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Summary

Seasonal variations in day length and temperature, in
combination with dynamic factors such as advection
from the North Atlantic, influence primary production
and the microbial loop in the Fram Strait. Here, we
investigated the seasonal variability of biopolymers,
microbial abundance and microbial composition
within the upper 100 m during summer and fall. Flow
cytometry revealed a shift in the autotrophic commu-
nity from picoeukaryotes dominating in summer to a
34-fold increase of Synechococcus by fall. Further-
more, a significant decline in biopolymers concentra-
tions covaried with increasing microbial diversity
based on 16S rRNA gene sequencing along with a
community shift towards fewer polymer-degrading
genera in fall. The seasonal succession in the bio-
polymer pool and microbes indicates distinct meta-
bolic regimes, with a higher relative abundance of
polysaccharide-degrading genera in summer and a
higher relative abundance of common taxa in fall.
The parallel analysis of DOM and microbial diversity
provides an important baseline for microbe–
substrate relationships over the seasonal cycle in the
Arctic Ocean.
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Introduction

Marine phytoplankton release species-specific organic mat-
ter composed of high carbon and nitrogen, which is re-
mineralized by heterotrophic microbes (Biersmith and
Benner, 1998; Hedges et al., 2002). Organic matter is con-
stantly produced and degraded, allowing it to be classified
into either particulate organic matter (>0.7 μm) or dissolved
organic matter (DOM; <0.7 μm) (Benner et al., 1992). Par-
ticularly DOM, as the largest carbon reservoir, can further
be partitioned into the low-molecular-weight (<1 kDa) or
high-molecular-weight fraction (>1 kDa) respectively
(Hansell et al., 2009). The variable reactivity of low-molecu-
lar-weight DOM includes monomers such as free carbohy-
drates and amino acids, whereas high-molecular-weight
DOM includes biopolymers such as dissolved combined
carbohydrates (DCCHO) and dissolved hydrolyzable amino
acids (DHAA).

DCCHO and DHAA serve as substrates for bacteria and
archaea. For instance, Flavobacteriaceae are specialized
in polysaccharide degradation suggesting a possible link to
their prevalence during phytoplankton blooms in temperate
and polar habitats (Kirchman et al., 2010; Wilson
et al., 2017; Fadeev et al., 2018; Cardozo Mino et al.,
2021). Gammaproteobacteria such as Porticoccaceae can
be abundant in response to algal decay, as the release of
high-molecular-weight DOM is particularly prominent during
and towards the end of a phytoplankton bloom (Engel
et al., 2011; Teeling et al., 2012).

In the Arctic Ocean, phytoplankton and microbes are
controlled by pre-existing environmental conditions and
are increasingly influenced by sea ice loss, glacial runoff,
or permafrost melt (Boetius et al., 2015). For example,
the seasonal cycles in light and nutrient availability are
closely coupled to phytoplankton biomass in the Fram
Strait (Randelhoff et al., 2018). As the productive season
progresses, phytoplankton release biopolymers that pro-
mote the growth of microbial communities, which re-
mineralize this organic matter (Piontek et al., 2014; von
Jackowski et al., 2020). To continue understanding the
substrate requirements of microbes, this study expands
on demonstrated seasonal changes in biopolymer con-
centrations and microbial composition in the Fram Strait
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as the primary inflow to the Arctic Ocean (von Jackowski
et al., 2020; Wietz et al., 2021). We hypothesized that the
pronounced seasonal change in labile biopolymers would
considerably shift the relative abundances of biopolymer-
degrading microbes between summer and fall. Further-
more, given the overlap of biochemical and microbial
diversity datasets, we investigated whether individual
DCCHO and DHAA components are linked to specific
microbial taxa. Assessing relationships between the
microbial community and the biopolymer pool over the
seasonal cycle is important for understanding carbon
cycling in the Arctic Ocean. The approach establishes a
baseline of substrate regimes and their re-mineralization
in the Fram Strait between summer and fall.

