BENTHIC MEGAFAUNA IN THE ARCTIC OCEAN

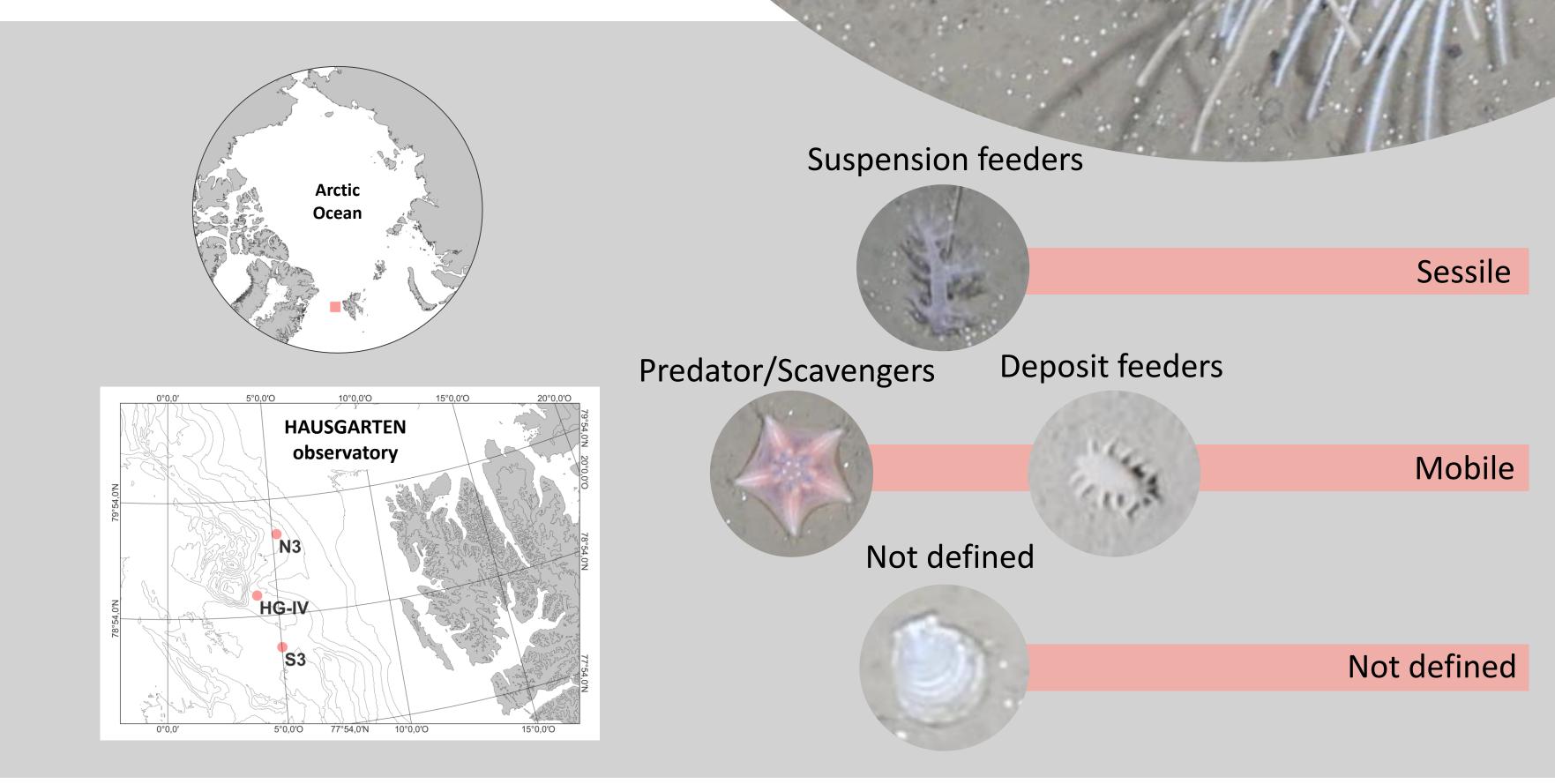
Dynamics in temporal community composition

