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Abstract

This article describes some use case studies and self-assessments of FAIR status of de.NBI services to illustrate the
challenges and requirements for the definition of the needs of adhering to the FAIR (findable, accessible, interoperable and
reusable) data principles in a large distributed bioinformatics infrastructure. We address the challenge of heterogeneity of
wet lab technologies, data, metadata, software, computational workflows and the levels of implementation and monitoring
of FAIR principles within the different bioinformatics sub-disciplines joint in de.NBI. On the one hand, this broad service
landscape and the excellent network of experts are a strong basis for the development of useful research data management
plans. On the other hand, the large number of tools and techniques maintained by distributed teams renders FAIR
compliance challenging.

Key words: data management; de.NBI; FAIR principles; hourglass model; self-assessment; data maturity

Introduction
Historically, the technical aspects of data management like
data modelling, database technology, storage management, data
integrity as well as the management of backup/archiving and
recovery have been of utmost importance in life science [1].
Data repositories, in which the research datasets are stored at
the end of an investigation, ensure the long-term storage and
handle these aspects. Within this paper, we investigate this
topic in the context of the German Network for Bioinformatics
Infrastructure (de.NBI) [2] that is the basis for the German node
of ELIXIR, the European bioinformatics infrastructure network.

Some journals require the deposition of the data underlying
a research paper into public data repositories [3]. Many of them
are very data domain specific and widely accepted by their
community such as the ENA [4] and other INSDC [5] databases
for genomics, PRIDE [6] for proteomics or the BioModels Database
[7] for systems biology models. Also more general platforms like
Dryad [8] or Zenodo [9] are widely accepted by publishers and
therefore very popular within the research community.

While the mentioned repositories are accepted ‘endpoints’
of research data, they don’t map the ‘ongoing’ research, each
are specialized on a relatively small target ‘domain’, such that
typical projects need ‘combinations of services’, as well as ‘com-
binations of repositories’ to store their data. This puts data
management early on in the research process into focus. It is
recommended to start planning for data management already
during the planning phase of a research project. That is the rea-
son why funders of research and infrastructure projects require
a detailed data management plan already as a part of grant
proposals today [10].

With the emergence of open science and open data, organiza-
tional and data descriptive aspects that encourage data sharing
and reuse are becoming more important. Therefore, the descrip-
tion of data by metadata in order to facilitate the retrieval of and
access to such data and enable data integration, e.g. in multi-
omics studies, is a key requirement. Additionally, interoperable
data and tools allow for the automatic creation of workflows
[11] and the reuse of data, either for reproducibility or for data
reanalysis in view of new research questions. This requires well-
annotated data and tools. For that purpose, de.NBI has registered
most of the tools it offers, divided into subdomains, in the
bio.tools registry [12] using terms from the EDAM ontology [13,14]
to specify the supported input and output formats and other
characteristics of these tools.

Key data management requirements are defined by the FAIR
(findable, accessible, interoperable and reusable) guiding princi-
ples (Wilkinson et al. [15]). A framework of templates for defin-
ing metrics that measure the degree of compliance with these
FAIR principles has been also published [16]. Since the data
protection laws led to additional requirements for data privacy
and data security, such requirements were included into the
FAIR-Health principles [17], a proposal to extend the Wilkin-
son FAIR principles. This FAIR-Health proposal also contains
additional requirements for information on the sample mate-
rial used from biobanks, for provenance information and for
incentive schemes. For cases where such privacy, ethical and
legal requirements are important, e.g. in clinical studies under-
lying regulatory requirements, Woolley et al. described ADA-M,
a matrix model for capturing and communicating metadata in a
standardized way [18].

de.NBI [2] is a large service provider in the domain of bioinfor-
matics. Its Special Interest Group ‘SIG4–Interoperability and Data
Management’ aims at ‘facilitating FAIRness for the service users
of de.NBI’. Ideally, a de.NBI user can obtain FAIR data without
additional work. We aim at a ‘concept’ that is not a classical data
management plan but rather a blueprint for creating bespoke
data management plans from de.NBI services. Within this paper
we present selected use cases within de.NBI that form a basis
of this concept and are relevant for a broad audience within
the bioinformatics community. These use cases as well as the
subsequent discussion of more general aspects can be consid-
ered as a set of recommendations for all providers of similar
bioinformatics tools, pipelines and other services, who are going
to implement, assess and/or improve the fulfillment of FAIR
criteria.

FAIR data management landscape
In the past decade, we have seen a rise in the awareness that
research infrastructure is important for the success of research.
This has led to establishment of research infrastructures such
as Europe’s ESFRI infrastructure ELIXIR and the German BMBF-
funded de.NBI. They act in an ecosystem of FOSS and proprietary
tools, as well as a large number of community standardization
bodies, such as HUPO-PSI, DIVSEEK or COMBINE, and interna-
tional organizations such as the Research Data Alliance, the GO-
FAIR initiative and the Global Alliance for Genomics and Health,
GA4GH.
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Within the field of life science there is a huge number of
tools, repositories and standards. FAIRsharing [19] provides an
overview (see https://fairsharing.org). Organizations such as GO-
FAIR suggest learning from the Internet’s ‘Hourglass Model’ that
is seen as a key for its success [20]: a large number of user-
level protocols and a number of hardware-level protocols were
connected by just one core protocol: IP.

