
The Cryosphere, 16, 2927–2946, 2022
https://doi.org/10.5194/tc-16-2927-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Predictability of Arctic sea ice drift in coupled climate models
Simon Felix Reifenberg1,a and Helge Friedrich Goessling1

1Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany
anow at: MARUM – Center for Marine Environmental Science & Institute of Environmental Physics,
University of Bremen, Bremen, Germany

Correspondence: Simon Felix Reifenberg (sreifenb@uni-bremen.de)

Received: 14 February 2022 – Discussion started: 16 February 2022
Revised: 9 June 2022 – Accepted: 13 June 2022 – Published: 20 July 2022

Abstract. Skillful sea ice drift forecasts are crucial for sci-
entific mission planning and marine safety. Wind is the dom-
inant driver of ice motion variability, but more slowly vary-
ing components of the climate system, in particular ice thick-
ness and ocean currents, bear the potential to render ice drift
more predictable than the wind. In this study, we provide the
first assessment of Arctic sea ice drift predictability in four
coupled general circulation models (GCMs), using a suite of
“perfect-model” ensemble simulations. We find the position
vector from Lagrangian trajectories of virtual buoys to re-
main predictable for at least a 90 (45) d lead time for ini-
tializations in January (July), reaching about 80 % of the po-
sition uncertainty of a climatological reference forecast. In
contrast, the uncertainty in Eulerian drift vector predictions
reaches the level of the climatological uncertainty within
4 weeks. Spatial patterns of uncertainty, varying with sea-
son and across models, develop in all investigated GCMs.
For two models providing near-surface wind data (AWI-CM1
and HadGEM1.2), we find spatial patterns and large fractions
of the variance to be explained by wind vector uncertainty.
The latter implies that sea ice drift is only marginally more
predictable than wind. Nevertheless, particularly one of the
four models (GFDL-CM3) shows a significant correlation of
up to −0.85 between initial ice thickness and target position
uncertainty in large parts of the Arctic. Our results provide a
first assessment of the inherent predictability of ice motion in
coupled climate models; they can be used to put current real-
world forecast skill into perspective and highlight the model
diversity of sea ice drift predictability.

1 Introduction

More than 120 years has passed between Nansen’s empiri-
cal “rule of thumb” about sea ice drifting 20 to 40◦ to the
right of the wind direction at about 2 % of the wind speed
(Nansen, 1902) and the latest developments of today’s so-
phisticated dynamic sea ice modeling systems. These ongo-
ing efforts are fueled by an ever-increasing need for reliable
sea ice drift forecasts, as human activity in the Arctic Ocean
has stepped up considerably. For instance, the distance sailed
by bulk carriers under the Arctic Polar Code increased by
160 % from 2016 to 2019, the number of vessels entering the
Arctic grew by 25 % (PAME, 2020), and the number of sailed
kilometers in the Northwest Passage nearly tripled from 1990
to 2015 (Dawson et al., 2018). Furthermore, the scientific
MOSAiC expedition relied heavily on ice drift predictions
(Nicolaus et al., 2022). At the same time, Arctic sea ice has
declined in the last few decades (Stroeve et al., 2012) and is
projected to retreat further in the near future, eventually lead-
ing to a virtually ice-free Arctic Ocean before 2050 (SIMIP
Community, 2020). These prospects bring both new oppor-
tunities and risks (Melia et al., 2016; Barber et al., 2018;
Smith and Stephenson, 2013; Mudryk et al., 2021; Gascard
et al., 2017). Moreover, forecasts of other variables also ben-
efit from a well-represented sea ice component. For instance,
Day et al. (2014) show that more accurate sea ice forecasts
through sea ice thickness initialization can improve seasonal
2 m air temperature predictions. For these reasons, skillful
and reliable sea ice forecasts, including for sea ice drift, are
gaining importance.

Initialized predictions inevitably come with errors and un-
certainty. In this work, we differentiate between errors that
originate from how a forecast is made, e.g., from physi-
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cal models being simplified representations of reality, in-
complete knowledge of the initial conditions, or truncation
errors in numerical models, and (inherent) uncertainty due
to the inevitable growth of infinitesimal perturbations in
the initial conditions, a property of the predicted (chaotic–
deterministic) system (Lorenz, 1969, 1975). Errors should
be reduced as much as possible while uncertainty must be
represented and communicated adequately. Both act on the
forecast accuracy, or skill.

Accuracy refers to the “degree to which forecasts corre-
spond to observations” (Murphy and Winkler, 1992), often
described by the mean squared error of an ensemble with re-
spect to a “true” value. An initialized forecast is commonly
considered skillful as long as its accuracy is higher than some
chosen benchmark accuracy, for example from a climato-
logical reference forecast. Forecast skill, often expressed via
“skill scores”, can therefore be understood as a relative mea-
sure of accuracy. The lead time at which the initialized fore-
cast ceases to be significantly more accurate than the – usu-
ally less sophisticated and thus computationally cheaper –
benchmark forecast is the forecast skill horizon. This defi-
nition is not well suited when it comes to comparing skill
estimates between different studies because statistical signif-
icance is a function of sample size; a study that utilizes a
very large sample may detect significant skill even where the
signal-to-noise ratio is small, and its practical relevance may
be questionable, whereas a study that utilizes a small sample
may fail to detect skill at practically still relevant levels. The
same reasoning holds for estimates of potential predictability
and, correspondingly, the predictability horizon. This ambi-
guity needs to be kept in mind in the following overview.

Recent studies have assessed both the current skill of sea
ice drift forecasts and the potential to improve them, mostly
for the Arctic Ocean. Grumbine (2013) finds ice drift trajec-
tories obtained from a linear drift law within an operational
ice drift model (Grumbine, 1998) to be skillful for up to
16 d. Rabatel et al. (2018) show for neXtSIM (Rampal et al.,
2016) that the representation of internal stress reduces fore-
cast errors compared to a free-drift model. Schweiger and
Zhang (2015) investigate errors in short-term drift forecasts
from the coupled ice–ocean model (MIZMAS, forced with
atmospheric forecasts) and find speed and position forecasts
to remain skillful throughout the chosen integration time of
9 d. They suggest wind velocity forecast improvements to be
the most promising approach to improve ice drift forecasts.
Hebert et al. (2015) analyze short-term (1–7 d) forecasts in
an operational model (ACNFS; Posey et al., 2010) and find
a seasonal bias of forecast errors in the Arctic; modeled drift
speeds are slower than speeds obtained from buoy trajecto-
ries in summer and faster in winter. For the marginal ice zone
in the Southern Ocean, de Vos et al. (2021) find seasonal
differences for short-term forecast accuracy (skill lower in
winter than in spring) using buoy observations. Palerme and
Müller (2021) show that the mean absolute error in opera-
tional 10 d ice drift forecasts from TOPAZ4 can be reduced

using newly developed calibration methods based on super-
vised machine learning, and Andersson et al. (2021) present
a probabilistic deep learning forecasting system producing
more accurate seasonal forecasts of the summer ice state than
SEAS5 (Johnson et al., 2019), especially for extreme sea ice
events.

