AVISO data were used to compute the seasonal mean for three individual
years (2011, 2012, and 2014) and over 2010–2018. The spatial mean is subtracted from the temporal mean fields from the models and AVISO
to ensure that the mean SSH/ADT anomaly fields are comparable (i.e., large-scale contributions have been removed).
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the highest variability and FESOM-GS the lowest for both
winter and summer. FIO-COM32 shows the largest spec-
tral amplitudes at the diurnal and semidiurnal frequencies
amongst the models, which reflects itself in the large stan-
dard deviation (Fig. 3n). LLC4320 also shows the largest
number of spectral peaks at tidal frequencies, likely due to
being forced with full lunisolar tidal potential as opposed to
a discrete number of tidal constituents, as was the case for the
other models used here (Table B6). Also note that tidal forc-
ing in the LLC4320 simulation was inadvertently overesti-
mated by a factor of 1.1121. It is not surprising that FESOM-
GS lacks spectral peaks at diurnal and semidiurnal frequen-
cies, considering that it is not tidally forced. ORCA36, on
the other hand, although not tidally forced, displays some
activity at diurnal and semidiurnal frequencies, possibly due
to the inclusion of atmospheric pressure variation in their
forcing (Table B6). However, the lower peaks at tidal fre-
quencies in ORCA36 compared to the tidally forced runs re-
flect themselves in the lower standard deviation as seen in
Fig. 3l. eNATL60, GIGATL, HYCOM50, and HYCOM25
show similar levels of variability in the diurnal and semidiur-
nal bands. It is interesting to note that, at timescales of O(1–
10 d), most runs show higher variability during winter than
summer (Fig. 4a and c), while the tidally forced runs show
higher variability at timescales shorter than O(1 d) during
summer (Fig. 4b and d). The seasonality at timescales shorter
thanO(1 d) is reversed for ORCA36, a run with no tidal forc-
ing. It is possible that the increase in forward cascade of en-
ergy stimulated by the tides is the culprit in higher SSH vari-
ability at timescales shorter than the inertial frequency during
summer than winter for the tidally forced runs and vice versa
for the non-tidally forced runs (Barkan et al., 2021). The
overall higher SSH variability at timescales longer than the
inertial frequency during winter than summer, on the other
hand, is possibly due to wind-driven inertial waves (Flexas
et al., 2019).

3.2 Three-dimensional diagnostics on physical
processes

To exemplify 3D diagnostics, we display the submesoscale
vertical buoyancy flux from each model using the daily-
averaged outputs. Submesoscale vertical buoyancy fluxes in
the surface ocean have been of great interest to the ocean
and climate modeling community as they modulate the air–
sea heat flux, affect mixed-layer depth (MLD), and are a
proxy for baroclinic instability taking place within the mixed
layer (often referred to as mixed-layer instability (MLI);
Boccaletti et al., 2007; Mensa et al., 2013; Johnson et al.,
2016; Su et al., 2018; Uchida et al., 2017, 2019; Schu-
bert et al., 2020; Khatri et al., 2021). Ocean models used
for climate simulations, however, lack the spatial resolution
to resolve MLI due to computational constraints. A recent
parametrization proposed by Fox-Kemper et al. (2008) has
been operationally implemented by multiple climate mod-

eling groups (Fox-Kemper et al., 2011; Huang et al., 2014;
Calvert et al., 2020). While the vertical buoyancy flux pre-
dicted by the MLI parametrization has been tested in ideal-
ized simulations (Boccaletti et al., 2007; Fox-Kemper and
Ferrari, 2008; Brannigan et al., 2017; Callies and Ferrari,
2018), non-eddying and mesoscale-permitting coupled and
ocean-only simulations (Fox-Kemper et al., 2011; Calvert
et al., 2020), and single-model assessments (e.g., Mensa
et al., 2013; Li et al., 2019; Yang et al., 2021; Richards et al.,
2021), to our knowledge, a systematic assessment of the
MLI parametrization has not been done versus multi-model,
submesoscale-permitting, realistic ocean simulations which
at least partially resolve the flux in need of parametrization
in climate simulations. We take advantage of the unique op-
portunity provided by our collection of simulations to assess
the flux parametrization, i.e., the covariance of the 3D ver-
tical velocity and buoyancy fields versus the modeled MLD
and horizontal buoyancy gradient (3D data were not available
for the HYCOM25 simulation).

