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Marine biogeochemical (BGC) models are highly uncertain in their

parameterization. The value of the BGC parameters are poorly known and

lead to large uncertainties in the model outputs. This study focuses on the

uncertainty quantification of model fields and parameters within a one-

dimensional (1-D) ocean BGC model applying ensemble data assimilation.

We applied an ensemble Kalman filter provided by the Parallel Data

Assimilation Framework (PDAF) into a 1-D vertical configuration of the BGC

model Regulated Ecosystem Model 2 (REcoM2) at two BGC time-series

stations: the Bermuda Atlantic Time-series Study (BATS) and the Dynamique

des Flux Atmosphériques en Méditerranée (DYFAMED). We assimilated 5-day

satellite chlorophyll-a (chl-a) concentration and monthly in situ net primary

production (NPP) data for 3 years to jointly estimate 10 preselected key BGC

parameters and the model state. The estimated set of parameters resulted in

improvements in the model prediction up to 66% for the surface chl-a and 56%

for NPP. Results show that assimilating satellite chl-a concentration data alone

degraded the prediction of NPP. Simultaneous assimilation of the satellite chl-a

data and in situNPP data improved both surface chl-a and NPP simulations. We

found that correlations between parameters preclude estimating parameters

independently. Co-dependencies between parameters also indicate that there

is not a unique set of optimal parameters. Incorporation of proper uncertainty

estimation in BGC predictions, therefore, requires ensemble simulations with

varying parameter values.

KEYWORDS

marine biogeochemical model, uncertainty quantification, ensemble Kalman filter,
parameter estimation, chlorophyll-a concentration, net primary production
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1. Introduction

Outputs from marine biogeochemical (BGC) models are

increasingly used for scientific purposes (e.g., Ciavatta et al.,

2016; Goodliff et al., 2019; Carroll et al., 2020; Pradhan et al.,

2020) environmental management (e.g., Jones et al., 2016;

Fennel et al., 2019) and to inform policy (Brown and Caldeira,

2017). Including an ocean BGC component in Earth System

Models is essential for climate simulation and prediction (see

Flato, 2011; Orr et al., 2017). Ocean BCG model outputs and

reanalysis data are key requirements for developing marine

environmental applications and services (Gehlen et al., 2015),

monitoring and predicting algal blooms (Flynn and

McGillicuddy, 2018), and monitoring the movement of fish

populations (Tommasi et al., 2017).
Ocean BGC models are composed of different components

of the marine systems, including the marine ecosystem (e.g.,

phytoplankton and zooplankton), physical environment

processes (e.g., ocean circulation and mixing), the cycling of

inorganic and detrital matter, and air–sea interactions and gas

transfer. These models aim at replicating the state and dynamics

of the ecosystem components (flow of matter and energy

between inorganic nutrients and marine plankton) as close as

possible to the real world or at least with reasonable accuracy to

generate useful insights into the problem being studied. To

achieve the latter, the model needs to incorporate a sufficiently

accurate description of the representation of the real processes.

The description of growth and ecosystem interactions in

BGC models is based, besides the conservation of mass, largely

on heuristic mathematical descriptions of observed processes,

such as the relation between prey density of zooplankton and

their grazing rates. The numerous parameters involved in these

descriptions are often taken from laboratory experiments on

single species, whereas in the model, they are applied in a more

general sense as describing whole classes of organisms. BGC

models are thus highly uncertain regarding these parameters

(see Schartau et al., 2017). Uncertainty in the parameter values

translates into uncertainty in the model prediction. Thus,

neglecting parameter uncertainty will result in underestimating

the uncertainty in the model outputs. Therefore, the parameter

uncertainties must be properly quantified to improve model

predictions and the quality of reanalysis data.
Data assimilation (DA) techniques allow us to estimate

model parameters and their uncertainty using observational

data (see Wikle and Berliner, 2007). DA combines models and

observations in an effort to obtain an accurate estimation of the

state of the modeled system. DA approaches can be categorized

as either variational or sequential. Both have been applied to

BGC models for state estimation, parameter optimization, and/

or both in a broader sense. Variational algorithms minimize a

cost function of the weighted sum of squared model–data

differences. Sequential methods, on the other hand, rely on

approximating the probability distribution generated from an
Frontiers in Marine Science 02
ensemble of model initial states at a particular time based on

observations of the state until that time.

The variational DA approaches have been applied to

parameter optimization applications in one-dimensional (1-D)

BGC models (e.g., Friedrichs, 2001; Zhao et al., 2005; Friedrichs

et al., 2006; Friedrichs et al., 2007; Ward et al., 2010; Bagniewski

et al., 2011; Fiechter et al., 2011; Pelc et al., 2012; Xiao and

Friedrichs, 2014a; Xiao and Friedrichs, 2014b; Song et al., 2016;

Laiolo et al., 2018) but have shown limited success in

constraining parameters (see Mattern and Edwards, 2017).

Parameter estimation applications of the variational approach

to three-dimensional (3-D) problems have not yet been

demonstrated. On the other hand, sequential DA approaches

applied to BGC models (Natvik and Evensen, 2003; Nerger and

Gregg, 2007; Triantafyllou et al., 2007; Nerger and Gregg, 2008;

Hu et al., 2012; Simon et al., 2012; Ciavatta et al., 2014; Ciavatta

et al., 2016; Jones et al., 2016; Gharamti et al., 2017a; Gharamti

et al., 2017b; Ciavatta et al., 2018; Pradhan et al., 2019;

Pradhan et al., 2020) showed promising performance to

improve the BGC simulation. The method also provides an

efficient way for parameter estimation by the state augmentation

approach (Anderson, 2001), where the state variables and

parameters are combined in an augmented state vector, and

the parameters are treated as time-varying variables with small

artificial evolution noise. The most common sequential methods

used in these studies are different variants of the Ensemble

Kalman Filter (EnKF; see Vetra-Carvalho et al., 2018 for a

review) that is also used in this study.

Running a BGC model multiple times over a large 3-D

domain for sequential assimilation is computationally very

expensive. Therefore, often, parameter optimization is

performed in a 1-D model and then used in a 3-D model (e.g.,

Kane et al., 2011; McDonald et al., 2012; St‐Laurent et al., 2017;

Hoshiba et al., 2018; Wang et al., 2020). Recently, Singh et al.

(2022) have implemented BGC parameter estimation in a 3-D

global model by assimilating synthetic observations. However,

the study could only afford assimilation of monthly mean data

because of the high computational cost.

Fennel et al. (2001) found poor results in a parameter

optimization study using DA to a simplified marine BGC

model. They suggested that any parameter optimization study

requires proper uncertainty analysis. Over time, BGC DA has

improved through substantial developments of DA techniques,

utilization of satellite data (e.g., ocean color), and deployment of

new measurement platforms (e.g., ARGO). Despite the progress

made, most of the BGC DA literature acknowledges that the

structure and equations of BGC models are uncertain, and the

quality, sparsity, and relationship between BGC observations

and the BGC model state variables are challenging (see Schartau

et al., 2017). Only a few studies have assessed the uncertainties in

the BGC models, including uncertainty in the model parameters

and DA itself. The ensemble DA algorithms can improve model

state and parameter estimation with uncertainty quantification,
frontiersin.org
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as demonstrated in other scientific fields (e.g., Moradkhani et al.,

2005; Hu et al., 2013; Pathiraja et al., 2018).

