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Abstract 

Permafrost landscapes are one of the earth´s landscapes most affected by climate change. 

Thus, monitoring these landscapes is necessary. Vegetation cover and vegetation 

composition often serve as an indicator for the state of the permafrost and thus need to be 

monitored accordingly. 

This thesis uses a non-classificatory ordination approach to map species composition in the 

central Lena delta in Russia. It further describes patterns to be found within the central Lena 

delta´s species composition as well as which kind of data serves best as a basis for vegetation 

composition mapping.  

Partial Components Analysis (PCA) was used to extract species composition and floristic 

gradients from a dataset collected during the expedition LENA-2018. The extracted values 

were combined using different kinds of spectral input data, both hyper- and multispectral, as 

well as aggregated and non-aggregated, to train a Partial Least Square Regressor (PLSR). 

Species composition was mapped using a Sentinel 2 image from August 2018. 

It was shown that species composition was dominated by Mosses, Carex chordorrhiza, Salix 

glauca, Salix pulchra, Eriophorum vaginatum and Poaceae. Each species was linked to a 

specific type of landform. Hyperspectral, aggregated data performed best as predictor 

variables, but due to the lack of hyperspectral imagery, the aggregated multispectral data 

can also be used as it leads to satisfying results.  

These results indicated that species composition mapping in permafrost landscapes is 

possible although to a lesser degree of accuracy compared to lower latitudes. These 

observations could pave the way further studies resulting in a more detailed description of 

permafrost properties related to species composition like active layer thickness or 

greenhouse gas content. 
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1 Introduction 

Permafrost landscapes are one of the earth’s regions most affected by climate change. With 

active layer deepening (Park et al., 2016), overall soil temperatures rising and permafrost 

thawing (Boike et al., 2019), permafrost landscapes have long been subject to climate 

change research. In this respect, low-arctic tundra vegetation has been gaining importance. 

Covering around six million square kilometres (Atkinson and Treitz, 2012) low arctic 

vegetation cover and species composition has shown to be strongly linked to permafrost 

properties like active layer thickness (Walker et al., 2003) or greenhouse gas content (Fuchs 

et al., 2018), thus serving as a good indicator for monitoring the effects of climate change 

(Atkinson and Treitz, 2012). Furthermore, changes in vegetation cover itself have had huge 

impacts on the low arctic environment (Kapfer and Popova, 2021). Considering these 

aspects, detailed mapping of vegetation cover and vegetation composition is needed 

(Macander et al., 2017). 

Traditional approaches to vegetation cover mapping involved the use of spectrally distinct 

and ecologically meaningful classes representing different vegetation communities, which 

although they have proven to be highly useful  (Atkinson and Treitz, 2012), often lack 

necessary details regarding the depiction of individual species (Bartsch et al., 2016). 

Furthermore, the resulting maps show hard boundaries, which, although easy to 

understand, do often not reflect the gradual transitions found in vegetation cover 

accordingly (Feilhauer et al., 2021). They are also of limited use for long-time monitoring 

because changes between classes are unlikely, for change tend to occur within the given 

class boundaries instead of the total transition from one class to the other (Macander et al., 

2017). Thus, classificatory approaches may miss subtle changes and new approaches 

considering mapping of low-arctic tundra vegetation are needed. These should consider 

vegetation as a continuous field of species composition, rather than a set of sharp 

vegetation cover classes.  

One of these approaches is the use of ordination methods to better reflect the variability of 

vegetation  (Beamish, 2019). Ordination methods use dimensionality reduction to display 

multivariate data in a two or three-dimensional space while conserving the similarity or 

dissimilarity of observations (Syms, 2008). In terms of species composition, sites with a 

similar species composition will be grouped. Given that species composition influences a 

surface´s reflectance (Buchhorn et al., 2013), spectral measurements of the vegetation 
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sample sites can be used to train a regressor to map the species composition of the given 

area (Feilhauer et al., 2010).  

Using this non-classificatory approach, gradual changes in species composition are 

represented as continuous fields rather than sharp boundaries (Schmidtlein et al., 2007). 

Although ordination analysis has been successfully performed in low arctic environments 

(Forbes and Sumina, 1999), examples of mapping species composition are hard to find.  

Thus, in this thesis projective cover data from 13 sites in the central Lena delta will be 

subject to a Principal Component Analysis (PCA) and combined with hyperspectral field 

spectroscopy data using a Partial-Least-Square-Regression (PLSR) to map species 

composition over Sentinel 2 imagery to answer the following questions: 

• Can methods of ordination be used to successfully map the species composition in 

the central Lena delta? 

• Which kind of data is best suited for mapping using ordination techniques? 

• How is the central Lena delta´s vegetation composed and what patterns do emerge?  
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2 Theoretical Background 

2.1 Low-Arctic Tundra Vegetation and its Spectral Properties 

Low-arctic vegetation composition on a large scale is determined by temperature and thus 

divided into five distinct bioclimatic zones A to E (figure 1). The most northern zone A can be 

characterized by low mean July temperatures of approximately 0-3 °C and mostly barren 

surfaces, with moss and lichen cover occurring only under favourable conditions. With 

higher temperatures to the south, subzones B (3-5 °C) and C (5-7 °C) show continuous layers 

of moss, lichens and herbs, as well as a second layer of prostrate shrubs respectively. The 

two most southern subzones D (5-9 °C) and E (9-12°C) can be distinguished through the 

emergence of dwarf shrubs with a maximum height of 40 cm in subzone D and up to 80 cm 

in subzone E (Walker et al., 2018).  

Within these subzones, the spatial distribution of vegetation is controlled by different 

environmental factors resulting in quite diverse and very heterogeneous vegetation cover 

(Liu et al., 2017). Soil moisture has been identified as the primary driving factor, forcing 

species to arrange in distinct, but spectrally quite similar communities along moisture 

gradients (Walker et al., 2005), thus roughly dividing tundra vegetation into wet and dry 

tundra (Muster et al., 2012). Furthermore, factors like soil chemistry (Buchhorn et al., 2013), 

the availability of nutrients (van Wijk et al., 2005), topography (Evans et al., 1989) and the 

presence of permafrost disturbances (Rudy et al., 2013) have shown to contribute to the 

intrazonal differentiation of low-arctic vegetation. 

Spectral properties of low-arctic tundra vegetation follow these environmental gradients 

(Buchhorn et al., 2013). The spectral signal of low-artic vegetation is a mixture of signals of 

vascular and non-vascular plants as well as the soil background (Ulrich et al., 2009). The 

reflectance within the visible electromagnetic spectrum (400-700 nm) is determined by the 

three major photosynthetic pigment groups, namely chlorophyll, carotenoid, and 

anthocyanin (Coops et al., 2003), while cellular and canopy structure control the reflectance 

values of the near-infrared and red edge regions (Gausman, 1974).  
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Figure 1: Bioclimatic zones of low-arctic vegetation based on Walker et al., 2005 

 

For low-artic vegetation in general this means that the observed reflectance is on average 

lower than the reflectance observed in denser growing biomes because there are mostly few 

vascular plants, high soil moisture and a high amount of dead material on the ground as well 

as intense shadowing due to high sun zenith angles. Thus, when compared to reflectance 

profiles of lower latitudes, low-arctic vegetation spectral features are more similar to those 

of soil or vegetation in senescence (Liu et al., 2017). Moreover, there is only a weak green 

reflectance peak to be observed, as well as a narrow red edge. Additionally, the red edge 

does not end in a near-infrared-reflectance plateau, instead, the red edge starts to bend and 

shows a steady increase until it has reached its maximum reflectance at around 1020 nm 
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(Buchhorn et al., 2013). Reflectance profiles of different species tend to be most 

discriminative within this range of the near-infrared-region  (Bratsch et al., 2016). 