While few people think that just one tool will be ‘it’, there
are two types of initiatives in the life sciences that follow the
hourglass models: There are standardization efforts that facili-
tate interfacing tools, and there are efforts work in the direction
‘combinations’ of tools, such as the ELIXIR CONVERGE project.

The directions taken within de.NBI are part of this trend.
Numerous de.NBI partners are active in standardization activ-
ities, and the present paper reflects our work towards pipelines
of tools that go from data creation to data management system
to publication.

As data management tools centers have a small number of
solutions:

• The FAIRDOMHub that is based on the FOS software FAIR-
DOM SEEK [21,22]

• e!DAL-PGP for plant phenotyping data [23,24]
• PANGAEA for environmental and biodiversity data [25]

In addition, there is an ecosystem of related tools, stan-
dards and projects, such as GFBio and FAIRDOM. There are
diverse approaches to metadata collection and use. Details are
presented in the corresponding use cases.

These use cases across de.NBI service centers were chosen
as examples, to illustrate the maturation of the FAIR criteria
and the different classes of services. They highlight both chal-
lenges and recommendations that exemplify the transition of
services towards FAIR criteria compliance. At the same time,
they also show the diversity of implementation strategies for the
FAIR indicators in a federated service landscape such as de.NBI.
The de.NBI network supports this process by coordinating the
implementation of the FAIR criteria through a managed self-
organization approach. In particular, this approach focuses on
the cataloguing of services, the standards used for metadata,
data and formats, service metrics, the coordination of operations
and the definition of overarching guidelines. This broad coordi-
nation in the community is especially important because de.NBI
must take into account the federated character of its historically
grown services.

The success of this concept is presented by exemplary use
cases in the domains of proteomics, plant phenotyping and
genotyping as well as human genomics in the section ‘use cases’.
Here we show in particular, the benefits of agreements reached
at the levels of harmonization of metadata, data formats and
data publication infrastructures, which enabled the implemen-
tation and co-development of accepted standards for metadata,
centrally managed and organized consulting and trainings and
data publication pipelines into sustainably operated infrastruc-
tures. In order to integrate these into the actual institutional
research data management (RDM) processes, a cultural change
was required, which is now significantly supported by a broad
acceptance of data as scientific and sustainable services for
infrastructural assets in Germany’s life science landscape. This
made it possible to implement a high quality and continuous
research data and service management process from experi-
mental design to data analysis and finally the re-use of data. This
has been significantly catalysed by infrastructure networks such
as de.NBI. Especially the integration of national and interna-
tional activities through the establishment of the German ELIXIR

Figure 1. The FAIR guiding principles as formulated by Wilkinson et.al [15].

node by de.NBI enabled joint training, outreach and linking of
partners within collaborative research projects.

Self-assessment of FAIR criteria
In order to fully implement a sustainable data management
plan, data must be FAIR for both humans and machines. The
FAIR guiding principles formulated by Wilkinson et al. [15] are
shown in Figure 1.

While waiting for widely accepted FAIRness tests that cover
metadata quality, the best practice is to self-assess compliance
with the FAIR criteria. In the literature, self-assessment usually
leads to a grouping into three different categories. Either the
assessment concludes that the data partly, fully or not at all fulfil
the FAIR criterion, although the degree of compliance may vary,
especially in the case of ‘partial’ compliance. In general, only a
small number of software is described in regards to its FAIR com-
pliance in the literature. Out of more than 50 found references to
the FAIR metrics publication [16] only seven actually described
software (although sometimes more than one single software)
and its FAIRness. However, repositories like FAIRsharing [19] list
many more FAIR-compliant software instances.

Frameworks for the automated verification and assessment
of FAIR conformity have recently experienced an increase in
popularity. These use automatic test metrics to assess the dif-
ferent levels of FAIRness either in relation to the underlying
data or the software itself. For this test setup to work prop-
erly, the resource must be web based, which is why offline
resources cannot be evaluated with these services and rely on
self-assessment.

Use cases
We describe six selected use cases. Each of them describes the
process of data processing and the enrichment of metadata
up to the final data storage in archives or repositories. Special
attention is paid to the ‘first mile’, where essential local data are
created and captured first, and the hard work of building modern
data-pipelines just begins. The endpoint for our view on these

https://fairsharing.org
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use cases is the so-called ‘last mile’, which in accordance to ‘first
mile’ references the deposition of primary data and associated
metadata to appropriate long term storage repositories. Relevant
process steps are evaluated as self-assessment according to the
fulfilment of the FAIR metrics [16]. For this purpose, the 13
metrics with 3 classes of the degree of fulfilment are evaluated
with ‘Yes’, ‘No’ and ‘Partly’. The proof of the assessment is
explained in the text.