Toward the direction of improving model predictions, this

study focuses on the quantification of the uncertainty of model

fields and parameters within a 1-D ocean BGC model. We used

ensemble DA as a method of uncertainty quantification applied

to the BGC model Regulated Ecosystem Model 2 (REcoM2,

Hauck et al., 2013; Schourup-Kristensen et al., 2014). The

analysis was performed at two BGC time-series stations: the

Bermuda Atlantic Time-series Study (BATS, Steinberg et al.,

2001) in the North Atlantic and the Dynamique des Flux

Atmosphériques en Méditerranée (DYFAMED, Marty, 2002)

at the northwestern Mediterranean Sea. We estimated 10

selected BGC parameters controlling the source and sink of

phytoplankton and assessed the interdependency of the

estimated parameters in these two stations to get insights into

BGC processes. We further assessed how useful the estimated

parameters are to improve the prediction capability of REcoM2.
2 Materials and methods

2.1 Model description

The BGC model REcoM2 is a so-called quota model (Droop,

1983). It simulates 22 tracers including dissolved inorganic carbon

and alkalinity for the carbonate system; the macronutrients

dissolved inorganic nitrogen (DIN) and silicic acid; biomass

content of carbon (C), nitrogen (N), silicate (Si), calcium

carbonate (CaCO3), and chlorophyll-a (chl-a); and the trace

metal iron (Fe) (see the Supplementary Document for a list of

all 22 tracers). REcoM2 has two phytoplankton classes,

nanophytoplankton, with an implicit representation of calcifiers

and diatoms. The intracellular stoichiometry of carbon, nitrogen,

calcite, and chlorophyll (C:N:Chl) pools for nanophytoplankton,

and carbon, nitrogen, silicate, and chlorophyll (C:N:Si:Chl) pools

for diatoms are allowed to respond dynamically to environmental

conditions following Geider et al. (1998) and Hohn (2009) for the

Si quota. The intracellular iron pool is a function of the

intracellular nitrogen concentration (fixed Fe:N), as iron is

physiologically mainly linked to nitrogen metabolism and the

photosynthetic electron transport chain (Geider and La Roche,

1994). Dead organic matter is transferred to detritus by

aggregation and grazing by one zooplankton class, and the

sinking and advection of detritus are represented explicitly.

Figure 1 shows a schematic of REcoM2 model pathways.

We used the Massachusetts Institute of Technology General

Circulation Model (MITgcm, Marshall et al., 1997) to simulate

ocean circulation and mixing. MITgcm solves the time-dependent,

Boussinesq-approximated Navier–Stokes equations with or without

hydrostatic approximation and conservation equations for salinity

and energy. REcoM2 is coupled with MITgcm online at every time

step, set up to 1 h (3,600 s). The total depth of the model setup is
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1,188 m. The model has 30 vertical layers. The vertical grid spacing

increases with depth from 10 m near the surface to 100 m near the

bottom layer. As we are interested in ecosystem processes in the

euphotic zone, and their coupling to vertical nutrient transports

from the mesopelagic, we have limited our model setup to a bit

more than the upper 1,000 m, well above the sea floor for both sites.

Thus, the total depth of the model setup is independent of location

and bathymetry.

The coupled MITgcm-REcoM2 model is configured in a 1-D

vertical configuration at the geolocations of BATS (31°40′N, 64°10′
W) located in the subtropical gyre of the North Atlantic (Sargasso

Sea) and DYFAMED (43°25′N, 7°52′E) located in the Liguro-

Provencal current of the Ligurian Sea at the northwestern

Mediterranean Sea. Both stations have long-term time-series

records with a wide variety of BGC variables. The choice of using

two different stations in this study is to gain a better insight into the

same BGC processes under different environmental conditions.

BATS and DYFAMED provide contrasting sampling schemes

and environments. At BATS, the mesoscale eddies are a significant

feature in the Sargasso Sea and impart an additional level of BGC

variability (Sweeney et al., 2003). On the other hand, the BGC

variability at DYFAMED is mainly induced by the seasonal

succession of hydrological conditions (de Fommervault et al.,

2015). DYFAMED has a shallower mixed layer compared with

BATS in summer and fall (off-peak period) because it is highly

saline (>38 psu) with a very shallow thermocline (Marty and

Chiaverini, 2010). Another distinct feature of DYFAMED is that

it receives significant atmospheric input from the deserts of North

Africa and the industrialized countries bordering theMediterranean

Sea (Marty, 2002), which allows phytoplankton to grow at the

surface even in the oligotrophic period. As a result of shallower

mixed layer depth and large atmospheric nutrient deposition,

DYFAMED has higher surface chl-a and lower vertically

integrated net primary production (NPP) during the off-peak

period compared with BATS. Notably, despite being close to the

coast, DYFAMED is protected from lateral inputs by a coastal

current, acting as a barrier to exchanges with the coastal zone.

We initialized the temperature, salinity, dissolved oxygen,

nitrate, and silicate fields of the model at both stations with in

situ bottle data obtained for BATS from its website (BATS Team,

2020) and for DYFAMED from Coppola et al. (2021). The total

alkalinity and dissolved inorganic carbon fields at BATS were

initialized with data from the mapped climatology of the GLobal

Ocean Data Analysis Project (GLODAPv2, Lauvset et al., 2016).

At DYFAMED, these fields were initialized from bottle data

(Coppola et al. 2021). The dissolved iron is initialized with data

from the U.S. GEOTRACES North Atlantic Transect (GA-03,

Boyle et al., 2015) at BATS and from the data reported in Guieu

and Blain (2013) at DYFAMED. All other passive tracers were

initialized with small uniform values. We use inter-annually

varying atmospheric forcing—the Coordinated Ocean Research

Experiments version 2 (COREv2, Large and Yeager, 2008)

for BATS and ERA5 hourly data on single levels
frontiersin.org

https://doi.org/10.3389/fmars.2022.984236
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Mamnun et al. 10.3389/fmars.2022.984236
(Hersbach et al., 2020) for DYFAMED. Iron deposition was

estimated from the monthly present-day simulation of Albani

et al. (2014) at both stations.

To prevent long-term drifting and to avoid compensating for

hydrographic errors caused by the 1-D setup, which ignores

lateral advection, we apply a relaxation of temperature and

salinity at every time step from the surface down to 400 m

depth at BATS and from the surface down to 250 m at

DYFAMED. The relaxation depth was determined as no clear

seasonal temperature variability can be observed below this

depth according to the long-term bottle data.

We additionally applied restoring sea surface salinity (SSS)

to the monthly climatology with a timescale of 10 days at BATS

and 2 days at DYFAMED. The monthly climatology of SSS was

calculated from the in situ bottle data at both stations. At

DYFAMED, whereas the vertical processes dominate in setting

water properties, the lateral advection still plays a major role

(Béthoux et al., 1998). However, the cyclonic circulation of the

Ligurian Sea is not represented in the 1-D framework at this site.

During the phase of intense and dry winds associated with

surface buoyancy loss, the advection of homogeneous water

columns becomes dominant and drives a doming of isopycnals

that drift away from the 1-D model SSS from its climatology

more frequently than BATS. This drifting of model SSS leads to a

deeper mixed layer at DYFAMED in the winter. This required us

to restore SSS more frequently at DYFAMED than BATS.
2.2 Data assimilation

2.2.1 Observational data
We assimilate two sets of observations: i) satellite chl-a

concentration and ii) in situ vertically integrated NPP.
Frontiers in Marine Science 04
We obtained the satellite chl-a concentration data from the

ESA (European Space Agency) Ocean Color Climate Change

Initiative (OC-CCI, Sathyendranath et al., 2019) time-series data

product. It is a daily merged product of MODIS-Aqua, MERIS,

SeaWiFS, and VIIRS on a sinusoidal grid at 4-km resolution. We

downloaded the 5-day average dataset via FTP from the OC-CCI

website (European Space Agency, 2021). We take an area of a 1°

square at each site and average all available values in the area as

the representative data value for the station.

The chl-a concentrations provided in the OC-CCI dataset

are not bias-corrected. However, the dataset provides per pixel

biases and root mean square deviation. We calculate the

unbiased chl-a concentration and its variance based on

Appendix A of Ciavatta et al. (2016). The variances were used

as observation errors in the DA. Figure 2A shows the average

chl-a concentration (green dots) in 5-day intervals and its

standard deviation as error bars at BATS. From the error bars,

large uncertainty is evident in the data. As the chl-a

concentration is lognormally distributed (Campbell, 1995), we

used logarithmically transformed (log‐transformed)

concentrations in the DA implementation.

We obtained the 14C primary production data for BATS

from the BATS website (BATS Team, 2020) and for DYFAMED

from Coppola et al. (2021). The methods for the sample

collection and the calculation of 14C primary production are

described in the US Joint Global Ocean Flux Study (JGOFS)

protocol (JGOFS, 1997; Laws et al., 2002) for BATS and Marty

et al. (2008) for DYFAMED. We calculated the water column

integrated NPP in mgCm-2d-1from the measurements at

individual depths by trapezoidal integration, assuming that the

rate from the surface to the nearest measure is constant and the

rate after 200 m is zero (see JGOFS, 1997). Figure 2B shows

the integrated NPP at BATS from October 1999 to December
FIGURE 1

Schematic diagram of the ocean BGC model REcoM-2.
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2002. For all DA runs, we assume a Gaussian error distribution

with a relative error of 0.25 for NPP at both stations.