However, these general properties can be modified by environmental factors and surface 

properties (Ulrich et al., 2009). Sites situated further south but being similar to northern 

sites in terms of species composition, tend to show higher reflectance values, especially in 

the NIR regions as they possess more above-ground-biomass (Buchhorn et al., 2013).  Low-

lying wet sites might show higher reflectance in the near-infrared region (Ulrich et al., 2009), 

but although inhabiting large amounts of biomass does not necessarily show this increase in 

reflectance as vegetation height and soil moisture tend to balance each other.  In terms of 

soil acidity, moist acidic sites are generally influenced by chlorophyll-rich shrubs and mosses 

leading to a slight increase in reflectance in the visible green, while moist non-acidic sites 

tend to show high reflectance in the visible red and the visible blue. The reason for that can 

be found in the occurrence of soils covered by large amounts of biological soil crust and 

shrubs with a large amount of non-green dead components (Buchhorn et al., 2013). Yet, 

these differences in reflectance are very weak and often get superimposed by the effects of 

changing species community or plant phenology (Beamish et al., 2017). 

2.2 Using Ordination Analysis for Vegetation Mapping 

Methods of ordination have long been an established tool in ecology for pattern 

identification and visualisation of multivariate data as they order samples according to their 

similarity (Anderson, 1971). In remote sensing, however, these methods have been used for 

a long time only for the detection of spectrally distinct units to serve as a basis for later 

classifications (Thomas et al., 2003). Ordination methods can transform large species-by-

plot-matrixes into fewer dimensions (Schmidtlein et al., 2007) by locating each site in a 

multidimensional ordination space where each axis resembles one kind of species. The sites 

get located on these axes depending on the fraction of species found at that particular site. 

These multidimensional coordinates get transformed into ordination scores which represent 

the position of the site in the multidimensional ordination space and therefore species 

composition, but in lower usually two to three dimensions all while preserving the distances 

between the sites in the multidimensional space.  

For example, given is an area with only three species x, y and z being present and four 

sample sites being located, where at sites 1 to 3 one kind of species is dominant and at site 4 
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all three species are equally distributed: If these sites are plotted in a multidimensional 

space according to their species composition (here three dimensional as only three species 

are present), sites 1 to 3 will be  located on the axis of their representative species and site 4 

will be found between the three extremes (figure 2a). When being transformed to a lower, 

two-dimensional space the distances between these sites will be preserved with sites 1 to 3 

located at opposite corners of the plot and site 4 centred between them (figure 2b). 

Although the number of dimensions has been lowered, the sites still keep their relative 

distance from each other (Leyer and Wesche, 2008). 

 

 

Figure 2: Exemplary transformation of multivariate data from a multidimensional into a two-dimensional space. 

2a: The tree extremes (sites 1 to 3) were located at their respective place in the multidimensional space, with 

site 4 being located in between. 2b: When transformed into a lower dimension the sites keep their relative 

distances to each other with sites 1 to 3 at the extremes and site 4 in the middle. 

 

For achieving dimensionality reduction, different algorithms like Nonmetric 

Multidimensional Scaling (Kruskal, 1964), Detrended Correspondence Analysis (Hill and 

Gauch, 1980) or Principal Component Analysis (Hotelling, 1933) can be used. Which 

algorithm is best suited depends on the nature of the input dataset. NMDS and DCA are 

useful if the dataset covers a wide range of environmental conditions with species being 

present at a site on one end of an expected gradient but completely absent on the other 

end, whereas PCA for example works best with datasets with low variability where sites on 

opposing ends of the gradient still are largely similar in terms of species composition 

(Feilhauer et al., 2011). In the resulting graph sites which are similar to each other are 

grouped as they show a similar species composition and therefore share the same 
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environmental properties, which can then be extracted (Virtanen et al., 2006). Thus, 

ordination analysis can extract patterns in species occurrence while still preserving the 

continuous nature of vegetation (Gleason, 1926).  

As reflectance is confirmed to be empirically related to species composition (Feilhauer et al., 

2010), spectral measurements (either hyper- or multispectral)  in combination with 

ordination scores can be used to map species composition (Harris et al., 2015) usually 

utilising a regressor.  Because reflectance and gradients both being continuous variables, 

using a standard regression would be possible, but is highly prone to error especially when 

using hyperspectral data as an input variable (Kumar et al., 2002), thus other methods like 

Partial-Least-Square-Regression (PLSR) is used (Wold et al., 2001). 

Studies utilising ordination techniques for vegetation mapping have been growing in 

importance. The approach was first used by (Schmidtlein and Sassin, 2004) to map species 

composition along environmental gradients in Bavarian grasslands. The approach was 

further tested in different biotopes such as moors (Schmidtlein et al., 2007), heaths 

(Feilhauer et al., 2011) and peatlands (Harris et al., 2015). All these studies have used 

hyperspectral imagery in combination with varying reduction methods. In arctic 

environments, however, only a few studies exist, namely Döpper et al. (2021), who used 

ordination techniques to model species composition and active layer depth using Sentinel 2 

imagery in central Alaska. However, no examples of studies further north than 65° N exist. 
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3 Material and Methods 

3.1 Data  

During the expedition LENA-2018 extensive field data were collected on the islands of 

Samoylov and Kurungnakh. Fieldwork included the collection of reflectance spectra of 

various homogeneous vegetation areas on different permafrost landforms deemed 

representative for the area (Runge et al., 2022), as well as a sampling of estimated foliage 

projected cover, originally with the modelling of above-ground biomass in mind (Shevtsova 

et al., 2021b). Sampling took place during solar noon between August, 7th and August, 18th.  

For each site, a square of 30x30 m was laid out, in which the spectral measurements were 

randomly taken using a Spectral Revolution 2500 field spectrometer (table 1).  On average 

100 measurements with a spectral range of 350-2500 nm were acquired. A scanning time of 

5 seconds was used to acquire one spectrum, each acquired spectrum represents an average 

of 10 individual measurements. Applying this averaging procedure increases the signal-to-

noise ratio of the resulting reflectance measurement (Ulrich et al., 2009). 

 

Table 1: Instrument details for the Spectral Revolutions SR-2500 field spectrometer 

Spectral range 300-2500 nm 

Spectral resolution 3.5 nm (350-1000 nm) 

22 nm at 1500 nm 

22 nm at 2100 nm 

Sampling bandwidth 1 nm increments, 2151 channels 

Detectors 512 element UV enhanced Si array 

256 element TE cooled extended InGaAs array  

 

At the start and at the end of each survey the system was referenced by measuring the back 

reflected radiance from a Zenith Lite TM Diffuse Reflectance Target (Runge et al., 2022).  All 

data were corrected for erroneous measurements and spectral bands containing water 

absorption features were masked. Furthermore, all measurements were resampled to the 

spectral resolution of Sentinel 2 MSI using the Q-GIS Plugin EnMap-Box (van der Linden et 

al., 2015).  
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Projective cover of tall shrubs was estimated on a circular sample plot with a radius of 15 m 

around the centre of the 30x30m square mentioned above. Within this radius, three 

individual subplots, 2x2 m in dimension, were placed for projective cover estimation of other 

species, based on the representativity of the subplot for the whole site (figure 3).  The 

samples of the individual subplots were averaged to be representative of the whole plot 

(Shevtsova et al., 2021a).  In total, the dataset includes 15 sites of various homogeneous 

vegetation areas on different permafrost landforms, of which 13 were included in this 

analysis. Two sites were excluded due to unsuitable illumination conditions or the presence 

of clouds during the sampling, resulting in inconsistent reflectance measurements. An 

overview of all 13 sampling sites can be found in appendix 1.  

 

Figure 3: Sampling scheme for the LENA 2018 expedition: Spectral sampling took place randomly within a 

30x30m square, projective cover for all shrubs were estimated within a 15 m radius of the square´s centre. 

Projective cover estimation of other species was based on three 2x2 m subplots (figure based on an 

orthomosaic by Boike et al., 2015). 

 

For later extrapolation of ordination values, a Sentinel-2-1C scene acquired on August, 6th  

2018 was corrected for atmospheric influences using the atmospheric correction processor 

Sen2Cor. Atmospheric correction processing was performed with the default configuration 

which uses a rural aerosol model with a start visibility parameter of 40 km corresponding to 

the aerosol optical thickness of 0.20 at 550 nm (Pignatale, 2020). Furthermore, non-

vegetated areas like waterbodies and sandbanks were masked.  
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Figure 4: Central Lena Delta on a Sentinel 2 image. Kurungnakh as part of the third terrace is dominated 

through Pleistocene yedoma deposits. Samoylov is part of the active floodplain belonging to the first terrace. 