The MLI parametrization predicts that the submesoscale
vertical buoyancy fluxes vertically averaged over the mixed
layer ((·)

z
) can be approximated by the squared horizontal

gradient of the mesoscale buoyancy field times the MLD
squared:

wsbsz ∝
H 2

ML|∇hbm|
z2

|f |
, (1)

where w, b, f , and HML are the vertical velocity, buoy-
ancy, local Coriolis parameter, and MLD. While each model
used a different Boussinesq reference density (ρ0), buoy-
ancy was defined as b =−g σ0

ρ0
, where σ0 is the potential

density anomaly with the reference pressure of 0 dbar and
ρ0 = 1000 kg m−3 for all model outputs. The MLD was de-
fined using the density criterion (de Boyer Montégut et al.,
2004) viz. the depth at which σ0 increased by 0.03 kg m−3

from its value at ∼ 10 m depth. ∇h is the horizontal gradient,
and the superscripts “s” and “m” indicate the submesoscale
and mesoscale fields, respectively. The decomposition be-
tween the submesoscale and mesoscale was done by apply-
ing a Gaussian filter with the standard deviation of 30 km
using the gcm-filters Python package (Grooms et al.,
2021). That is, the mesoscale field is defined as the spatially
smoothed field with the Gaussian filter and submesoscale as
the residual (·)s = (·)− (·)m. The bm field includes scales
larger than the typical mesoscale, but as it is the horizon-
tal gradient of this field we are interested in, ∇hb

m captures
the mesoscale fronts. We note that the Gaussian filter, im-
plemented as a diffusive operator, commutes with the spatial
derivative (this is an important property as we take the hor-
izontal gradient of bm; Grooms et al., 2021). While we ac-
knowledge that there may be more sophisticated methods to
decompose the flow (Uchida et al., 2019; Jing et al., 2020;
Yang et al., 2021), a spatial filter has been commonly ap-
plied in examining the submesoscale flow in realistic simula-
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Figure 4. The frequency spectra of hourly SSH for winter (February, March, April; a, b) and summer (August, September, October; c, d).
The panels are split up at 10 m2 s−1 for visualization purposes. The frequency periodograms were computed every ∼ 10 km in Region 1 and
then spatially averaged. The runs without tidal forcing (FESOM-GS and ORCA36) are shown in dashed lines. The Garrett–Munk spectral
slope of ω−2 (Garrett and Munk, 1975) is shown as the grey solid line and the domain-averaged Coriolis frequency as the grey dashed line.

tions (e.g., Mensa et al., 2013; Su et al., 2018; Li et al., 2019;
Jing et al., 2021). Recently, Cao et al. (2021) argued that,
in addition to spatial cutoffs, a temporal cutoff improves the
decomposition. Upon examining the frequency–wavenumber
spectra of relative vorticity and horizontal divergence, how-
ever, we found that the daily averaging effectively filtered
out the internal gravity waves (not shown). Based on char-
acteristic timescale arguments, it is likely that our daily-
averaged submesoscale fields are capturing the component
in balance with stratification and Earth’s rotation (Boccaletti
et al., 2007; McWilliams, 2016), although some of the sub-
mesoscale balanced variability and nearly all of the internal
gravity wave variability are filtered out by the daily aver-
age. Figure 5 shows the decomposition for w and b from
eNATL60 on 1 February 2010 at depth 18 m. We see the
characteristic feature of the Gulf Stream separation particu-
larly in the buoyancy field (Fig. 5d) and submesoscale fronts
(Fig. 5c and f) superimposed on top of the large-scale flow
(Fig. 5b and e). We will focus on the late winter/early spring
months (February, March, and April) as the spatial scale of
MLI during summer is not well resolved even at kilometric
resolution (Dong et al., 2020). We also restrict our diagnos-

tics to the open ocean where the bathymetry is deeper than
100 m (e.g., Fig. 7).

Considering that the Fox-Kemper et al. (2008) MLI
parametrization is intended for mesoscale-permitting models
(neglecting the dependency on model grid scale: 1s in Fox-
Kemper et al., 2011), we further coarse-grained the fields to
∼ 1/12◦ with a box-car operator, which gives

〈wsbsz〉 ' Ce|f |
−1
( 0∫
−〈HML〉

〈|∇hb
m
|〉dz

)2

, (2)

where 〈·〉 is the coarse-graining operator and Ce a tuning pa-
rameter or “efficiency coefficient” (Fox-Kemper et al., 2011).
The 1s scaling to compensate for coarse model resolution
was omitted due to all our model outputs partially resolving
the submesoscale buoyancy flux. Furthermore, as 1s does
not vary much among the models, this factor would not con-
tribute much to the overall differences between models in
comparison to the greater variability due to numerics, etc.,
that this paper is meant to introduce. We diagnosed Ce by
taking the ratio between the right-hand and left-hand sides of
Eq. (2) at each grid point and time step (e.g., left columns of
Fig. E1) and then the horizontal spatial median of it. The di-
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Figure 5. Snapshot from eNATL60 on 1 February 2010 at depth 18 m of the unfiltered daily w and b (a, d), filtered fields applying the
Gaussian filter (wm,bm; b, e), and the residual (ws,bs; c, f).

agnosis (Eq. 2) would differ from the parametrization (Eq. 1)
if there are large vertical variations in the buoyancy gradi-
ent, but these are not expected within the frequently remixed
mixed layer. Furthermore, the efficiency coefficient is ex-
pected to vary among the multi-model ensemble according
to how well-resolved and/or damped the submesoscale insta-
bilities are by model numerics, sub-grid schemes, and daily
averaging.