2.2.2 DA method
The DA was performed using the Parallel Data Assimilation

Framework (PDAF; Nerger and Hiller, 2013)1— a free and

open-source software designed to implement ensemble DA

with existing numerical models. PDAF provides fully

implemented and optimized DA algorithms, particularly

ensemble-based Kalman filters. We applied the ensemble‐

based Error‐Subspace Transform Kalman Filter (ESTKF;

Nerger et al., 2012) in this study. The ESTKF is an ensemble

square root filter that computes the weights for the ensemble

transformation directly in the error-subspace represented by

the ensemble.

We used a 108-member ensemble. To make the BGC

processes slightly different in each ensemble member and

generate varying model states (ensemble members), we

randomly perturbed 10 parameters. The parameters are chosen

following earlier studies (e.g., Hu et al., 2012; Doron et al., 2013;

Ciavatta et al., 2016; Pradhan et al., 2019; Pradhan et al., 2020)

and model descriptions (e.g., Hauck et al., 2013; Schourup-
1 http://pdaf.awi.de/
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Kristensen et al., 2014) that they control the key BGC

processes of the model and that their values are poorly

constrained. As we assimilated chl-a concentration and NPP

data, we focused on the parameters related to phytoplankton

production and to those that directly influence phytoplankton

mortality. Four of the selected parameters are related to

phytoplankton sources, whereas the remaining six are related

to the phytoplankton sinks.

A brief description of the 10 selected parameters is provided

below. A list of all REcoM2 parameters can be found in the

Supplementary Document.

2.2.2.1 Maximum photosynthesis rate of
nanophytoplanktons (mmax

Nano) and diatoms (mmax
Dia )

Phytoplankton takes up nutrients from the inorganic nutrient

pool and energy from the sunlight to produce biomass to grow. The

process is known as photosynthesis. REcoM2 calculates the C-

specific photosynthesis (P) based on the maximum photosynthesis

rate Pmax that has an intrinsic maximum growth rate of mmax

(time−1) and is limited (0< flim<1 ) by either physical conditions

(e.g., temperature and turbulence) or resources such as light,

nutrients, and dissolved inorganic carbon.

Pmax =  mmax :   flim

P is calculated for both nanophytoplanktons (PNano) and

diatoms (PDia) based on Geider et al. (1998) using maximum
A

B

FIGURE 2

Observational data during the study period at BATS. (A) OC-CCI satellite chl-a concentration. The green dots depict data values, and the red
lines depict standard deviations. (B) Vertically integrated NPP (green) and assumed errors (red).
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photosynthesis rate for nanophytoplankton (mmax
Nano) and for

diatoms (mmax
Dia ). It differs between nanophytoplankton and

diatoms in the nutrient limitation; nanophytoplankton is

limited by iron and nitrogen, whereas diatoms are additionally

limited by silicon, hence constraining different values for the two

groups.

Pmax =  mmax : fT : f Felim, f
N :Cmin
lim

� �

where fT is an Arrhenius function of temperature dependency.

fFe , f N :Cmin
lim , and f N :Cmin

lim are growth-limitation by iron, nitrogen,

and silicon and are calculated using the Liebig law of the

minimum, in which the most limiting nutrient limits

production (O'Neill et al., 1989).

2.2.2.2 Initial slope of the photosynthesis-irradiation
(P-I) curve of nanophytoplankton (aNano) and
diatoms (aDia)

P depends on how much photosynthetically available

radiation (PAR) the cell can harvest. This is controlled by the

initial slope of the P-I curve (a), which represents the

photosynthetic efficiency under light levels close to zero and is

obtained by multiplication of the light-harvesting efficiency per

chlorophyll with the intracellular chlorophyll to carbon ratio

(qChl:C).a is used to model P as a saturating function of PAR.

P = Pmax   1 − exp  
−  a :   qChl :C : PAR

Pmax

� �
 

� �

The C-specific photosynthesis rate, P, is calculated for both

nanophytoplankton (PNano) and diatoms (PDia) with aNano and

aDia , respectively.

2.2.2.3 Chlorophyll degradation rate of

nanophytoplanktons (dchlNano) and diatoms (dchldia)

Chlorophyll concentrations are used as a proxy for living

phytoplankton biomass. Photoinduced and microbial processes

can degrade chlorophyll before the phytoplankton dies or is

eaten by the zooplankton. In REcoM2, chlorophyll is degraded

with a fixed rate dchl that contributes to the overall chlorophyll

loss and, in turn, phytoplanktonic carbon loss. As

phytoplanktonic carbon loss is calculated for both

nanoplankton and diatom, REcoM2 uses two chlorophyll

degradation rate parameters dchlNano and dchldia for nanoplankton

and diatom, respectively.

2.2.2.4 Maximum grazing rate (x) and grazing
efficiency (g)

Zooplanktons consume phytoplankton in a process known

as grazing. The grazing function describes a rectangular

hyperbolic relationship between phytoplankton nitrogen (N)

abundance, with a sigmoidal dependency of nutritional intake

to resource density with an N-specific maximum grazing rate
Frontiers in Marine Science 06
(x). It depends on temperature following the same relationship

as for phytoplankton growth (fT). The grazing G on

nanophytoplankton and diatoms is defined as follows:

G =   x :
NNano + N

0
Dia

� �2

j1 + NDia + N
0
Dia

� �   :   fT :Nhet

N
0
Dia encompasses a preference term for grazing on diatoms,

relative to that on nanophytoplankton:

N
0
Dia =   t :

N2
Dia

j2 +  N2
Dia

  :  NDia

Here, t is the maximum diatom preference and is smaller

than 1, which implies that zooplankton grazes preferably on

nanophytoplankton; the effective grazing preference is allowed

to vary with diatom biomass, with j2 being the half-saturation

parameters for grazing preference of diatoms. j2 = 0 implies a

constant preference.

The phytoplankton biomass that enters the zooplankton

may be incorporated into new biomass, voided through

defecation to Pellets assuming a fixed grazing efficiency (g)
that determines how much of the grazed phytoplankton is

built into heterotrophic biomass.

2.2.2.5 Specific aggregation rate of phytoplankton
( ∅Phy) and detritus ( ∅Det)

A non-physiological mortality term denoted as aggregation

loss describes a part from the grazing loss of phytoplankton to

sinking detritus. The removal of material from oceanic surface

waters and its subsequent transport to the ocean interior is

driven by the formation and sinking of particles. However, only

larger particles with high settling rates significantly contribute to

the vertical flux reaching the sea floor (McCave, 1984). The

collection of smaller particles into larger ones is called

aggregation. The aggregation rate g is assumed to be

proportional to the abundance of phytoplankton and detritus:

g =  ∅Phy :NNano +    ∅Phy :NDia +  ∅Det :NDet

where the phytoplankton-specific aggregation rate (∅Phy) and

detritus-specific aggregation rate (∅Det) reflect the roles of

phytoplankton and detritus in the aggregation process.

Phytoplankton-specific aggregation rate, ∅Phy , is assumed to

be the same for nanoplanktons and diatoms.

We keep the reference values, hereafter referred to as the

default values, of the parameters as used in Hauck et al. (2013).

We perturbed the parameters assuming a lognormal

distribution with a relative variance of 0.25 for all the

selected parameters. Hence, each ensemble member was

started from the same initial condition but with different

values for the perturbed parameters. The DA process was

initialized from the ensemble of model states at the end of

the spin-up period (see 2.2.3).
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We estimated eight BGC model state variables, total chl-a,

and vertically integrated NPP using the ESTKF in all DA

simulations. The eight model state variables are as follows:
Fron
1. Nanophytoplankton content of carbon

2. Diatom content of carbon

3. Nanophytoplankton content of nitrogen

4. Diatom content of nitrogen

5. Nanophytoplankton calcium carbonate

6. Biogenic silica for diatoms

7. Nanophytoplankton chl-a

8. Diatom chl-a
Note that total chl-a and vertically integrated NPP are

diagnostic model variables. For these two diagnostic variables,

the observation operator selects the corresponding values from

the state vector. The eight model state variables are updated

through the ensemble‐estimated cross covariances to total chl-a

and vertically integrated NPP when observations are available.