3.2 Study Area  

The Lena delta is the largest arctic delta in the world. Located at the Laptev Sea in the zone 

of continuous permafrost, it is dominated by permafrost landscapes with permafrost depths 

reaching up to 600 m (Grosse et al., 2007). The delta is geomorphologically active, most of it 

consists of wetlands with a heterogenous microrelief with thaw depressions with lakes, ice-

wedge-polygons as well as pingos (Ulrich et al., 2009). The delta can be divided into three 

main terraces, with the first being the still active Holocene floodplain dominated by ice-

wedge-polygons (Boike et al., 2008). The second terrace is characterized by sandy late-

Pleistocene deposits where lakes and thaw depressions are common. Lastly, the third 

terrace resembles the remnants of the Pleistocene accumulation plane with thick, ice-rich, 

and highly organic yedoma sediments (Are and Reimnitz, 2000). The study area (figure 4) is 

located in the central Lena delta and consists mostly of islands belonging to the first terrace, 

except for Kurungnakh, which yedoma uplands are part of the third terrace.  

Climate-wise, the study area is truly arctic, with an annual mean temperature of -12.5 °C. 

January and February are the coldest months, where temperatures fall on average to -30 °C 

and -33°C respectively. The warmest months are July and August, with an average air 

temperature of 7 °C. During summer rainfalls an average of 125 mm can be measured, 

summing up to an annual mean precipitation of  250 mm with winter snowfall, which is 

highly variable due to high wind speeds (Raschke and Savelieva, 2017). 
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The central Lena Delta can in terms of vegetation be characterised as partly tussock, sedge, 

dwarf-shrub moss tundra and partly as sedge, moss, and low-shrub wetlands according to 

the Circumarctic Vegetation Map (Walker et al., 2005). Dominant species are Salix glauca, 

Carex chordorrhiza and Salix pulchra along with mosses and lichens.  Mosses and Liches 

reach heights of up to 5cm while vascular plants, although sparsely represented in the area, 

can reach heights of up to 30 cm.  Vegetation is arranged in distinct species communities, 

which can roughly be separated in wet and dry polygonal tundra. These communities are 

although quite homogenous in their composition of dominating species, highly 

heterogeneous when it comes to their proportions of said species (Raschke and Savelieva, 

2017).  

3.3 Methods  

Principal Component Analysis (Hotelling, 1933) has been chosen for the extraction of floristic 

gradients, as the data shows only a low grade of variation between the sampling sites in 

terms of dominating species (appendix 2). Principal Component Analysis has been shown to 

perform best under such circumstances (Feilhauer et al., 2011). The Principal Component 

Algorithm was applied to a matrix of species projected cover in per cent (columns) and sites 

(rows).  For the description of the floristic gradients, expert knowledge contributed by Dr 

Birgit Heim (AWI) was used. 

To map the ordination space, the PCA-axis scores of the field plots were regressed against 

the corresponding collected field spectra as predictor variables (figure 5). To test the 

performance of different types of input data the collected field spectra were processed to 

different degrees. The original hyperspectral dataset was resampled to the spectral 

resolution of the Sentinel 2 MSI sensor. Furthermore, for each dataset, the hyperspectral, as 

well as the resampled one, all individual measurements of each plot, were aggregated using 

the median. Aggregation through median was chosen to limit the effects of frequent outliers 

in the field data. Thus, in the end, four individual datasets, two with individual 

measurements and two plot-wise median reflections, in both hyper- and multispectral 

resolution were produced to create the corresponding regression models, which were then 

to be evaluated.  

 



 

15 
 

 

Figure 5: Workflow for species composition modelling. 

 

All models were evaluated using the Leave-One-Out cross-validation results of R² and RMSE. 

As Regressor a Partial-Least-Square-Regressor (PLSR) was chosen for it has shown to be 

highly resistant against possible intercorrelations. PLSR finds a linear regression model by 

projecting the predicted variables and the observable variables to a new space (Wold et al., 

2001). 

For the final model multispectral aggregated median spectra were used, with reflectance 

being the predictor variable and the ordination score being the response variable. Both 

ordination axes were modelled separately. The trained models were applied pixelwise to a 

Sentinel 2 image from early August corrected for atmospheric influences. Waterbodies, as 

well as sandbanks, were masked. 

All analyses were conducted in the R statistical environment (R Core Team, 2022) using the 

packages vegan (Oksanen et al.), pls (Liland et al., 2021) and raster (Hijmans, 2022).  

 

  

https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Predicted_variable
https://en.wikipedia.org/wiki/Observable_variable
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4 Results  

4.1 Partial Component Analysis  

For the PCA-ordination, the first ordination axis explained 52.4 % of the variation inherent in 

the original vegetation dataset while the second axis explained 22.5 % of the variation. Any 

higher axes were only of minor explanatory value. Thus, the original dataset was reduced to 

a two-dimensional ordination space, which axes explained a variation of 74.9 % in total.  

Figure 6 shows the sites´ positions in the two-dimensional ordination space. Each blue point 

stands for one site, while the arrows indicate the direction of the floristic gradients displayed 

by each axis. The first axis displays a moisture gradient. It indicates a transition from low-

lying wet alases dominated by mosses over moist and dry polygonal tundra found on the 

yedoma upland and dominated through Carex chordorrhiza and Tussocks respectively, to 

dryer parts like vegetated flood plains and yedoma slopes where shrubs like Salix glauca are 

common.  Moreover, at high PC1 and low PC2 scores, shrub fields dominated by Salix 

pulchra can be found. 

The distribution of sites along the second axis however cannot be attributed to a single 

environmental factor. A mixture of soil moisture as a remanent of the first axis and 

availability of nutrients linked to the occurrence of permafrost disturbances is most likely to 

cause the displayed distribution. Hence, the gradients do not follow their corresponding axes 

in parallel, but appear to be slightly tilted. Mosses, Carex chordorrhiza, Salix glauca, Salix 

Figure 6: First two axes of the ordination space. Delineated areas mark the distribution of major landforms with 

corresponding vegetation. Arrows show the direction of floristic gradients. 
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pulchra, Eriophorum vaginatum and Poaceae were found to have the most influence on the 

distribution of sites within the ordination space. Other, less frequent occurring species had 

an only minor influence on the site´s distribution. 

4.2 Field Spectroscopy  

The results of the processed field spectroscopy can be found in figure 7. On the left (7a) 

hyperspectral profiles are displayed, while on the right (7b) the corresponding resampled 

profiles are to be seen.  The dark blue line resembles the median reflectance per plot. The 

light blue areas display the standard deviation as a measure of scattering within the 

individual measurements per plot. The numbers above the subplots correspond to the 

assigned IDs of the individual sites and serve the purpose of better identification.  

All hyperspectral profiles exhibit comparably low reflectance in the visible green as well as a 

narrow red edge. Most profiles experience their maximum reflectance of 75 % on average at 

around 1200 nm. Furthermore, they show the most variability between the individual sites 

within the near-infrared spectrum.  Within other wavelength regions only minor differences 

between sites are recognizable. 

Within the spectral profiles of sites 3, 8, 13 and 26 the red edge starts bending at 700 nm 

and steadily increases towards maximum reflectance, without forming a near-infrared 

plateau. The profiles of sites 9, 10, 15 and 14 show a steeper red edge compared to those 

described previously, however the bend at 700 nm is still present. No formation of a near-

infrared plateau is visible, except for site 14.  

Sites 5 and 6 are characterized by a steep red edge as well as high reflection throughout the 

near-infrared, resulting in a broad near-infrared plateau. The previously described bending 

at 700 nm is still present, but barely visible. Furthermore, these sites show the highest 

variation within the individual measurements. Lastly, sites 11 and 19 show a steep red edge 

and a broad near-infrared plateau without the characteristic bending at 700 nm. All four 

sites are characterised by thick vegetation cover resulting in the mentioned formation of a 

near-infrared plateau. 