The diagnosed Ce only has a time dependence and fluc-
tuates in the range of [0.01,0.07] across most models (blue
solid curves in Fig. 6), in agreement with the value of 0.06
recommended by Fox-Kemper et al. (2008). The time series
of the spatial median of 〈wsbsz〉 and its prediction from the
MLI parametrization are in sync with each other (black and
red solid curves in Fig. 6). The order of magnitude of the
spatial median of the submesoscale vertical buoyancy flux
diagnosed from the models,O(5×10−9 m2 s−3), also agrees
with observational estimates (Mahadevan et al., 2012; John-
son et al., 2016; Buckingham et al., 2019), with an overall
decrease in amplitude towards May except for FIO-COM32,

which shows a local maximum around March (black solid
curves in Fig. 6).

We provide a snapshot of 〈wsbsz〉 and its prediction
from the MLI parametrization (i.e., both sides of Eq. 2) on
1 February from each model in Fig. 7. The joint histograms
of the two over the months of February–April are also given
in the bottom rows of Fig. 7. The joint histograms of the
two are concentrated around the one-to-one line indicating
spatial correlation. The slight underestimation of magnitude
in the MLI parametrization (viz. values falling below the
one-to-one line) comes from the fact that, while 〈wsbsz〉 can
take negative values locally where frontogenesis dominates
(i.e., where the isopycnals steepen), the MLI parametriza-
tion by construction cannot differentiate between frontoge-
nesis and frontolysis, giving only positive values (Eq. 1).
Nonetheless, 〈wsbsz〉 largely takes positive values, indicating
that processes such as mixed-layer and symmetric instabili-
ties, which yield positive vertical buoyancy fluxes consistent
with the extraction of potential energy (Dong et al., 2021),
dominate in the surface boundary layer. While we have taken
the spatial median to diagnose Ce(t), which yields the best
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Figure 6. Time series of the spatial median of the submesoscale vertical buoyancy flux averaged over the MLD (〈wsbsz〉; black solid
curve) and its prediction from the MLI parametrization during the months of February to April. Note that the y axes vary depending on the
magnitude diagnosed from each simulation in order to highlight its temporal variability. The prediction with temporally varying Ce(t) is
shown in red solid curves and with a temporally averaged (constant) Ce in red dashed curves. Ce(t) is plotted against the right y axes in blue.
Three-dimensional data were not available for HYCOM25.

agreement in the time series (Fig. 6), one may decide to in-
stead take the spatial mean or mode, which we discuss in
Appendix E.

For operational purposes, we would like to have a tun-
ing parameter that is independent of not only space, but
also time. Therefore, we also display the MLI prediction
when Ce is a constant taken to be its time mean. The agree-
ment between 〈wsbsz〉 and the prediction remains surpris-
ingly good (red dashed curves in Fig. 6); in other words, the
MLI parametrization is relatively insensitive to the tempo-

ral variability of Ce(t). Regarding inter-model differences,
HYCOM50 and LLC4320 have the smallest buoyancy fluxes
predicted by the MLI parametrization (i.e., weaker horizon-
tal gradient magnitude and/or shallower MLDs). The smaller
predicted values present themselves as Ce diagnosed from
the two, taking an order of magnitude larger values than
the other models (blue curves in Fig. 6c and e); particularly
for HYCOM50, using a constant Ce fails to reproduce the
magnitude of 〈wsbsz〉 during the early half of February (red
dashed curve in Fig. 6c). It is possible that the lowest verti-
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Figure 7. Snapshot of 〈wsbsz〉 (left column) and Ce(t)×MLI (middle column) on 1 February for each model. Note that the range of the
color bar differs depending on the magnitude diagnosed from each model to highlight their spatial features and comparison between the
submesoscale buoyancy flux and its equivalent predicted from the parametrization per simulation. Regions with bathymetry shallower than
100 m are masked out. The right column for each model shows the joint histogram of the two during the months of February to April, and
the one-to-one line is shown as the grey dashed line. The histograms were computed using the xhistogram Python package (Abernathey
et al., 2021c).
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cal resolution of HYCOM50 amongst the models (Table B2)
results in underrepresentation of the MLD despite its fine
horizontal resolution, particularly south of the Gulf Stream
(Fig. D1c); the MLI parametrization depends on it quadrat-
ically (Eq. 1). The MLD from LLC4320 is also relatively
shallow (Fig. D1e). HYCOM50 and LLC4320 both use the
K-profile parametrization (KPP, Table B3; Large et al., 1994)
for the boundary-layer closure, which may imply that the
KPP parameters warrant further tuning or reformulation for
submesoscale-permitting model resolutions (e.g., Bachman
et al., 2017; Souza et al., 2020). The shallow MLD may also
be due to the differences in the atmospheric products used to
force the models (Table B6).