Experimental procedures

Sampling

Samples for biochemical and microbial analyses were
collected in the upper 100 m of the water column using
a rosette sampler equipped with 24 Niskin bottles. The
rosette sampler was coupled to a CTD (SBE 911plus,
Sea-bird, USA) equipped with two temperature probes,
two conductivity probes, one Digiquartz pressure sen-
sor, one WET Labs ECO-AFL/FL fluorometer, one
WET Labs C-Star transmissometer and one altimeter.
The sampling depths were chosen based on the output
of the WET Labs ECO-AFL/FL fluorometer that was
used to estimate phytoplankton biomass and identify
the deep chlorophyll maximum (DCM). Specifically,
four depths were of particular interest: surface (5 or
10 m), the DCM, below the DCM (BDCM), and 100 m.
In summer, surface water was consistently sampled at
10 m, DCM at 20–43 m, and BDCM at 30–52 m. In fall,
the surface water was sampled at 5 m, DCM at 20–
34 m, and BDCM at 40–50 m. The DCM was distinct at
all stations during summer and less clear during fall,
but to be consistent, all mid-water column peaks of
fluorescence were handled as the DCM during both
seasons. The CTD data are archived in the PANGAEA
World Data Center (von Appen et al., 2019; von
Jackowski and Engel, 2019).

Particulate and dissolved organic matter

Samples for particulate organic carbon (POC) were col-
lected by filtering 1 to 4 L of seawater onto 0.7 μm pore-
sized pre-combusted GF/F filters (500�C, 4 h) and stored
at �20�C. Back in the laboratory, the thawed filters were
soaked in 0.1 M HCl to remove inorganic carbon, dried at
60�C for 12 h, and measured using a EURO EA

CHNS-O Elemental Analyser (HEKAtech GmbH,
Germany) (Sharp, 1974).

Data for corresponding samples of dissolved organic
carbon (DOC), DCCHO and DHAA were incorporated
from von Jackowski et al. (2020). In brief, DOC was
analysed by the high-temperature catalytic oxidation
method (TOC-VCSH, Shimadzu, Japan) (Sugimura and
Suzuki, 1988; Qian and Mopper, 1996). DCCHO analysis
was conducted by high-performance anion-exchange
chromatography coupled with pulsed amperometric
detection (HPAEC-PAD, ICS 3000, Dionex, USA) that
classified 11 sugars: arabinose, fucose, galactose, galac-
tosamine, galacturonic acid, glucose, glucosamine,
glucuronic acid, rhamnose, and co-elute mannose and
xylose (Engel and Händel, 2011). DHAA analysis was
performed using ortho-phthaldialdehyde derivatization by
high-performance liquid chromatography (Agilent, USA)
that classified 13 monomers: alanine, arginine, aspartic
acid, gamma-aminobutyric acid (GABA), glutamic acid,
glycine, isoleucine, leucine, phenylalanine, serine, threo-
nine, tyrosine and valine (Lindroth and Mopper, 1979;
Dittmar et al., 2009).

Microbial production

Rates of primary production (PP) were measured in situ
using the 14C method modified after Engel et al. (2013).
The seawater was incubated in duplicates with additional
dark controls for a duration of 24 h. To also account for the
changing diurnal cycle, the samples were incubated under
constant light during summer, while the hours of light
roughly matched the given day in fall. For example, incuba-
tion times decreased from 14 h (e.g. on 16.09.2018) at the
beginning of the MSM77 expedition to 9.5 h
(e.g. 04.10.2018) at the end of the MSM77 expedition.

Each incubation was fractionated and terminated in three
subsamples: total PP (PP-TOC), particulate PP (PP-POC)
and dissolved PP (PP-DOC). The PP-TOC fraction was
taken directly from the incubation flask, the PP-POC frac-
tion was filtered onto a 25 mm 0.4 μm-pore-sized
Nucleopore track-etched polycarbonate filter (Whatman,
GE Healthcare Life Sciences, UK), and the PP-DOC frac-
tion was subsampled from the filtrate. To convert the activi-
ties into a rate, we converted total alkalinity into dissolved
inorganic carbon using the package ‘seacarb’ (v.3.3.0).
Data for the corresponding bacterial production (BP) based
on the 3H-microcentrifuge method (Smith and Azam, 1992)
were incorporated from von Jackowski et al. (2020).