Use case 1: bioinformatics and statistical consulting

The de.NBI service center BioInfra.Prot [26] provides a service
for bioinformatics and/or statistical consulting and analysis of
quantitative proteomics data. The actual analysis is tailored to
the specific needs of the user. Basically, there are two different
types of metadata for this service. First, there is the meta-
data that the user provides and that is needed to conduct the
analysis. This includes, for example, information regarding the
experimental groups or already performed preprocessing steps
applied to the data. During the execution and documentation
of the analysis, the second type of metadata is generated by
the service. It contains, e.g. detailed information about the sta-
tistical or machine learning methods performed. Unfortunately,
due to the large variety of possible methods and experimental
designs, there are currently no widely accepted guidelines on the
minimum information needed to describe such statistical and/or
bioinformatics analysis, although efforts are already being made
in the fields of metabolomics and lipidomics [27,28].

For documenting the results of the bioinformatics and statis-
tics analyses, we use the ontologies STATO (http://stato-ontolo
gy.org) and OBCS (Ontology of Biological and Clinical Statistics)
[29]. Furthermore, we employ the FAIRDOM RightField tool [30]
to create Excel templates that contain the possible controlled
vocabulary (CV) terms given in these ontologies as allowed val-
ues in spreadsheet cells. This Excel file consists of two work-
sheets, one for each of the two types of metadata. The first
worksheet is completed together with the user of the consulting
service during a data stewardship meeting, where the aims of
the study and the required analyses are discussed and defined
with the user. This is the first mile of this use case. Then, the
scientist conducting the service fills in the second worksheet
while the analysis is being carried out. These collected metadata
complement the resulting tables and figures and are useful for
the documentation of the analyses and for writing the methods
section of the associated publication or thesis. Furthermore, the
Excel file with the captured metadata will be uploaded together
with the other result files to SEEK [21]/FAIRDOMHub [22], which
then assigns a unique identifier to the whole study dataset.
This is the last mile of this use case. Figure 2 summarizes the
complete workflow.

Table 1 shows how the FAIRness of the data from this use
case is enhanced by capturing and documenting the metadata
in Excel templates defined by RightField. Summarizing, in this
use case, we use Excel spreadsheets that are easy to set up and
also easy to fill out for the scientists. Normally, to achieve a
similar level of user-friendliness, the expensive development of
a user interface would be necessary, which we avoid by using
RightField. By using RightField-Enabled Excel templates, infor-
mation can be entered using closed vocabulary selection lists,
reducing errors. The resulting data then can easily be managed
using the FAIRDOMHub. Thus, the use case demonstrates how
combination of simple, generic tools can lower the bar towards
FAIR data management. The method can be applied in all use

cases that concern table-based data that have to be entered or
completed by humans.

Use case 2: PRIDE upload of proteomics data

Another service of BioInfra.Prot is the curation of proteomics
dataset uploads to the public proteomics data repository PRIDE
[6]. These uploads are performed by dataset submitters using
the ProteomeXchange submission tool [31], which interactively
requests some metadata describing the dataset. This step is
the first mile of this use case. Some of these metadata are
plain text fields like e.g. the project title, the project description
as well as sample processing and data processing protocols.
Others are CV terms from different ontologies, describing e.g.
the type of proteomics experiment, the species, the tissue, the
instrument used, the disease and the modifications involved
in the peptide identification search. All this metadata collected
by the ProteomeXchange submission tool is then written to a
text-based file summarizing the submission [31].

In case of a complete submission, i.e. a submission, where the
data are uploaded in standardized proteomics XML data formats
like mzML [32,33] or mzIdentML [34], additional metadata is
contained in <cvParam> elements within these files. These
elements semantically annotate the respective XML element to
which they belong by referencing a CV term from the psi-ms.obo
ontology [35].

From files in proteomics standard formats, we read out all
<cvParam> elements by using the xxindex (https://github.co
m/PRIDE-Utilities/xxindex) library. It allows one to read all CV
terms and their corresponding values if values are assigned.
Then, as the last mile of this use case, all found CV terms
and their corresponding values are written into Excel sheets,
which can be uploaded to SEEK together with the submission
summary file and the data files. These Excel files containing the
extracted metadata are machine-readable and may supplement
PRIDE submissions in the future in order to complete the directly
accessible metadata (Figure 3). In case of a partial submission,
where the data are in proprietary data formats, as listed at http://
wwwdev.ebi.ac.uk/pride/markdownpage/pridefileformats, only
the data files and the submission summary file are uploaded to
SEEK (Figure 3). Table 2 shows how the self-evaluated FAIRness
of the PRIDE uploads use case.