When comparing the resampled profiles with their respective counterparts, the loss of detail 

especially within the near-infrared is obvious. Most of the described features are barely 

visible. However, the most discriminative features like the steepness of the red edge or the 

formation of the near-infrared plateau and overall reflection can be recognized. 
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Figure 7: Plot-wise spectral profiles. 7a shows hyperspectral profiles, while 7b shows the corresponding profiles 

resampled to the spectral resolution of Sentinel 2 MSI.  The blue line indicates the median profile, while the 

blue area indicates the standard deviation 

 

4.3 Partial-Least-Square-Regression Model Fits 

PLSR model fits show different results depending on the input data. The model using all non-

aggregated hyperspectral measurements gained a fit of R² = 0.67 on the first axis (PC1) with 

an RMSE of 1.89. All available components were used as predictors, with those within the 

visible green, near-infrared and short-wave infrared being most influential. As seen in figure 

8a, which shows the distribution of predicted PC scores as violines with the dashed line 

indicating a perfect model fit, most predicted axis scores are within range compared to the 

site´s position on the PC1 axis. However, some outliers are present, namely the extrema at    

-5.60983 and 5.88993, getting highly over- or, respectively, underestimated. In the case of 

5.88993, only some outlier captures the measured PC-score, while at -5.60983 few of the 

predicted values matches the measured score. The outlying points belong to sampling sites 3 

and 6, which were the wettest and driest sites. Furthermore, the effects of single outliers in 
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the spectral measurements with exceptionally high or low reflection become visible, leading 

to extreme outliers in the predicted axis scores, as to be seen at 3.48538 for example. These 

points can be attributed to sampling site 26. 

On the second ordination axis (PC2), the model performed with an explained variation of 

R² = 0.629 and an RMSE of 2.01, with all components used as predictors, with those within 

the spectral range of near and short-wave infrared being most influential. PC2 performed 

slightly worse than the PC1 model fit. As with PC1, most measured values can be found 

within the range of the 25 % and 75 % quantile.  Also, extrema, to be found at negative axis 

scores (e.g., -5.01613/-4.42157) tend to be overestimated, while positive ones (e.g., 

1.147468 upwards) are largely underestimated (figure 8b). In addition, outliers in the 

predictor variables again cause outliers in the predicted PC scores, although being less 

frequent, compared to the model of PC1. Still, outliers can be attributed to sites with 

exceptionally high scatter within the spectral measuremnets. It can also be seen, that the 

axis scores estimated by the PLSR are distributed unimodally, with most local maxima lying 

within the range of the corresponding measured values.  

 

Figure 8: Predicted ordination scores for PC1 and PC2 models using single not aggregated hyperspectral input 

data against measured ordination scores. 7a shows predicted scores for PC1, while 7b shows predicted scores 

for PC2. 

When using all available field measurements but resampled to the spectral resolution of 

Sentinel 2 MSI, the model gained a fit of R² = 0.44, while achieving an RMSE of 2.23. Again, 

all components were used as predictors. Variables within the near-infrared had the most 

influence on the model. Figure 9a shows that, like the two previous examples, the extrema 
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on both ends of the ordination axis suffer from over-/underestimation. When compared to 

the hyperspectral model of PC1, the Sentinel 2 model is less prone to outliers, especially in 

terms of wrongly underestimated values, like at 5.889933. PC1 hyperspectral clearly shows 

multiple outliers getting vastly over- or underestimated, which are absent in PC1 Sentinel 2. 

This resistance against outliers results in an overall trend to bulkier, but still mostly 

multimodal distributions. 

The model of PC2 with all available components for Sentinel 2 used as predictors of which 

the near-infrared and short-wave infrared were most influential, reached an RMSE of 2.79 

and an explained variation of R² = 0.14. The trend of slight over- and underestimation of 

extreme values observed in the previously mentioned models continues as to be seen in 

figure 9b. Furthermore, outliers like those present at -2.40323 or -1.83584 in the 

hyperspectral model of PC2 get eliminated. 

 

Figure 9: Predicted ordination scores for PC1 and PC2 models using single not aggregated multispectral input 

data against measured ordination scores. 8a shows predicted scores for PC1, while 8b shows predicted scores 

for PC2. 

All models show a high scatter within the predicted variables and have difficulties to depict 

extreme axis scores correctly. The two hyperspectral models performed slightly better in 

terms of RMSE and showed a significantly better performance in terms of overall explained 

variation. The PC1 axis always performed better both in terms of RMSE and R² compared to 

their corresponding PC2 axis. This again shows that PC1 is the dominant ordination axis 

explaining most of the species distribution in the study area.  
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When using only spectral measurements plot-wise aggregated by median, PC1 scores an 

RMSE of 2.99 with hyperspectral data as predictor variables. The fitted model explains 

94.11 % of the variation inherent to the first ordination axis. These results were achieved by 

using six components as predictor variables, of which those within the spectral range of the 

visible green, near-infrared and short-wave infrared had the most influence. Figure 10a 

shows the predicted PC1 scores plotted against the measured ordination scores. About half 

of the predicted scores get over estimated while the other half gets underestimated, with 

the extrema being badly represented. An outlier is present at -2.66048, which can be 

attributed to site 26 with high variability within the spectral measurements due to a late 

date of recording with starting senescence. 

For PC2 the hyperspectral PLSR model fit reached an RMSE of 3.49 while explaining 78.77 % 

of the variation. Best results were reached when using five components. Predictors within 

the visible green and near-infrared had the largest influence on the regression outcome.  As 

shown in figure 10b, ordination scores near the end of the PC2 axis are badly estimated by 

the regressor, continuing the trend already mentioned with previously described models.  

 

Figure 10: Predicted ordination scores for PC1 and PC2 models using aggregated hyperspectral input data 

against measured ordination scores. 8a shows predicted scores for PC1, while 8b shows predicted scores for 

PC2. 

The PLSR model using plot-wise median spectra resampled to the spectral resolution of 

Sentinel 2 MSI explained 72.96 % of the variance for PC1, with an RMSE of 2.72.  Four 

components were used, with the spectral ranges of visible green and near-infrared were of 

most importance for the regressor. Extrema are again badly depicted and an outlier can 
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again be found at -2.66048 (figure 11a). However, the model greatly improved the prediction 

of some PC1 scores, like -1.42129 and -0.053817, estimating them almost to the point.  

For the second PC axis, the PLSR model reached an RMSE of 3.26 and explained 63.98 % of 

the variance inherent to the PC2 axis. Best results were achieved when using four 

components with variables within the red, near- and short-wave infrared being most 

influential. As figure 11b shows, the model captured the negative extreme better than the 

previously described models did. The positive extreme, however, follows the described trend 

and gets vastly overestimated.  

 

Figure 11: Predicted ordination scores for PC1 and PC2 models using aggregated multispectral input data 

against measured ordination scores. 8a shows predicted scores for PC1, while 8b shows predicted scores for 

PC2. 

When comparing the described median-based models, it can be said that the models using 

data resampled to Sentinel 2 MSI perform better than those using hyperspectral data in 

terms of RMSE but show an overall worse performance considering the explained variation. 

Correct estimation of extreme axis scores remains an issue.  

Taking all described models into account, those using aggregated spectra as predictor 

variables can explain more variation, but perform slightly worse when it comes to RMSE 

values. All models reach their limits when estimating extremely negative or positive PC 

scores. Moreover, outliers or high heterogeneity within the predictor variables have been 

shown to cause outliers in the prediction. For further analysis and mapping only models with 

predictor variables resampled to Sentinel 2 and plot-wise aggregation by median will be 

used as those offer the best trade-off between explained variation and RMSE (table 2).   
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Table 2: Comparison of PLSR model fits 

model axis RMSE R² 

Hyperspectral, non-aggregated PC1 1.89 0.67 

Hyperspectral, non-aggregated PC2 2.01 0.629 

Hyperspectral, aggregated PC1 2.99 0.941 

Hyperspectral, aggregated PC2 3.49 0.787 

Multispectral, non-aggregated PC1 2.23 0.44 

Multispectral, non-aggregated PC2 2.79 0.14 

Multispectral, aggregated PC1 2.72 0.729 

Multispectral, aggregated PC2 3.26 0.639 

 

4.4 Mapping 

Figure 12 depicts the false colour RGB-composite of the mapped PC-axes. The first PC axis 

has been assigned to the green channel, the second the blue, while the red channel has been 

left out, as only two ordination axes were used. Non-vegetated areas like waterbodies and 

sandbanks were masked and hence are displayed as a grey scale image of the Sentinel 2 

scene used as a basis for the mapping of the axes scores. Different colours indicate a 

different species composition in line with PC scores.  