The total chl-a and the vertically integrated NPP estimated by

the DA process are not distributed to the model but stored as

diagnostic variables.

One issue of parameter estimation through DA is that, in the

analysis step, the value of parameters in each ensemble member

changes toward the optimal values. As a result, the ensemble

spread decreases, and the parameter ensemble may collapse

before an optimal parameter value is found. To avoid this, we

inflated the variance of the parameter ensemble in every

assimilation cycle by 2.56%.

2.2.3 DA experiment
DA experiments were performed from October 1999 to

December 2002 for BATS and from October 1997 to

December 2000 for DYFAMED. The difference in the

chosen period was caused by the availability of the in situ

bottle NPP data. The model was first run with 108 ensemble

members using the perturbed parameters from January 1990

as a spin-up for both stations. We conducted three types of

DA experiments.
• EXPState_DP — State estimation with the default

parameters: We performed state estimation experiments

with the default parameters as the reference simulations.

• EXPJoint_DP — Joint state-parameter estimation: In these

experiments, we augmented the state vector by the 10

selected BGC parameters and updated them in each

assimilation cycle together with the state variables.

Therefore, the selected parameters vary over time in

this experiment.

• EXPState_EP— State estimation with estimated

parameters: To assess the effect of the estimated
tiers in Marine Science 07
parameters on model prediction, we performed state

estimation experiments (DA runs for model state) with

the estimated parameters.
For each type of experiment, we implemented four

simulations: i) Free-run (ensemble run without DA), ii)

satellite chl-a only assimilation, iii) vertically integrated NPP

only assimilation, and iv) combined assimilation of satellite chl-a

and vertically integrated NPP. The free-run simulation of

EXPJoint_DP is identical to the free-run simulation of

EXPState_DP. Therefore, we did not repeat the free-run

simulation in the EXPJoint_DP.
3 Results

In this section, we first present the results of the joint state‐

parameter estimation from the EXPJoint_DP (Section 3.1),

particularly the estimation of 10 model parameters. Then, we

assess the performance of the estimated parameters

(EXPState_EP) compared with the reference simulations

(EXPState_DP), state estimation with the default parameters)

and the prediction capabilities of DA in general for both

stations (Section 3.2).
3.1 Joint state‐parameter estimation
(EXPJoint_DP)

The ensemble evaluation of surface chl-a concentration and

vertically integrated NPP shows that the free-run with default

parameters (EXPJoint_DP) performs poorly at both stations

(Figure 3). At BATS, the free-run overestimates the surface

chl-a concentration compared to satellite data (Figure 3A) and

underestimates the NPP compared to bottle data (Figure 3B).

The free-run performs better at DYFAMED than at BATS for

surface chl-a concentration. At DYFAMED, the model produces

realistic surface chl-a concentrations during the bloom period

but overestimates them during the oligotrophic periods

(Figure 3C). NPP is overestimated at DYFAMED for both

free-run and combined assimilation of EXPJo int_DP

(Figure 3D). The simulation with combined assimilation of

satellite chl-a and vertically integrated NPP of EXPJoint_DP
performs better because the filter brought the model state

close to the observations during the first bloom period for

both stations.

NPP shows larger discrepancies at BATS. The filter even

pushed the NPP simulation away from the observations at the

station to compensate for the correction in the surface chl-a

concentration. In the DA process, satellite chl-a data had a

stronger influence than the in situ 14C primary production data

on the overall change of the states.
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3.1.1 Evaluation of parameter estimates
We estimate values of the same 10 parameters (Section 2.2.2)

that were perturbed to generate the ensembles at both stations.

The objective was to get an optimized set of parameters to

improve the model prediction, from which we can gain insight

into the interaction between phytoplankton growth and decay.

The minimization of the model-data misfit in the assimilation

run compared with that in the free-run presented above is

mostly due to the simultaneous update of the selected

parameters. The value of parameters obtained at the final DA

cycle (time step) is the estimated parameter value. Table 1 shows
Frontiers in Marine Science 08
the default values and estimated values at the end of the

experiment of the 10 selected parameters for both stations.

The initial slope of the photosynthesis-irradiance (P-I) curve of

nanoplankton (aNano) and diatom (aDia), the maximum

photosynthesis rate of nanoplankton (mmax
Nano), and the maximum

grazing rate (x) were changed the most at both stations. The

maximum photosynthesis rate of diatoms (mmax
Dia ), nanoplankton

chlorophyll degradation rate (dChlNano), and grazing efficiency (g) were
changed significantly at BATS but not much at DYFAMED. The

two aggregation parameters, the phytoplankton-specific

aggregation rate (∅Phy), and the detritus-specific aggregation rate
TABLE 1 The 10 BGC parameters that are estimated in this study: the default and the estimated values.

Parameter Unit Default Value Estimated Value at BATS Estimated Value at DYFAMED

aNano mmolC (mgChl)−1 (Wm−2day)−1 0.15 0.45 0.21

aDia mmolC(mgChl)−1 (Wm−2day)−1 0.19 0.09 0.26

mmax
Nano day−1 3.00 1.98 1.59

mmax
Dia day−1 3.50 0.96 4.10

dChlNano
day−1 0.10 0.16 0.09

dChlDia
day−1 0.10 0.11 0.10

x mmol N m−3 day−1 2.40 3.52 3.37

g dimensionless 0.40 0.91 0.49

∅Phy (mmol N m−3)−1day−1 0.015 0.013 0.021

∅Det (mmol N m−3)−1day−1 0.165 0.181 0.23
The estimated values are the parameter values achieved at the end of the experiment (EXPJoint_DP).
A C

DB

FIGURE 3

The ensemble evaluation of log-transformed surface chl-a concentration at (A) BATS and (C) DYFAMED, and NPP at (B) BATS and (D) DYFAMED
for joint state-parameter estimation (EXPJoint_DP). The red dashed lines show ensemble members for the free-run, and the solid red line shows
their mean. Gray dashed lines are ensemble members of the simulation with combined assimilation of satellite surface chl-a and in situ NPP
data, and the solid black line is their mean. The green dots represent observations (satellite data for surface chl-a and bottle data for NPP).
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(∅Det) were changed significantly only at DYFAMED. Significant

change refers to more than one-third (36%) of change after the final

DA time step.

The ensemble evaluations of all 10 parameters for satellite

chl-a only assimilation and combined assimilation of satellite

chl-a and vertically integrated NPP resulting from the

EXPJoin t_DP for both stations are presented in the

Supplementary Document. Here, we focus on the parameters

that changed significantly at one or both stations when

assimilating both datasets in the experiment EXPJoint_DP and

examine their temporal evolution and variability at the

two stations.

The evolution of the assimilated values of aNano and mmax
Nano

for both stations is shown in Figure 4. At BATS, aNano reached a

final value of 0.45 and had much larger updates (increased more

than 200% than its initial value) than at DYFAMED where the

parameter increased 50% from the initial value (Figures 4A, C,
Frontiers in Marine Science 09
Table 1). The large change at BATS is related to the large bias of

surface chl-a compared to observations (see Figure 3). At

DYFAMED, on the other hand, the model without DA

represented the surface chl-a much better (see Figure 3). The

value of aNano at DYFAMED was increased from the default

value of 0.15 by around 50% in the first year and stabilized after

that for the rest of the assimilation period with a final value of

0.21 (Figures 4B, D, Table 1). This change could relate to the

overestimation of surface chl-a during the off-peak period at

this site.

At both stations, the reduction of surface chl-a concentration

led to a decrease in mmax
Nano that is partly compensated by an

increase in aNano . The value of mmax
Nano decreased around one-

third after the first spring bloom at BATS (Figure 4B).

Approximately, the same value is reached after the later

blooms, whereas it is slightly higher during the off-peak

periods. At DYFAMED, updates to mmax
Nano occurred only during
A

B D

C

FIGURE 4

Evaluation of aNano for (A) BATS and (C) DYFAMED and mmax
Nano for (B) BATS and (D) DYFAMED for combined assimilation of satellite surface chl-a

and in situ NPP simulations of EXPJoint_DP. Top panels show the ensemble evaluation (gray dashed line) and the associated ensemble means
(black solid line). The default and estimated values are shown as dashed lines (red for default and blue for estimated). The bottom panels show
the correlation of parameter value with the observed surface chl-a concentration at each assimilation cycle.
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the second bloom period with a decrease of around

45% (Figure 4D).