This use case demonstrates the crucial role of well-defined
standard data formats based on ontologies and CV terms. Unfor-
tunately, in this use case, currently the users decide whether
a complete submission based on standard data formats is per-
formed. Thus, enforcing their usage by data repositories could
ensure a more complete fulfillment of FAIR principles.

Use case 3: PIA—protein inference algorithms

Protein inference algorithms (PIA) [36,37] is a toolbox for MS
based protein inference and identification analysis. PIA allows
the inspection of common proteomics spectrum identification
search engine results, combine them seamlessly and conduct
statistical analyses. The main focus of PIA lays on the integrated
inference algorithms, i.e. concluding the proteins from a set of
identified spectra.

The input for the tool can be any spectrum identification
results provided in the mzIdentML format, which is enriched
by metadata in XML <cvParam> elements as explained above.
This is the first mile of this use case. The mzIdentML format is
designed to explain in detail all steps of the analysis up to the
currently performed step, including the entire data processing.

http://stato-ontology.org
http://stato-ontology.org
https://github.com/PRIDE-Utilities/xxindex
https://github.com/PRIDE-Utilities/xxindex
http://wwwdev.ebi.ac.uk/pride/markdownpage/pridefileformats
http://wwwdev.ebi.ac.uk/pride/markdownpage/pridefileformats
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Figure 2. Bioinformatics and statistical consulting workflow, showing the collection of metadata in two parts using a RightField template. Together with the analysis

results the metadata is stored in SEEK and directly usable for the publication process.

Table 1. Self-assessed degree of fulfilment of the FAIR criteria for a bioinformatics resp. statistical consulting and analysis. Case (1) without and
case (2) with the use of metadata captured in RightField templates and uploaded to SEEK/FAIRDOMHub

F1 F2 F3 F4 A1 A2 I1 I2 I3 R1.1 R1.2 R1.3

Without metadata No Partly No No No No No No No No Partly No
With metadata Yes Yes Yes Yes Partly Partly Partly Partly Partly Partly Yes No

Table 2. Self-assessed degree of fulfilment of the FAIR criteria for the PRIDE upload use case

F1 F2 F3 F4 A1 A2 I1 I2 I3 R1.1 R1.2 R1.3

Yes Yes Yes Yes Yes No Partly Yes Yes Yes Yes Yes
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Figure 3. Upload of proteomics files in a standard format to SEEK and enrichment with metadata annotation extracted from these files. For the future it can be

envisioned that the automatic upload from SEEK to PRIDE can be triggered by SEEK.

In case of a PIA analysis, the spectral data itself (preferably in
mzML format) is linked to the steps of spectrum identification
with all parameters and any additional processing like the cal-
culation of the false discovery rate with its settings. Finally, the

selected options and parameters for protein inference are stored
together with the peptide identifications and protein groups
[38]. In case these options were used in the analysis, the same
<cvParam> extraction method as described for the PRIDE upload
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Figure 4. Flowchart diagram of a PIA analysis. The actual PIA analysis ends with the export of the results, preferably into one of the standard formats for protein

identifications (mzIdentML or mzTab). The PRIDE upload is optional but is requested e.g. for a publication of the analysis.

Table 3. Self-assessed degree of fulfilment of the FAIR criteria for the PIA use case

F1 F2 F3 F4 A1 A2 I1 I2 I3 R1.1 R1.2 R1.3

Partly Yes Yes Partly Yes Yes Yes Yes Yes Yes Yes Yes

use case is performed. The complete workflow is shown in
Figure 4.

Unfortunately, as with almost all larger XML files, mzIdentML
files are not easily parsed by post-processing steps and are also
not suitable for human data inspection. Therefore, if an export
of the PIA results into an easily editable format is preferred, they
can be stored in mzTab [39] format. This format does not store all
information needed to understand the analysis results. However,
most common parameters are stored and mzTab can therefore
be considered a compromise to the more comprehensive mzI-
dentML standard. The export of all metadata into PIA results files
is the last mile of this use case.

Also here the benefit of standard file formats, which
contain rich annotation of metadata for further processing,
is demonstrated. To store the metadata in the metadata
repository only the original PIA results files containing them
in the <cvParam> elements (mzIdentML) or file header
information (mzTab), respectively, must be uploaded. The
self-assessment regarding the fulfilment of the FAIR cri-
teria summarized in Table 3 shows that for this use case
almost all criteria are fulfilled. This is because the upload
of PIA output files to a searchable repository like PRIDE is
optional. Consequently, F1 and F4 are considered only ‘partly’
fulfilled.

Use case 4: integrated workflow for the handling of
NGS data and metadata
The NGS data flow process executed at IPK Gatersleben, Ger-
many, is illustrated in Figure 5. The process includes sequencing
in the laboratory (step 1), transfer into the IPK Laboratory Infor-
mation Management Systems (LIMS) as a generic data backend
(step 2) and feeding into the EMBL-ENA repository [4] (step 3).
The meta and sequence data are closely linked to each other and
represents an enrichment over all process steps. This process is
completely mapped in the central LIMS of the IPK, so that there
are no data transfer points, only feed-in points. Since the FAIR
quality of ENA archived sequences depends on the metadata
quality of the individual process steps beforehand, we have
evaluated the FAIRness of these three intermediate steps in the
NGS process. Table 4 shows the results of this evaluation.

