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Abstract
An ensemble-based data assimilation framework for a coupled ocean–
atmosphere model is applied to investigate the influence of assimilating different
types of ocean observations on the ocean and atmosphere simulation. The data
assimilation is performed with the parallel data assimilation framework (PDAF)
for the climate model AWI-CM. Observations of the ocean, namely satellite
sea-surface temperature (SST) and temperature and salinity profiles, are assimi-
lated into the ocean component. The atmospheric state is only influenced by the
model dynamics. Different assimilation scenarios were carried out with different
combinations of observations to investigate to what extent the assimilation into
the coupled model leads to a better estimation of the state of the ocean as well
as the atmosphere. The influence of the data assimilation is assessed by compar-
ing the ocean prediction with dependent and independent ocean observations.
For the atmosphere, the assimilation result is compared with the ERA-Interim
atmospheric reanalysis data. The ocean temperature and salinity are improved
by all the assimilation scenarios in the coupled system. The assimilation leads to
a response of the atmosphere throughout the troposphere and impacts the global
atmospheric circulation. Globally the temperature and wind speed are improved
in the atmosphere on average.
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1 INTRODUCTION

Traditionally, different components of the Earth system
such as the ocean and the atmosphere are simulated
by separate models with influences of other compo-
nents being modelled as boundary conditions or forcings.

However, the oceans and the atmosphere are connected
and interact with each other. A consistent initial con-
dition for these different components is required and is
expected to provide a better forecast for both the ocean and
the atmosphere. Earth system models simulate different
components like the ocean, atmosphere, sea ice and land
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surface and their interactions in one framework including
fluxes in between them which can thus lead to more con-
sistent simulations than standalone models. Such models
can capture the key physical processes for each of the cou-
pled components and can help to better understand the
impact of changes in one component on other components
(Miller et al., 2017). However, when using a coupled Earth
system model, it can only represent a climatological state,
but not the current weather conditions unless one uses
data assimilation (DA) to initialize the model forecasts.

DA combines the model state with real-world obser-
vations and thus provides an optimized state estimate
of the coupled model. After a certain period with data
assimilation, the state estimate can be close enough to the
reality, and can then be used to initialize a new predic-
tion simulation. The common approach used is the weakly
coupled DA, which means that the assimilation acts sep-
arately on each component in the coupled model (Penny
and Hamill, 2017). Thus, observations of one component
only directly influence their own component. The other
components can benefit from the DA through the model
dynamics. One example is given by Laloyaux et al. (2016)
who assimilated temperature and salinity observations
into the ocean model using the three-dimensional varia-
tion (3D-Var) method and air temperature, surface pres-
sure and wind velocity into the atmosphere with the
4D-Var method. Their results showed that the assimi-
lation into one model affected the other model states,
especially for the upper ocean and lower atmosphere tem-
perature. Another example is by Liu et al. (2013), who
found that assimilating atmospheric observations into a
coupled ocean–atmosphere model was important for the
estimation of not only the atmospheric but also the oceanic
variables in the mid-latitudes. Moreover, assimilating only
atmospheric observations into the atmosphere model in
a coupled ocean–atmosphere system can better reproduce
the intensity change of a typhoon (Kunii et al., 2017).
Compared to the uncoupled analysis, the weakly cou-
pled ocean–atmosphere assimilation system provided an
improved forecast for both the atmosphere and the ocean
(especially for the sea-surface temperaure prediction) by
applying DA into both the ocean and the atmosphere
(Browne et al., 2019; Guiavarc’h et al., 2019; Skachko
et al., 2019). Besides, climate variabilities were well simu-
lated (Karspeck et al., 2018) and most of the biases were
corrected (Chang et al., 2013) by such a coupled DA sys-
tem. Other benefits of coupled DA systems include better
reconstruction of the ocean heat content variability and
trends (Zhang et al., 2007) and better ocean and atmo-
sphere forecasts from seasonal to interannual time-scales
(Sugiura et al., 2008). However, Lea et al. (2015) found
assimilation into both the ocean and the atmosphere in a
coupled system gave similar analysis states compared to

assimilation into the separate ocean and atmosphere alone
models.

To the authors’ knowledge, until now no studies assim-
ilated only the ocean observations into the ocean compo-
nent in a coupled ocean–atmosphere model and explored
their influence on the atmospheric variables of the atmo-
sphere component for real-world experiments using the
Ensemble Kalman Filter (EnKF). In this study, we investi-
gate whether DA can improve the prediction of the ocean
as well as the atmospheric state by assimilating multi-
ple types of ocean observations into the ocean component
in a coupled ocean–atmosphere model. These assimila-
tion experiments were designed to answer the following
questions: (a) What is the assimilation effect on the ocean
in this coupled system? (b) What is the effect of the dif-
ferent observational types sea-surface temperature (SST)
and subsurface profiles? and (c) What is the impact of the
assimilation of ocean variables on the atmospheric state?