Lilian Böhringer^{1,2}, Autun Purser¹, Melanie Bergmann¹

¹ Alfred-Wegener-Institute Helmholtz Institute of Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany ² University of Bremen, Leobener Straße, 28359 Bremen

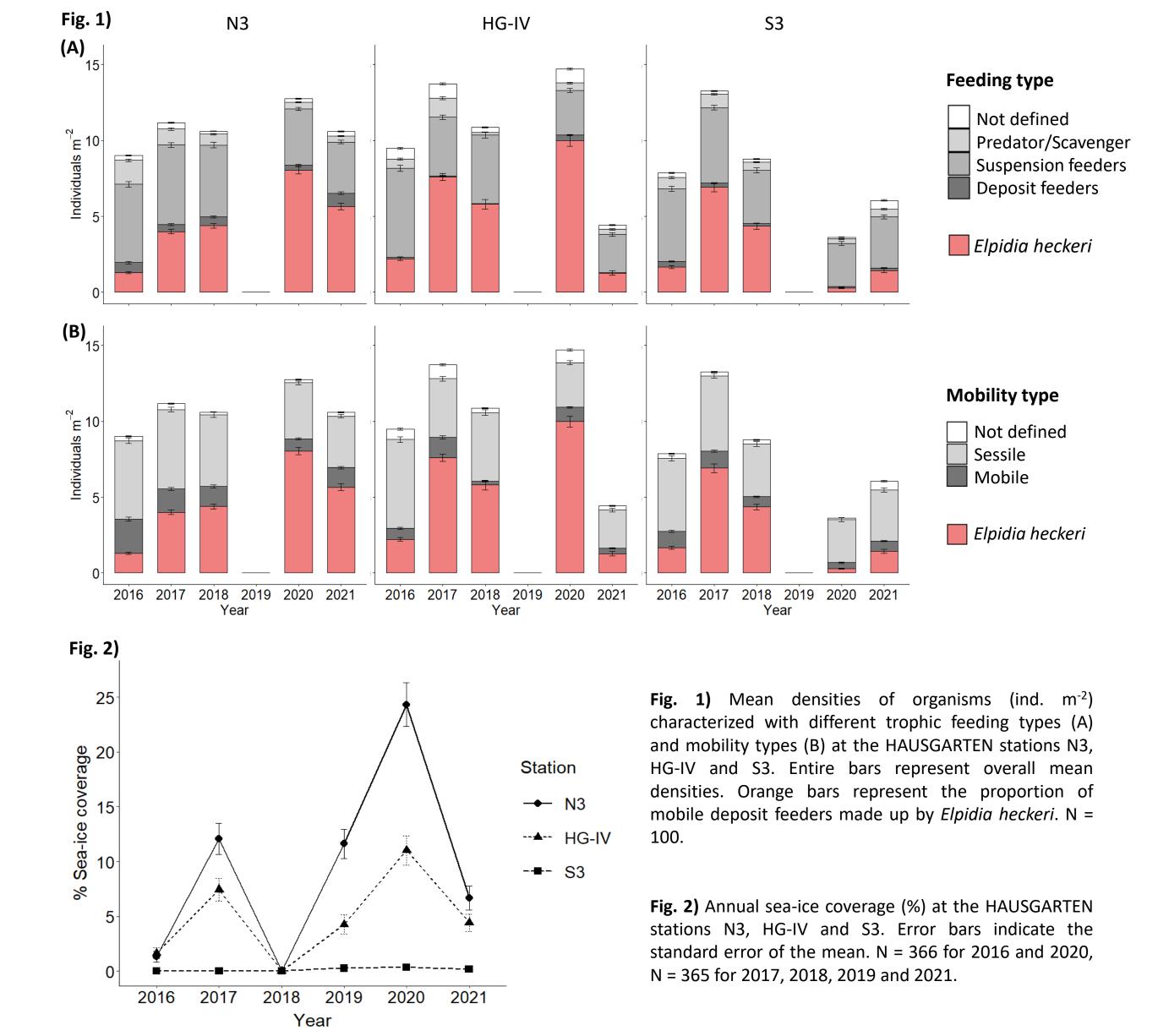
INTRODUCTION & AIM

Benthic megafauna play a pivotal role in the functioning of deep-sea ecosystems and influence the global carbon cycle³. The structure of benthic communities is influenced by food availability and hence by phytodetrital flux from surface layers⁴. Highly productive marginal sea-ice zones therefore provide high food supply for benthic communities⁵. Future climatic change may lead to shifts in such zones⁶ and benthic organisms will be faced with changing phytodetrital fluxes.