4 Conditions for sustainability

The strength of cloud storage and computing comes from
it being decentralized from any specific institution, but this
also leaves open the question about who pays for the cost of
operating and supporting the cloud infrastructure as well as
for the cloud resources. There are three components to the
cost structure: (i) the cloud storage, (ii) computation includ-
ing egress charges to access the data, and (iii) deployment
and maintenance of JupyterHub.

Currently, as of writing, the operational cost of flux-
ing data to the OSN cloud storage is funded by an NSF
grant acquired by the Climate Data Science Laboratory at
Columbia University and JupyterHub on Google Cloud Plat-
form (GCP) by a Centre National d’Études Spatiales (CNES)
grant acquired by the MultiscalE Ocean Modeling (MEOM)
group at the Institut des Géosciences de l’Environnement.
While the OSN storage itself allocated to Pangeo Forge
is not associated with monetary expense or any egress
charges (https://www.openstoragenetwork.org/get-involved/
get-an-allocation/, last access: 8 July 2022), the scratch
storage on GCP where we have saved our diagnostic out-
puts entailed storage and egress fees. The cost of GCP re-
sources for JupyterHub with parallelized computation added
up to roughly EUR 1000 per month for this study with the
maximum computational resources of 64 cores and 256 Gb
of memory per user; the resources scale on demand. As
of writing, we have consumed 3.5 tera-hours of CPU and
92.1 Tb of RAM monthly on average. The operational scale
of EUR 1000 per month worth of GCP credits, including
the scratch storage and egress charges, was too small for us
to directly contract with Google, so we have gone through
a private broker in acquiring the GCP contract. (Our con-
tract with the broker was an additional EUR 600 per month.)
The cost of operating the scalable Kubernetes infrastructure
is managed by a non-profit vendor (2i2c) for an additional
few thousand dollars a month (https://docs.2i2c.org/en/latest/
about/pricing/index.html, last access: 8 July 2022; we note
that the operational cost somewhat depends on the contract

negotiated amongst the party of interest, the cloud vendor,
and 2i2c).

Although the net cost of a few thousand Euros per month
may seem expensive compared to the local download frame-
work where the costs of computation are shouldered upfront
upon purchase of the cluster, there are several benefits to a
cloud-based approach. First, using cloud infrastructure shifts
the burden of hardware maintenance to the cloud provider,
and users benefit from regular updates to technology and
services that are available, meaning the scientific commu-
nity can benefit from industry-driven innovations. Second,
cloud infrastructure can be managed remotely and may use
an inter-operable stack based on standards that are supported
by many cloud providers (such as open-source tools like Ku-
bernetes and JupyterHub). As all of the underlying technol-
ogy is open source, it is technically possible for us to have de-
ployed the Kubernetes infrastructure on our own. However,
as Earth scientists, we often do not possess the adequate soft-
ware engineering skills, and such expertise is highly sought
after by industry; the hiring of a software engineer at public
and higher-educational institutions is difficult due to financial
constraints. The service provided by 2i2c makes it easier to
port workflows between clouds and get more cost-effective
support in operating this infrastructure compared to paying
full-time software engineers who run local hardware for an
institution.

We would like to note that, while we have chosen GCP
and OSN for the cloud platform, the core design principles
and technology behind Pangeo Forge and JupyterHub oper-
ated by 2i2c are non-proprietary and cloud vendor agnos-
tic (for example, as defined in 2i2c’s “Right to Replicate”;
https://2i2c.org/right-to-replicate, last access: 8 July 2022).
We could re-deploy the entire cloud platform on a differ-
ent cloud provider with relative ease. This lets the users of
this platform benefit from the flexibility and efficiency of the
cloud while minimizing the risk of lock-in and dependence
on proprietary technology. As the cloud-based framework
spreads within the scientific community, it is also possible
that the ocean and climate science community will be able
to negotiate better deals with cloud service providers; the
framework is apt for OMIP and Coupled Model Intercom-
parison Project (CMIP) (Griffies et al., 2016; Eyring et al.,
2016) studies where terabytes and petabytes of data need to
be shared and analyzed consistently. The systematic storage
of ARCO data with open-access and appropriate cataloging
will also enable reproducible science, a crucial step when
evaluating newer simulations against previous runs. While
we believe we have provided a proof of concept that cloud
computing can be implemented with open-source technolo-
gies and can be leveraged for scientific research, the success
of the framework will depend on the scientific community to
convince its peers and funding organizations to recognize its
benefit.
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5 Conclusions