The article is structured as follows. Section 2 briefly
describes the coupled ocean–atmosphere model and the
data assimilation method we used for the numerical exper-
iments. Section 3 provides the configuration and input for
the data assimilation experiments. Section 4 discusses the
data assimilation results and Section 5 the conclusion of
this study.

2 DESCRIPTION OF THE
COUPLED DATA ASSIMILATION
SYSTEM

2.1 The coupled ocean–atmosphere
model: AWI-CM

The AWI (Alfred Wegener Institute) climate model
(AWI-CM: Sidorenko et al., 2015) is used as the cou-
pled ocean–atmosphere model to simulate the global
ocean as well as the atmosphere circulation and their
interactions. AWI-CM consists of the finite element sea
ice–ocean model (FESOM v1.4: Wang et al., 2014) cou-
pled with the atmosphere model ECMWF HAMberg ver-
sion (ECHAM6: Stevens et al., 2013) using the coupler
software OASIS3-MCT (Model Coupling Toolkit) (Valcke
et al., 2013). FESOM is a global ocean general circu-
lation model implementing unstructured mesh, which
allows varying resolutions within the model domain. The
advantage of unstructured meshes for ocean modelling is
described by Danilov (2013). ECHAM6 is a spectral-based
atmospheric general circulation model integrated with
the land vegetation model JSBACH. It mainly serves as
the atmospheric component of the Max Planck Institute
Earth System Model (MPI-ESM) which allows e.g. pre-
dicting seasonal surface temperature (Baehr et al., 2015),
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or investigating the impact of regional cloud changes
(Voigt and Shaw, 2016). With ensemble data assimilation,
MPI-ESM was used, for example, by Brune et al. (2015).
A detailed description of AWI-CM is given by Sidorenko
et al. (2015) and Rackow et al. (2018). It has been applied to
investigate the impact of ocean and atmosphere model res-
olution on Arctic sea ice and Atlantic Ocean heat transport
(Docquier et al., 2019), the circulation of the North Atlantic
Ocean (Sein et al., 2018), the potential sea ice predictability
with ensemble experiments (Juricke et al., 2014), the pre-
dictability of the Arctic sea ice edge (Goessling et al., 2016)
and the seasonal atmospheric responses to reduced Arctic
sea ice (Semmler et al., 2016).

2.2 Data assimilation method: Local
error subspace transform Kalman filter

The data assimilation method we used here is the local
error subspace transform Kalman filter (LESTKF: Nerger
et al., 2012b) that is implemented in the software Paral-
lel Data Assimilation Framework (PDAF, http://pdaf.awi.
de: Nerger et al., 2005; Nerger and Hiller, 2013). Like in
all EnKFs, the model uncertainties are represented by an
ensemble of realizations of model states, each represented
by a state vector. The state vector can include multiple vari-
ables from either one component or different components
in the coupled physical system. In this study all the ocean
variables including sea-surface height, ocean temperature,
salinity and velocity in three directions are part of the state
vector, while the atmospheric variables are not treated as
a state vector of the update. At a time step t, the ensemble
of state vectors is propagated from the previous time-step
t−1 by applying the model dynamic equations, which is
called the forecast phase. Once observations are available,
the ensemble states are updated by combining the obser-
vations with the model forecast. This is called the analysis
step. The weight matrix for the observational influence is
calculated based on the covariance matrix of the forecast
ensemble and the observation error and it gives the rela-
tive weight to the forecast and the observations. Once the
analysis is done, the updated ensemble of state vectors will
be used as the input for the next forecast phase.

Covariance inflation (Anderson and Anderson, 1999)
and localization (Hamill et al., 2001; Houtekamer and
Mitchell, 2001) are two commonly used methods to
improve the filter performance of EnKFs. The effect of
inflation is to increase the ensemble variance, thus avoid-
ing filter convergence. Localization can reduce the spu-
rious errors in the ensemble-estimated covariance matrix
caused by a small number of samples. In this study,
domain localization and observation localization are used
(Nerger et al., 2012a). For a given location in the model grid

only observations within a prescribed localization radius
are taken into account. The LESTKF calculates an ensem-
ble transform matrix in the local error subspace. This
makes the computation more efficient compared to the
original EnKF with local analysis (Evensen, 2003).

As an open-source software framework, PDAF pro-
vides fully implemented and parallelized ensemble filter
algorithms as well as support for the parallel ensemble
integrations. It has been used for DA with small mod-
els as well as with high-dimensional models on super-
computers (e.g. Yang et al., 2015; Kurtz et al., 2016; Mu
et al., 2018; Androsov et al., 2019). The coupling of PDAF
with AWI-CM is described in Nerger et al. (2019). The
current configuration can perform weakly coupled data
assimilation, i.e. assimilating the ocean observations into
the ocean component of the coupled AWI-CM model. The
atmospheric variables are not directly updated via the
covariance matrix but indirectly influenced by the model
dynamics in this weakly coupled data assimilation.