In these forecast skill assessments, all aforementioned
sources of errors and uncertainty are imprinted on the fore-
cast accuracy. While the forecast skill horizon can be pushed
towards longer lead times by more sophisticated data assim-
ilation and forecast calibration methods, more efficient and
more accurate numerical integration schemes, and improved
model physics, the uncertainty due to the sensitive depen-
dence on the initial conditions is an inherent feature of the
climate system and introduces an upper limit for forecasting
skill (see, for instance, Collins, 2002, and Hoskins, 2013). It
is possible to estimate this inherent uncertainty in so-called
perfect-model experiments, in which a model is not used
for predicting reality but predicting itself. Emulating perfect
knowledge of the initial state or a complete and perfectly
assimilated observational network, the initial conditions are
generated by the respective model in this approach. Then the
divergence of the ensemble regarding a selected climate vari-
able (predictand), with the members only differing by very
small perturbations of the initial conditions, serves as an es-
timate for the growing uncertainty in the prediction due to
the inherent chaos in the system. Analogously to the forecast
skill horizon, here we call a variable (potentially) predictable
up to a certain lead time as long as the uncertainty in an ini-
tialized ensemble is smaller than the expected climatological
uncertainty. This climatological uncertainty, or variability, is
usually derived from a control simulation with constant cli-
mate; see Sect. 2.1 and 2.3 and Hawkins et al. (2016).

While we are not aware of studies about the potential pre-
dictability of sea ice drift, the predictability of various other
sea ice properties has been assessed in several recent stud-
ies, presented in the following. These are all based on data
from the Arctic Predictability and Prediction on Seasonal-
to-Interannual TimEscales (APPOSITE) project (see Sect. 2)
and ancillary simulations if not stated otherwise, as is the
present study.

Sea ice extent and sea ice volume were found to be pre-
dictable for up to 3 years in four coupled general circula-
tion models (GCMs) by Tietsche et al. (2014), with sea ice
volume being more predictable than extent. Sea ice volume
predictability was found to depend on the initial month: pre-
dictive skill for sea ice volume declines much faster for en-
semble forecasts initialized in May, as opposed to those ini-
tialized in January or July (Day et al., 2014).

Cruz-García et al. (2019) complement these studies by a
regional analysis of sea ice area, extent, and volume pre-
dictability. For instance, while sea ice area in the peripheral
seas exhibits significant predictability in winter, predictabil-
ity is low in the other seasons, caused by the low predictabil-
ity of the dynamic location of the sea ice edge, which was
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found to be predictable for up to at least 6 months (Goessling
et al., 2016). Goessling and Jung (2018) introduce a proba-
bilistic verification metric for the location of the sea ice edge
(the spatial predictability score, SPS) and report sea ice edge
predictability for up to 10 months for the AWI-CM1 model.
Zampieri et al. (2018) apply the SPS to a set of operational
models for assessing actual skill of sea ice edge forecasts
and find a wide range of skill across the models, ranging
from no skill even at initial time to skillful forecasts for up to
1.5 months, which also highlights the gap between potential
predictability and current forecasting skill.

Note that these studies use different metrics for pre-
dictability, tailored to the predictand in question. Therefore,
the term “predictable for up to” not only is influenced by
sample size, as mentioned above, but also implicitly includes
choices on the metric and climatological normalization (see
Sect. 2) and always refers to the predictability within a spe-
cific model. Also note that predictability from perfect-model
experiments is merely an estimate for the upper limit of fore-
cast skill, as the real climate system could be more pre-
dictable than perfect-model experiments suggest (Eade et al.,
2014).

The substantial derivative, that is, the material change in
sea ice momentum with time, can be described by

D(ρhu)
Dt

=−ρhf k×u− ρhg∇ψ + τ a+ τ o+∇ · σ , (1)

where ρh is the inertial mass, −f k×u is the Coriolis accel-
eration with unit vector k in the vertical direction, −g∇ψ is
an acceleration term from sea surface tilt with gravitational
constant g, τ a and τ o are surface drag from wind and ocean
currents, and σ is the stress tensor, which describes how the
ice responds to forces trying to deform it (internal stress). A
scale analysis (see, for instance, Leppäranta, 2011) reveals
that, on timescales longer than a few hours, internal stress
and atmospheric and oceanic drag are the terms of leading
order.

While the wind is the primary driving force setting the
ice into motion, the ocean drag mainly acts to counteract the
wind-induced motion. This simplified relation does not hold
where notable (sub-)surface ocean currents occur. Neverthe-
less, particularly in the open ocean and on the timescales of
days, more than two-thirds of the ice velocity variance is ex-
plained by geostrophic winds (Thorndike and Colony, 1982).
The relation is weaker towards coastal areas, where other
processes gain relevance, such as ice stress. Recent studies on
potential explanations for an observed acceleration of Arctic
ice speed in the last few decades emphasize the importance of
ice stress and strength for sea ice kinematics, particularly the
effects of thinning ice and cracks not refreezing in a warming
Arctic (Olason and Notz, 2014; Spreen et al., 2011; Rampal
et al., 2009; Zhang et al., 2012).

It thus appears plausible that the predictability of near-
surface wind determines the predictability of ice drift to
a large part. However, ocean drag, which is influenced by

ocean currents, and the rheological response, which is in-
fluenced by ice thickness and concentration, also affect the
persistence of and variability in sea ice drift and thus its pre-
dictability. Given that ocean currents as well as ice thickness
vary on longer timescales than atmospheric winds, we hy-
pothesize that the motion of sea ice is more predictable than
the (near-surface) wind field. Moreover, as atmospheric cir-
culation patterns, ice thickness, and ocean currents vary re-
gionally and seasonally, we expect to find regional and sea-
sonal differences in ice drift predictability. The main goals
of this work are testing these hypotheses and quantifying the
relative importance of the described effects.

With this study, we provide the first estimates of initial-
value predictability of Arctic sea ice drift in global climate
models. We use a suite of perfect-model ensembles following
a common experimental protocol, which further enables an
assessment of the model diversity regarding inherent ice drift
uncertainty. We present the topic from both a Lagrangian per-
spective, i.e., the predictability of a time-dependent position
of a virtual buoy, and an Eulerian point of view, i.e., the pre-
dictability of ice drift vectors at a fixed position, and explore
possible explanations for regional and seasonal differences
while considering lead times from days to a few months.
The Eulerian perspective allows us to compare ice drift pre-
dictability directly with corresponding wind predictability,
and thus to quantify if and to what degree ice drift is more
predictable than the wind. Our results will help to clarify how
different processes act on sea ice drift predictability and put
current forecast skill into perspective.

This paper is structured as follows. In Sect. 2 we introduce
the so-called perfect-model approach, together with the data
set and methods in use. We assess the individual model back-
ground climates in Sect. 3. The predictability of (Lagrangian)
target positions and (Eulerian) velocity vectors is presented
in Sect. 4.1 and then interpreted in the light of near-surface
wind speed (Sect. 4.2) and initial ice thickness (Sect. 4.3).
We then discuss our results critically before summarizing and
drawing conclusions.

2 Data and methods

2.1 APPOSITE data set

As part of the Arctic Predictability and Prediction on
Seasonal-to-Interannual TimEscales (APPOSITE) project,
perfect-model experiments have been carried out with seven
general circulation models (Day et al., 2016). The project has
been designed for an assessment of model diversity in Arc-
tic predictability on seasonal to interannual timescales. Due
to the common experimental setup, all variation across the
models can be attributed to the different representation of
physical processes, discretization, and integration schemes,
which allows a direct model comparison. In this study, we
analyze four of the seven participating models:
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– AWI-CM1 (Sidorenko et al., 2015), a climate model run
and developed by the Alfred Wegener Institute for Polar
and Marine Research (Germany);

– GFDL-CM3 (Griffies et al., 2011; Donner et al.,
2011), from the Geophysical Fluid Dynamics Labora-
tory (USA);

– HadGEM1.2 (Johns et al., 2006; Shaffrey et al., 2009),
the Hadley Centre Global Environment Model from the
Met Office (UK); and

– MPI-ESM (Notz et al., 2013; Jungclaus et al., 2013),
an Earth system model developed by the Max Planck
Institute for Meteorology (Germany).