The change in aNano and mmax
Nano was induced by the

correlation between the observations and the model resulting

from the ensemble. At both stations, aNano is negatively

correlated with surface chl-a concentration during off-peak

periods, whereas the correlation coefficient becomes positive at

the beginning of the bloom periods (Figures 4A, C, bottom

panels). For mmax
Nano, the correlation is also positive around the

beginning of blooms. However, it does not show extended

periods of negative values (Figures 4B, D, bottom panels).

These correlations also denote that a varying dependence

between the photosynthesis parameters and the seasonal

ecosystem variability exists. Lower values of correlation

coefficients between surface chl-a concentration and aNano

during the bloom period indicate that this parameter is

difficult to constrain with surface chl-a and uncertainty

increases during a bloom period.

The loss parameter dChlNano increased by 60% at BATS and

decreased by 10% at DYFAMED from its initial value at the end

of the experiment with a final value of 0.16 and 0.09 day−1,

respectively (Figure 5). At BATS, dChlNano first increased by around

80% after the first bloom period, further increased slightly

during the second bloom period, but then decreased slightly

until the third bloom period (Figure 5A). This suggests high

uncertainty of dChlNano at BATS. Similarly, at DYFAMED, the

parameter increased first and then decreased after the second

bloom period. This indicates that parameter values can have

large inter-annual variation (Figure 5B).

For both stations, the correlation of dChlNano with surface chl-a is

significant during the beginning of the bloom and becomes weaker

later in the bloom period. One possible explanation for this weak
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correlation is that, during the bloom period, grazing becomes

prominent for loss of chl-a, and thus, the grazing parameters

compensate dChlNano. At BATS, the high variability of the correlation

coefficient indicates high uncertainty of the parameter at the station.

For the grazing parameters x and g , Figure 6 shows the

ensemble members and their means. The value of x is increased

from its default value by around 50% in the first spring bloom at

BATS (Figure 6A). In contrast, it remained nearly unchanged at

DYFAMED during the first year but increased by around 40% in

the second spring bloom (Figure 6B). This behavior could be

related to the higher bias of the free-run simulations

(overestimation of surface chl-a) during the second year at

DYFAMED. In the first year, the bias was compensated by

other parameters, e.g., aNano and dChlNano.

Whereas at BATS, g increased by around 125%, at

DYFAMED, the increase was smaller, which is around 20%

(Figures 6C, D). g appears to show a continuously increasing

trend at BATS from the beginning of the second bloom period.

Both grazing parameters showed a similar pattern of

correlation with surface chl-a. At BATS, we see a positive

correlation to the surface chl-a, mainly during the off-peak

periods (Figure 6C). On the contrary, the correlation is mainly

positive during the bloom periods and negative at the other

times of the year at DYFAMED (Figure 6D).

The aggregation parameter ∅Phy decreased slightly at BATS

(Figure 7A) but increased at DYFAMED between the first and

second spring bloom with a final value of 0.021, which is about

40% larger than the default value (Figure 7B). This change is

connected to a negative correlation between the parameter and

chl-a at the station. At DYFAMED, ∅Phy is negatively correlated

after the first bloom termination to the next initialization when

its values change. From the second bloom, the parameter reaches
A B

FIGURE 5

Evaluation of dChl
Nano rate for (A) BATS and (B) DYFAMED analogous to - Figure 4.
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a stable value and shows only a weak correlation. On the other

hand, ∅Phy is not well correlated with surface chl-a at BATS,

which explains minor changes in the parameter in the station

(Figure 7A). The other aggregation parameter ∅Det also exhibits

a similar pattern as ∅Phy (not shown).

3.1.2 Correlation among the parameters
To assess how strongly different parameters are correlated,

we computed the Pearson correlation coefficients between each

possible pair of parameters over time for both stations. The

correlations are shown in Figure 8. Using T-test to determine

statistical significance, there are five parameter pairs at BATS

(Figure 8A) and three pairs at DYFAMED (Figure 8B) for which

it is possible to reject the null hypothesis of no correlation at the

p = 0.01 probability level. The explanation of the computed

relationships is as follows:
Fron
• aNano versus mmax
Nano: Increases in aNanomean that less chl-

a is required to achieve the same primary production,
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whereas increases in mmax
Nano result in higher chl-a

production. Therefore, balance among chl-a

concentration and NPP accounts for the negative

relationship between these two photosynthesis

parameters. The correlation at both sites becomes

significant after the first year of parameter estimation,

pointing out that the optimal values of these two

parameters depend on each other.

• x versus g : Increases in both grazing parameters x and g
reduce the yield of chl-a concentration, accounting for

the positive relationship. The correlations decreased

over time and became insignificant when the value of

the parameters got optimal. Constraining these two

parameters individually may produce unrealistic values.

• aNano versus dChlNano: Decreases in aNano increase chl-a

concentration for the same primary production, whereas

increases in dChlNano compensate for this by decrementing

ch l -a concen t ra t i on be fore decea se o f the

phytoplankton, accounting for the negative relationship.
A

B D

C

FIGURE 6

Evaluation of x for (A) BATS and (C) DYFAMED, and g for (B) BATS and (D) DYFAMED analogous to Figure 4.
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A B

FIGURE 7

Evaluation of ∅Phy for (A) BATS and (B) DYFAMED analogous to Figure 4.
A

B

FIGURE 8

The Pearson correlation coefficients between each pair of the 10 biogeochemical parameters at (A) BATS and (B) DYFAMED. The solid lines
denote significantly correlated pairs.
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Fron
• dChlNano versus x : Increase in the chlorophyll degradation

rate reduces the abundance of phytoplankton. Hence,

the zooplankton can graze less, which accounts for the

negative relationship.

• dChlNano versus g : Similar to the previous point, a higher

chlorophyll degradation rate means less phytoplankton

abundance for grazing. dChlNano is strongly correlated with

both x and g at BATS only because of the large

overestimation of the surface chl-a concentration at

the station. This large overestimation is not present at

DYFAMED.

• dChlNano versus ∅Phy : Increases in chlorophyll degradation

result in decreased aggregations of senescent cells.

Aggregation is a significant pathway by which

nanoplankton contributes to export production in low

biomass environments (Jackson et al., 2005). Therefore,

it accounts for negative correlations.
3.2 Model performance with
estimated parameters

To evaluate the effect of the parameter estimation, we

performed state estimation experiments (with perturbed

parameters but no parameter estimation) using the default

parameter values (EXPState_DP) and the estimated parameter

values (EXPState_EP).
3.2.1 Surface chl-a and NPP
The log-transformed surface chl-a and its uncertainty

estimate for both stations using default and estimated

parameters over the study period are presented in Figures 9A,

C. Root mean square errors (RMSEs) of simulated log-

transformed surface chl-a against satellite (assimilated) and

bottle (independent) data are summarized in Table 2. As seen

in both Figures 9A, C, the estimated parameters improve the

model predictions of surface chl-a concentration substantially at

both sites. The RMSE of surface chl-a concentration simulations

was reduced by about 66.67% against satellite data and about

44.78% against bottle data. At DYFAMED, RMSE for log-

transformed surface chl-a concentration was reduced by

28.58% and 11.11% against satellite and in situ bottle

data, respectively.

The improvements are larger at BATS with a strong

reduction of RMSE for log-transformed surface chl-a

concentration. This large improvement is because the default

parameters perform poorly at BATS. Most of the concentrations

from satellite and bottle data fall below the ensemble from the

simulation with default parameters at the station. However, they

fall inside the ensemble range when the estimated parameters are

used (Figure 9A). At DYFAMED, some observations fall outside
tiers in Marine Science 13
of the ensemble for default parameters and remain outside of the

ensemble for estimated parameters (Figure 9C). At DYFAMED,

satellite data show brief blooms during autumn, which the model

does not reproduce. A possible explanation can be that the

model does not represent destratification correctly as the 1-D

framework does not capture cyclonic circulation.

The predictions of NPP for default (EXPState_DP) and estimated

parameters (EXPState_EP) and their uncertainty estimates are shown

in Figures 9B, D. We compare NPP simulations with in situ bottle

data (assimilated observation) and monthly satellite-derived data

(independent observation) obtained from the Ocean Productivity

website at the Oregon State University (Ocean Productivity, 2021).