Cell abundance

Samples for cell abundance were fixed on board with
glutardialdehyde at 2% final concentration and stored
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frozen (�80�C) until analysis by flow cytometry
(FACSCalibur, Becton Dickinson, USA). The flow
cytometer was calibrated and standardized with
TruCount beads (Becton Dickinson). Due to a detection
limit of 50 μm, samples were filtered through a mesh
before counting using the Cell Quest 3.3 software with a
DL of 2000 events s�1. Orange autofluorescence was
used to detect the phycoerythrin of cyanobacteria
(Synechococcus) and cryptophytes, whereas red
fluorescence was used to detect and distinguish
picoeukaryotes (<2 μm) from nanoeukaryotes (�2–
20 μm) (Read et al., 2014). Samples for heterotrophic
cell analysis were filtered and stained with SybrGreenI
(Invitrogen, USA), with data from the corresponding
samples incorporated from von Jackowski
et al. (2020).

Microbial community analysis

Seawater samples (1–4 L) were filtered through 0.22-μm
Sterivex cartridges (Merck Millipore, USA) using a peristaltic
pump within 1.5–2 h after retrieval of the CTD rosette and
stored frozen (�80�C) until extraction. Filters were trans-
ferred from cartridges into kit-supplied tubes, and genomic
DNA was isolated using a combined mechanical and chem-
ical procedure using the PowerWater® DNA Isolation Kit
(QIAGEN, Germany). Amplicon libraries were prepared
according to the 16S Metagenomic Sequencing Library pro-
tocol (Illumina, USA) using universal 16S rRNA gene
primers 515F and 926R that covered the V4–V5 hypervari-
able region (Parada et al., 2016). Sequences were acquired
using a 2 � 300 bp paired-end run on a MiSeq platform
(Illumina) at CeBiTec (Bielefeld, Germany). Sequence data
have been deposited in the European Nucleotide Archive
(ENA) at EMBL-EBI under accession number
PRJEB43926, using the data brokerage service of the Ger-
man Federation for Biological Data (GFBio; Diepenbroek
et al., 2014) in compliance with MIxS standards (Yilmaz
et al., 2011).
Sequence adaptors and primers were clipped using

cutadapt, allowing a mismatch proportion error of 0.16
(Martin, 2011). Further processing was conducted in a
server-based R installation (v3.6.0) to filter and merge
reads into amplicon sequence variants (ASVs) using
‘dada2’ (v1.10.1; Callahan et al., 2016). ASVs were taxo-
nomically classified using the SILVA SSU Reference
dataset (release 132, 2018). ASVs matching chloroplast
or mitochondrial sequences were removed, and only
ASVs with >3 counts in more than 3% of samples were
considered. We used ‘phyloseq’ (v1.30.0; McMurdie and
Holmes, 2013) to manage sample data matrices. The
‘iNEXT’ package (v2.0.20; Hsieh et al., 2016) was used
to calculate rarefaction curves, sample coverage and
alpha-diversity indices.

Statistical analyses

Parameters that showed significant differences between
the BDCM and 100 m were subsequently grouped into
surface-to-BCDM (‘surface’, ‘DCM’ and ‘BDCM’) and
100 m. Detailed results of statistical analyses are docu-
mented in Table S2. Scripts are publically available at
https://github.com/anabelvonjackowski.

Statistical analyses applied to the biogeochemical data
included a Wilcoxon Rank Sum Test, analysis of vari-
ances (ANOVA) and a mixed model. If the interactive
terms of the ANOVA were significant, they were fed into
multiple contrast tests (Laird and Ware, 1982; Verbeke
and Molenberghs, 2000) that included season (‘summer’,
‘fall’) and depth (‘surface’, ‘DCM’, ‘BDCM’ and ‘100 m’)
with the station as the random factor.