Simulations from MPI-ESM and GFDL-CM3 were sub-
mitted to the Coupled Model Intercomparison Project
Phase 5 (CMIP5) in the same configuration as for the AP-
POSITE project. Note that AWI-CM1 and MPI-ESM share
the same atmospheric component, ECHAM6. In some other
publications, AWI-CM1 may be referred to as E6F, a tempo-
rary former name.

For each of the selected models, a control simulation of at
least Nctrl = 200 years integration time is available, with at
least 100 years for spin-up beforehand. As the predictabil-
ity of the climate system is sensitive to the mean climate
(DelSole et al., 2014) and because secular trends make it
more difficult to quantify predictability, all simulations used
were performed using a fixed radiative forcing representa-
tive of the recent past. However, Day et al. (2016) report that
most participating models were not in equilibrium after the
spin-up period; there was significant drift regarding sea ice
extent and volume that needed to be removed prior to the
analysis of predictability of these variables. We find trends in
monthly mean ice drift speeds to be negligible (smaller than
3.1× 10−2 cm per second per decade), so no trends were re-
moved in this study.

These control simulations provide statistical properties of
the individual model climates. Depending on the model, up
toNinit = 18 ensemble forecasts with up toNmem = 16 mem-
bers were initialized, using initial conditions from the control
run (see Table 1). The members were generated by adding
different realizations of uncorrelated white noise with a stan-
dard deviation of 10−4 K from the sea surface temperature.
The divergence of the model members is directly attributable
to the amplification of this virtually infinitesimal perturba-
tion. The common protocol required initializations on 1 July;
three out of four models provided additional initializations
on 1 January. This enables an analysis of the seasonal de-
pendence of the growth of uncertainty. To sample the back-
ground variability in the respective model climate, the initial-
ization years were distributed over the whole control run.

We use daily averaged model output for sea ice velocity,
sea ice concentration (SIC), and sea ice thickness (SIT) from

Table 1. Brief summary of the APPOSITE simulations used in this
study. The columns are, from left to right, model name, number
of control simulation years (Nctrl), number of ensemble members
(Nmem), number of initialized predictions (Ninit), and the initializa-
tion months.

Model Nctrl Nmem Ninit Init. months

AWI-CM1 200 9 18 Jan, Jul
GFDL-CM3 200 16 8 Jan, Jul
HadGEM1.2 249 16 10 Jan, Jul
MPI-ESM 200 9 12 Jul

all four models and near-surface (10 m) wind velocities addi-
tionally provided for AWI-CM1 and HadGEM1.2. Unfortu-
nately, daily ocean velocities are not available, so we need to
restrict our analyses to the aforementioned variables.

2.2 Trajectory calculation and selection

We calculate kinematic trajectories for virtual buoys (targets)
from the velocity fields with a numeric integration method of
second-order accuracy. Trajectories x(t) are solutions of the
ordinary differential equation

ẋ(t)= u(x, t) (2)

with an initial condition x0 = x(t0), where u(x, t) is the ice
velocity field and t the time.

Assuming that the given initial-value problem fulfills the
requirements for the Picard–Lindelöf theorem, unique ana-
lytical solutions are given by

x(t)= x0+

t∫
t0

u(x(s),s) ds, (3)

which aptly illustrates how the two predictands we focus on,
Eulerian velocity u and Lagrangian target position x, are
connected.

As AWI-CM1 computes on an unstructured triangular
grid, we implemented the integration method for that type
of mesh and applied it to curvilinear and rectilinear grids by
cutting the quadrilateral boxes into two adjacent triangles.
The method uses an adaptive time step which ensures that
no triangular elements are skipped during one time step, thus
avoiding a loss of velocity information. We use barycentric
coordinates for the spatial interpolation between nodes and a
common linear interpolation in time. The trajectory tool is a
side product of this publication and made openly available
in the R package “spheRlab” (https://github.com/FESOM/
spheRlab, last access: 15 July 2022). Before the trajectory
computation, we rotated the coordinate system such that the
North Pole lies on the Equator to avoid a singularity in the
spatial domain. We interpolate the output onto a 0.5 d time
grid for facilitating the subsequent analyses, which is also
the default for the adaptive time step.
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Figure 1. Map of all initial positions for trajectory computation (red
crosses and circles). The initial positions with a solid red circle con-
stitute the common subset of initial positions for all models after the
filtering process outlined in Sect. 2.2.

We use 347 initial positions distributed evenly over the
Arctic Ocean (see Fig. 1), which allows us to assess re-
gional differences in predictability. The distance between
two neighboring initial positions is approximately 160 km.
Trajectories were computed for all aforementioned models,
all available control run years, and all initialized ensemble
predictions, always initializing the trajectories on 1 January
(all models) and 1 July (all models except MPI-ESM). The
maximum integration time is 120d, and the computation of a
trajectory is stopped prematurely when the virtual buoy en-
ters a region with sea ice concentration lower than 0.15 or ex-
its the ocean model domain. Therefore, a fraction of targets
are lost over time, particularly from those initialized close to
the ice edge and the Fram Strait. To account for that, we se-
lect initial positions for the analysis based on the following
filtering criteria:

1. Residence time in ice cover. We exclude all trajectories
not covering at least 90d (45d) for January (July) ini-
tializations.

2. Complete ensembles. If an ensemble prediction for a
given target is missing any member after the previous
filtering step, we remove the given ensemble from the
analysis.

3. Minimum number of initializations. Dependent on the
respective model, there are between 8 and 18 initializa-
tions (i.e., ensembles) per initial target position. We re-
move all initial positions from the analysis which do not

offer at least eight complete ensembles. This holds for
both the initialized ensemble predictions and the clima-
tological reference ensembles (see Sect. 2.3).

The longer the selected time period for analysis (in the first
step), the more trajectories are removed and the smaller the
spatial coverage becomes. The chosen thresholds are there-
fore a compromise within the trade-off between spatial and
temporal coverage. For the comparison of time series of spa-
tially integrated quantities between the individual models, we
use the common subset of targets after the outlined filtering
process, i.e., the intersection of all available targets from the
different models of the initialized prediction and control runs
(see also Fig. 1), that is, 126 targets in total. As a conse-
quence, the marginal ice zone is not represented in these parts
of the analyses, and the inter-model seasonal ice cover dic-
tates the shape and location of the common subset.

2.3 Measures of predictability

In this study, we determine and analyze the potential pre-
dictability of Lagrangian target positions and Eulerian ve-
locity vectors. We express the predictability as the ratio of
the uncertainty in the ensemble mean of the initialized pre-
diction to a reference ensemble constructed by drawing ran-
domly from the climatological background (see below). It is
therefore necessary to measure the uncertainty in an ensem-
ble prediction. For scalar quantities, such as temperature or
ice speed, the normalized root mean square error (NRMSE;
see Collins, 2002) is used in various predictability studies.

To account for the bivariate nature of velocity vectors, we
describe ensemble spread at a given lead time by the corre-
sponding covariance matrix 6. Our measure for uncertainty
is then the spectral norm of 6, which is also the length of
the semi-major axis of the ellipse described by 6 (see Ap-
pendix A). One can thus use 6 for analyzing the anisotropy
of uncertainty as well.