The legend illustrates the colour ranges of different vegetation types and the distribution of 

characteristic species according to their scores determined by the Partial Components 

Analysis. The depiction of landforms and vegetation types is included to help with 

interpretation and shall serve as an indicator of general trends, as most vegetation types do 

not feature a consistent colour and thus are difficult to outline in the map.  

Black or dark greenish/bluish indicates wet conditions mostly found in low-lying parts of 

alases, which are dominated by mosses. A rich bright blue indicates low scores on the PC1 

axis but high ones on PC2, thus standing for moist areas, but low on nutrients like they can 

be found on Yedoma uplands. Different species of sedges are dominant. A bright green, on 

the other hand, indicates dryer, but nutrient rich conditions, which can be found on low lying 

shrub fields and are occasionally flooded by the Lena River. These are dominated by Salix 

pulchra. High scores in PC axes one and two are represented by turquoise colours, indicating 

old vegetated floodplains with Salix glauca.  
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Figure 12: Mapped PC axes in the related colour space, defined by PC scores (red: none, green: PC1, blue: PC2) 
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The colour gradient from dark greens and blues towards turquoise describes the change 

from moist to dryer conditions and a change from mosses to shrubs in terms of vegetation. 

The gradient from green to blue describes changes expressed in PC2, like nutrient content of 

the soil or the presence of permafrost disturbances. In terms of vegetation composition, it 

indicates a change from shrubs to sedges. Hues not attributed to one of the described types 

as well as hues shared by multiple vegetation types show transitions between the 

neighbouring vegetation types.  

The described transitions in colour reflect changes in the PC axes scores and thus changes in 

species composition. Figures 13 shows a detailed view of the mapped ordination axis near a 

gully in the south of Kurungnakh. The most prominent features are the shrub fields along the 

sites of the gully. According to the displayed colours, the area is dominated by Salix pulchra, 

which corresponds to the conditions found on the site. Furthermore, dark hues at the lowest 

parts near the centre and the end of the gully indicate wetter conditions and thus a change 

to mossier species composition.  

 

 

Figure 13: Detailed view of the mapped ordination axes in the south of Kurungnakh. Colours indicate shrub 

fields, which are to be found on site. Moreover, wetter conditions near the centre of the gully are appropriately 

depicted in darker tones. 

The area to be seen in figure 14 is an old vegetated floodplain in the western part of the 

island of Samoylov. One can clearly see the difference between the moist Carex chordorrhiza 

dominated polygonal tundra in deep blue in the east and the floodplain in the west in green. 

This indicates that the western part is dominated by shrubs, however, when compared to 
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the floodplain described previously, instead of Salix pulchra, Salix glauca is the dominant 

species. This change in species composition is expressed in the primarily turquoise accent, 

which is especially prominent near the coastline and shows the dominance of dry and less 

nutritious conditions. Field observations show the domination of shrubs in the area, which 

are recognizable as Salix glauca by the cotton-like bushes.  

 

 

Figure 14: Detailed view of the mapped ordination axes in the northwest of Samoylov. The change in 

dominating species is expressed through the change in colour from green to turquoise especially visible near 

the coastline. 

Figure 15 shows another detail to be found in an alas near the east coast of Kurungnakh. The 

darker areas at the bottom of the slopes surrounding the alas as well as within the deepest 

part of the alas southwest of the depicted lake indicate wet conditions, where mosses are 

most dominant. Field observations, as shown in the picture, confirm this impression. 

However, some portions of shrubs and sedges are still to be found. This observation explains 

the mixture of dark blues and greens found around the nearly black areas. It indicates the 

transition from wetter moss-dominated areas to areas where mosses still make up a 

considerable portion of the species composition, but other species, usually indicating dryer 

conditions are gaining importance. Figure 15 further shows an example of the 

representation of abrupt changes in species composition. The gully situated in the southeast 

of the map presents a hard change in environmental conditions, from the relatively moist 

and undisturbed yedoma uplands to the disturbed surfaces of the gully. This change 

corresponds with change in species composition from Carex chordorrhiza dominated moist 
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tundra to a field of Salix pulchra at the sides and at the bottom of the gully, visible by the 

abrupt change from blue to green. 

 

 

Figure 15: Detailed view of the mapped ordination axes in the southeast of Kurungnakh. Dark tones at the 

bottom of slopes indicate wet conditions, where mosses are dominant. Dark greens and blues show growing 

portions of shrubs and sedges and dryer conditions. 

A good example of the continuous representation of changes in environmental conditions 

and species composition can be found in figure 16. It presents an area in the northeast of 

Kurungnakh where the yedoma upland slightly slopes towards a valley with a small stream. 

The top of the yedoma upland is characterized by a deep blue colour, which changes over a 

mixture of grey-blue-greenish towards dark blue and green at the bottom of the valley. 

Species wise this indicates a change from Carex chordorrhiza dominated moist tundra over 

dry tundra with Eriophorum vaginatum and Poaceae towards wet and mossy conditions near 

the stream. This gradient can be seen in the picture included in figure 14. The foreground 

shows tussocks of Poaceae and Eriophorum vaginatum with its cotton lie bushes, while the 

background shows the mossy areas around the creek. 
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Figure 16: Detailed view of the mapped ordination axis in the northeast of Kurungnakh. A gradual change in 

environmental conditions and species composition is represented through a change in colour from dark blue 

via grey/green/blue to dark green/blue. 
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5 Discussion  

The goal of this thesis was to answer the questions if the mapping of species composition of 

the central Lena delta using ordination techniques is possible, which data is best suited to do 

so, as well as how the central Lena delta´s vegetation is composed and which patterns do 

emerge. 

As the Partial Components Analysis showed, species composition in the central Lena delta 

can be characterized as a mixture of moss, Carex chordorrhiza, Eriophorum vaginatum, 

Poaceae, Salix pulchra and Salix glauca. Other species are of lesser importance in terms of 

composition, as they are of minor occurrence. Both ordination axis combined explained 

74.9 % of the variation inherent to the original dataset, which suggests a good performance 

when compared to other studies using ordination techniques (Forbes and Sumina, 1999; 

Döpper et al., 2021; Feilhauer et al., 2011). Moreover, it performed best compared to other 

methods of ordination like Detrended Correspondence Analysis, which were tested 

preliminary. It outperformed   them not only in term of explained variance, but also depicted 

the distribution of species in the ordination space most unambiguously.  

The most influential environmental factor can be identified as a moisture gradient. 

Furthermore, other environmental factors like the availability of nutrients coupled with the 

occurrence of permafrost disturbances are expressed in the second ordination axis, 

however, no clear pattern emerges. This could be caused by a mixture of environmental 

factors being present in the second axis as well as the soil moisture gradient expressed in the 

first axis being so pronounced that it is still present in the second axis.  

These results reflect the current status in literature. Walker et al. (2005) described the 

central Lena delta´s vegetation as a mixture of mosses, sedges, tussocks and shrubs. The 

most common species are Salix glauca, Carex chordorrhiza and Salix pulchra along with 

mosses (Raschke and Savelieva, 2017). Furthermore, the distribution of vegetation is 

described as being determined by soil moisture (Schickhoff et al., 2002; Virtanen et al., 

2006), explaining the strong moisture gradient observed in the ordination space. Muster et 

al. (2012) described the resulting division of tundra vegetation into moist and dry tundra, 

which is also emphasized by the presented results.   

The spectral profiles serving as predictor variables show the abundance of the reflectance 

peak in the visible green, the bend in the red edge at 700 nm and the partial abundance of 

the near-infrared plateau. The spectral profiles are most discriminative within the near-
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infrared which explains why the near-infrared region consistently was one of the most 

influential components used in the PLSR models. However, in other wavelength regions and 

especially in those profiles resampled to Sentinel 2, the profiles are quite alike, despite 

changes in species composition. In this regard, it can be concluded that due to the high 

discriminability in the near-infrared, which was previously described by Bartsch et al. (2016), 

and the high importance of said spectral region for the PLSR, a high spectral resolution 

within the near-infrared could be beneficial for further investigations.  