3 NUMERICAL EXPERIMENTS
WITH AWI- CM-PDAF

3.1 Model set-up

The set-up of the AWI-CM model we used in this study
follows that used in Sidorenko et al. (2015). In the
ocean model FESOM, we use a varying horizontal reso-
lution between 25 km in the tropical and northern North
Atlantic regions and 150 km in the open ocean, which is
called “CORE II” mesh (Large and Yeager, 2009; Wang
et al., 2014). In the vertical direction 47 layers are used with
different thicknesses, varying from 10 to 250 m from top to
bottom. In the atmospheric model ECHAM6, we use the
resolution T63, corresponding to a horizontal resolution of
1.875◦. In the vertical direction, the model is divided into
47 sigma-layers. The time steps for FESOM and ECHAM
are 900 and 400 s, respectively. The coupling frequency is
set to 1 hr.

3.2 Model initialization

Prior to the data assimilation, a serial long-term historical
simulation from the year 1950 to the end of 2015 was car-
ried out as a spin-up run to obtain the suitable initial state
for the ocean and the atmosphere as well as the exchange
fluxes between the two components (Haarsma et al., 2016;
Docquier et al., 2019). For the ocean component, an ini-
tial ensemble of the model state is generated using the
second-order exact sampling method (Pham et al., 1998).
First, a one-year simulation with AWI-CM was run for the

http://pdaf.awi.de
http://pdaf.awi.de
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F I G U R E 1 (a) The interpolated SST
observations on January 1, 2016. The white part
represents the area where no satellite
observation is available due to cloud cover. (b)
The maximum number of days for which a grid
point is not observed

year 2016 using the same configuration as for the later
ensemble assimilation run. This simulation was initialized
using the state of the last day from the spin-up run. The
model state at every fifth day was stored, which resulted
in 73 model snapshots in total. From each of these states
a running mean over 30 days was subtracted and stored in
a matrix so that each column represented a correspond-
ing snapshot. Then a singular value decomposition was
computed for this matrix to produce 72 singular values
and corresponding singular vectors. The 45 leading singu-
lar values and vectors were used to generate the ensemble
perturbations using second-order exact sampling. These
were added to the state of the last day from the spin-up
run to generate the initial ensemble for the data assimi-
lation experiments. Using this method, the initial model
uncertainties among different ensemble members were
estimated from the temporal variability relative to the run-
ning mean during the simulation year. For the atmosphere
component, the deterministic initial state from the spin-up
run was used for all ensemble states.

3.3 Observation dataset

The assimilated observations are satellite sea-surface tem-
perature (SST) and profile data of temperature and salinity.
The satellite SST observations are the Level-3 multi-sensor
product (SST_GLO_SST_L3_NRT_OBSERVATIONS_
010_010) from the European Union Copernicus Marine
Service. The observations are available daily between
80◦N and 80◦S with a resolution of 0.1◦. The unstructured
model grid used here is in many regions coarser than the
observation grid, while in refined regions it approaches
the resolution of the observations. To take this varying
resolution into account, super-observations have been
generated by averaging the observations within half the
model grid resolution around each model grid point. This
approach yields a set of super-observations on the model
grid. Figure 1a shows the interpolated SST field for Jan-
uary 1, 2016. Figure 1b shows the maximum number of
days for which a grid point is not observed during the year
2016. In most regions the maximum duration without

observation is below 10 days. Only at high latitudes are
there gaps of more than 50 days, which are frequently
caused by sea ice. In the equatorial Pacific and Indian
Oceans and in the North Atlantic drift region, clouds cause
gaps of up to about 30 days, which reduces the influence
of the data assimilation in these regions.

The temperature and salinity profiles are provided by
the EN4 dataset (EN4.2.1) of the UK Met Office (Good
et al., 2013). Compared to the SST data, the profile dataset
has a relatively sparse horizontal distribution, while the
observations have a much higher resolution in the verti-
cal. Figure 2 shows the location of profile observations of
temperature and salinity for all the depths on January 1,
2016. In vertical direction these profiles can reach down
to 5,000 m and about 1,000 quality-checked profiles are
available each day. In the vertical the observations were
interpolated to the layers in FESOM. In the horizontal
direction, the observation operator horizontally interpo-
lates the model state onto the observation locations during
the data assimilation process.

3.4 Data assimilation experiments

The data assimilation is performed daily for the full
year 2016. An ensemble size of 46 is selected to bal-
ance the assimilation performance and the computation
cost, as with this size we get sufficiently good assimila-
tion behaviour. The standard deviations of the observation
errors are set to 0.8◦C for the SST, 0.5◦C for the profile
temperature and 0.5 practical salinity units (psu) for the
salinity. The localization radius is set to 300 km. In the cou-
pled model run, the ensemble spread is sufficiently large
so that no inflation is required.