For the normalization, we construct a climatological ref-
erence ensemble by drawing randomly from the control run.
For a specific initial position and season from AWI-CM1,
for example, we compile an ensemble of the same size as
the initialized predictions (i.e., Nmem = 9 for AWI-CM1) by
drawingNmem random years from the control simulation, for
the same season, and calculate the uncertainty for this en-
semble as before. We repeat this procedure 200 times and
estimate the climatological uncertainty by the mean uncer-
tainty of those 200 randomly generated ensembles. This is
performed for each initial position for both January and July
initializations.

The normalized uncertainty σ̂i,n of the ith initialized en-
semble for the nth target position is then given by

σ̂i,n =
ai,n

〈aclim
n 〉

, (4)

where ai,n is the uncertainty in the ith initialized ensemble
and 〈aclim

n 〉 is the expectation value from the climatological
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randomly generated ensembles (estimated by the mean); note
that the explicit time dependence has been dropped for sim-
plicity.

We obtain a time series of normalized uncertainty for the
whole common subset by averaging over the index n, which
allows using the different initializations as the sample for
testing hypotheses. For presenting geographical features of
the uncertainty, we average over i, obtaining σ̂n. A value of
σ̂n = 1 indicates that the uncertainty in the initialized predic-
tion for a given position has reached the level of the clima-
tological uncertainty, which implies a complete loss of infor-
mation from the initial conditions.

Note that potential predictability is often defined via 1−
σ̂n; we however prefer the notion of an increasing uncertainty
in the initialized forecast relative to the climatological spread
and will use σ̂n throughout this work.

We follow the same approach for the position vectors, ex-
cept that these vectors in geographical coordinates are pro-
jected onto a local Cartesian coordinate system (with units
of km) before; see Appendix A.

3 Model climate and ice drift variability

Here we present the main characteristics of climatological
variables related to sea ice momentum and motion, namely
sea ice thickness; ice velocity and speed; and, where avail-
able, wind. We further present key aspects of the interannual
ice drift variability, based on the calculated trajectories. We
focus on the results of January and July, as the ensemble pre-
dictions were initialized in these months.

Maps of average ice thickness for the months of March
and September are presented in Day et al. (2016). The mean
state of and variability in the control simulations regarding
those variables vary substantially between the different mod-
els, with HadGEM1.2 exhibiting the largest mean sea ice ex-
tent and volume, followed by GFDL-CM3 and then, both at a
comparable level, MPI-ESM and AWI-CM1. Thus, the mod-
els also differ in how well they capture the current climate
of the real system. Although the assessment of inherent pre-
dictability of the climate within a given model does not build
upon the degree of accuracy to which it reproduces the real
system, it is worth noting that each of the coupled general cir-
culation models has individual strengths and shortcomings,
particularly as predictability may depend on the mean model
state.

The aforementioned order also holds for ice thickness (see
Table B1). All models simulate the thickest ice towards the
coast of the Canadian Arctic Archipelago (CAA), although
the spatial gradients are comparably small in MPI-ESM
(Fig. B1). Tietsche et al. (2014) find the SIT variability for
GFDL-CM3, HadGEM1.2, and MPI-ESM in the APPOSITE
simulations to be larger in coastal areas, likely caused by sur-
face wind variability and thus advective processes rather than
thermodynamics.

For all models, we determined the ice speed distribution on
the common subset of initial positions from the control run
for the initialization months January and July (Fig. 2, two
left columns). While ice speeds are larger in January com-
pared to July for GFDL-CM3, HadGEM1.2, and MPI-ESM,
the mean ice speed in July is higher than in January for AWI-
CM1. Overall, annual mean ice speed on the common sub-
set is highest for MPI-ESM (0.12 ms−1); this model is also
the only one where the frequency density at very low speeds
drops almost to zero, even in winter, suggesting a smaller role
of ice rheology. The other models exhibit lower average drift
speeds of 0.10 ms−1 (AWI-CM1), 0.08 ms−1 (GFDL-CM3)
and 0.07 ms−1 (HadGEM1.2). For all models, the distribu-
tion is more positively skewed, with higher relative frequen-
cies of the lowest ice speeds in winter compared to summer,
presumably caused by a stronger ice pack, although this ef-
fect is very small in MPI-ESM. At the same time, MPI-ESM,
GFDL-CM3, and HadGEM1.2 also exhibit an increase in the
higher drift speeds in winter, likely due to increased wind
speeds. Higher wind speeds in winter compared to summer
indeed occur in both HadGEM1.2 and AWI-CM1, the two
models for which daily wind data are available (Fig. 2, right
column); it appears likely that the same holds for the other
two models. It is noteworthy that the higher winterly wind
speeds in AWI-CM1 do not translate into more frequent oc-
currence of high ice drift speeds in AWI-CM1 in winter. We
speculate that this might be either due to seasonal changes in
wind direction that counteract the wind speed effect, e.g., be-
cause winterly winds might tend to blow more often towards
coasts, or due to a stronger influence of seasonal ice thickness
variations on ice drift even in cases where rheological effects
do not much attenuate the ice drift. However, resolving these
intricacies is beyond the scope of this work.

For the two models providing wind data, we investigate the
climatological annual cycle of the relation of ice speed and
wind speed on the analysis grid. For AWI-CM1, there is a
pronounced phase shift of monthly mean ice speed and wind
speed: while ice speed is lowest in April and maximal in Au-
gust, wind speed is lowest in June and July and peaks in the
cold season between August and February (Fig. 3). We sug-
gest that the phase relation of drift speed and wind speed in
AWI-CM1 is determined by ice mobility. While wind speeds
are maximal in winter, ice speed slows down with increas-
ing thickness. With the onset of the melting season in spring,
ice becomes weaker and more susceptible to wind stress. Al-
though the wind speeds are lowest in June and July, ice accel-
erates due to weakening of the ice pack. This phase relation
may be modulated further by seasonal changes in large-scale
circulation patterns. For HadGEM1.2 ice speeds are signifi-
cantly lower than in AWI-CM1 and the amplitude of the sea-
sonal wind speed cycle is much smaller.

The differences between all four models regarding the cli-
matological ice drift speed, as well as the differences be-
tween AWI-CM1 and HadGEM1.2 regarding the magnitude
of the climatological wind forcing, already hint at potential
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Figure 2. Relative frequency distribution for ice drift speed (a, b, d, e) and near-surface wind speed (c, f) on the common subset and only
including days with SIC≥ 0.15 and SIT≥ 1 mm, based on the respective control simulation. Blue bars show data for all January months in
the control run, red bars for July, and black triangles for all months. The blue (red) vertical lines show the mean speed for January (July).
The bin size is 0.01 ms−1 for ice speed and 0.50 ms−1 for wind speed.

differences in the growth of uncertainty in ice drift predic-
tions between models, seasons, and regions.