Step 1 is the first mile and crucial for the completeness of
the metadata. Doing so a sequencing order is submitted to the
sequencing laboratory as a sample form, which comprises con-
tact information (e.g. client name, e-mail, billing information),
sample description (e.g. species, sample name, sample type) and
technical sequencing parameters (e.g. number of lanes, read
length, type of library). These metadata are either entered or
imported into the IPK LIMS by the customers or the sequenc-
ing staff. From this, a sequencing order and the necessary
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Table 4. Self-assessed degree of fulfillment of the FAIR criteria for the IPK NGS workflow use case

FM Step F1 F2 F3 F4 A1 A2 I1 I2 I3 R1.1 R1.2 R1.3

Run config Yes Partly No Yes Yes Yes No No Partly No No No
Data archival Yes Partly Partly Yes Yes Yes Partly Partly No No Partly No
Upload to SRA Yes Yes Yes Yes No Yes Yes Partly Partly Yes Partly Yes

Figure 5. Flowchart diagram of export workflow to the European Nucleotide Archive (ENA).
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configuration files for the sequencing run are created including
a unique numerical sample identifier, which is necessary for the
later assignment of the sequence data.

In step 2, after the sequencing run and the subsequent base
calling, the resulting FASTQ sequence data are demultiplexed
and copied by a script to the IPK file server. The FASTQ files
are named analog to the sample number and are permanently
stored in folders named after the sequencing run ID. These
storage paths are accumulated by the FASTQ distribution script
in a CSV file and sent to the IPK LIMS manager. The latter imports
these file links into the LIMS so that they are associated with the
aforementioned sample information. Afterwards the completion
of the sequencing order including the link to the FASTQ files and
the sequencing order number is sent to the customer via e-mail.

Submission to the sequence read archive (SRA) of ENA in
step 3 is the last mile and relies on metadata of step 1 as
well as on personal feedback to the responsible scientists to
clarify potential issues. This step is performed by a skilled data
steward who finally curates the metadata and creates a so-called
‘BioProject’ or ‘Study’ describing the overall goal of an individual
research endeavor. A BioProject may comprise multiple experi-
ments submitted to different NCBI or ENA databases. Thus, the
design of the sequence submission intrinsically promotes the
aggregation of experiments that have been carried out to the
same aim. Before the submission of sequence data, the SRA
requires detailed descriptions of the ‘BioSamples’ from which
the sequences were obtained. To facilitate the description and
to improve the findability of BioSamples, the INSDC databases
maintain structured attribute name-value pairs. The creation or
registration of a BioProject and BioSamples is the prerequisite for
registering an SRA experiment, which is the unique sequencing
result of a specific sample and the last step before uploading
individual sequencing ‘Runs’. For each registration step, the SRA
database generates individual accession numbers with specific
prefixes facilitating the findability of additional data generated
in the course of the BioProject. A project may also contain other
than just sequencing data; the metadata regimen facilitates the
integration of various data types and experiments.

Use case 5: human genomics data in the cloud

With growing amounts of human genomics data in the health-
care sector, sharing genomics data will be essential for research
as well as routine diagnostics especially for treatment of cancer
and rare diseases [40–42]. Thereby, genome data itself are sensi-
tive personal data that need to be highly protected [43]. Having
data sharing and data security in mind, several global initiatives
such as the Global Alliance for Genomics and Health (GA4GH) are
defining standards for management and processing of human
genomic data. A basic concept is to send workflows to data and
share only anonymized results instead of sharing data directly
with other scientists or clinicians.

The Health-Data-Hub, a combined research group based at
the Charité Universitätsmedizin Berlin, Berlin Institute of Health
and Universität Heidelberg, aims to develop platforms specif-
ically for sharing access to genomic data and other personal
omics data from medical facilities. Such a platform needs to be
based on open tools and standards. Having a platform hosted
on an in house cloud, which is a part of the larger de.NBI cloud
federation, supports having computing close to the storage of the
genomic and medical data, which cannot be transferred easily
for legal as well as technical reasons. Here, on the first mile, data
providers manage data and provide indirect access to their data
such as raw sequence files, alignment files or count matrices to

other scientists and clinicians. Publication of descriptive meta-
data in public databases supports findability of their data and
implementing confederated user authentication systems, such
as ELIXIR AAI can provide a wide accessibility. On the last mile,
once permitted, users can send verified workflows to the data
and generate new results such as anonymized summary data.
Building on GA4GH standards for workflow execution, data anal-
ysis is fully interoperable and reproducible while all workflow
processing steps, used data sets and workflow configuration
parameters are completely documented. Thus, the vast majority
of FAIR criteria for both data storage and workflow execution are
fulfilled or at least partly fulfilled in this use case (Table 5).