The initial state of a coupled model can be far away
from the real state, which can cause an instability of
the system at the beginning of the assimilation process
(Mulholland et al., 2015). Figure 3 shows that, in our
case, deviations between the initial model state and the
SST observations of up to 10◦C are present. These large
deviations make a particularly careful application of the
data assimilation necessary to avoid devastating shocks to
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F I G U R E 2 The EN4
quality-checked profile locations on Jan-
uary 1, 2016. Both the temperature and
the salinity profile locations are shown

F I G U R E 3 Difference of sea-surface
temperature between the observation and the
model simulation on January 1, 2016. The highest
difference can be up to 10 ◦C

the model state (Karspeck et al., 2013). To stabilize the data
assimilation process we omit extreme SST observations
with twice of the observation error. This exclusion avoids
too large increments to the model states during the analy-
sis step. This method leads to an omission of about 40% of
the observations at the first analysis step. The fraction of
omitted observations decreases over time and is below 5%
after 80 days.

The second stabilization method is to implement a
treatment for SST data at the sea ice edge. The implementa-
tion considers the fact that the satellite SST can have points
with data, which indicates ice-free conditions, while the
model has sea ice. At these places the difference between
the observed and the modelled SST provides no valu-
able information. Accordingly, observations close to model
grid points with sea ice are omitted. Further, no assimi-
lation updates are performed for model grid points with
sea ice. Without this adaption the assimilation resulted in
unphysically low SST under the sea ice close to the sea
ice edge.

Four different simulation scenarios were carried out
for different types of observations:

1. A free run scenario without data assimilation, denoted
as “Free_run”;

2. A scenario where only the SST data were assimilated,
denoted as “DA_SST”;

3. A scenario where only the profile data were assimilated,
denoted as “DA_proTS”;

4. A scenario where both the SST and profile data were
assimilated, denoted as “DA_all”.

An overview of all the simulation scenarios is provided
in Table 1.

3.5 Performance measures

The root-mean-square error (RMSE) is used to measure
the model performance for different simulation scenarios
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T A B L E 1 Simulation scenarios with different
assimilated observations

Simulation
scenario

Assimilate
SST

Assimilate
T profile

Assimilate
S profile

Free_run N N N

DA_SST Y N N

DA_proTS N Y Y

DA_all Y Y Y

for different variables:

RMSE(X) =

√√√√√
∑nt

i=1
∑nnodes_obs

j=1 [(X
f
i,j − X

obs
i,j )aj]2

∑nt
i=1

∑nnodes_obs
j=1 aj2

where X can be the sea-surface temperature, subsurface
temperature, subsurface salinity, 2 m air temperature,
or surface pressure; nt is the number of analysis steps,
nnodes_obs the total number of observations at an analysis
step; aj is the area of the grid cell j. The overbar indicates
ensemble mean, the superscript f indicates the 1-day fore-
cast corresponding to Kalman Filter update cycles and the
superscript obs the daily observations. In our case nt is the
number of days from 1 March to 31 December of year 2016.
In the following sections “10-month average” refers to the
average over this period. The first 2 months are excluded
from the evaluation since they are considered as the initial
DA transition time. The area-weighting accounts for the
varying resolution of the FESOM mesh.

4 RESULTS AND DISCUSSION

4.1 Impact on the ocean

The RMSE is calculated for the SST, and subsurface tem-
perature and salinity, over all the observation points and
the months March to December to evaluate the data assim-
ilation experiments. An overview of the RMSE for the
different simulation scenarios is given in Figure 4. Below,
we discuss the effect on the different variables.

4.1.1 Temperature

When assimilating SST in DA_SST, the RMSE of SST is
reduced globally by 66% compared to the free run. If
only the subsurface temperature and salinity are assim-
ilated (DA_proTS), the reduction of the RMSE of SST is
still 47%. This indicates that the limited subsurface tem-
perature information can also improve the SST, utilizing

F I G U R E 4 RMSE of SST, subsurface temperature and
salinity for different simulation scenarios over months March to
December

the high vertical correlations in the mixed layer. Figure 5
shows the 10-month average SST difference between the
model simulation and the observations. The difference is
strongly decreased in all assimilation scenarios. The global
area-weighted 10-month average over the absolute SST
difference

abs(SSTdiff) =

∑nt
i=1

∑nnodes_obs
j=1 |(X f

i,j − X
obs
i,j )aj|∑nt

i=1
∑nnodes_obs

j=1 aj

is only 0.33◦C for the scenario DA_SST and 0.31◦C for
DA_all. If only profile data are assimilated (DA_proTS),
the difference is higher with 0.7◦C, which is still only half
the difference of 1.41◦C in the free run.

The RMSE of the subsurface (full water column as sam-
pled by the profile data) temperature, computed relative
to the profile data up to 5,000 m depth, is reduced by 20%
(Figure 4, middle) when assimilating only the SST observa-
tions (DA_SST). As expected, this influence is larger when
assimilating profile data. The reduction reaches 65% in
scenario DA_proTS.