In terms of their spectral characteristics the spectral profiles can be described as typical for 

low-arctic vegetation (Buchhorn et al., 2013) except for reflectance being higher than 

expected from the results of previous studies (Beamish, 2019; Buchhorn et al., 2013; Ulrich 

et al., 2009). This could be explained as a consequence of the spectral sampling taking place 

in densely and continuously vegetated areas, where the influence of soil and other factors 

was minimal. The low variability between the spectral profiles of different sites can be 

attributed to the abundance of vascular plants and the effect of high soil moisture in 

combination with dense vegetation, which balances the influences of these two surface 

properties (Ulrich et al., 2009).  

When combining Partial Components Analysis with spectral information, the individual 

models show mixed results. The models using single instead of aggregated spectra as 

predictor variables perform better in terms of RMSE but worse in terms of explained 

variance. Furthermore, PC scores with high variation in their corresponding spectral 

measurements are more likely for higher scatter in the predicted PC scores. When 

comparing hyperspectral and multispectral models, hyperspectral models perform better 

both in terms of explained variation and RMSE.  

Therefore, one can conclude that aggregated hyperspectral spectra are best suited as a basis 

for regression, as it explains most of the variance inherent to the original dataset and is 

more resistant to outliers. This conclusion is supported by the frequent use of hyperspectral 

imagery in similar studies (Schmidtlein and Sassin, 2004; Schmidtlein et al., 2007; Feilhauer 

et al., 2011). However, hyperspectral imagery is rarely available for arctic regions. Thus, as 

shown in this thesis, aggregated multispectral data can be used as an alternative. However, 

with hyperspectral data becoming widely available with the arrival of spaceborne 

hyperspectral systems like EnMAP, this situation might change. 
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When comparing the model fits presented in this thesis with those of similar studies of lower 

latitudes, it becomes obvious, that although hard to compare, while showing good results in 

terms of explained variance, the models used lack the needed accuracy in terms of RMSE. 

Not only extreme axis scores are nearly always over- or underestimated, but also are sites 

with a high scatter within the input data prone to the formation of outliers especially when 

using non-aggregated single measurements. The frequency and distance of outliers is 

reduced to some part by the use of multispectral data, but, although roughly following the 

trend of measured values, predicted and measured ones rarely match. Nevertheless, it has 

to be taken into account that the presented thesis represents the northernmost attempt to 

map species composition using ordination methods, which comes with extreme challenges 

like a high spectral similarity of vegetation surfaces. High sun angles and short vegetation 

periods resulting in quick both physical and spectral changes in vegetation further impair the 

quality of collected data. Döpper et al. (2021) experienced a drop in both RMSE and 

explained variance compared to studies conducted in more temperate climate zones (Harris 

et al., 2015), thus it is only logical to expect a further drop of these parameters 600 km 

further north. 

Against these odds, the mapped PC scores were able to accurately show distinct patterns in 

the species composition of the central Lena delta. Low lying, wet areas such as alases or the 

bottom part of yedoma slopes are dominated mosses. The yedoma uplands themselves are 

dominated by Carex chordorrhiza in moist areas, while dryer parts and yedoma slopes are 

characterized through a combination of Poaceace and Eriophorum vaginatum. Furthermore, 

shrub fields dominated by Salix pulchra and vegetated floodplains populated by Salix glauca 

are recognizable. Within and between these patterns, transitions and changes in species 

composition can be seen through a gradual change in colour. However, despite the 

continuous nature of the mapped PC axes, abrupt changes in species composition are still 

represented as sharp boundaries.  

With regard to the poor model fits, precaution is required concerning the mapped scores. 

Especially extremely high or low axis scores have a high probability of being vastly over- or 

underestimated. Hence, it can be said, that the PC scores presented in the map indicate the 

general trend of species composition in that particular area rather than an exact 

representation. Furthermore, the results suffer from the low amount of sampling points. 

While other studies outside the arctic used between 17 (Feilhauer et al., 2011) and 133 
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sampling points per km² (Schmidtlein et al., 2007) and Döpper et al. (2021) still using 0.3 

points per km², here species composition was estimated using only 0.09 sampling points per 

km². Therefore, the mapped species composition can barely be deemed representative for 

the study area as a whole. This lack in representation is a direct result of the organising of 

sampling sites, which were not planned with the needs of the mapping of species 

composition with ordination analysis in mind. This is the major limitation of this work.  

Consequently, further research is necessary to accurately map species composition by 

utilising ordination techniques. Those should consider a higher amount of sampling sites to 

achieve better spatial coverage and thus achieve results more representative for the area of 

interest. Moreover, possibilities to improve the fits of PLSR models should be explored to 

accomplish a more accurate representation of species composition. In further steps the 

feasibility of using species composition maps derived from ordination analysis as a base for 

upscaling of greenhouse gas emissions like it has been done on the basis of land cover 

classifications (Schneider et al., 2009) should be tested. Due to the continuous nature of 

ordination derived species composition maps, there is a high chance to enhance the 

accuracy of greenhouse gas emission models in comparison to the use of rough 

classifications. Similar studies executed in lower latitudes indicated that such an approach is 

feasible and promising (Lopatin et al., 2019). 
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6 Conclusions  

This thesis´ objective was to explore if species composition mapping via ordination methods 

in the central Lena delta is possible, which data is best suited to do so and what patterns of 

species composition emerge. Therefore, different variations of field spectroscopy data in 

combination with ordination scores were fed into regression models, which were evaluated. 

The best performing model was used to map species composition over a Sentinel 2 image.  

Species composition of the central Lena delta can be described as a mixture of mosses, Carex 

chordorrhiza, Poaceae, Eriophorum vaginatum, as well as Salix pulchra and Salix glauca. The 

distribution of these species is determined by a soil moisture gradient leading to 

characteristic patterns. Mosses are dominant in alases and other low-lying areas, while Carex 

chordorrhiza dominates the wetter parts of yedoma uplands and moist polygonal tundra. 

Poaceae and Eriophorum vaginatum can be found on dryer parts of yedoma uplands as well 

as on yedoma slopes, while Salix pulchra and Salix glauca form shrub fields on old vegetated 

floodplains. Mixtures of and changes between these vegetation types were indicated by a 

change of colour. Regression models using aggregated hyperspectral data as predictor 

variables showed best performance. As hyperspectral imagery is rarely available in arctic 

regions, the use of data resampled to multispectral resolution is also suitable. A high spectral 

resolution of the near-infrared region is advisable as it showed to have great influence on 

the regressor´s performance.  

This thesis demonstrated that ordination methods can be used as an alternative to land 

cover classifications for the mapping of species composition. However, it was also 

demonstrated that in order to achieve more accurate model fits further research is needed. 

Apart from this, the use of species composition data as a basis for greenhouse gas emission 

modelling needs to be explored. The accurate representation of species composition as a 

continuum instead of crisp classes provides the chance for a more accurate modelling of 

greenhouse gas emissions. Therefore, it could help to better describe the current and future 

impact of permafrost landscapes on our changing climate. 



 

34 
 

Acknowledgements 

Special thanks to my supervisors Prof. Dr. Sebastian van der Linden and Dr. Alexandra Runge, 

who accompanied and supported me throughout the writing of this thesis. Dr. Birgit Heim as 

well as Prof. Dr. Hannes Feilhauer deserve special mentioning as they provided detailed 

expert knowledge in terms of the central Lena deltas vegetation and the use of ordination 

techniques, respectively. I also want to thank Benjamin Jakimow of the EnMap-Box 

developer team, who implemented an import option for the Spectral Evolution 2500 field 

spectrometer for the EnMap-Box in no time. Also worth mentioning are Fabian Thiel and Vu 

Dong Pham who had to withstand all my questions about coding in R as well as all members 

of the Earth Observation and Geoinformation Science Lab of the University of Greifswald and 

the members of the Permafrost Remote Sensing group of the Alfred Wegener Institute.  



 

35 
 

References 

Anderson, A.J.B. (1971). Ordination Methods in Ecology. Journal of Ecology, 59, 713–726. 

Are, F., & Reimnitz, R. (2000). An Overview of the Lena River Delta Setting: Geology, 

Tectonics, Geomorphology, and Hydrology. Journal of Coastal research, 16. 

https://journals.flvc.org/jcr/article/download/80930/78072/92244. 