Statistical analyses applied to the amplicon data
included ANOVAs, NMDS and log2fold-change (log2FC).
PERMANOVAs with 999 permutations were based on
season and depth using Bray–Curtis distances in the
‘vegan’ package (v2.5.7, ‘adonis function’; Oksanen
et al., 2019). NMDS was based on Bray–Curtis dissimilar-
ities using the packages ‘phyloseq’ (v1.30.0 ‘ordinate’
function; McMurdie and Holmes, 2013) and ‘vegan’
(‘vegdist’ function; Oksanen et al., 2019). Hierarchical
cluster analysis of heatmaps was based on the ‘com-
plete’ agglomeration method (‘vegan’ package ‘hclust’
function; Oksanen et al., 2019). log2FC calculated the
enriched families and genera between seasons using an
adjusted p-value of 0.05 using ‘DESeq2’ (v1.25.0; Love
et al., 2014).

Microbial abundances and biopolymer concentrations
were contextualized using Spearman rank correlation
analysis using ‘microbiomeSeq’ package (v0.1,
‘tax_env_cor’ function; Ssekagiri and Ijaz, 2020). Addi-
tionally, variables were scaled (‘vegan’ package ‘rda’
function, scaled = TRUE) and selected (‘vegan’ package
‘ordistep’ function) during a forward selection by which
the p-value was adjusted for multiple testing by Holm–

Bonferroni.

Results and discussion

Study area

This study focused on eight stations within the Long-
Term Ecological Research observatory HAUSGARTEN
in the eastern Fram Strait (Soltwedel et al., 2016). Sam-
ples were collected during the expeditions PS114 with
RV Polarstern from July 16th to July 23rd, 2018 (herein
referred to as summer) and MSM77 with RV Maria S.
Merian from September 16th to October 4th, 2018
(herein referred to as fall; Fig. 1A; Table S1). Four depths
were of particular interest during this study: surface (5 or
10 m), the DCM, below the DCM (BDCM), and 100 m; in
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summer, the DCM at 20–43 m and BDCM at 30–52 m; in
fall, the DCM at 20–34 m and BDCM at 40–50 m.

In the upper 100 m, temperature increased slightly from
4.53 � 1.45�C in summer (n = 32) to 5.35 � 0.94�C in fall
(n = 30, Fig. S1) (von Appen et al., 2019; von Jackowski
and Engel, 2019). The salinity was 34.83 � 0.48 PSU in
summer (n = 32) and 34.90 � 0.26 PSU in fall (n = 30)
(von Appen et al., 2019; von Jackowski and Engel, 2019).
These warm and saline conditions are characteristic of the
Atlantic water masses in the West Spitsbergen Current
(WSC; Aagaard et al., 1985) and likely displaced the ice
edge north of 80�N during summer and fall. The intensity of
the WSC is seasonally variable and influences the advec-
tion of carbon into the eastern Fram Strait, the major gate-
way between the Atlantic and Arctic Ocean (von Appen
et al., 2016; Vernet et al., 2019).

Seasonal variability in POC and autotrophic microbes

POC decreased threefold in the upper 100 m from
18.07 � 10.05 μmol L�1 in summer (n = 32) to
5.25 � 3.78 μmol L�1 in fall (n = 32, Wilcoxon Rank
Sum Test p < 0.001; Fig. 1B). The spatial variability of
POC within the upper 100 m showed a significant two-
fold decrease below the deep chlorophyll maximum
(BDCM; 30–52 m) and 100 m in summer, while no dif-
ference was observed during fall (ANOVA Season:
Depth F3,56 = 5.39, p < 0.01; Multiple Contrast Test
p < 0.05; Table S2). The seasonal change in POC con-
centrations was clearly related to phytoplankton dynam-
ics, with a decline in chlorophyll-a (von Jackowski
et al., 2020) and total biovolume (Lampe et al., 2021)
from summer to fall in 2018.
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A. Samples were taken onboard the RV Polarstern from July 16th to July 23rd, 2018 (orange) and the RV Maria S. Merian from September 16th
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PP decreased more than twofold in the dissolved organic
carbon fraction (PP-DOC), with a significant threefold
decrease in the particulate fraction (PP-POC) from summer
to fall (Wilcoxon Rank Sum Test p < 0.05). PP-DOC
declined from 1.74 � 0.86 μmol C L�1 d�1 in summer
(n = 8) to 0.62 � 0.69 μmol C L�1 d�1 in fall (n = 10). PP-
POC declined from 1.42 � 1.68 μmol C L�1 d�1 in summer
(n = 8) to 0.29 � 0.39 μmol C L�1 d�1 in fall (n = 10).
Simultaneously, cell abundances of cryptophytes and
picoeukaryotes significantly decreased between summer
and fall (Wilcoxon Rank Sum Test p < 0.001, Table S2).
Cryptophyte abundances declined from 0.7 � 0.4 cells L�1