The satellite-derived data are NPP computed using the Carbon,

Absorption, and Fluorescence Euphotic-resolving (CAFE) model

(Silsbe et al., 2016) based on SeaWiFS satellite data. RMSEs of the

ensemble mean NPP of combined satellite chl-a and in situ NPP

assimilation of both EXPState_DP and EXPState_EP against in situ

bottle and satellite-derived data are presented in Table 2. As can be

seen, the estimated parameters largely improve the NPP prediction

at BATS and little improvement at DYFAMED. Despite the

improvement, there are still large discrepancies at BATS. The

RMSE of NPP simulation was reduced by 56.5% against satellite

data and 47.78% against in situ bottle data at BATS and by 3.30%

and 8.54% against satellite-derived and bottle data, respectively.

At BATS, model simulations agree reasonably with satellite

NPP estimations but show large discrepancies with the bottle data.

The concentrations in bottle data are much higher, particularly

during oligotrophic periods. Notably, the bottle data at BATS show

no apparent seasonality. Because of this behavior, we suspect large

uncertainty in the 14C NPP measurements. At DYFAMED, the

improvements are smaller compared with BATS.

3.2.2 Phytoplankton phenology indices
To further assess the influence of the estimated parameters,

we examine five phytoplankton bloom phenology indices,

namely, i) initiation, ii) peak time, iii) termination time, iv)

duration, and v) peak value. At both stations, the initiation

generally occurs in December/January (Figures 10A, F), bloom

peaks mostly 4–6 weeks later (Figures 10B, G), and the

termination is in March/April (Figures 10C, H). Differences in

the timing of these phenological events between the simulations

with default (EXPState_DP) and estimated parameters

(EXPState_EP) are relatively small, with the observed timing of

these indices falling within the ensemble range.

At BATS, the range for these phenological timings is

broader, indicating a large uncertainty of these matrices on the

selected BGC parameters, at least the parameters that we selected

in this study. At both stations, the model-simulated bloom

duration is shorter than the satellite observation. At BATS, the

bloom duration with estimated parameter values falls within the

ensemble range for the first and second years (Figure 10D).

However, it gets even shorter in the third year. At DYFAMED,

bloom durations with estimated parameter values did not
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change much compared with default parameter values

(Figure 10I). The blooms occur earlier at BATS for

EXPState_EP, with its peak concentrations being strongly

reduced compared with EXPState_DP and coming closer to the

observations (Figure 10E). Estimated parameter values had less

influence on the peak concentration at DYFAMED (Figure 10J).

At DYFAMED, the bloom peaks in both model and observation

have higher chl-a concentration than at BATS. However, the

bloom duration is rather short compared with that in BATS.
4 Discussions

4.1 Parameter estimation

Similar to some earlier studies (e.g., Mattern et al., 2010;

Gharamti et al., 2017a), our results show that ensemble DA

techniques are generally suitable for parameter estimation in a 1-
Frontiers in Marine Science 14
D ocean BGC model to decrease the model-data misfit. In the

experiments conducted here, a notable reduction of RMSE of

surface chl-a and NPP was achieved compared to simulations

using the default parameters. The default parameter values used

in this study (Table 1) have been optimized for a global model

configuration. Therefore, we can expect distinct parameter

values as optimal at the two different sites considering the

distinct environmental conditions.

The DA process generally decreased the growth parameters

and increased the loss parameters to reduce model-data misfit.

This behavior corroborates that, at the oligotrophic BATS and

DYFAMED sites, the production is less than the global average.

At both stations, the parameters describing nanoplankton

dynamics had much larger adjustments than those for diatoms.

This was because of low diatom contributions to the total

phytoplankton population in the oligotrophic environment. At

BATS, the contribution of diatoms to total chl-a biomass is

generally less than 10% (Steinberg et al., 2001) and to the annual
TABLE 2 RMSE of log-transformed surface chl-a concentration from combined assimilation of satellite chl-a and in situ NPP data of EXPState_EP

against satellite and bottle data at both stations.

Variable Experiment
BATS DYFAMED

Satellite data Bottle data Satellite data Bottle data

Chl-a EXPState_DP 0.72 0.67 0.28 0.36

EXPState_EP 0.24 0.37 0.20 0.32

NPP EXPState_DP 129.3 248.6 48.5 72.6

EXPState_EP 56.2 129.8 46.9 66.4
f
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FIGURE 9

Comparison of log-transformed surface chl-a concentration of combined assimilation of satellite chl-a and in situ NPP simulations with default
(EXPState_DP) and estimated parameters (EXPState_EP) at (A) BATS and (B) DYFAMED and of NPP simulations with default and estimated parameters
at (C) BATS and (D) DYFAMED. The red line shows the ensemble mean with default parameters and the blue line is for estimated parameters.
The green dots show satellite data, and the black dots are bottle data.
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primary productivity is less than 13% (Nelson and Brzezinski,

1997). In the annual cycle, the phytoplankton biomass and

production at DYFAMED are dominated by nanoplankton

(Marty et al., 2008). Although diatoms are a small component

of the phytoplankton at both sites, they grow actively during the

spring bloom period and their abundance increases. Specifically,
Frontiers in Marine Science 15
the diatom biomass can exceed 25% at both BATS (Nelson and

Brzezinski, 1997) and DYFAMED (Mayot et al., 2020) during

the spring bloom. Hence, the changes in diatom parameters are

mainly related to bloom period production.

Changes in the photosynthesis-irradiance parameters a and

mmax for both phytoplankton groups were crucial in reducing the
A B

D E F

G IH

J

C

FIGURE 10

Phytoplankton phenology metrics (A–E) bloom initiation, peak time, termination, duration, and peak value at BATS and (F–J) DYFAMED. The
black stars are calculated from satellite data; the boxes show the quartiles of the ensemble of the combined chl-a and NPP assimilation,
whereas the whiskers extend to show the rest of the ensemble members except for points determined to be “outliers” using the inter-quartile
ranges.
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model-data misfits and thus improving the prediction capability

of REcoM2. These parameters express the physiological state of

chl-a or, more generally, are used to characterize phytoplankton

production. Under low-light conditions, photosynthesis is a

linear function of irradiance with the initial slope (MacIntyre

et al., 2002), whereas, at light saturation, it proceeds at the

maximum rate mmax (Falkowski, 1981). A higher value of a
means that, under light-limiting conditions, less chl-a

concentration is needed to obtain the same primary

production. Therefore, the model yields enough nanoplankton

production with low chl-a in winter when light is limiting. On

the other hand, decreased mmax leads to less production, when

light is not limiting. aNano changed the most at both stations —

increased by 220% at BATS and 50% at DYFAMED.

At BATS, assimilating in situ NPP data together with

satellite chl-a had a large influence on changes in these two

photosynthesis parameters. Assimilation of only satellite chl-a
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concentration resulted in a value of aNano =0.22 at the station,

which is only about half the value obtained when we assimilate

both observation types. Furthermore, mmax
Nano is reduced strongly

to about one quarter (mmax
Nano =  0:72) of the default value at BATS

when only the satellite chl-a is assimilated. At DYFAMED, on

the other hand, assimilation of in situNPP together with satellite

chl-a made little difference in the estimate of aNano .

Furthermore, assimilation of satellite chl-a did not change the

mmax
Nano much at the site.

We found an opposite sign in updating these two

photosynthesis parameters for diatoms. At BATS, aDia

decreased by about 52%, whereas the parameter increased by

about 37% at DYFAMED. Similarly, mmax
Dia decreased around 72%

at BATS and increased 17% at DYFAMED. Both a and mmax

vary with temperature, ambient inorganic nutrient (nitrate and

phosphate) concentrations, and phytoplankton functional type.

However, the relations are not linear, and the causes and effects
A

B

FIGURE 11

Simulated (A) log-transformed surface chl-a and (B) NPP in the parameter estimation experiments (EXPjoint_DP) for free-run, satellite chl-a only
assimilation, and simultaneous assimilation of satellite chl-a and in situ NPP.
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in these relationships are unclear (Richardson et al., 2016).

Diatom-dominated communities exhibit higher a and lower

mmax (Richardson et al., 2016). At DYFAMED, the discrepancies

of surface chl-a concentration are less during the bloom spring

period than the rest of the year. Most of the adjustment in the

states and parameters happens during non-bloom periods when

the diatom abundance is negligible at DYFAMED. On the other

hand, most of the filter updates happen during the bloom period

at BATS. This explains the higher value of aDia and lower value

of mmax
Dia at DYFAMED than BATS.