In this study, we have implemented a cloud-based frame-
work for collaborative, open-source, and reproducible sci-
ence and have showcased its potential by analyzing eight
submesoscale-permitting simulations in a SWOT Xover re-
gion around the Gulf Stream separation (Region 1 in Fig. 1).
We have shown that, despite the similar horizontal resolu-
tion amongst many models in this study, the spatial scales
represented vary widely (Fig. 2). This diverse representa-
tion likely originates from differences in advective/diffusive
schemes, boundary-layer parametrizations, atmospheric and
tidal forcing, vertical resolution and/or bathymetry, and po-
tentially duration of spinup amongst the simulations used
here (Appendix B; cf. Chassignet and Xu, 2021). The need
for collaborative work to inter-compare realistic simula-
tions stems from both a scientific interest in the fidelity of
submesoscale-permitting ocean models in representing the
underlying physics and tracer transport and an engineering
perspective on the numerics of ocean models. We leave a de-
tailed analysis of the impact of numerics on the resolved dy-
namics for future work.

We have provided example diagnostics on SSH variabil-
ity and submesoscale vertical buoyancy fluxes. The tempo-
ral standard deviation and spectra of SSH were significantly
lower for the simulations without tidal forcing compared to
the tidally forced simulations (Figs. 3 and 4). This implies
that, in order to emulate the upcoming SWOT altimetric ob-
servations, tidal forcing is a key factor in modeling the sur-
face ocean (Savage et al., 2017a, b; Arbic et al., 2018; Yu
et al., 2021; Barkan et al., 2021; Le Guillou et al., 2021).
Regarding 3D diagnostics, both the good agreement across
multiple models between the tuning parameter Ce in the MLI
parametrization and the values recommended by its develop-
ers (Fig. 6; Fox-Kemper et al., 2008; Fox-Kemper and Fer-
rari, 2008) and the consistency of the order of magnitude of
the flux predicted by the parametrization in the spatially aver-
aged sense with observational estimates (cf. Richards et al.,
2021) combine to provide confidence in implementing the
MLI parametrization in realistic ocean and climate models.
This is in contrast, however, to a recent study by Yang et al.
(2021, their Fig. 7), where they found (using the Regional
Ocean Modeling System, ROMS, with KPP) that the time se-
ries of 〈wsbsz〉 did not correlate well with the prediction from
its parametrization in the Kuroshio extension. While we lack
access to their model outputs, we speculate that the differ-
ences could be due to the diagnostic methods, domain of in-
terest, and/or configuration of their simulation. The contrast-
ing findings all the more highlight the need for collaborative
and open data analysis strategies of multi-model ensembles
in assessing and improving the simulations themselves. We
would like to note that were the modeled domain by Yang
et al. (2021) to cover Region 1, the cloud-based framework
would allow for a straightforward platform to extend the en-

semble of simulations (Appendix B) to include their outputs
for our inter-comparison and reproducible science.

We end by noting that cloud-based data-proximate com-
putation provides a framework to systematically analyze ter-
abytes and petabytes of data as we further increase the reso-
lution and complexity of ocean and climate simulations and
as SWOT data become available. However, the success of the
framework will depend on the ability of scientists to convince
funding organizations to recognize its potential. Cloud-based
computing differs from the conventional workflow, which in-
volves funding of local computational resources and storage.
While the cloud-based framework does not allow for an indi-
vidual researcher or group to have prioritized access over the
data and analytical tools, we believe that open access to the
data will allow for reproducible science and facilitate inter-
national collaboration.
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Appendix A: Example of pangeo_forge_recipe for
eNATL60

Here we provide the Pangeo Forge recipe used to flux
eNATL60 surface hourly data to OSN for Region 1 dur-
ing February and April 2010. The input_url_pattern
is where the original NetCDF files were hosted on an
OPeNDAP server, upon which the files were chunked along
the time dimension before being fluxed to the cloud in
zarrified format (Miles et al., 2020). As a contributor to
Pangeo Forge, one essentially only needs to specify the
input_url_pattern. The zarrification and fluxing of
the data to the cloud are automated by Pangeo Forge, re-
ducing the infrastructure and cognitive burden on the data
provider (Stern et al., 2022a).

Listing A1. eNATL60 example.
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Appendix B: Model configurations

We provide the model configurations in Tables B1–B6
(blanks indicate the information was not obtainable). The
vertical coordinate transformation onto geopotential coordi-
nates for the outputs of GIGATL and HYCOM50, which
had terrain-following and isopycnal coordinates as their na-
tive grid, respectively (Table B2), were done using the xgcm
Python package (Abernathey et al., 2021b) with linear inter-
polation. For the sake of storage, only 3 months of output for
summer (August, September, October) and winter (February,
March, April), respectively, are stored on OSN from an arbi-
trary year per simulation.