Atkinson, D., & Treitz, P. (2012). Arctic Ecological Classifications Derived from Vegetation 

Community and Satellite Spectral Data. Remote Sensing, 4, 3948–3971. 

Bartsch, A., Höfler, A., Kroisleitner, C., & Trofaier, A. (2016). Land Cover Mapping in Northern 

High Latitude Permafrost Regions with Satellite Data: Achievements and Remaining 

Challenges. Remote Sensing, 8, 979. 

Beamish, A., Coops, N., Chabrillat, S., & Heim, B. (2017). A Phenological Approach to Spectral 

Differentiation of Low-Arctic Tundra Vegetation Communities, North Slope, Alaska. 

Remote Sensing, 9, 1200. 

Beamish, A.L. (2019). Hyperspectral remote sensing of the spatial and temporal 

heterogeneity of low Arctic vegetation. 

Boike, J., Nitzbon, J., Anders, K., Grigoriev, M., Bolshiyanov, D., Langer, M., Lange, S., 

Bornemann, N., Morgenstern, A., Schreiber, P., Wille, C., Chadburn, S., Gouttevin, I., 

Burke, E., & Kutzbach, L. (2019). A 16-year record (2002–2017) of permafrost, active-

layer, and meteorological conditions at the Samoylov Island Arctic permafrost research 

site, Lena River delta, northern Siberia: an opportunity to validate remote-sensing data 

and land surface, snow, and permafrost models. Earth System Science Data, 11, 261–299. 

Boike, J., Veh, G., Stoof, G., Sachs, T., Busse, H., & Muster, S. (2015). Near-infrared 

orthomosaic of Samoylov Island, Siberia, summer 2014 (854 MB). 

Boike, J., Wille, C., & Abnizova, A. (2008). Climatology and summer energy and water balance 

of polygonal tundra in the Lena River Delta, Siberia. Journal of Geophysical Research, 113. 

Bratsch, S., Epstein, H., Buchhorn, M., & Walker, D. (2016). Differentiating among Four Arctic 

Tundra Plant Communities at Ivotuk, Alaska Using Field Spectroscopy. Remote Sensing, 8, 

51. 

Buchhorn, M., Walker, D., Heim, B., Raynolds, M., Epstein, H., & Schwieder, M. (2013). 

Ground-Based Hyperspectral Characterization of Alaska Tundra Vegetation along 

Environmental Gradients. Remote Sensing, 5, 3971–4005. 



 

36 
 

Coops, N.C., Stone, C., Culvenor, D.S., Chisholm, L.A., & Merton, R.N. (2003). Chlorophyll 

content in eucalypt vegetation at the leaf and canopy scales as derived from high 

resolution spectral data. Tree physiology, 23, 23–31. 

Döpper, V., Panda, S., Waigl, C., Braun, M., & Feilhauer, H. (2021). Using floristic gradient 

mapping to assess seasonal thaw depth in interior Alaska. Applied Vegetation Science, 24. 

Evans, B.M., Walker, D.A., Benson, C.S., Nordstrand, E.A., & Petersen, G.W. (1989). Spatial 

interrelationships between terrain, snow distribution and vegetation patterns at an arctic 

foothills site in Alaska. Ecography, 12, 270–278. 

Feilhauer, H., Faude, U., & Schmidtlein, S. (2011). Combining Isomap ordination and imaging 

spectroscopy to map continuous floristic gradients in a heterogeneous landscape. 

Remote Sensing of Environment, 115, 2513–2524. 

Feilhauer, H., Oerke, E.-C., & Schmidtlein, S. (2010). Quantifying empirical relations between 

planted species mixtures and canopy reflectance with PROTEST. Remote Sensing of 

Environment, 114, 1513–1521. 

Feilhauer, H., Zlinszky, A., Kania, A., Foody, G.M., Doktor, D., Lausch, A., & Schmidtlein, S. 

(2021). Let your maps be fuzzy!—Class probabilities and floristic gradients as alternatives 

to crisp mapping for remote sensing of vegetation. Remote Sensing in Ecology and 

Conservation, 7, 292–305. 

Forbes, B.C., & Sumina, O.I. (1999). Comparative Ordination of Low Arctic Vegetation 

Recovering from Disturbance: Reconciling Two Contrasting Approaches for Field Data 

Collection. Arctic, Antarctic, and Alpine Research, 31, 389–399. 

Fuchs, M., Grosse, G., Strauss, J., Günther, F., Grigoriev, M., Maximov, G.M., & Hugelius, G. 

(2018). Carbon and nitrogen pools in thermokarst-affected permafrost landscapes in 

Arctic Siberia. Biogeosciences, 15, 953–971. 

Gausman, H.W. (1974). Leaf reflectance of near-infrared. Photogram Eng, 40, 183–191. 

Gleason, H.A. (1926). The Individualistic Concept of the Plant Association. Bulletin of the 

Torrey Botanical Club, 53, 7. 

Grosse, G., Schirrmeister, L., Siegert, C., Kunitsky, V.V., Slagoda, E.A., Andreev, A.A., & 

Dereviagyn, A.Y. (2007). Geological and geomorphological evolution of a sedimentary 

periglacial landscape in Northeast Siberia during the Late Quaternary. Geomorphology, 

86, 25–51. 



 

37 
 

Harris, A., Charnock, R., & Lucas, R.M. (2015). Hyperspectral remote sensing of peatland 

floristic gradients. Remote Sensing of Environment, 162, 99–111. 

Hijmans, R.J. (2022). raster: Geographic Data Analysis and Modeling. https://CRAN.R-

project.org/package=raster. 

Hill, M.O., & Gauch, H.G. (1980). Detrended Correspondence Analysis: An Improved 

Ordination Technique. In E. van der Maarel (Ed.), Classification and Ordination (pp. 47–

58). Dordrecht: Springer Netherlands. 

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. 

Journal of Educational Psychology, 24, 417–441. 

Kapfer, J., & Popova, K. (2021). Changes in subarctic vegetation after one century of land use 

and climate change. Journal of Vegetation Science, 32. 

Kruskal, J.B. (1964). Nonmetric multidimensional scaling: A numerical method. 

Psychometrika, 29, 115–129. 

Kumar, L., Schmidt, K., Dury, S., & Skidmore, A. (2002). Imaging Spectrometry and Vegetation 

Science. In F.D. van der Meer, M. Abrams, P. Curran, A. Dekker, S.M. de Jong, & M. 

Schaepman (Eds.), Imaging Spectrometry (pp. 111–155). Dordrecht: Springer 

Netherlands. 

Leyer, I., & Wesche, K. (2008). Multivariate Statistik in der Ökologie. Eine Einführung. Berlin, 

Heidelberg: Springer. 

Liland, K.H., Mevik, B.-H., & Wehrens, R. (2021). pls: Partial Least Squares and Principal 

Component Regression. https://CRAN.R-project.org/package=pls. 

Liu, N., Budkewitsch, P., & Treitz, P. (2017). Examining spectral reflectance features related 

to Arctic percent vegetation cover: Implications for hyperspectral remote sensing of 

Arctic tundra. Remote Sensing of Environment, 192, 58–72. 

Lopatin, J., Kattenborn, T., Galleguillos, M., Perez-Quezada, J.F., & Schmidtlein, S. (2019). 

Using aboveground vegetation attributes as proxies for mapping peatland belowground 

carbon stocks. Remote Sensing of Environment, 231, 111217. 

Macander, M., Frost, G., Nelson, P., & Swingley, C. (2017). Regional Quantitative Cover 

Mapping of Tundra Plant Functional Types in Arctic Alaska. Remote Sensing, 9, 1024. 

Muster, S., Langer, M., Heim, B., Westermann, S., & Boike, J. (2012). Subpixel heterogeneity 

of ice-wedge polygonal tundra: a multi-scale analysis of land cover and 



 

38 
 

evapotranspiration in the Lena River Delta, Siberia. Tellus B: Chemical and Physical 

Meteorology, 64, 17301. 

Oksanen, J., Simpson, G., F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. 