in summer (n = 32) to 0.2 � 0.2 cells L�1 in fall (n = 32),
overall being significantly less abundant in the BDCM and
100 m (ANOVA Season:Depth p < 0.05, Multiple Contrast
Test p < 0.05 and p < 0.01 respectively, Table S2). Simi-
larly, picoeukaryote abundances declined from
4.5 � 3.8 � 106 cells L�1 in summer (n = 32) to
2.3 � 3.9 � 106 cells L�1 in fall (n = 32). Converting
picoeukaryote abundances into carbon, by assuming a car-
bon biomass conversion factor of 530 fg C L�1 (Worden
et al., 2004), showed that picoeukaryotes contributed
2.4 � 2.0 μg C L�1 or 1.1% POC to the carbon pool in
summer (n = 32) and 1.2 � 2.1 μg C L�1 or 1.3% POC in
fall (n = 32, Fig. 1B). Nanoeukaryotic abundance showed
the least seasonal change and decreased from
5.1 � 4.1 � 106 cells L�1 in summer (n = 32) to
4.9 � 5.2 � 106 cells L�1 during fall (n = 32). It is likely that
the PP-DOC fraction decreased as a result of declining
cryptophyte, picoeukaryote and nanoeukaryote cell num-
bers. In particular, picoeukaryotes might be less influenced
by temperature and salinity but instead driven by the sea-
sonal light intensity and duration within the WSC (Paulsen
et al., 2016). All in all, our data support the observed decline
in relative biovolume from summer to fall in the eastern
Fram Strait (Lampe et al., 2021).
Absolute and relative abundances of the cyanobacte-

rium Synechococcus significantly increased from sum-
mer to fall, evident in both flow cytometry and 16S rRNA
data (Wilcoxon Rank Sum Test p < 0.001, Table S2).
Synechococcus abundances increased 34-fold from
0.4 � 0.5 � 106 cells L�1 in summer (n = 32) to
14.6 � 22.5 � 106 cells L�1 in fall (n = 32, Fig. 1B and
C). Converting the Synechococcus abundances into car-
bon, by assuming a biomass conversion factor of 109.5 fg
C L�1 (Kana and Glibert, 1987), showed that Syn-
echococcus contributed 0.05 � 0.05 μg C L�1 or 0.02%
POC to the carbon pool in summer (n = 32) and subse-
quently increased 117-fold to 1.6 � 2.5 μg C L�1 or 2.2%
POC in fall (n = 32, Fig. 1B and C). According to our
study and Paulsen et al. (2016), the seasonal pattern in
Synechococcus abundances is as follows in the upper
100 m of the Fram Strait: 0.43 � 0.45 � 106 cells L�1 in
July (this study), 3.02 � 3.79 � 106 cells L�1 in August T
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(Paulsen et al., 2016), 14.60 � 22.54 � 106 cells L�1 in
September/October (this study), and 0.48 � 0.08 � 106

cells L�1 in November (Paulsen et al., 2016). This sea-
sonal variability, as described here, could have far-
reaching implications for the Arctic epipelagic carbon
pool, given the low carbon-to-nitrogen ratios of Cyano-
bacteria (Finkel et al., 2016) and the biopolymer pool if
Synechococcus employ an osmotrophic strategy (Yelton
et al., 2016). Overall, there is a need for more continuous
measurements to verify the seasonal variability and pos-
sible temperature-induced northward expansion of phyto-
plankton communities entering the Arctic Ocean through
the Fram Strait (Orkney et al., 2020).