Table B1. The model and initial condition used for each simulation and their duration of spinup and year of output stored on OSN. HYCOM50
was spun up from the rest and integrated for a total of 20 years. Sensitivity experiments were performed starting from year 15 (Chassignet
and Xu, 2017, 2021). LLC4320 used progressive spinup from a 1/6◦ state estimate (Menemenlis et al., 2008) followed by 1/12 and 1/24◦

simulations, as detailed in Table D2 of Rocha et al. (2016).

Simulation Model (version) Initial condition Spinup Year of output

eNATL60 NEMO (3.6) GLORYS12 18 months 2010
GIGATL CROCO July 2007 from an identical run w/ 3 km resolution 12 months 2010
HYCOM50 HYCOM GDEM climatology 15 years Year 19
FESOM-GS FESOM (2.1) PHC3.0 18 months 2012
LLC4320 MITgcm ECCO CS510 state estimate Progressive 2012
ORCA36 NEMO (4.0) WOA 2013 (temperature and salinity) 18 months 2014
FIO-COM32 FIO-COM (v2.0_HR32) June 2016 from FIO-COM 1/10◦ operational ocean

forecast w/ data assimilation
18 months 2018

HYCOM25 HYCOM WOA 2013 2014

Table B2. The horizontal and vertical native coordinate system, spatial resolution, and domain coverage for each simulation. The Z∗ ver-
tical coordinate is the rescaled geopotential coordinate where the fluctuations of the free surface are taken into account (cf. Griffies et al.,
2016). Note that vertical resolution as well as horizontal resolution vary significantly between the models. Outputs from FESOM-GS were
interpolated onto a Cartesian grid offline with a cubic spline.

Simulation Grid structure Resolution Vertical coordinate Domain (grid points: zonal×meri.)

eNATL60 C-grid 1/60 ◦ Z∗ (300 levels) North Atlantic (8354× 4729)
GIGATL C-grid 1 km (nominal) Terrain-following (100 levels) Atlantic (10500× 14000)
HYCOM50 C-grid 1/50 ◦ Hybrid (32 pressure p and isopycnal) North and eq. Atlantic (6709× 7373)
FESOM-GS Unstructured 1/2◦ w/ refinement to

1 km (nominal) in Re-
gion 1

Z∗ (70 levels) Global (3 000 502 vertices)

LLC4320 C-grid 1/48◦ (nominal) Z (90 levels) Global (4320× 4320× 13 LLC tiles)
ORCA36 C-grid 1/36 ◦ Z∗ (75 levels) Global (12962× 9173)
FIO-COM32 B-grid 1/32 ◦ Z∗ (57 levels) Global (11520× 5504)
HYCOM25 C-grid 1/25 ◦ Hybrid (41 p and isopycnal) Global (9000× 7055)
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Table B3. The equation of state (EOS), surface boundary layer (SBL) parametrization used, and tidal forcing in each simulation. * Jackett
and McDougall (1995, JMD95) in HYCOM is implemented with the approximation by Brydon et al. (1999). The potential densities were
computed following each EOS with the reference pressure of 0 dbar (Fernandes, 2014; Abernathey, 2020; Firing et al., 2021). The EOS for
FIO-COM32 is available on Github (Stern et al., 2022b, https://github.com/pangeo-data/swot_adac_ogcms, last access: 8 July 2022). Note
that FESOM-GS and ORCA36 do not have tidal forcing, whilst the others have at least the leading five tidal forcings.

Simulation EOS for density SBL parametrization Tidal forcing

eNATL60 TEOS10 TKE M2, S2, N2, O1, K1
GIGATL JMD95 κ-ε closure w/ Canuto A formulation M2, S2, N2, K2, K1, O1, P1, Q1
HYCOM50 JMD95* KPP M2, S2, N2, K2, K1, O1, P1, Q1
FESOM-GS EOS80 KPP n/a
LLC4320 JMD95 KPP Full lunisolar tidal forcing
ORCA36 EOS80 GLS n/a
FIO-COM32 preTEOS10 KPP and non-breaking wave-induced mixing M2, S2, N2, K2, K1, O1, P1, Q1
HYCOM25 JMD95* KPP M2, S2, N2, O1, K1

n/a: not applicable

Table B4. The bathymetry configuration of each simulation.

Simulation Bathymetry

eNATL60 Unsmoothed 2 min Etopo2 file of the National Geophysical Data Center.

GIGATL SRTM30plus is smoothed using a Gaussian kernel w/ a width of four grid points, then another step (to avoid
pressure gradient errors) is to check that the steepness of the topography does not exceed rmax =1H/H ≤ 0.2
(cf. Le Corre et al., 2020).