Figure 6 shows global area-weighted 10-month average
profiles of temperature and salinity and their RMSE and
bias between 10 and 230 m depth. In this figure we only
account for profiles which hold data for all 15 model lay-
ers in this depth range. In Figure 6a, at 10 m depth the
RMSE of temperature for the free run is 1.5◦C while for
DA_SST it is reduced to 0.7◦C. The free run as well as
DA_SST shows a strongly increasing RMSE of tempera-
ture with depth from 10 to 160 m, and a decrease of RMSE
below this depth. Assimilating SST only (DA_SST) gives a
rather homogeneous reduction of the RMSE for each layer
down to 160 m compared to the free run. The effect of DA
is still visible at 190 m depth, which shows that the temper-
ature at this depth is correlated to the surface temperature.
Assimilating profile data yields overall smaller RMSEs and
a maximum reduction of the RMSE of 79% at 160 m depth.
At 230 m depth, the RMSE is reduced by 46%. In Figure 6b,
the free run shows negative bias for all depths and the bias
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F I G U R E 5 Average difference of sea-surface temperature between the model simulation and the observations over months March to
December for different simulation scenarios: (a) Free_run, (b) DA_SST, (c) DA_proTS, and (d) DA_all

becomes stronger with depth with a maximum at 160 m.
In DA_SST the bias is largely corrected down to 50 m
depth. From 50 to 200 m the correction decreases gradu-
ally. Assimilating the profiles yields almost zero bias down
to 160 m depth, while from 160 to 230 m the bias is about
−0.5◦C, which is still small compared to the free run.

The above results show that DA_SST also improves the
subsurface temperature, and DA_proTS shows improve-
ments of SST. These effects are caused by the vertical
correlations in the ocean induced by the model dynamics.

4.1.2 Salinity

Assimilating the profile observations in scenario
DA_proTS leads to a 43% reduction in the RMSE of the
subsurface salinity compared to the free run (Figure 4),
while assimilating all data in DA_all yields an RMSE
reduction of 40%. If only SST data is assimilated (DA_SST),
the error in the salinity is reduced by only 5%. These results
are consistent with the results of data assimilation for an
ocean-only model by Vernieres et al. (2014). In Figure 6d it
is visible that assimilating SST slightly reduces the salinity

RMSE in the upper 100 m. If only the profiles are assimi-
lated (DA_proTS), the RMSE at 10 m depth is 0.41 psu and
slightly reduces with depth. The effect of DA is still notice-
able at 230 m depth for DA_proTS and DA_all. The DA
increases the average bias from 10 to 60 m, where the bias
is negative for all cases. From 90 to 230 m depth, the bias is
positive and slightly smaller for the assimilation runs than
for the free run. Note that the sign and amplitude of the
bias is influenced by the choice of the profile included in
the computation. Here only profiles are used which have
observations at all layers between 10 and 230 m depth.
When using all subsurface data, the bias is overall neg-
ative (around −0.15 psu for DA_proTS and DA_all), but
the profiles are not smooth due to the combination of data
from various different sources (not shown).

4.2 Impact on the atmosphere

We evaluate the impact of the DA into the ocean on
the atmosphere by comparing the atmospheric vari-
ables from the model prediction with daily fields from
the ERA-Interim atmospheric reanalysis provided by
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(a) (b) (c)

(d) (e) (f)

F I G U R E 6 Global average RMSE, bias and the profile value of (a–c) temperature and (d–f) salinity over months March to December
as a function of depth

European Centre for Medium-range Weather Forecasts
(ECMWF) (Berrisford et al., 2011) for temperature at 2 m
above surface, surface pressure, zonal and meridional
wind velocity at 10 m above surface. Further, the atmo-
spheric temperature and wind velocity at several pressure
levels are examined.

4.2.1 Two-metre temperature

Figure 7 shows the mean difference for the months
March to December of temperature at 2 m above the sur-
face between the model simulation and the ERA-Interim
reanalysis data for the different simulation scenarios. The
free run shows rather large biases of both signs and the
average bias is −0.24◦C. In general, the three assimila-
tion runs result in an overall more homogeneous and
smaller bias. However, a positive bias is visible everywhere
over the oceans except in the Arctic Ocean and parts of
the Southern Ocean. On average this bias is 0.27◦C for
DA_SST, 0.27◦C for DA_proTS, and 0.24◦C for DA_all.
When assimilating only profile data in DA_proTS, the

spatial pattern of the 2 m temperature bias is very similar to
assimilating only SST or both the SST and profile data. This
similarity shows that the overall bias is not caused by a bias
in satellite SST data. The exact cause for the overall posi-
tive bias is unclear, but it is possibly related to differences
between ECHAM and ERA-Interim in how the 2 m tem-
perature is diagnosed from the lowest atmospheric layer
and surface temperature based on atmospheric conditions.