Quality of the biopolymer pool

To assess the carbohydrate content of the biopolymer
pool, we differentiated DCCHO into neutral sugars, acidic
sugars and amino sugars. Concentrations of neutral and
acidic sugars significantly differed between summer and
fall (Wilcoxon Rank Sum Test p < 0.001), particularly
between the BDCM (30–52 m) and 100 m during sum-
mer (ANOVA Season:Depth p < 0.01; Multiple Contrast
Test p < 0.05; Table S2). Neutral sugars accounted for
the largest biopolymer proportion to the dissolved organic
carbon pool (DCCHO%DOC) and molecular composition
of the DCCHO pool (mol.%DCCHO, Table 1). The domi-
nance of hydrolyzed glucose and mannose/xylose in
summer (29 � 11 and 31 � 9 mol.% respectively) and
fall (31 � 8 and 37 � 5 respectively) confirms that the
North Atlantic transports relatively degraded DOC into
the Arctic Ocean (Rich et al., 1997; Amon and
Benner, 2003; Piontek et al., 2020). In addition, this study
is among few others to report on the hydrolyzable acidic
and amino sugar compositions in the North Atlantic and
the Fram Strait (Engel et al., 2012; Grosse et al., 2021).
Similar to neutral sugars, acidic sugars displayed a sea-
sonal decrease in their concentration, DCCHO%DOC,
and mol.%DCCHO (Table 1), which suggests a strong
decline in freshly excreted DOC throughout the upper
100 m from summer to fall (Borchard and Engel, 2015).
Amino sugars showed a twofold increase of mol.%
DCCHO throughout the upper 100 m (Table 1), which
might be explained by the presence of galacturonic acid
and glucuronic acid in bacteria-derived DOC (Benner
and Kaiser, 2003). As bacterial numbers decline towards
fall, cell death or viral lysis release cellular-derived amino
sugars into the surrounding water (Fig. 1B). The low
decay coefficients of amino sugars make them resistant
to decomposition and increase their residence time
(Kawasaki and Benner, 2006), which results in the two-
fold increase of mol.%DCCHO until fall.

To assess the protein content of the biopolymer pool,
we differentiated DHAA into essential amino acids (EAA) T
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and non-essential amino acids (NEAA). Phytoplankton
can synthesize both EAAs and NEAA depending on their
nutrient limitation, while higher trophic levels rely on the
acquisition of EAA through their diet and acquisition or
de novo synthesis of NEAA (Arts et al., 2009; Grosse
et al., 2019; Larsen et al., 2022). Concentrations of EAA
and NEAA decreased significantly between summer and
fall (Table 2; Wilcoxon Rank Sum Test p < 0.001). The
significant reduction in the amino acid reservoir is indica-
tive of the utilization of nitrogen-rich compounds from
summer to fall. Furthermore, EAA and NEAA concentra-
tions during fall are representative of post-bloom condi-
tions; i.e. EAA: 89.7 nmol L�1, 0.5 DHAA%DOC, and
50.4 mol.%DHAA; NEAA: 90.6 nmol L�1, 0.5 DHAA%
DOC, and 49.6 mol.%DHAA in upper 100 m of the east-
ern Fram Strait in 2017 (Grosse et al., 2021) (Table 2).

Microbial community composition in context of
biopolymer pool

Amplicon sequencing of the 16S rRNA V4–V5 hypervari-
able region resulted in 4 872 711 sequences assigned to
2960 ASVs. Alpha-diversity analyses covered more than
80% of the sequence richness (Fig. S2). Microbial spe-
cies richness and evenness (Shannon–Wiener index,

inverse Simpson index) significantly decreased between
summer and fall (Fig. 2, Wilcoxon Rank Sum Test
p < 0.001, ANOVA p < 0.01, Table S2). Additionally, the
non-metric multidimensional scaling (NMDS) illustrated
the significant differences by season and depth (Fig. 2,
ANOSIM p < 0.05, Table S2).