HYCOM50 Nearest 5×5 box average of the 15 s GEBCO_2019 global dataset to each grid point, then smoothed once w/ a
1–2–1 9 pt. smoother except within two grid points of land.

FESOM-GS RTopo-2 (Schaffer et al., 2016). Two smoothing cycles by averaging the closest grid points.

LLC4320 Unsmoothed Smith and Sandwell (1997) version 14.1 and IBCAO version 2.23.

ORCA36 Two paths of the Shapiro filter on Etopo08, upon which it is remapped (w/ bi-linear interpolation) onto the
model grid.

FIO-COM32 A Blackman radial filter (following Arbic et al., 2004) w/ a filter radius of about 7 km is used to smooth the
GEBCO dataset.

HYCOM25 Nearest 5× 5 box average of the 30 s GEBCO_08 20091120 global dataset to each grid point, then smoothed
once w/ a 1–2–1 9 pt. smoother except within two grid points of land.
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Table B5. The advection and dissipation schemes used for each simulation. Note that some models have biharmonic viscosities and others
do not.

Simulation Advection scheme (momentum/tracer) Dissipation scheme (momentum/tracer)

eNATL60 Third-order upwind flux form/third-order upwind total variance
diminishing (TVD)

Horizontal Laplacian/Laplacian iso-neutral

GIGATL Third-order upstream biased flux form/split and rotated third-
order upstream biased

n/a (achieved implicitly via adv. scheme)

HYCOM50 Second-order flux-corrected transport (FCT) flux form/second-
order FCT

Laplacian and biharmonic/Laplacian

FESOM-GS Third- to fourth-order FCT flux form/third- to fourth-order FCT Biharmonic (flow-aware)
LLC4320 Vector-invariant form/seventh-order monotonicity-preserving Biharmonic modified Leith/vertical Laplacian
ORCA36 Third-order upstream-biased scheme (UBS) flux form/fourth-

order FCT
Horizontal Laplacian/Laplacian iso-neutral

FIO-COM32 Second-order centered flux form/Multi-dimensional piece-wise
parabolic method (MDPPM)

Biharmonic

HYCOM25 Second-order FCT flux form/second-order FCT Laplacian and biharmonic/Laplacian

n/a: not applicable

Table B6. The atmospheric forcing and the inclusion of atmospheric pressure variation at the surface.

Simulation Atmospheric forcing Atmos. pressure varia-
tion (inverse barometer
correction)

eNATL60 3-hourly, ERA-interim (DFS5.2) w/ absolute and relative wind stress Yes (no)
GIGATL Hourly, CFSR using a bulk formulation w/ relative wind stress No (no)
HYCOM50 Climatological ERA-40 and 3-hourly wind anomalies from NOGAPS w/ abso-

lute wind stress
No (no)

FESOM-GS JRA55-do-v1.4.0 No (No)
LLC4320 6-hourly, 0.14◦ ECMWF analysis starting in 2011 Yes (no)
ORCA36 3-hourly, ECMWF IFS w/ absolute wind stress, 0.14◦ Yes (yes)
FIO-COM32 3-hourly, NCEP GFS w/ relative wind stress, 0.25◦ Yes (yes)
HYCOM25 3-hourly, NAVGEM w/ relative wind stress, 0.5◦ Yes (no)

https://doi.org/10.5194/gmd-15-5829-2022 Geosci. Model Dev., 15, 5829–5856, 2022



5846 T. Uchida et al.: Framework for inter-comparing submesoscale-permitting realistic ocean models

Appendix C: Impact of spatiotemporal smoothing on
the temporal standard deviation

In this Appendix, we examine the effect of spatiotemporal
filtering on the modeled SSH standard deviation. In order to
mimic a smoothing procedure similar to the AVISO products,
we apply a Gaussian spatial filter with the standard deviation
of 50 km using the gcm-filters Python package and a
10 d running mean (cf. Chassignet and Xu, 2017). The non-
tidally forced runs do not show much difference upon spa-
tiotemporal smoothing from their standard deviation using
hourly outputs, but they significantly decrease for the tidally
forced runs, particularly LLC4320 and FIO-COM32, with
the modeled amplitudes coming closer to the AVISO esti-
mate (Figs. 3 and C1). The strong reduction in LLC4320 and
FIO-COM32 may be expected as they are the runs with the
highest SSH variance at frequencies higher than the Coriolis
frequency (Fig. 4). All simulations agree that there is a lo-
cal maximum in standard deviation around 37◦ N, where the
separated GS is situated, consistent with AVISO. The SSH
variability in GIGATL may be on the lower end considering
that it is tidally forced (Fig. C1b), which could also be due
to the lack of pressure variation in the atmospheric forcing
(Table B6).
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Figure C1. Temporal standard deviation of the spatiotemporally smoothed SSH from the eight models and ADT from AVISO over the years
of 2010–2018 during the months of February–April. Note that the color bar is slightly adjusted from Fig. 3 in order to accommodate for
lower values.
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Appendix D: MLD

The MLD averaged between 1 and 15 February is shown in
Fig. D1 along with the climatology for the month of Febru-
ary estimated from the Argo floats. We see that the MLDs
from HYCOM50 and LLC4320 are notably shallower south
of the Gulf Stream compared to the other models and Argo
estimates.