At BATS, satellite chl-a only assimilation reduces the

simulated chl-a concentration to minimize model data misfit,

which also reduces phytoplankton production in the model and

increases the biases in NPP simulation during the non-bloom

season (Figure 11). Simultaneous assimilation of satellite chl-a

and in situ NPP data decreases the simulated chl-a

concentration. On the contrary, it increases NPP in the non-

bloom period, and thus, a smaller chl-a concentration is

sufficient for high phytoplankton production. Therefore, to

simulate high production with low chl-a concentration during

the light-limiting conditions of the non-bloom period, the filter

adjusts aNano to a high value and mmax
Nano to a lower value.

However, during the bloom season when diatoms have a

larger contribution, the filter has smaller updates in the NPP

simulation. Therefore, the estimation of aDia and mmax
Dia do not

show much difference between satellite chl-a only assimilation

and simultaneous assimilation of satellite chl-a and in situ NPP.

The photosynthesis parameters a and mmax have different

values at the two stations. Spatial variability of these parameters

is due to temperature, nutrient availability, and phytoplankton

composition (Bouman et al., 2000). In REcoM2, these

parameters are based on the mean values of Geider et al.

(1998). In our experiment, the estimated values of a and mmax
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for both phytoplankton groups (nanoplankton and diatoms) are

within the range of Geider et al. (1998) and other BGC model

literature, e.g., Fasham et al. (1990) and Anderson (1993).

Similar values were reported at BATS from in situ profiles by

Kovač et al. (2018) and in the Mediterranean Sea from a BGC-

Argo data by Barbieux et al. (2019).

True values of BGC parameters (if available) are not

constant over time and change during seasons (Simon et al.,

2015) due to species composition. They also show

interannual variability, which is also observed in our

experiments. For example, dChlNano showed large variability

during each assimilation cycle for both stations. Although

the overall updates are small, the estimates of the parameter

hardly stabilized over the course of the assimilation

experiments, indicat ing a large uncertainty of the

parameter with regard to chl-a concentration and NPP

simulation. At DYFAMED, the final estimate of the

parameter is close to the default value. However, it is quite

variable in between and updated at each assimilation cycle.

The parameter is less constrained during bloom peak

episodes. Intra- and inter-annual variations indicate that

time-dependent parameters should be used in ocean BGC

models. It also suggests that parameter values resulting from

a short period may not be suitable for multi-decadal

ecosystem studies or generating long BGC reanalysis.

Although we get similar values of dChlNano at BATS, when

assimilating only satellite chl-a and by the simultaneous

assimilation of satellite chl-a and in situ NPP data, the value of

dChlNano converges after the second bloom period for the earlier

case at both sites. In contrast, simultaneous assimilation leads to

time-varying parameter estimates. At DYFAMED, we obtain

similar variation over time. However, the change in the

parameter value is smaller.
FIGURE 12

Comparison of monthly mean simulated NPP of EXPState_EP, satellite-derived NPP based on SeaWiFS satellite and in situ bottle data. The box
denotes the lower to upper quartile values of ensemble members. The horizontal line on the box is the median of the ensemble. The whiskers
show the range of the ensemble.
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Loss of chlorophyll from functional cells, here described by a

chlorophyll degradation rate dChl , is a necessary but hard to

constrain process in quota-based ecosystemmodels. The original

model by Geider et al. (1998), which primarily describes

photoacclimation on timescales of days, contains no such

term, which becomes mainly important during low-growth

situations in winter and at the lower boundaries of the

euphotic zone. Without a chlorophyll loss term, which in

reality describes complicated processes in senescent or

photostressed cells, phytoplankton C:Chl ratios become

unreasonable in such situations. The parameter is therefore

usually tuned subjectively until when a reasonable agreement

between observation and simulation is found and may not be

suitable for BGC models other than those for which they were

tuned. A wide range of values of this parameter can led to

improvement in the model results as the parameter shows

correlation with other parameters (Figure 8). The estimated

values resulted from all our joint-estimation experiments are

below 0.25. It has been shown (Álvarez et al., 2018) that a

replacement of the simple chlorophyll degradation model by a

more process-based description of the degradation of

photosystem functionality can lead to improvements in

modeled C:Chl ratios. This should be pursued further.

In REcoM2, phytoplankton mortality is described by grazing

and aggregation. The grazing parameters have large updates in

both stations. At BATS, changes in the grazing parameters were

prominent, whereas changes in aggregation were prominent at

DYFAMED. In REcoM2, the loss process is dominated by

aggregation compared with grazing (Laufkötter et al., 2016).

However, at BATS, the model overall underestimated NPP

compared to the in situ observations but overestimated surface

chl-a (see Figure 3). Therefore, to reduce the model-data misfit

of NPP and chl-a, the simulation had to keep the phytoplankton

population sufficiently low through enhanced grazing. On the

other hand, the model overestimated NPP compared to in situ

observations, which compensated for more aggregation rather

than grazing.

The durations of the spring blooms reproduced by the model

and the filter are too short compared to the satellite

data (Figure 10). Ensemble members using the default

parameters overestimate the chl-a concentration during the

bloom periods at BATS. The model state with estimated

parameters displays a better fit to the observations at this site.

This is an additional indication justifying the increased grazing

at BATS. At DYFAMED, on the other hand, the surface chl-a

concentration exhibits a better fit to the observations during the

bloom period justifying the increased aggregation.

At BATS, the estimated maximum grazing rate of

zooplankton x exceeds what is commonly considered a

“realistic” value in the biogeochemistry literature. Most likely,

this parameter compensating for the other grazing parameter,

i.e., g , which indicates large uncertainty of the grazing process at

BATS. Including both grazing parameters in the estimation
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process enabled the model to follow a trajectory that better fits

with satellite chl-a concentration and in situ NPP. Satellite chl-a

assimilation produces a more reasonable value of g at BATS

(0.61) but increases discrepancies in NPP simulation. Anderson

et al. (2015) also used similarly high value of g and found good

agreement between simulation and observation of primary

production but at different locations. In addition, more

realistic values of both grazing parameters could be obtained

by representing phytoplankton mortality as physiological

mortality in addition to aggregation as is currently used

in REcoM2.

Although sparse in time, the assimilation of in situ NPP had

a large impact on the parameter estimates at both sites,

particularly at BATS. Parameter estimation with only satellite

chl-a assimilation improves the modeled surface chl-a but

deteriorates NPP (Figure 11). Assimilation of both satellite

chl-a and bottle NPP data improves the NPP prediction by

25% compared with satellite chl-a only assimilation without

deteriorating the chl-a prediction. Satellite chl-a data are

insufficient to constrain the BGC parameters although they are

closely related. However, 14C primary production shows large

discrepancies with satellite-based estimations as discussed in

Section 4.3.

We found correlations between some of the parameters that

preclude those parameters from being estimated independently.

Correlation between parameters can prevent estimating realistic

parameter values. Co-dependencies between parameters mean

that different sets of parameter values can be optimal. This

suggests that BGC models have no single optimal configuration.

Therefore, model parameters cannot be meaningfully “tuned”

without additional conditions.

Some studies noted that BGC parameters often could not be

effectively constrained, especially in high-dimensional cases

when many parameters are considered together (Ward et al.,

2010; Fiechter et al., 2013; Ward et al., 2013) due to the lack of

available observations or specific types of observations. The

optimal value of each parameter can depend on other variables

that we have not assimilated. Although we have reduced the

model-data misfit substantially, correlations among parameters

and dependence on other state variables lead to uncertainties in

the estimated values of some parameters.

By perturbing 10 selected parameters and updating them to

bring the model close to observations, we assume that the

remaining BGC parameters do not contribute to the model

uncertainty. However, the existing knowledge of the BGC

parameter uncertainties and their covariances is not sufficient

to define a subset of parameters that is optimal. In this study, we

assessed how uncertainties in a limited set of parameters are

related to each other. Some of our results may depend upon the

subset of parameters chosen for perturbation. Different

combinations of parameters might lead to better model

estimates than others. The covariances of BGC parameter

uncertainties will need to be further explored.
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4.2 Usefulness of estimated parameters

In Section 3.2, we presented that the estimated parameters

improved the prediction capability of REcoM2 substantially.