As SST is at the interface of the ocean and the atmo-
sphere, an improved prediction of SST is expected to lead to
a better prediction of the temperature in the atmosphere.
However, the effect is only direct for the air temperature
above the ocean. Over the continents the changes in the
2 m temperature are less evident than over the ocean.
Here, the land model will react and influence the atmo-
sphere, but a detailed analysis of the reaction of the land
model is beyond the scope of this study. In general, the
strong negative bias over South America is reduced by the
assimilation. Likewise, the negative bias over India and
Southeast Asia is reduced. On the other hand, the positive
bias extending from the eastern Mediterranean to Siberia
is increased.
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F I G U R E 7 Average bias (model – ERA-Interim) of temperature at 2 m above surface over months March to December for different
simulation scenarios: (a) the free run, (b) DA_SST, (c) DA_proTS, and (d) DA_all

4.2.2 Ten-metre wind velocities

The 10-month average bias (model simulation minus
ERA-Interim) of the wind velocity field and the wind
strength at 10 m above the surface is shown in Figure 8.
In the free run, the velocity magnitude at the Equator is
overestimated in the Pacific Ocean and underestimated
in the Atlantic Ocean. The data assimilation strongly
reduces these large differences (by 21.4% in the region
from 10◦S to 10◦N for DA_SST), but the overall flow pat-
tern is maintained. In addition, the bias of wind strength
is reduced in the South and North Pacific. In the south-
ern Indian Ocean, the bias is slightly increased due to an
eastward flow induced by the DA. The effects are very sim-
ilar for all assimilation scenarios, but slightly smaller in
DA_proTS.

Over land, the 10 m wind velocities in the free run and
the three data assimilation runs are rather similar. The
assimilation does not give rise to significant influence on
the velocities there.

Compared to other weakly-coupled data assimila-
tion studies who assimilate both the ocean and atmo-
sphere observations (e.g. Lea et al., 2015) and thus get

an improved atmospheric state, the assimilation into only
the ocean component has significant effects on the atmo-
sphere. However, these effects concentrate on the atmo-
sphere above the ocean but not above the land, which
is mostly due to the much stronger land influence on
the in situ atmosphere compared to the remote ocean
influence.

4.2.3 Temperature and winds in the
free atmosphere

Above we investigated the effect of the ocean DA onto the
atmosphere close to the ocean surface. Here, we extend
the assessment to the free atmosphere. Figure 9 shows the
RMSE of temperature at the pressure levels 925, 850, 500
and 300 hPa for the free run and the experiment DA_all.
The other DA scenarios result in overall similar effect, so
they are not shown in the figure but the RMSE values for all
the scenarios averaged over all the model grids are given in
Table 2. At 300 hPa, a particularly large RMSE of up to 5◦C
is visible in the free run (Figure 9a). This RMSE is strongly
reduced to around 1◦C by the assimilation. In the high
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F I G U R E 8 Average bias of wind velocity and wind speed (m⋅s-1) at 10 m above surface over months March to December for different
simulation scenarios: (a) the free run, (b) DA_SST, (c) DA_proTS, and (d) DA_all

latitudes, the RMSE remains larger, but is still reduced. At
the other pressure levels, the RMSEs are overall lower than
at 300 hPA. However, also at these layers, the DA reduces
the RMSE. An exception is visible in the eastern Pacific at
925 and 850 hPa, where the RMSE is partly increased by
the DA.

Figure 10 shows the bias of the wind field and wind
speed at the four pressure levels in the free atmosphere.
At 925 hPa, the biases are very similar to those for wind
at 10 m (Figure 8). The assimilation reduced biases in the
equatorial region, but induced an eastward flow in the
southern Indian Ocean. This eastward flow is visible with
different strengths at all levels. Overall, the bias ampli-
tudes increase with height, but effects like the reduction of
bias in the tropical Atlantic and Pacific Oceans are visible
at all levels up to 500 hPa. However, at 850 hPa and higher
up in the atmosphere, the DA includes an increased bias
over the North Atlantic and Europe as well as a stronger
negative bias over the North Pacific. At 300 hPa, also an
increased equatorial bias is induced in the Atlantic sector,
thus the effect is reversed from the bias reduction at the
lower levels.

4.2.4 Physical interpretation of the
atmospheric response

For the physical interpretation of the assimilation effect in
the atmosphere we focus on some regions where the effect
of the assimilation can be well interpreted. Generally, the
effects of the corrected SST on atmospheric circulation
and clouds are more straightforward in the tropics and
subtropics where direct thermal circulations are more pro-
nounced and synoptic variability is weaker compared to
the extratropics.