Around 81% ASVs were shared between summer and
fall, illustrating a considerable number of taxa that do not
respond to the changing biopolymer pool and other sea-
sonal changes (Wietz et al., 2021). Common taxa were
defined as ASVs with >3 counts, >3% sequence abun-
dance, and occurred in all the samples. Common taxa sig-
nificantly differed between the surface-to-BCDM and 100 m
(ANOSIM p < 0.01, Table S2). Within the surface-to-BCDM,
some common taxa like Planktomarina and SAR11 clades
significantly correlated with hydrolyzed acidic sugars (+,
summer), serine (+, fall) and glycine (�) during both sea-
sons (Figs 3 and 4). At 100 m, common taxa exhibited sig-
nificant correlations with isoleucine (+) and glucose (�)
during both seasons (Fig. 4C and D).

The predominance of labile biopolymers like fucose,
rhamnose and threonine coincided with lower microbial
diversity, illustrated by 3% of ASVs that were exclusively
detected during summer (Fig. 2, Fig. S3). In particular, the
SAR92 clade was significantly enriched in the surface-to-

A B

C

D

Fig. 2. Ordination and diversity of microbial community during summer and fall.
A. NMDS based on Bray–Curtis dissimilarities of ASV counts, i.e. highest taxonomic resolution, with depth (surface, 5–10 m; DCM, 20–40 m;
BDCM, �50 m; 100 m) and station illustrated by colours and shapes respectively (stress: 0.08).
B. Box plot indicating species richness.
C. Box plot indicating Shannon–Wiener diversity index (SDI).
D. Box plot indicating the inverse Simpson diversity index. DCM, deep chlorophyll maximum; BDCM, below deep chlorophyll maximum.
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BDCM in summer (Fig. 3A, log2FC = 3.7 q < 0.01), which
might be linked to the abundance of Phaeocystis colonies
in the Fram Strait (Lampe et al., 2021; Wietz et al., 2021).
Additionally, we observed high relative abundances of the
Flavobacteriaceae genera Aurantivirga, Formosa, Pol-
aribacter and Ulvibacter (Fig. 3A), with significant positive

correlations to labile compounds like fucose and threonine
(Fig. 4A). Fucose significantly constrained the ordination
space of the redundancy analysis (RDA), suggesting the
importance of fucose containing polymers for
polysaccharide-degrading taxa (forward selection, F = 3.6,
q < 0.05; Fig. 5) (Cottrell and Kirchman, 2000; Buchan
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Fig. 3. Relative abundance with enrichments in the upper 100 m during summer and fall.
A. Relative abundance of top 30 genera in the surface – BDCM (5–50 m) were averaged due to the lack of significant differences between these
depths (see text).
B. Relative abundance of top 30 genera in 100 m. The enrichments (coloured bars) between the seasons were calculated using log2Fold-Change
(orange = summer, black = fall, grey = no seasonal enrichment) with significant differences marked by an asterisk (padj < 0.05) – Abbreviation:
BDCM, below deep chlorophyll maximum.
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et al., 2014; Reintjes et al., 2019). Furthermore, Formosa
and Polaribacter show significant positive correlations to
GABA (Fig. 4A). Hence these taxa might be actively grow-
ing in the surface-to-BDCM, since GABA can serve as an
indicator for microbial activity and might portray amino acid
turnover more accurately than 3H-leucine-derived BP, which
can substantially underestimate bacterial growth
(Popendorf et al., 2020). At 100 m, we observed a signifi-
cant increase of Candidatus Nitrosopumilus, LS-NOB and
unclassified Marine Group II archaea (all log2FC, q < 0.01,
Figs 3 and 4; Table S2). The shift towards taxa that are typ-
ically observed in low light waters suggests that the micro-
bial community is already beginning to target low-
molecular-weight DOM.

16% of ASVs were exclusively detected during fall
(Fig. 2, Fig. S3). The significant enrichment of Syn-
echococcus in the surface-to-BDCM corresponds to flow
cytometry-derived cell counts (log2FC q < 0.05, Figs 1 and
2; Table S2). Additionally, the relative abundance of Can-
didatus Nitrosopumilus and Marinimicrobia (SAR406 clade)
significantly increased from summer to fall (log2FC
q < 0.05, Fig. 3; Table S2), which negatively correlated with
more labile compounds (i.e. fucose, isoleucine, phenylala-
nine) but positively correlated with more refractory com-
pounds (i.e. alanine, aspartic acid and glycine; Fig. 4).
Candidatus Nitrosopelagicus and Candidatus Nitroso-
pumilus showed the highest abundances in 100 m during
fall (log2FC q < 0.05, Fig. 3; Table S2). Generally, more