However, limitations remain depending on the purpose of

their use. One limitation is that parameter estimation

experiments were conducted for 3 years. Thus, the improved

parameters may not be optimal for long-term climate

simulations/projections. Furthermore, the parameters varied

over time, and not all parameters converged to a constant

value. Using the values from the end of the parameter

estimation experiments as parameters for the subsequent

experiments showed improved model skill. Nonetheless, it is

not clear whether these values are the optimal choices.

An alternative to the parameter values at the end of the

experiments is to take time averaged values over some later part

of the experiment as estimated parameters. However, not all

BGC parameters converge during the parameter estimation

experiment. For example, anano and g do not have any clear

convergence at BATS even after 3 years of DA. We also

performed an experiment using the estimated parameters

averaged over the entire period of the DA experiment. The

parameter values taken at the end of the experiments outperform

the time-averaged parameter estimates. This also raises the

question of the optimal length of the experiment, which is

hard, if not impossible, to define. The 3-year period used in

our experiments repeatedly covers the bloom and non-bloom

seasons that should be sufficient for the parameter estimation. In

our experiment, some parameters did not converge. For these

parameters, optimal values might vary in time in order to react

to varying growth conditions.

We estimated parameters in two different locations and

found distinct optimal parameter values. This points to the

fact that BGC parameters can vary substantially across space

dependent of physical and ecosystem context. This implies that

regional and global 3-D models should profit from using

spatially varying parameter values. The methods that we used

here to estimate parameters can be extended to estimate spatially

varying parameter values in a 3-D model. For this, each

parameter has to be defined as a 3-D field that then can be

estimated utilizing the cross covariances with the observation

analogous to the 1-D setup.
The existence of correlations between some parameters

indicates that there is no single combination of model

parameters that can be considered to be optimal. This means

that predictions of a single model configuration are likely to

underestimate the magnitude of the uncertainty around the best

estimates. Using an ensemble with perturbed parameters will

help to represent this uncertainty.

In addition, we did not consider the uncertainty of the

physical simulations in this study. It is possible that BGC

parameters also compensate for uncertainties from model

physics. Whereas ensemble-based DA would allow us to
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quantify uncertainty in model parameters, in the structure,

and in the forcing data used to compute the model

predictions, the experiments implemented here focused only

on parameter uncertainty and did not allow for quantification of

uncertainty in the physical simulations.
4.3 Discrepancies of bottle NPP data
at BATS

In situ bottle NPP has large discrepancies with model

predictions (Figure 9). At BATS, in situ NPP shows no

prominent seasonality, at least for the period of our

experiments. We further explored the satellite-derived NPP

estimation based on the CAFE model. We compared the

monthly mean satellite-derived NPP with the monthly mean

NPP resulting from the state estimation experiment with

estimated parameters (EXPState_EP) and in situ bottle data at

BATS. Both model and satellite data show a clear seasonal cycle,

whereas in situ bottle data are rather erratic (Figure 12). Tin et al.

(2016) also found that satellite-based estimation captures the

strong seasonality. In contrast, in situ data show more variability

due to errors in the measurement. Saba et al. (2010) found that

ocean BGC models underestimate the NPP at BATS.

Another explanation for the large model-data misfit at BATS

is the absence of picoplankton in REcoM2, which causes the

increase in phytoplankton biomass in the summer (White et al.,

2015). At BATS, picoplankton dominates the phytoplankton

community during the off-peak period and becomes abundant in

late spring to early winter but is usually scarce during the bloom

period (Steinberg et al., 2001). Furthermore, the productivity of

picoplankton is higher than other phytoplankton in the western

Sargasso Sea (Malone et al., 1993) and is sensitive to nitrogen

limitation. In summer and fall, when the thermocline is shallow

(deep nitracline), nitrogen levels (Nitrate + Nitrite) go below 80

m from the surface. Therefore, picoplankton grows in the deeper

part of the euphotic zone (DuRand et al., 2001). Another

possibility is that, in fall, when deep mixing does not occur,

the temperature of the euphotic zone rises and picoplankton

grows deep in the water column below the euphotic zone

(Fawcett et al., 2014). Thus, picoplankton has a greater impact

on deep chlorophyll maximum (DCM) during the off-peak

period, which is not represented in REcoM2. Therefore,

REcoM2 may underestimate the total NPP in picoplankton-

dominated regions.

A DCM is a common feature that occurs below the mixed

layer in the oligotrophic ocean. We further investigate the

vertical profile of chl-a concentrations for the existence of a

DCM layer (DCML) at BATS. As can be seen in Figure 13, the

simulated depths of DCML are shallower than the observed

DCML during the off-peak periods. DA application did not

change the DCML and the vertical structure of the chl-a profile

much. Any deepening in DCML should reflect NPP increases.
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The observed DCML peaks between 60 and 120 m (Figure 13),

indicating active picoplankton production during the off-peak

period at BATS, which is absent in the model. High surface chl-a

concentrations in spring are associated with deep convective

mixing, which leads to a shallower DCML. At BATS, most of the

phytoplankton groups increase during bloom periods rather

than any single group (Steinberg et al., 2001). This suggests

that the picoplankton grows above the euphotic zone during the

bloom period at BATS. However, during the off-peak period, the

most important biomass component of the DCML is

picoplankton, which the model does not represent. This could

also explain the underestimation of NPP at BATS by REcoM2.
5 Conclusions

In this study, we estimated the values of 10 preselected

parameters of the BGC model REcoM2 and evaluated the

effectiveness of the estimated parameters on the predictive

performance of the model, including the uncertainty

quantification of the parameters at two BGC time-series

stations: BATS and DYFAMED. The parameters characterize

the major processes of phytoplankton sources and sinks, such as

photosynthesis, chlorophyll degradation, grazing, and

aggregation. We used a 1-D configuration of the coupled

MITgcm-REcoM2 model and assimilated 5-day satellite chl-a

concentration and monthly in situ NPP for 3 years at both sites

applying the ESTKF, an ensemble square root filter. The
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estimated parameters were assessed and found to improve the

prediction capability and the seasonal variability of the

model simulations.

The parameter estimation procedure generated improved

parameter values when satellite chl-a and in situ NPP data were

simultaneously assimilated. Assimilating satellite chl-a data

alone did not adequately constrain the model. In this case, the

filter adjusted the model toward optimal chl-a simulations.

However, it generated parameter values that resulted in larger

model-data misfits for NPP. We also found large discrepancies

in situ NPP data, which may arise not only from the 14C

methodology but also from the distribution of particles and

organisms in the highly oligotrophic BATS and DYFAMED

waters (Harris et al., 1989).

The strongest updates of the parameters happen during the

spring blooms at both stations. As the spring bloom intensity at

BATS is lower than at DYFAMED, the pattern of changes in the

parameters at BATS is more irregular, not only in one season but

throughout the entire assimilation period. As expected, the

parameter update is strongly linked to the bias in the estimates

of the state variables. Given the large bias in surface chl-a at

BATS, some parameters (e.g., anano and g) may be subject to

changes even after 3 years of assimilation, whereas at

DYFAMED, we obtained more stable parameter values. The

contribution of diatoms in the phytoplankton community is

larger at BATS than at DYFAMED. This complements our

finding that grazing parameters are more important than

aggregation for describing phytoplankton mortality at BATS.
FIGURE 13

Simulations of chl-a concentration of EXPState_EP at BATS. The black solid lines represent DCML.
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We found that dependences between some parameters exist

—a change in one parameter affects the evolution of others. This

behavior indicates that multiple different combinations of

parameter values are possible, and therefore, they cannot be

estimated independently. It further suggests that BGC models

have no single optimal configuration and predictions from single

model configuration are likely to underestimate the magnitude

of the uncertainty around the best estimates. The solution is to

design ensemble modeling approaches using a sufficiently large

ensemble with perturbed parameters.

Given the high parameter uncertainty of BGC models,

parameter estimation is essential. However, the model

simulations depend on the parameter values in non-linear

ways and vary spatially and temporally, which requires a

systematic examination of parameters in time and space.

Estimating spatial and temporal varying parameter values will

allow for efficient exploration of BGC process and modeling at

the basin and global level. We point out that the method and

learning from this study will serve as an important base for

conducting spatially and temporally varying ocean BGC

parameter estimation studies at the global level. Estimation of

spatially and temporally varying parameter values in a 3-D

global ocean BGC model will be considered in future studies.
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