We now consider the trajectories from the control simula-
tions. For each initial position, we derive the orientation and
axis ratio of the variance ellipse for the climatological dis-
tribution of Nctrl target positions at a 45 d lead time (Figs. 4
and 5), for both January and July. The anisotropy given by
the axis ratio shows whether there is a preferred direction of
uncertainty growth for an initial position. The models share
some common features in that matter; ellipses are more ec-
centric towards the northern and eastern coast of Greenland
and the coast of Alaska and more circular (i.e., isotropic) in
the open ocean. In July, eccentricity in the coastal areas de-
creases, likely a sign of increased mobility due to a weaker
ice pack and/or more variability in the wind direction. To-
gether with the seasonal differences in the ice speed distribu-
tion, this is another factor that might lead to seasonality in ice
drift predictability. Also note that the direction of maximum
variance can vary from being parallel with (e.g., in the Fram
Strait) to perpendicular to (e.g., north of Greenland and the
CAA) the mean motion.

The temporal evolution of the spatially averaged clima-
tological reference uncertainty used for normalization (ob-
tained by bootstrapping; see Sect. 2) for the Lagrangian tar-
get position follows approximately the shape of a square root
function for the examined lead time, similar to a Brownian
“random walk” motion (Fig. B2). As already recognizable
from the depicted ellipse size, the climatological uncertainty
is highest for MPI-ESM. For HadGEM1.2 and GFDL-CM3,
the climatological reference uncertainty is larger in January

than in July, contrary to AWI-CM1. The July uncertainty in
MPI-ESM follows closely the one from AWI-CM1.

4 Predictability of sea ice drift

4.1 Ice drift predictability

4.1.1 Lagrangian perspective

We begin with the analysis of the target position predictabil-
ity, measured by the normalized spread (uncertainty) of
the point clouds that correspond to individual lead times
of the trajectory ensembles. We use the term uncertainty
interchangeably with normalized uncertainty. As explained
above, an uncertainty of 0 implies perfect predictability,
whereas an uncertainty of 1 implies the complete loss of pre-
dictability.

The spatial characteristics are presented for a 45 d lead
time, which is the range of the summer trajectories. How-
ever, the patterns change only slowly over time and are thus
representative of a broad time period from about a 30 to (at
least) 45 d lead time.

The uncertainty exhibits smooth spatial gradients in all
models (Fig. 6). The spatial patterns differ between the mod-
els and between summer and winter. In AWI-CM1 the uncer-
tainty from January initializations grows more slowly along
the northern coast of the CAA, the Beaufort Sea, the Chukchi
Sea, and the East Siberian Sea than in the open ocean, the
Kara Sea, the Laptev Sea, and the Barents Sea. While the un-
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Figure 3. Annual cycles of monthly mean wind and drift speeds on the common subset of initial positions. The numbers indicate the
respective months. Please note the strongly different scaling on the axes.

certainty in the Beaufort Sea in GFDL-CM3 is also compara-
bly low (with higher values in the open ocean), this model has
a less pronounced north–south gradient towards Greenland
and the CAA. HadGEM1.2 shows generally weaker spatial
gradients in winter than AWI-CM1 and GFDL-CM3.

There are distinct regions with significantly higher uncer-
tainty for July initializations than for January initializations
in AWI-CM1, GFDL-CM3, and HadGEM1.2 (Fig. 6), based
on a one-sided unpaired t test using the different start years
as the sample (not shown). For AWI-CM1, significant sea-
sonal differences occur mainly north of the CAA, where the
normalized uncertainty is low in winter. For the same area,
there is no significant seasonal difference in GFDL-CM3,
where seasonal differences occur mainly between 90 and
200◦ E. The majority of initial positions for January and July
in HadGEM1.2 are significantly more uncertain in July, ex-
cept for the Beaufort Sea and the outflow region towards the
Fram Strait. Spatial gradients in HadGEM1.2 are larger in
summer. Interestingly, the magnitudes of normalized uncer-
tainty for MPI-ESM in summer match the range of the other
models in winter, which follows from the fact that the nor-
malized uncertainty in MPI-ESM is generally lower than in
the other models in summer.

Constraining the examined region to the common analy-
sis grid, we find that the spatially averaged normalized un-
certainty has qualitatively the same temporal evolution in all
four models: a slow increase in uncertainty in the first days, a
relatively steep increase within a roughly 4-week lead time,
and then a deceleration of normalized uncertainty growth
(Fig. 7). This deceleration can be understood as a phase dur-
ing which the uncertainty in the initialized predictions grows
at a similar rate to the climatological reference.

Despite the qualitatively different spatial distributions, the
averaged normalized uncertainty is very similar across AWI-
CM1, GFDL-CM3, and HadGEM1.2 (see Table 2 for numer-
ical values). The uncertainty in MPI-ESM for July initializa-
tions is relatively low and resembles more the winter uncer-
tainty in the other models than their respective July initial-
izations. This is despite the facts that the climatological ref-
erence uncertainty for July initializations is similar between
AWI-CM1 and MPI-ESM (Fig. B2); that both models share
the same atmospheric component; and that they have quite
similar seasonal cycles of sea ice extent and volume (Day
et al., 2016) and, to a slightly lesser extent, sea ice thick-
ness. This suggests that the significantly different behavior of
AWI-CM1 and MPI-ESM regarding the growth of the (non-
normalized) uncertainty in the initialized ensembles should
be either due to differences in the ocean and sea ice compo-
nents of the models or related to a delayed divergence of the
atmospheric states in MPI-ESM (see Sect. 5).

None of the models reaches the climatological saturation
value for target position uncertainty within a 90 d (45 d) lead
time in January (July), and the growth appears to level off for
long lead times for the winter initializations. This seemingly
asymptotic behavior indicates that the growth rates of ini-
tialized and randomly generated ensembles equalize at some
point, at least for the depicted time period. The spread dif-
ference between the initialized and climatological trajectory
ensembles that develops during the first weeks is maintained
throughout the analyzed forecast range. One problem that
hinders the analysis of longer lead times is the inevitable
loss of trajectories, so we cannot easily extend the examined
time period without further reducing the spatial analysis do-
main. Nevertheless, we follow three approaches for obtaining
deeper insights: (i) an analysis from the Eulerian perspective,
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Figure 4. Variance ellipses (here scaled for showing the 20 % confidence level, scale chosen for best visibility) for the target position at
t = 45 d lead time, generated from trajectories from all available control run years; we only show those initial positions for which the targets
of at least 180 single years remained in the ice cover for up to t = 45 d. Each row shows ellipses for initializations in January (a, c) and July
(b, d). The coloring denotes the axis ratio (anisotropy) of the uncertainty; the black dots show the corresponding initial positions, connected
by thin black lines to the ellipse centers, which indicate the average positions after 45 d.

(ii) an additional experiment where we release targets at the
original initial positions but at a later time when the model
forecast fields have already advanced further (“lagged ini-
tialization”), and (iii) an additional experiment with a longer
integration time.

Regarding the last point, we calculated trajectories for
AWI-CM1 with a 240 d integration time, starting on 1 Jan-
uary, and only chose those initial positions which cover the
entire time period, again using the established filtering crite-
ria (except for the longer time period). We find that the tar-
get position uncertainty is eventually saturated within 190 d
(Fig. B3).

4.1.2 Eulerian perspective

Instead of following virtual ice parcels on Lagrangian trajec-
tories like in the previous section, we perform a similar anal-
ysis for sea ice drift velocity vectors at fixed positions, which
enables a direct comparison with the near-surface winds at
the same locations (see Sect. 4.2).

As for the Lagrangian point of view, all models also ex-
hibit spatial gradients for uncertainty for the drift velocity
vectors (not shown). These gradients are smooth, though in-
termittent over time, in that qualitative regional characteris-
tics change within days. Significantly larger uncertainties for
summer initializations can only be detected in HadGEM1.2,
as comparably large interannual variability renders any dif-
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Figure 5. The same as Fig. 4 but for the models HadGEM1.2 and MPI-ESM.

ferences in the mean uncertainties statistically insignificant
for AWI-CM1 and GFDL-CM3.