In the free run in the tropical Pacific the SST (Figure 5a)
and the 2 m temperature in the atmosphere (Figure 7a)
are too low. The bias in the equatorial SST is likely at least
partly related to a too-low ocean resolution because tropi-
cal instability waves are not resolved (Rackow et al., 2018).
This is also consistent with Coupled Model Intercompari-
son Project (CMIP6) simulation results with the AWI-CM
(Semmler et al., 2019). The equatorial cold bias results in a
weaker intertropical convergence zone. This is consistent
with a divergence bias in the wind which is particularly
strong in the western tropical Pacific. The bias is visible in
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F I G U R E 9 Average RMSE over
months March to December of
temperature at four pressure levels in the
free atmosphere: (a–d) free run; (e–h)
assimilation scenario DA_all, results in
overall reduced RMSEs

the 10 m winds (Figure 8a), but also at 925 and 850 hPa
(Figure 10c,d). The DA corrects the SST in all three DA
experiments. The atmosphere reacts on this with a warm-
ing (Figure 7) and a significant reduction of the divergence
bias in the winds at 850 and 925 hPa (Figure 10g,h) and at
10 m above the ocean (Figure 8b–d). The enhanced equa-
torial convergence is associated with stronger equatorial
ascending motion and convection. Correspondingly, pre-
cipitation is enhanced in the western equatorial Pacific
and reduced in the adjacent subtropics, reducing a bias
pattern of opposite sign in the free run (Figure S1).

Tropical SSTs and thus near-surface temperatures in
the free run are colder than observed not only in the
equatorial Pacific, but throughout most of the tropics and
subtropics (Figures 5 and 7), with some exceptions (see
below). The counteracting warming introduced by the DA
leads to an even stronger warming in the upper tropical
troposphere (Figure S2) due to enhanced convection and

T A B L E 2 RMSE of temperature and wind speed at four
levels in the free atmosphere averaged over months March to
December for the different simulation scenarios

Temperature
(◦C) Free_run DA_SST DA_proTS DA_all

300 hPa 2.75 1.86 1.82 1.78

500 hPa 1.72 1.61 1.57 1.56

850 hPa 2.02 1.82 1.80 1.76

925 hPa 2.07 1.91 1.88 1.85

Wind speed (m⋅s−1)

300 hPa 5.39 5.13 4.85 5.03

500 hPa 3.93 3.67 3.61 3.63

850 hPa 2.68 2.49 2.47 2.47

925 hPa 2.62 2.43 2.42 2.41
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F I G U R E 10 Average bias
over months March to December of
wind velocity and wind speed
(m⋅s-1) at four pressure levels in the
free atmosphere: (a–d) free run;
(e–h) assimilation scenario DA_all
[Colour figure can be viewed at
wileyonlinelibrary.com]

the temperature dependence of the moist adiabatic lapse
rate (lapse-rate feedback). In fact, the free run exhibits
a similar temperature bias pattern of opposite sign, with
a significant cold bias in the upper tropical troposphere
(300 hPa) of around 4◦C (Figure S2a), so that the SST cor-
rection results in the largest bias reduction (Figure S2e)
and RMSE reduction (Figure 9) in the upper troposphere.

The free run exhibits a cold bias of similar magnitude
(∼3◦C) in the upper troposphere also in the high latitudes
(Figure S2a). By correcting the cold bias only in the tropics
but not in the high latitudes, the assimilation introduces
a too strong Equator-to-Pole temperature gradient particu-
larly in the upper troposphere and thus stronger westerlies
over a broad range of latitudes, encompassing the latitudes
of the subtropical and polar jets (20–70◦N). The remaining
heterogeneity in the wind velocity differences between the

assimilation runs and ERA-Interim, with some difference
wind vectors still pointing eastward (Figure 10), might be
due to a low signal-to-noise ratio associated with the short
10-month period considered.

Another effect of the assimilation is visible in the
Atlantic to the west of South Africa. Here the SST
(Figure 5a) and the 2 m atmospheric temperature in the
free run (Figure 7a) show a strong warm bias. In addi-
tion, there is a significant wind bias (Figure 8a) and a
cloudiness low bias (Figure S3). The westerly wind bias
is a common feature of global climate models leading to
an SST warm bias and then intensifying the SST warm
bias due to reduced ocean upwelling (Bjerkness feed-
back, see for example Eichhorn and Bader (2017), Voldoire
et al. (2019)). Furthermore, a lack of stratocumulus clouds
commonly exists which intensifies the SST warm bias and
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in turn leads to unstable situations and less favorable con-
ditions for stratocumulus cloud formation – another posi-
tive feedback loop (Voldoire et al., 2014). The DA reduces
the SST bias and also the cloud bias as shown in Figure
S3. The cooler SST west of South Africa leads to cooling of
the atmosphere and therefore more favorable conditions
for cloud formation, and the circulation bias at 10 m in
the Atlantic west of South Africa is also strongly reduced
(Figure 8b–d).

In the equatorial Atlantic the free run exhibits a cold
bias in the east, west of Central Africa, and a warm bias in
the west, east of South and Central America, accompanied
by a weakened Atlantic Walker Circulation (Figure 8a).
The DA largely corrects the zonal temperature gradient
(Figure 5) and thereby also the Walker Circulation and
cloud distribution (Figures 8b–d and S3b–d).