Figure D1. MLD from each model averaged over the duration of 1–15 February when the prediction from the MLI parametrization with
a constant Ce in HYCOM50 deviates from the diagnosed submesoscale vertical buoyancy flux. The MLD was defined using the density
criteria of de Boyer Montégut et al. (2004). For models with non-geopotential vertical coordinates (i.e., GIGATL and HYCOM50), the MLD
was computed using their native coordinates, respectively. The climatology for the month of February from the Argo floats is taken from the
dataset by Holte et al. (2017). The monthly-mean MLD defined by the density criterion (mld_dt_mean) is shown in order to be consistent
with our model estimates.
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Appendix E: Efficiency coefficient and the MLI
parametrization sensitivity to it

The efficiency coefficient Ce(t,x,y) diagnosed from each
simulation is given in the left column of Fig. E1 and the joint
histogram where Ce(t) is taken as the spatial mean and mode
in the right two columns, respectively. It is interesting to
note that Ce(t,x,y) tends to take small values within fronts
(namely, where the magnitude of 〈wsbsz〉 is large) but takes
large values, reaching up toO(1), on their periphery (Figs. 7
and E1). Comparing the joint histograms in Figs. 7 and E1,
taking the spatial mean to diagnose Ce(t) tends to overes-
timate the flux magnitude predicted from the parametriza-
tion as the mean is more sensitive to extrema than the me-
dian; the histograms are concentrated above the one-to-one
line (middle column of Fig. E1). Diagnosing Ce(t) as the
spatial mode seemingly improves the alignment of the his-
togram with the one-to-one line (right column of Fig. E1).
However, taking the spatial mode results in Ce(t) reaching
values up to 2 orders of magnitude larger than the values rec-
ommended by Fox-Kemper et al. (2008), and the time series
predicted from the parametrization results in overestimation
of the submesoscale buoyancy flux in the spatially averaged
sense (Fig. E2). The time series predicted from using the spa-
tial mean to estimate Ce(t) further overestimates the buoy-
ancy flux (not shown). We, therefore, recommend the usage
of the spatial median in estimating Ce(t).
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Figure E1. Snapshot of the efficiency coefficientCe(t,x,y) diagnosed on 1 February from each simulation (left column). The joint histogram
of 〈wsbsz〉 and Ce(t)×MLI during the months of February to April (right columns). The middle column shows the histogram when Ce(t)
is taken as the spatial mean of Ce(t,x,y) and the right column as the spatial mode of Ce(t,x,y). The one-to-one line is shown as the grey
dashed line.
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Figure E2. Time series of the spatial median of the submesoscale vertical buoyancy flux averaged over the MLD (〈wsbsz〉; black solid
curve) and its prediction from the MLI parametrization during the months of February to April, where Ce(t) is taken as the spatial mode
of Ce(t,x,y). Note that the y axes vary depending on the magnitude diagnosed from each simulation in order to highlight its temporal
variability. The prediction with temporally varying Ce(t) is shown in red solid curves and with a temporally averaged (constant) Ce in red
dashed curves. Ce(t) is plotted against the right-hand-side y axes in blue.
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Code and data availability. The model outputs from eNATL60,
GIGATL, HYCOM50, FESOM-GS, ORCA36, FIO-COM32, and
HYCOM25 at the SWOT Xover regions are all publicly avail-
able on the Open Storage Network (OSN). The Jupyter note-
books and Yaml file used to access and analyze the data
are available on Github (Stern et al., 2022b, https://github.
com/pangeo-data/swot_adac_ogcms, last access: 8 July 2022,
and https://doi.org/10.5281/zenodo.6762536). The LLC4320 data
were accessed via the NASA ECCO Data Portal (https://
data.nas.nasa.gov/ecco/data.php?dir=/eccodata/llc_4320, last ac-
cess: 8 July 2022) using the llcreader of the xmitgcm
Python package (Abernathey et al., 2021d; Abernathey, 2019).
The raw model outputs of eNATL60 and GIGATL are available at
https://doi.org/10.5281/zenodo.4032732 (Brodeau et al., 2020) and
https://doi.org/10.5281/zenodo.4948523 (Gula et al., 2021).
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