In contrast to the Lagrangian perspective, where a consid-
erable level of predictability appears to remain at comparably
long lead times, from the Eulerian perspective the uncertainty
reaches the climatological uncertainty for all models in both
seasons within 3 to 4 weeks (Fig. 7, right panel), and the
uncertainty fluctuates around the saturation value thereafter.
The largest difference between the models occurs between a
10 and 16 d lead time (see again Table 2 for selected numer-
ical values).

4.1.3 Lagged-initialization experiment

As trajectories are obtained by applying a time integral to the
velocity field (Eq. 3), the Lagrangian and Eulerian perspec-
tives are naturally tightly connected (at least as long as the
targets remain in the vicinity of their initial positions). We
highlight this connection with another experiment in which

we delay the initialization of the trajectories relative to the
initialization of the original ensemble simulation by 4, 7,
10, 15, and 20 d. As the climatological uncertainty has to be
calculated for each different lag time and the bootstrapping
method is computationally expensive, we estimate the cli-
matological uncertainty by only 100 random draws for each
initial position.

The initial normalized uncertainty in the lagged trajecto-
ries matches the uncertainty in the Eulerian velocity vec-
tors at the respective original lead time very closely (Fig. 8),
which can be explained as follows. Imagine we had used
the explicit Euler method for the trajectory calculation; the
variance ellipse of target positions after the first time step
would then be equivalent to the ellipse of the velocity vec-
tors, merely scaled by time step size. However, the different
scaling is compensated for by the normalization, so a close
initial correspondence of the normalized uncertainty follows
directly.
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Figure 6. Normalized uncertainty in target position predictions for all initial positions that fulfill the selection criteria 1–3 (see Sect. 2.2) at
a 45 d lead time. Top row: initializations on 1 January. Bottom row: initializations on 1 July. Note that there are no January initializations for
MPI-ESM available.

Figure 7. (a) Temporal evolution of normalized uncertainty in Lagrangian target position for all models, spatially averaged on the com-
mon subset of initial positions. Solid lines show the January initializations and dashed lines July. The horizontal dashed line indicates the
climatological saturation value. Please note the square root horizontal axis. (b) The same as (a) but for the Eulerian ice velocity.

The uncertainty in the lagged Lagrangian trajectories then
grows more slowly than for the Eulerian velocity vectors,
bounded below from the uncertainty in the non-lagged trajec-
tories. Figuratively speaking, the time integration leads to an
“inheritance” of the low uncertainty from early time steps for
the Lagrangian trajectories, whereas subsequent time steps in
the Eulerian perspective do not transport information in time.
As displacements of buoys within a few time steps are small
compared to the scale of spatial coherence of the ice veloc-
ity field in the analyzed models, the Eulerian and Lagrangian

perspectives tell a similar story – yet at a different pace. This
feature may raise confidence that properties of the Eulerian
ice velocity predictability can be partly transferred to the La-
grangian target position predictability and vice versa.

Finally, this experiment displays how an initial uncertainty
in the velocity field influences the growth of uncertainty in
the target position, which has practical consequences for op-
erational forecasts; the smaller the initial uncertainty in the
ice velocity, the later the uncertainty growth rate of initial-
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Table 2. Mean normalized uncertainties on the common set of initial positions at a 45 and 12 d lead time for the Lagrangian (LAGR) and
Eulerian (EULE) perspective, respectively, with 1 standard error.

Model LAGR, Jan (45 d) LAGR, Jul (45 d) EULE, Jan (12 d) EULE, Jul (12 d)

AWI-CM1 0.75± 0.02 0.84± 0.02 0.59± 0.05 0.65± 0.05
GFDL-CM3 0.79± 0.04 0.86± 0.02 0.65± 0.13 0.78± 0.05
HadGEM1.2 0.73± 0.03 0.87± 0.04 0.54± 0.04 0.80± 0.06
MPI-ESM – 0.70± 0.01 – 0.52± 0.03

Figure 8. Lagged-initialization experiment with AWI-CM1: we set
virtual buoys at the same initial positions as before but delay the
release by 4, 7, 10, 15, and 20 d. The colored lines show the nor-
malized uncertainty on the non-lagged time axis. The dashed lines
show the uncertainty for the Eulerian perspective and the dotted line
the uncertainty in non-lagged Lagrangian trajectories (“Lag 00”).
The initial uncertainty in the lagged Lagrangian trajectories matches
closely the uncertainty in the Eulerian perspective at the respective
time of buoy release.

ized forecasts attains the climatological growth. This under-
lines the important role of data assimilation.

In summary, we find that the spatial distribution of the
normalized target position varies between the models and,
within the same model, also between summer and win-
ter initializations. For the Lagrangian perspective, normal-
ized uncertainties are not saturated within the considered
time periods, although an experiment with longer integra-
tion times shows that this happens at even longer lead times.
The uncertainty in Eulerian velocity vectors on the other
hand is saturated within 4 weeks for all investigated mod-
els while exhibiting intermittent spatial characteristics. A
lagged-initialization experiment highlights the close connec-
tion between both points of view. It furthermore illustrates

how the target position uncertainty is inherited from the Eule-
rian velocity vector uncertainty. In the following, we examine
what drives the observed regional and seasonal differences.

4.2 Relation to near-surface wind

Wind forcing is known to be one main driver of ice drift
variability, particularly in the open ocean, and it is therefore
likely to play a key role in ice drift predictability. The AP-
POSITE data set includes daily average near-surface wind
velocities for two of the considered models, AWI-CM1 and
HadGEM1.2, of which we make use in this section. We cal-
culate the normalized uncertainty for the two-dimensional
near-surface wind vectors in the Eulerian perspective like for
the ice velocities before.

Indeed, we find a close correspondence of the temporal
evolution of wind and ice drift vector uncertainty (Fig. 9).
However, there is a time period of more than 2 weeks when
the ice uncertainty is significantly lower than wind uncer-
tainty for AWI-CM1 in both January and July initializations
(determined by a one-sided paired t test, 95 % level). This
is considerably less evident for HadGEM1.2. For this model
the uncertainty in ice drift for January is generally lower than
the one for near-surface wind, yet the differences are only
significant between a 9 and 16 d lead time, considering only
the time before first saturation. In July, the differences are
only marginal. However, the less significant differences in
HadGEM1.2 compared to AWI-CM1 do not necessarily re-
veal an actual model difference; the smaller number of ini-
tializations and thus the smaller sample size for HadGEM1.2
(10) compared to AWI-CM1 (18) could also explain the dif-
ferences in statistical significance.