Apart from the general enhancement of the wester-
lies in the upper troposphere resulting from the enhanced
Equator-to-Pole temperature gradient, the influence of
the SST correction on the atmosphere is less clear in
the extratropics. For example, the correction of SST dif-
ferences in the North Pacific, with a pattern similar to
the Pacific Decadal Oscillation (e.g. Deser et al., 2010),
has only a minor influence on the mean atmospheric
circulation there (Figure 8). Continental near-surface air
temperature differences, with too-low temperature over
Alaska and too-high temperature over northeast Amer-
ica (similar to the Pacific–North American pattern; e.g.
Wallace and Gutzler, 1981), are not much influenced
either.

5 CONCLUSION

In this work, we investigated the effect of assimi-
lating different types of ocean observations into the
ocean component of a coupled ocean–atmosphere model
on the fields of the ocean and the atmosphere. The
Alfred-Wegener-Institute climate model (AWI-CM) was
used as the coupled model to simulate the ocean as
well as the atmosphere. Satellite sea-surface tempera-
ture and subsurface temperature and salinity profile data
were assimilated. The ocean variables sea-surface height,
ocean temperature, salinity and velocities were directly
updated within this weakly coupled data assimilation sys-
tem, while the atmosphere only reacted dynamically to the
changed ocean state. The data assimilation experiments
are evaluated by comparing the predicted sea-surface
temperature, subsurface temperature and salinity in the
ocean component with ocean observation data. Further,
the predicted atmosphere temperature and wind field
were compared with reanalysis data from ERA-Interim.
In general, the data assimilation improves both the ocean

and atmosphere. From the analysis in Section 4, we
conclude:

1. The assimilation of sea-surface temperature improved
the prediction of both sea-surface temperature and the
subsurface ocean temperature. The assimilation of sub-
surface temperature and salinity data improved the
prediction of subsurface ocean temperature and salin-
ity, but also the sea-surface temperature. Assimilating
only sea-surface temperature has only a marginal, but
positive effect on subsurface salinity. Only if the salin-
ity profiles were assimilated, was the improvement of
subsurface salinity significant. These findings are con-
sistent with data assimilation studies using uncoupled
ocean models.

2. All assimilation scenarios (assimilating only
sea-surface temperature or only the profile or both
data types into the ocean component) lead to improve-
ments of the 2 m temperature and the 10 m wind
velocity for the atmosphere. While changes in 2 m
temperature over the ocean result directly through
strong thermal coupling with the ocean, the wind
response results from the model dynamics in the cou-
pled ocean–atmosphere model. Improvements tend to
be larger in the tropics and over the ocean, whereas
effects over land are mostly very small. Assimilating
different types of observations gives similar simulation
results for the atmosphere, which is expected from
similar effects of the assimilation on the ocean surface.

3. The assimilation scenarios also improved the temper-
ature distribution in the free atmosphere, in particular
in the tropics where temperature changes are ampli-
fied with height due to the temperature dependence of
the moist adiabatic lapse rate. Due to a remaining cold
bias in the high-latitude upper troposphere (around
300 hPa), an enhanced Equator-to-Pole gradient results
in overall too strong westerlies. At lower heights (925
and 850 hPa), however, winds tend to be improved. In
the tropical Pacific the correction of a strong sea-surface
cold bias leads to an improved representation of the
intertropical convection zone with stronger conver-
gence, associated with enhanced ascending motion
and convection. In the equatorial Atlantic the assim-
ilation leads to a better representation of the Walker
Circulation. We speculate that these improvements
in the tropics may act to arrest bias feedback loops
between the ocean and the atmosphere which might
otherwise act to enhance initial biases in either
component.

Overall, the response of the coupled atmosphere to
the weakly coupled assimilation of the ocean observations
extends through the depth of the troposphere and
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has a profound impact on the global atmospheric
circulation.

The present weakly coupled data assimilation is lim-
ited to assimilating only ocean observations. This directly
updates the ocean variables in the assimilation process and
has an indirect effect on the atmospheric fields. Obviously,
the additional assimilation of atmospheric observations
would lead to a direct effect on the atmosphere. The alter-
native to weakly coupled DA is strongly coupled DA, in
which the atmospheric as well as the oceanic variables are
updated jointly using cross-covariances between the two
components. By now, there are only a few studies applying
strongly coupled data assimilation (Lu et al., 2015; Frolov
et al., 2016; Sluka et al., 2016). These studies show clearly
the benefits of strongly coupled data assimilation, e.g. the
ocean analysis errors are reduced compared to the weakly
coupled data assimilation in idealized model experiments
(Sluka et al., 2016). Given that the data assimilation system
used here can be extended to strongly coupled assimila-
tion, this study is a step toward the future investigation of
the role of assimilating ocean observations into both the
ocean and the atmosphere using a strongly coupled data
assimilation system.
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