Use case 6: data life cycle for high throughput plant
phenotyping in controlled environments

To tackle the challenge of FAIR documentation of phenomics
experiments, the MIAPPE [44,45] consortium developed recom-
mendations for a best-practice documentation. This minimum
information standard serves as a framework to conceptualize
the IPK data workflow. Beyond curated and standardized meta-
data, the publication of well-annotated datasets is important for
community outreach. No dedicated plant phenomics-focused
data repository exists hitherto; however, MIAPPE compliance is
advertised and increasingly achieved by hosting data on-site and
wrapping it in FAIR interfaces. IPK applies e!DAL-PGP infrastruc-
ture [24] and implements the BrAPI [46] specification for RESTful
API to plant phenotyping data.

The IPK houses a comprehensive research infrastructure for
the quantitative assessment of whole plant features in con-
trolled environment growth facilities [47]. The interdisciplinary
phenotyping workflow is characterized by a complex interplay
between gardeners, biologists, mechatronics engineers and IT
specialists. A similar complexity is on the technical level of the
multi-sensor systems combined with vendor specific embedded
databases, which requires data conversions and interface wrap-
ping to ingest into IPK data infrastructure and data processing
pipelines. Currently a number of manual steps of (meta)data
conversion, mapping and copying of scripts at the control PCs
of the various systems are performed. Acquired images are
transferred to the IPK hierarchical storage management system.
The experimental set-up and linked metadata are imported into
the IPK LIMS. The complex process of FAIR phenomics data man-
agement at IPK, which is illustrated in a flow process diagram in
Figure 6, combines several automated steps, but still needs some
manual processing, whereas standardized formats are used in all
instances. All FAIR criteria are at least partly fulfilled in this use
case (Table 6).

On the first mile, the setup of the phenotyping experiment
is defined according to the platform capacity and the biological
question of interest. A subset of MIAPPE-compliant attributes
like plant IDs, experimental design and seeding date are filled
into an ISA-structured template [48], which is uploaded into the
vendor specific control software of the phenotyping devices and
the IPK LIMS.

During the execution of the experiment, imaging and water-
ing configurations are recorded in the embedded database of
the phenotyping facility, whereas irregular events such as sys-
tem error, transplanting events or manual measurements and
fertilizer treatments are captured in the LIMS. Environmental
and soil monitoring data, acquired through sensor networks, are
delivered using the MQTT protocol. Because of the high num-
ber of sensor messages, these data are recorded in specifically
designed and compressed database tables. At the end of the
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Table 5. Self-assessed degree of fulfilment of the FAIR criteria for the health-data-platform

Step F1 F2 F3 F4 A1 A2 I1 I2 I3 R1.1 R1.2 R1.3

Data storage Partly Yes Yes Yes Yes No Yes Yes Yes Yes Yes Yes
Workflow execution Partly Yes Yes No Yes No Partly Partly Partly No Yes Yes

Table 6. Self-assessed degree of fulfilment of the FAIR criteria for the phenomics data management at IPK

F1 F2 F3 F4 A1 A2 I1 I2 I3 R1.1 R1.2 R1.3

Yes Yes Partly Yes Yes Yes Partly Partly Partly Partly Partly Yes

experiment, the metadata is curated and enriched by MIAPPE
study level information.

The last mile is characterized by transferring the raw image
data into IPK central storage management system. Beyond this,
the images can be fed into the IPK image analysis pipeline.
Result images and tabular report files are later registered in
the LIMS. In order to publish a combined set of raw images,
edited images and extracted features, such as architectural and
biomass-related traits, a data container is manually compiled.
The extracted measurements and metadata are encoded as ISA-
TAB files. The complete dataset can be finally published in the
mentioned e!DAL PGP repository. The assigned DOI can be cited
in data publications [24] or biological papers [49].

Discussion
What we have learned?

As shown for use case 1, even for a data analysis and consulting
service all FAIR principles can be completely or partly fulfilled,
when applied to metadata. Moreover, the described mechanism
employing RightField and SEEK allows the fulfillment of FAIR
principles for a wide range of use cases dealing with spread-
sheet data. These tools are free, versatile and not difficult to
establish and provide a good cost–benefit ratio. Thus, we rec-
ommend them for similar services, especially, for academia and
other service providers with few financial resources for data
management.

In use cases 2 and 3 the benefits of well-annotated standard
data formats based on standard ontologies and controlled vocab-
ularies were demonstrated for a data publication service and a
software tool. Thus, we recommend the exclusive usage of such
standard data formats. However, as described in use case 2, often
the users decide whether standard data formats are employed
since data repositories usually allow data submissions with non-
standard formats. In order to address this general issue, in our
opinion, both should be pursued educational work among ser-
vice users and community-driven standardization efforts among
software developers. Both are long-term processes. Their goal
should be to increase the usage and the general benefits of
standard formats.