The spatial distribution of wind vector uncertainty, albeit
being intermittent as well, matches closely the patterns of
the uncertainty in ice drift vectors (not shown). Moreover,
there is a significant positive correlation of wind vector un-
certainty and ice vector uncertainty at most initial positions
in both models and both seasons, again taking the available
number of initializations per initial position as the sample
(Fig. B4). That is, lower (higher) uncertainty in wind vec-
tors coincides with lower (higher) uncertainty in ice drift
vectors at a fixed position, and a considerable fraction of
the variation in ice drift uncertainty can be attributed to
the near-surface wind predictability. On the common sub-
set of initial positions, the mean correlation coefficient (av-
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Figure 9. Normalized uncertainty in near-surface wind vectors in Eulerian perspective for AWI-CM1 (a) and HadGEM1.2 (b). Solid (dashed)
lines denote the mean for January (July) initializations, and the normalized uncertainty in Eulerian ice drift vectors is added for comparison
as diamonds (crosses) for January (July). The horizontal gray dotted line marks the climatological saturation value of 1. The diamonds and
crosses above the horizontal axis denote those lead times for which the uncertainty for the ice velocity vectors is significantly lower than the
uncertainty for wind vectors (one-sided paired t test, 0.95 level).

erage from Fisher z-transformed data, which is then back-
transformed) for t = 12 d lead time is 0.79 (0.93) for January
(July) for AWI-CM1 and 0.76 (0.92) for January (July) for
HadGEM1.2. After 28 d, the correlation coefficients are 0.79
(0.90) and 0.86 (0.87) for AWI-CM1 and HadGEM1.2, re-
spectively. Still, there must be other processes leading to the
slightly lower uncertainty in the Eulerian ice drift, which thus
acts as a source of predictability against the sink imposed
by the near-surface winds. One possible source of additional
predictability is linked to the ice state, which is the subject of
the following section.

4.3 Relation to initial ice state

Here, we examine the relation of initial ice thickness and the
uncertainty in the target position (Lagrangian perspective).
For each initial position, we calculate the correlation coeffi-
cient for initial ice thickness and the target position uncer-
tainty at a 45 d lead time (see Fig. 10). The choice of that
lead time is somewhat arbitrary, yet it can be motivated by
two points. First, the wind field can be expected to be decor-
related from its initial state, so the previously established sig-
nificance of wind predictability is small (see Sect. 4.2) and
other effects with longer persistence gain more importance.
Nevertheless, some imprint of wind predictability is still in-
herited from early lead times (see Sect. 4.1.3). Second, the
spatial patterns of target position uncertainty do not change
significantly after 4 to 5 weeks, so the fixed time t = 45 d
can be considered representative of a time period of at least
2 weeks. It is also the latest lead time enabling a direct com-
parison of January and July initializations, due to the chosen
thresholds in the trajectory filtering.

For July, there is virtually no significant correlation of ini-
tial ice thickness and uncertainty in all models; small patches
with significant differences cover barely more than 5 % of
the area, meaning that no field significance is given. A dif-
ferent picture emerges for the initializations in winter. For
AWI-CM1 there are persistent regions of significant neg-
ative correlation in the East Siberian Sea, at the coast of
the CAA, and northeast of Svalbard. In these regions, a
thinner initial ice cover yields a higher uncertainty in (and
thus lower predictability of) the target position prediction.
In the open ocean, as well as north of the coasts of Green-
land, Ellesmere Island, and Alaska, there is no correlation
of uncertainty and ice thickness. In HadGEM1.2 there is a
ring-shaped pattern of weak to moderate negative correla-
tion in the coastal regions and a few hundred kilometers to-
wards the open ocean, although this is also rarely significant.
While wind and ice drift uncertainty are in close correspon-
dence for HadGEM1.2, ice thickness does not appear to play
a significant role regarding ice drift uncertainty. Note that
HadGEM1.2 simulates by far the thickest ice cover, so neg-
ative thickness anomalies may still yield comparably thick
ice. In GFDL-CM3, there is generally a negative correlation
of initial ice thickness and ice drift uncertainty. In large re-
gions, this relation is significant, for instance in the coastal
regions of the CAA, Greenland, and Russia. There we ob-
serve a significant and strong relation of initial ice thickness;
i.e., the thicker the ice at the initial time, the less uncertain
and thus more predictable the target position prediction be-
tween a 30 and (at least) 45 d lead time.
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Figure 10. Correlation of target position normalized uncertainty at t = 45 d and initial sea ice thickness for each initial position for January
(top) and July (bottom) initializations. Black dots indicate locations with correlation weaker than ±0.02. Colored dots encompassed by a
black circle denote a p value smaller than 0.05. The different initializations, at least eight, serve as the sample per target position.

5 Discussion

While the temporal evolution of spatially averaged uncer-
tainty is qualitatively similar across the models, the spatial
characteristics, the quality of seasonal differences, and the re-
sponse to initial ice thickness are not. We attribute this to dif-
ferent representations of the forces acting on the ice, as well
as different sea ice physics implementations. This makes it
difficult to generalize our results but stresses the importance
of using not one but a variety of models to study the pre-
dictability of the climate system.

The local correlation of Eulerian wind vector uncertainty
to ice drift uncertainty in HadGEM1.2 and AWI-CM1 and
the fact that ice drift is barely more predictable than wind
are strong indications of a dominant influence of atmo-
spheric variability on ice drift predictability. Regarding our
hypothesis of sea ice drift being less uncertain (that is,
more predictable) than wind vectors, we find ambiguous
results. Slightly enhanced predictability of ice drift versus
wind is found for AWI-CM1 in both January and July for
up to at least a 2-week lead time, but this is less clear for
HadGEM1.2, raising the question of what drives possible dif-
ferences in the relation of ice drift and wind predictability be-
tween these two models. As presented in Sect. 3, the annual
cycles of climatological monthly mean drift speed and wind
speed differ strongly between AWI-CM1 and HadGEM1.2,
and so does the ice thickness distribution. It appears plausi-
ble that these contrasts play a role in the model differences
regarding ice drift versus wind predictability. However, al-
though the perfect-model approach is well suited to assess-

ing the climate system’s inherent predictability, as done here,
it does not readily reveal causal links and physical processes
as sinks and sources of predictability.

It is unfortunate that no daily near-surface wind data are
available for GFDL-CM3 and MPI-ESM. As a consequence,
it is not possible to examine for example if the divergence of
atmospheric states in MPI-ESM is delayed compared to the
other models, which could explain the increased ice drift pre-
dictability compared to the other models (see Figs. 6 and 7).
This was not intended by the experimental design, where
all models added uncorrelated white noise with equal ampli-
tude to the sea surface temperatures as initial perturbations.
In particular for MPI-ESM and AWI-CM1 one might expect
that the perturbations cause the atmospheric states to diverge,
on average, at the same time after initialization, given that
they share the same atmospheric component. It is however
possible that the different ocean resolutions, numerical dif-
fusion, or coupling schemes have an influence on how the
perturbations evolve and affect the atmosphere. Wind data
for GFDL-CM3 and MPI-ESM would also help to unravel
some other differences in ice drift predictability between the
models, such as the different spatial patterns and how they
depend on the season (Fig. 6).

While monthly mean ice speeds for January and July did
not exhibit noteworthy linear trends, we again mention that
the models were not in an equilibrium state after the spin-up
period. This might have a more meaningful effect on possible
future studies on the relation of ice speed (predictability) and
the mean ice state.
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Another data-related caveat is that there are no daily
(sub-)surface ocean velocity data available for the four ex-
amined models within the APPOSITE data set, so we cannot
offer a view on the results in regard to the variability in ocean
currents. Given that ocean drag is an important forcing term
for sea ice motion on the timescales considered in this study,
this should be examined in future studies.

One shortcoming of analyzing Lagrangian trajectories is
the loss of virtual buoys close to the ice edge. Therefore, ow-
ing to the chosen trajectory selection, the variability in the
marginal ice zone, which is one very dynamic part of the ice
cover, cannot be represented adequately.