Determination of temporal community composition dynamics in benthic megafauna in the Arctic Ocean and whether those are influenced by sea-ice coverage.

METHODS


Year	2016	2017	2018	2020	2021
Station	N3	HG-IV	S3		

- Image survey in the HAUSGARTEN observatory 1)
- Image annotation in PAPARA(ZZ)I⁷ 2)
- Convert abundance data to density (number of ind. per m²) 3)
- Calculate overall megafaunal density 4)
- Group taxa by mobility and feeding types 5)
- Extract mean annual sea-ice coverage 6)
- Statistical analysis 7)

- Shift in dominant functional traits from sessile suspension feeders to mobile deposit feeders
- The dominance of mobile deposit feeders was attributed to one single species of sea cucumbers: *Elpidia heckeri*
- A positive relation was indicated between benthic megafaunal density, the density of *E. heckeri* and the extent of sea-ice coverage at N3 and HG-IV
- Characteristics of *E. heckeri* potentially leading to its dominance:
 - Opportunistic feeding behaviour⁸
 - Ability to schedule time of spawning incidental to environmental factors⁹
 - 'Boom and bust' cycles in response to food availability common in other holothurian species¹⁰
- \rightarrow Variations in phytodetrital quality and quantity may be responsible for the density variation of *E. heckeri*
- \rightarrow Variations in phytodetrital flux may be connected to sea-ice coverage and primarily benefitted the sea cucumber
- → Time-series data based on image surveys are valuable data sets in order to detect long-term trends of benthic megafauna in the future Arctic Ocean

SUMMARY

- Benthic megafauna in the Arctic Ocean are influenced by food availability⁴
- Years with high density of the sea cucumber *Elpidia heckeri* coincided with high sea-ice coverage at N3 and HG-IV
- Strong variations in overall megafaunal density and density of *E*. *heckeri* can be expected for the future Arctic Ocean

OUTLOOK

- For the future stronger 'boom and bust' cycles of *E. heckeri* may be expected given their ability to quickly respond to changing environmental conditions
- Benthic megafauna community as a whole may exhibit strong variations in density and diversity

REFERENCES

³ Klages M, Boetius A, Christensen JP, Deubel H, Piepenburg D, Schewe I, Soltwedel T (2004). The Benthos of Arctic Seas and ist Role for the Organic Carbon Cycle at the Seafloor. In: Stein R, MacDonald RW (eds). The Organic Carbon Cycle in the Arctic Ocean. Springer Berlin Heidelberg, pp 139-167.

- ⁴ Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Martínez Arbizu P (2008). Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23:518-528.
- ⁵ Fadeev E, Rogge A, Ramondec S et al. (2021) Sea ice presence is linked to higher carbon export and vertical microbial connectivity in the Eurasian Arctic Ocean. Commun Biol 4:1-13.
- ⁶ Yadav J, Kumar A, Mohan R (2020). Dramatic decline of Arctic sea ice linked to global warming. Nat Hazards 103:2617-2621.

⁷Marcon Y, Purser A (2015). PAPARA(ZZ)I 1.6 - User Manual.

⁸ Bluhm BA, Ambrose Jr. WG, Bergmann M, et al. (2011). Diversity of the arctic deep-sea benthos. Mar Biodivers 41:87-107.

⁹ Kremenetskaia A, Ezhova O, Drozdov AL, Rybakova E, Gebruk A (2020). On the reproduction of two deep-sea Arctic holothurians, *Elpidia heckeri* and *Kolga hyalina* (Holothuroidea: Elpidiidae). Invertebr Reprod Dev 64:33–47. ¹⁰ Kuhnz LA, Ruhl HA, Huffard CL, Smith KL (2014). Rapid changes and long-term cycles in the benthic megafaunal community observed over 24 years in the abyssal northeast Pacific. Prog Oceanogr 124:1–11.