Careful documentation and maintenance of all metadata
information throughout the life cycle of entire work processes,
such as in the above-mentioned use cases 4 and 6, can not only
facilitate the publication of research data but also provide the
opportunity to reuse data, as aimed at by the FAIR principles.
Experience shows that metadata that has to be added shortly
before publication and not already at the time of data genera-
tion can often no longer be fully comprehensible, so that the
quality is significantly lower. We recommend that this should
be avoided by being as precise as possible from start to finish

of an experiment and not neglect the metadata. Furthermore
it is important to integrate standardized interfaces between the
different process stages whenever possible and to avoid manual
curation steps.

General aspects

Since many different bioinformatics infrastructures are provided
within de.NBI for almost all life science disciplines, there are
many different kinds of research data, file formats and work-
flows that are managed by the different de.NBI sites. Conse-
quently, there are several heterogeneous data management use
cases demonstrating that it is challenging to formulate general
data management concepts for heterogeneous consortia such as
de.NBI or ELIXIR.

The described use cases reflect the broad range of de.NBI
service categories including offline software tools and pipelines
as well as services with manual or semi-manual data processing
steps, which are frequently located at the very first mile of
data processing. Automatic assessment frameworks and tools
like FAIR Evaluator and FAIRshake [50,51], which employ a set
of FAIR metrics or maturity indicators [16], were implemented
to evaluate online data resources, which are a minority among
de.NBI services. Consequently, these frameworks are unsuitable
for general evaluation guidelines within our data management
concept. For the vast number of our services self-assessment
is the most obvious approach since dedicated FAIR assessment
teams or crowdsourcing strategies would be less effective as
evaluation by service maintainers and would require additional
personal resources. Thus, we recommend self-assessment as
the best approach for service providers with low resources and
services, which cannot be evaluated by automatic assessment
frameworks. However, as the evolution of automatic evaluation
frameworks proceeds, they may be more generally applicable in
the future.

In order to facilitate self-assessment and the improve-
ment of FAIR data management, we recommend that the
maintainers of bioinformatics services receive further training
in data stewardship. This is increasingly supported by the
free training activities provided by de.NBI. Moreover, some
de.NBI members are partners in the ELIXIR CONVERGE project,
which creates a network of data management experts for
collaboration and knowledge exchange between domain
experts. A main focus is on the development of an RDM toolkit
to synchronize and standardize data management activities
in Europe and to help researchers in improving the FAIRness
of their data. We recommend using this infrastructure in
the future.

We imagine RDM as a process from cradle to data publication,
starting with Electronic Lab Notebooks or LIMS at the lab bench,
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Figure 6. Flowchart diagram of phenomics data management at IPK.

use of bioinformatics tools for analysis and then feeding into
an RDM system like e.g. SEEK or e!DAL for further processing.
Once the processing of the data is complete, they can be stored
together with the result files in specific domain repositories like
PRIDE or ENA or general data publication platforms like Zenodo,
where they are made publicly available after publication of the
corresponding paper.

There are various useful tools that facilitate the implemen-
tation of FAIR data management strategies. For example, Right-
Field [30] creates Excel files that are primarily designed for
interactive metadata acquisition and can be employed in all
use cases where metadata have to be entered or completed by
humans. Furthermore, it is possible to employ SEEK, another
useful software, for collecting the metadata together with all
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data files and then trigger an automatic upload of these data
along with the associated metadata into the appropriate data
repository, e.g. PRIDE for a proteomics submission [52]. Another
solution would be the use of the e!DAL software infrastructure as
on-premise infrastructure for managing and describing diverse
types of research data during the research process and for shar-
ing them at the end with the community by assigning a DOI
and reference them in an associated article or a data paper.
This is already practised with the e!DAL-PGP repository at IPK
and a further e!DAL-based infrastructure at FZJ. Beside these
systems, which are hosted and maintained by de.NBI partners,
there are also other software infrastructure available like CKAN
or DataVerse that are providing a similar functionality and have
a growing number of international users. We recommend using
such free, versatile and straightforward tools that facilitate FAIR
data management and provide a very good cost–benefit ratio. To
find these tools we recommend FAIR tool catalogues such as the
RDM toolkit (https://rdm.elixir-europe.org) currently developed
within the ELIXIR CONVERGE project.

To date, we have no clinical use cases where data privacy,
data security and/or ethical concerns play a role. For imple-
menting such use cases an additional access control to the data
is required. We plan to extend our de.NBI data management
concept to such use cases in the future, e.g. by including the
FAIR-Health principles [17].