Furthermore, there are other choices for quantifying the
uncertainty or information (or loss thereof) contained in an
ensemble prediction. We also performed large parts of the
analyses using two other measures for uncertainty, namely
the normalized root mean square error (NRMSE; see Collins,
2002) and the square root of the ellipse area instead of the
semi-major axis length. This did not alter the results signifi-
cantly.

We suggest that future studies should quantify the pre-
dictability of specific (scalar) components of the ice drift sep-
arately. For example, the drift speed could be the aspect of ice
drift that is the most sensitive to the initial ice thickness and
could thus reveal such a dependence more readily. It would
also be interesting to account for the predominant wind di-
rection in coastal areas to examine if ice strength (and thus
thickness) plays a larger role in determining drift uncertainty
when wind drag is directed towards the shore, compared to
winds directed offshore or parallel to the coast.

In addition to that, the significance of ice thickness anoma-
lies for ice drift uncertainty can be scrutinized more thor-
oughly following the approach of Day et al. (2014), where
the initial ice thickness was replaced by a climatology in ad-
ditional perfect-model simulations, which were then com-
pared to the simulations with thickness initialization. For
any future model simulations related to ice drift predictabil-
ity, we strongly recommend that daily near-surface wind and
(sub-)surface ocean current data are provided to enable a de-
tailed examination of the physical drivers of sea ice drift.

6 Summary and conclusion

In this work, we determined and analyzed the uncertainty in
initialized Arctic sea ice drift predictions in four global cli-
mate models. We made use of a set of perfect-model experi-
ments carried out in the APPOSITE project and calculated
trajectories of virtual ice floes with a newly implemented
open-source trajectory tool.

For the Lagrangian target position, spatial gradients of the
uncertainty develop within a few days. Spatial patterns vary
between the models and from summer to winter. The spa-
tially averaged uncertainty for a common subset (across all
four models) of initial positions does not reach the climato-

logical saturation value for at least 90 d for predictions initial-
ized on 1 January and for at least 45 d for predictions initial-
ized on 1 July. There are regions where the uncertainty is sig-
nificantly larger for July initializations, but these regions vary
between the models. For local ice velocity at a fixed position
(Eulerian view), the uncertainty is saturated within the first
3 to 4 weeks of lead time, and spatial patterns are more in-
termittent than for the target position (Lagrangian view). The
uncertainty is on average higher in July, yet large variabil-
ity renders this difference statistically insignificant for most
target positions.

While the wind variability explains large fractions of the
uncertainty in the ice velocity vector, the initial ice thickness
as a proxy for ice strength and internal forces was found to
play a statistically significant but quantitatively small role re-
garding the target position predictability. There remain open
questions, particularly about the origin of the spatial patterns
of uncertainty and the summer-to-winter variation and about
the role of (sub-)surface ocean currents, that call for addi-
tional studies on the predictability of sea ice drift.

Appendix A: Determining the variance ellipse of
bivariate data

We estimate the uncertainty in the ensemble mean of Eule-
rian velocity vectors by the spectral norm, that is, the square
root of the largest eigenvalue, of the covariance matrix in u–
v space. This is equivalent to the semi-major axis a of the
covariance ellipse and can be computed as follows.

Let uj and vj be the sea ice velocity components of the j th
member of an ensemble of sizeNmem at a fixed lead time and
ū and v̄ be the respective ensemble means. The covariance
matrix 6 is given by

6 =

[
σ 2
u σuv
σuv σ 2

v

]
, (A1)

where σ 2
u and σ 2

v are the variance in the direction of u and v,
respectively, and σuv is the covariance:

σ 2
u =

1
Nmem

Nmem∑
j=1

(uj − ū)
2, (A2)

σ 2
v =

1
Nmem

Nmem∑
j=1

(vj − v̄)
2, (A3)

σuv =
1

Nmem

Nmem∑
j=1

(uj − ū)(vj − v̄). (A4)

The largest eigenvalue of6, i.e., the length of the semi-major
axis a of the variance ellipse, can then be obtained via
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a2
=

1
2
(σ 2
u + σ

2
v )+

√
1
4
(σ 2
u + σ

2
v )

2
− (σuσv − σ

2
uv), (A5)

b2
=

1
2
(σ 2
u + σ

2
v )−

√
1
4
(σ 2
u + σ

2
v )

2
− (σuσv − σ

2
uv), (A6)

where b is the length of the semi-minor axis for the sake of
completeness. The value of a represents the (direction of)
maximum variability within the bivariate data, and we there-
fore consider it an appropriate measure for the uncertainty in
the ensemble mean.

For the Lagrangian target positions we follow the same
approach, except that we project the (spherical) geographical
coordinates onto a (Cartesian) x′–y′ plane before as follows.
Let λ′j and φ′j be longitudes and latitudes from a trajectory
ensemble at a fixed lead time in a rotated coordinate system,
such that the North Pole of the rotated system represents the
center of mass (barycenter) of the positions [λ′j ,φ

′

j ]. The pro-
jection is then readily obtained by

x′j = R cosφ′j cosλ′j , (A7)

y′j = R cosφ′j sinλ′j , (A8)

with the Earth’s radius R = 6371 km. Then one can plug in
x′j and y′j for uj and vj in the framework above. Note that,
due to the coordinate rotation, it holds that x̄′ = ȳ′ = 0.

Appendix B: Additional figures and tables

Figure B1. Climatological monthly mean sea ice thickness for January (top) and July (bottom), derived from the control run.

Table B1. Maximum and selected percentiles for sea ice thickness
on the common subset of initial positions, derived from the control
simulations.

Model Max 95% 50%
[m] [m] [m]

January

AWI-CM1 2.51 1.70 1.18
GFDL-CM3 3.51 2.41 1.77
HadGEM1.2 4.51 3.55 2.11
MPI-ESM 1.86 1.46 1.26

July

AWI-CM1 2.60 1.73 0.79
GFDL-CM3 3.73 2.74 1.72
HadGEM1.2 5.07 3.68 1.90
MPI-ESM 1.79 1.36 1.00
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Figure B2. Temporal evolution of climatological uncertainty,
i.e., the length of the semi-major axis of the variance ellipse. Note
the square root horizontal axis.

Figure B3. Additional simulation for AWI-CM1 with longer lead
times. The time series shows the normalized uncertainty for the ini-
tial positions on the inset map. The asterisk marks the lead time
when the climatological saturation value is attained for the first time
(one-sided t test, 0.95 level): there is no infinite predictability from
the Lagrangian perspective. Note the square root horizontal axis.

Code and data availability. APPOSITE data are available at http:
//data.ceda.ac.uk/badc/apposite/data (Day et al., 2016). The de-
veloped trajectory software is available in the GitHub repository
https://github.com/FESOM/spheRlab (commit fa31a05, Goessling
and Reifenberg, 2022). Trajectory data are available from the au-
thors upon request.

Author contributions. HFG and SFR planned the research. SFR im-
plemented the trajectory tool and performed the APPOSITE data
processing and the trajectory calculations. SFR and HFG analyzed,
interpreted, and discussed the results. SFR wrote the manuscript,
with contributions from HFG.

Figure B4. Maps of the correlation coefficient of the normalized
uncertainties in Eulerian ice drift and near-surface wind vectors at
t = 12d lead time (colored dots), using the different initializations
(at least eight) as the sample. Locations with p < 0.05 are marked
with a black ring; locations with a correlation weaker than±0.2 are
denoted by a small black dot. There is a strong and significant pos-
itive correlation of sea ice drift uncertainty and near-surface wind
vector uncertainty.
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