Minchin, R.B. O'Hara, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs, Helene 

Wagner, Matt Barbour, Michael Bedward, Ben Bolker, Daniel Borcard, Gustavo Carvalho, 

Michael Chirico, Miquel De Caceres, Sebastien Durand, Heloisa Beatriz Antoniazi 

Evangelista, Rich FitzJohn, Michael Friendly, Brendan Furneaux, Geoffrey Hannigan, Mark 

O. Hill, Leo Lahti, Dan McGlinn, Marie-Helene Ouellette, Eduardo Ribeiro Cunha, Tyler 

Smith, Adrian Stier, Cajo J.F. Ter Braak, & James Weedon. vegan: Community Ecology 

Package. 

Park, H., Kim, Y., & Kimball, J.S. (2016). Widespread permafrost vulnerability and soil active 

layer increases over the high northern latitudes inferred from satellite remote sensing 

and process model assessments. Remote Sensing of Environment, 175, 349–358. 

Pignatale, F.C. (2020). S2 PGDS. http://step.esa.int/thirdparties/sen2cor/2.10.0/docs/S2-

PDGS-MPC-L2A-SRN-V2.10.0.pdf. 

R Core Team (2022). R: A Language and Environment for Statistical Computing. Vienna, 

Austria. https://www.R-project.org/. 

Raschke, E.A., & Savelieva, L.A. (2017). Subrecent spore–pollen spectra and modern 

vegetation from the Lena River Delta, Russian Arctic. Contemporary Problems of Ecology, 

10, 395–410. 

Rudy, A.C., Lamoureux, S.F., Treitz, P., & Collingwood, A. (2013). Identifying permafrost slope 

disturbance using multi-temporal optical satellite images and change detection 

techniques. Cold Regions Science and Technology, 88, 37–49. 

Runge, A., Fuchs, M., Shevtsova, I., Landgraf, N., Heim, B., Herzschuh, U., & Grosse, G. 

(2022). Hyperspectral field spectrometry of Arctic vegetation units in the central Lena 

Delta: PANGAEA. https://doi.pangaea.de/10.1594/PANGAEA.945982. 

Schickhoff, U., Walker, M.D., & Walker, D.A. (2002). Riparian willow communities on the 

Arctic Slope of Alaska and their environmental relationships: A classification and 

ordination analysis. Phytocoenologia, 32, 145–204. 

Schmidtlein, S., & Sassin, J. (2004). Mapping of continuous floristic gradients in grasslands 

using hyperspectral imagery. Remote Sensing of Environment, 92, 126–138. 



 

39 
 

Schmidtlein, S., Zimmermann, P., Schüpferling, R., & Weiß, C. (2007). Mapping the floristic 

continuum: Ordination space position estimated from imaging spectroscopy. Journal of 

Vegetation Science, 18, 131–140. 

Schneider, J., Grosse, G., & Wagner, D. (2009). Land cover classification of tundra 

environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its application 

for upscaling of methane emissions. Remote Sensing of Environment, 113, 380–391. 

Shevtsova, I., Herzschuh, U., Heim, B., Schulte, L., Stünzi, S., Pestryakova, L.A., Zakharov, E.S., 

& Kruse, S. (2021a). Recent above-ground biomass changes in central Chukotka (Russian 

Far East) using field sampling and Landsat satellite data. Biogeosciences, 18, 3343–3366. 

Shevtsova, I., Laschinskiy, N., Heim, B., & Herzschuh, U. (2021b). Foliage projective cover of 

26 vegetation sites of central Lena Delta from 2018: PANGAEA. 

Syms, C. (2008). Ordination. In B.D. Fath, & S.E. Jørgensen (Eds.), Encyclopedia of ecology 

(pp. 2572–2581). Oxford: Elsevier. 

Thomas, V., Treitz, P., Jelinski, D., Miller, J., Lafleur, P., & McCaughey, J. (2003). Image 

classification of a northern peatland complex using spectral and plant community data. 

Remote Sensing of Environment, 84, 83–99. 

Ulrich, M., Grosse, G., Chabrillat, S., & Schirrmeister, L. (2009). Spectral characterization of 

periglacial surfaces and geomorphological units in the Arctic Lena Delta using field 

spectrometry and remote sensing. Remote Sensing of Environment, 113, 1220–1235. 

van der Linden, S., Rabe, A., Held, M., Jakimow, B., Leitão, P., Okujeni, A., Schwieder, M., 

Suess, S., & Hostert, P. (2015). The EnMAP-Box—A Toolbox and Application Programming 

Interface for EnMAP Data Processing. Remote Sensing, 7, 11249–11266. 

van Wijk, M.T., Williams, M., & Shaver, G.R. (2005). Tight coupling between leaf area index 

and foliage N content in arctic plant communities. Oecologia, 142, 421–427. 

Virtanen, R., Oksanen, J., Oksanen, L., & Razzhivin, V.Y. (2006). Broad‐scale 

vegetation‐environment relationships in Eurasian high‐latitude areas. Journal of 

Vegetation Science, 17, 519–528. 

Walker, D.A., Daniëls, F.J., Matveyeva, N.V., Šibík, J., Walker, M.D., Breen, A.L., 

Druckenmiller, L.A., Raynolds, M.K., Bültmann, H., Hennekens, S., Buchhorn, M., Epstein, 

H.E., Ermokhina, K., Fosaa, A.M., Hei∂marsson, S., Heim, B., Jónsdóttir, I.S., Koroleva, N., 

Lévesque, E., MacKenzie, W.H., Henry, G.H., Nilsen, L., Peet, R., Razzhivin, V., Talbot, S.S., 



 

40 
 

Telyatnikov, M., Thannheiser, D., Webber, P.J., & Wirth, L.M. (2018). Circumpolar Arctic 

Vegetation Classification. Phytocoenologia, 48, 181–201. 

Walker, D.A., Jia, G.J., Epstein, H.E., Raynolds, M.K., Chapin III, F.S., Copass, C., Hinzman, L.D., 

Knudson, J.A., Maier, H.A., Michaelson, G.J., Nelson, F., Ping, C.L., Romanovsky, V.E., & 

Shiklomanov, N. (2003). Vegetation-soil-thaw-depth relationships along a low-arctic 

bioclimate gradient, Alaska: synthesis of information from the ATLAS studies. Permafrost 

and Periglacial Processes, 14, 103–123. 

Walker, D.A., Raynolds, M.K., Daniëls, F.J., Einarsson, E., Elvebakk, A., Gould, W.A., Katenin, 

A.E., Kholod, S.S., Markon, C.J., Melnikov, E.S., Moskalenko, N.G., Talbot, S.S., Yurtsev, 

B.A., & Team, T.o.m.o.t.C. (2005). The Circumpolar Arctic vegetation map. Journal of 

Vegetation Science, 16, 267–282. 

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool of chemometrics. 

Chemometrics and Intelligent Laboratory Systems, 58, 109–130. 

  



 

41 
 

Appendix 

Appendix 1: Description of Sampling sites (Runge et al., 2021) 

ID Date of recording Landform Description Picture 

3 07.08.2018 Alas 
Alas with moss and 

sometimes sedges 

 

 
 

5 08.08.2018 
Drained Lake 

Basin 

Mosses with sedges and 

tussocks and single shrubs 

 

 

 
 

6 08.08.2018 
Drained Lake 

Basin 

Mosses with sedges and 

tussocks and single shrubs 

 

 
 

7 08.08.2018 Yedoma Upland Dry and wet areas 

 

 
 

8 09.08.2018 Yedoma Upland Dry and wet areas 
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9 09.08.2018 Yedoma Upland Dry and wet areas 

 

 
 

10 09.08.2018 Yedoma Slope 
Mosses and ground 

covering plants 

 

 
 

11 09.08.2018 Shrub Field Shrubs and dwarf shrubs 

 

 
 

13 10.08.2018 Yedoma Upland 

Wet parts: mosses, moist 

parts: sedges, dry parts: 

shrubs 

  

 
 

14 10.08.2018 
Yedoma Upland 

near slope 
Polygonal tundra, wet 
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15 10.08.2018 Yedoma Slope Mosses and E. vaginatum 

 

 

19 26.08.2018 Floodplain 
Old floodplain with 

shrubs, mainly S. glauca 

 

 
 

26 28.08.2018 Yedoma Upland 

Moist and dry polygonal 

tundra. Mosses and dwarf 

shurbs 
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Appendix 2: Distribution of species along sampling sites (Shevtsova et al., 2021b) 
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