In general, to improve data management, in the first step,
we recommend implementing measures that are free and as
simple as possible. This includes the increased use of free data
management software and standard data formats, as well as
the further training of already employed tool maintainers in
FAIR data management. An increasing compliance with the FAIR
criteria should be used as a measure of success. At least partial
fulfillment of all criteria should be the minimum goal. This
first step should also be feasible for service providers with few
financial resources. Only in the second step should the extensive
use of professional data stewards and proprietary or commer-
cial software tools be considered for complete fulfillment of
all FAIR criteria. Even if the second step is only feasible for
service providers with extensive funding for data management,
in our experience the implementation of the first step already
significantly improves the fulfillment of the FAIR criteria.

FAIR for research software

As described, not all FAIR principles can be completely fulfilled
for our use cases resulting in some ‘Partly’ and ‘No’ entries in
our self-assessment tables. In this context, it is questionable
whether all categories of services such as software tools or anal-
ysis pipelines can generally fulfill all original FAIR principles.

Data can be regarded as any digital information including
both factual information and computer instructions of software
and workflows. While factual information is both editable and
readable, computer instructions can also be executed. Conse-
quently, it is questionable to what extent the FAIR principles also
apply to software.

Recently, Lamprecht et al. [53] argued that most of the
FAIR principles can be easily adapted to software with a few
minor modifications. Particularly software is in a constant
state of change caused by updates and improvements. The
appropriate management of all software dependencies must be
documented with rich metadata. Therefore a long-term stable
versioning and indexing of software versions are necessary to
make the software FAIR. Moreover, since further development
of operating systems and dependencies makes the long-term

sustainability of scientific software extremely challenging,
we recommend employing virtualization, containerization
with frameworks such as BioContainers [54] and package
management with platforms such as Bioconda [55] to address
this issue. However, to enable users to use containerized
software and package managers, specific user training and
additional documentation are needed. A critical point is the
functional correctness of software, which goes far beyond the
current FAIR principles. It can be argued that meaningful metrics
must first be established in order to formulate FAIR-compliant
functional correctness principles. Moreover, while the FAIR
principles do not require data to be open, in most cases openness
can be expected for research software [56].

Training activities

To complete our data management-related activities, de.NBI
provides training for data management [57] in order to sensitize
users for the benefits of FAIR data management and to educate
them in best practices. To improve FAIR awareness, training is
crucial because in our experience based on user discussions
during various training events on other topics still too many
users have little knowledge about the advantages of FAIR data
management and, consequently, have no FAIR awareness. There-
fore, some de.NBI training events related to FAIR data manage-
ment were advertised and conducted to close these gaps for at
least some of our users. In total, more than 300 participants (as
of September 2020) have been trained in 13 data management
training courses since 2015. These courses are mainly orga-
nized by the service centers BioData (providing the widely used
data resources SILVA [58], PANGAEA [25], BacDive [59], BRENDA
[60] and ProteinsPlus [61]), GCBN (providing services and data
infrastructures such as e!DAL-PGP repository [23,24], PlantsDB
[62] and Trimmomatic [63]) and de.NBI-SysBio (providing data
management-related tools like SEEK [21] and on-site visits on
request to support customers in installing their own data man-
agement projects or local SEEK instance). In the future, de.NBI
intends to further increase the amount of training courses in the
fields of data management and FAIR data. Another step towards
training scientists in data management will be the initiation of a
de.NBI data stewardship program, which will be similar to the
FAIR data stewardship program organized by the Dutch Tech-
Centre for Life Sciences in the Netherlands (https://www.dtls.nl/
fair-data/). Data stewards are persons that have specific techni-
cal (i.e. experience in metadata, software tools, workflows and
programming) and communication skills (i.e. communication
with life scientists, data producers and data analysts), which are
needed to implement professional data management. de.NBI is
involved in different initiatives to develop a curriculum for data
stewardship and data management within Germany and Europe
(e.g. Project 29 at the BioHackathon 2020: ‘Design of a modular
learning path (curriculum) in Data Stewardship, Management
and Analysis for the Life Sciences’). In our experience, besides
usual training courses, additional measures are needed. Hence,
we recommend a close interconnection of a training program
with user support and consulting, since, in our experience, this
works best to motivate users to start implementing a FAIR data
management.

Key points
• Description of six data management use cases as basis

for derivation of guidelines for a FAIR data manage-
ment concept within a large bioinformatics infrastruc-
ture network such as de.NBI.

https://rdm.elixir-europe.org
https://www.dtls.nl/fair-data/
https://www.dtls.nl/fair-data/
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• Description of the metadata capturing and data man-
agement process for one consulting and two repos-
itory upload activities demonstrating that FAIR data
management is basically possible for this kind of
services.

• Self-assessment of the degree of fulfilment of the
FAIR criteria facilitates the development and compar-
ison of data management concepts for service cate-
gories where automatic assessment tools cannot yet
be employed such as consulting services.

• The benefits of standard data formats and data
repositories were demonstrated. However, users often
decide whether data in standard data formats are
published in repositories. In order to improve FAIRness
it would be advantageous if repositories would enforce
the usage of standard data formats.

• In order to sensitize users for the benefits of FAIR data
management and to educate them in best practices
user training is crucial.
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