Fig. 4. Spearman rank correlation matrix of genera and biopolymers in the upper 100 m during summer and fall.
A. Correlations of top 30 genera in surface – BDCM (10–50 m) due to lack of significant differences between these depths during summer.
B. Correlations of top 30 genera in surface – BDCM (5–50 m) due to lack of significant differences between these depths during fall.
C. Correlations of top 30 genera in 100 m during summer.
D. Correlations of top 30 genera in 100 m during fall. The clusters were performed using ‘complete’ clusters analysis and the spearman correla-
tion (blue to red) was performed and associated with adjusted p-values for multiple testing. Abbreviations: BDCM, below deep chlorophyll maxi-
mum. Corresponding biopolymer data were retrieved from von Jackowski et al. (2020). Significance codes are shown by asterisks:
‘***’ < 0.001,‘**’ < 0.01,‘*’ < 0.05 and >0.05.
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refractory compounds were the biogeochemical divers for
the microbial community in fall (Fig. 5). Glycine, for exam-
ple, has been shown to have low microbial degradation
rates (Veuger et al., 2012), which suggests that more
refractory biopolymers either accumulate or are synthesized
during fall. Particularly, Candidatus Nitrosopumilus have
been linked to continuously releasing glycine but also ala-
nine, valine, leucine, isoleucine, phenylalanine during
ammonia oxidation (Bayer et al., 2019). Moreover, the pres-
ence of ammonia-oxidizing archaea and nitrite-oxidizing
bacteria, like LS-NOB, indicate beginning nitrate replenish-
ment at the start of the polar night (Fig. 4B).

Conclusion

Our assessment of microbial communities in the context
of the organic matter pool identified autotrophic and het-
erotrophic seasonality in the Fram Strait, and their asso-
ciation with different biopolymers. Seasonal variability of
autotrophic microbes was closely related to a decline in
POC, production rates and cell abundances. The most
notable seasonal shift was observed in Synechococcus
that can use their osmotrophy strategy to compete for
biopolymers with heterotrophic microbes (Yelton
et al., 2016). Among the heterotrophic community, the
lower alpha-diversity suggests that specialized groups
target labile biopolymers in summer, while a higher
alpha-diversity suggests that taxa including ammonia and
nitrite oxidizers scavenge for more refractory substrates
in fall. Our study highlights seasonally driven associa-
tions between biopolymers and microbial community, yet

studying these associations under varying environmental
conditions (e.g. sea ice versus ice free) and higher reso-
lution approaches (e.g. transcriptomics), could truly
explain the microbial substrate regimes in the Arctic
Ocean.
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Fig. S1. Environmental conditions during summer and fall in
the Fram Strait. A. The temperature by latitude and longitude
during summer. B. The temperature by latitude and longitude
during fall. C. The fluorescence, temperature, and salinity
were measured using the CTD at ‘HG4’ during summer and
fall. The fluorescence was measured using a WET Labs
ECO-AFL/FL fluorometer, the temperature was measured
using a SEA-BIRD temperature probe, and salinity was mea-
sured using a SEA-BIRD conductivity probe. The horizontal

lines indicate the sampling depths of the surface, DCM,
BDCM, and 100 m. The DCM was distinct at all stations dur-
ing summer and less clear during fall, but to be consistent.
Abbreviation: DCM, deep chlorophyll maximum; BDCM,
below deep chlorophyll maximum.
Fig. S2. Rarefaction curves of samples between summer
and fall in the Fram Strait. The colours represent the season.
Fig. S3. Venn diagrams of shared ASVs between the micro-
bial community. A. Summer compared to fall. B–H. All the
depths sampled in the upper 100 m.
Table S1. List of stations and parameters sampled during
RV Polarstern expedition PS114 and RV Maria S. Merian
expedition MSM77.
Table S2. Summary of statistical tests with significant p-
values in bold. Abbreviation: ANOVA, Analysis of Variance;
DOF, Degree of Freedom; Richness, Observed Richness.
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