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Abstract: The lithium (Li) isotopic composition of carbonates is considered to be a reliable archive of
past seawater Li isotopic compositions, which are useful as a tracer of silicate weathering. However,
δ7Li values have been shown to be dependent on either pH or DIC in two studies using similar
species of large, benthic foraminifera from the genus Amphistegina. To resolve this issue, we conducted
culture experiments on Amphistegina lessonii in decoupled pH–DIC conditions, under two different
light treatments, and with normal or Li-enriched seawater. The δ7Li values and Li/Ca ratios in
the foraminifera tests were analysed by ion microprobe and LA-ICP-MS, respectively. No links
between either the pH or DIC and δ7Li or Li/Ca values were observed for any of the treatments, and
growth rates also did not seem to influence the Li incorporation or isotopic fractionation, contrary to
observations from inorganic carbonate-precipitation experiments. Overall, these findings appear to
support the use of Li isotopes in large benthic foraminifera to reconstruct past seawater chemistry
and to infer changes in chemical weathering during carbon-cycle perturbations.

Keywords: δ7Li; Li/Ca; lithium; large benthic foraminifera; culture experiments; pH; DIC;
geochemical proxies

1. Introduction

The chemical weathering of continental silicate rocks removes CO2 from the atmosphere
and exerts a fundamental control on the Earth’s climate over geological timescales (e.g., [1]).
Characterizing and quantifying silicate weathering in the past is therefore crucial for un-
derstanding feedback in the climate system. Lithium (Li) is mainly hosted in silicate
minerals and has two stable isotopes (6Li and 7Li). Silicate weathering and riverine trans-
port strongly fractionate the isotopic composition of Li [2–4]. Specifically, the isotopic
fractionation in soils and river systems occurs during secondary mineral formation, since
clays and oxides favour the incorporation of the lighter isotope 6Li [2,3,5]. Hence, the
isotopic composition of lithium (δ7Li) is considered a useful proxy for tracing chemical
weathering processes (e.g., [5–10]).

In the ocean, the two major sources of dissolved Li are rivers and hydrothermal fluxes
(review in [11] and references therein). Lithium is a conservative element in seawater, with
a modern residence time of ~1.5 million years [12], which is long compared to the ocean
mixing time (~1000 years), such that Li is spatially homogenous in concentration (26 µM)
and isotopic composition (δ7Li = ~31.2‰; [13,14]). Trace elements from seawater are incor-
porated during both inorganic and biogenic marine-carbonate precipitation, so carbonate Li

Minerals 2023, 13, 127. https://doi.org/10.3390/min13010127 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13010127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-2300-1028
https://orcid.org/0000-0003-2786-4688
https://orcid.org/0000-0001-7181-4165
https://orcid.org/0000-0003-4371-1438
https://doi.org/10.3390/min13010127
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13010127?type=check_update&version=2


Minerals 2023, 13, 127 2 of 14

isotope measurements have been used to examine geological variations of seawater δ7Li val-
ues and to reconstruct long-term changes in continental weathering conditions [7,8,15–19].
However, the Li isotopic fractionation during biogenic carbonate formation is complex,
and it has been suggested that biological control during biomineralization (so-called “vital
effects”), species-specific effects, and local environmental parameters (i.e., carbonate system
parameters), could impact δ7Li values in various marine calcifiers [10,20–23].

Foraminifera are ubiquitous calcifying protists that are widely used for paleoceano-
graphic reconstructions (review in [24] and references therein). Lithium isotopes have
been measured in various modern planktic species and provide values that are generally
close to the seawater composition, with a small and relatively consistent offset of ~1‰
towards lower δ7Li values [7,25–28] that differs from the larger fractionation seen in inor-
ganic calcite [29–33]. This small and approximately constant offset has justified the use of
planktic foraminiferal δ7Li measurements to estimate past seawater δ7Li values (e.g., [7,8]).
Although measurements on benthic species are scarce, one study has reported similar
δ7Li values in small benthic foraminifera (SBF) to seawater, with no sensitivity of δ7Li
values to temperature [30]. In contrast, Li isotopic fractionation and Li/Ca ratios in large
benthic foraminifera (LBF) were observed to be significantly influenced by parameters
of the carbonate system in two independent studies [21,22]. Those results are enigmatic,
since both studies used similar species of the genus Amphistegina but reported differing
controls on δ7Li values, with a positive correlation with dissolved inorganic carbon (DIC)
but no effect of pH observed in one case [21] and a negative correlation with pH but no
effect of DIC seen in the other case [22]. Large benthic foraminifera are a group of species
dwelling in warm coral reef environments and hosting algal symbionts that provide them
with energy through photosynthesis [34,35]. They are major carbonate producers as well as
key bio-indicators in tropical carbonate platforms (review in [36]), and they are widespread
through the geological record, thereby providing excellent potential for paleoclimate recon-
structions of bottom water conditions. It is therefore necessary to clarify how δ7Li values
and Li/Ca ratios in LBF tests are impacted during biomineralization, in order to determine
the potential of Li isotopes in LBF as a reliable weathering archive or as a proxy of the
carbonate system.

Here, to address the earlier contradictory results on the Li isotope behaviour in the
hyaline and low-Mg calcite LBF species Amphistegina lessonii, we performed culture experi-
ments under decoupled pH/DIC conditions and analysed the δ7Li values and Li/Ca ratios
in the tests. In the first set of experiments, two different light treatments were implemented
to investigate the potential role of the symbionts. In the second set of experiments, we
explored the potential impact of the seawater-Li concentration (×1, ×5, and ×10, compared
to modern seawater concentrations) on the δ7Li values and Li/Ca ratios.

2. Materials and Methods
2.1. Culture Experiments

Specimens of Amphistegina lessonii were obtained from a coral reef aquarium at the
Klimahaus (Bremerhaven, Germany). They were kept in a stock culture at the Alfred
Wegener Institute (AWI) in a climatized room at 25 ◦C and under 12 h:12 h day/night
cycles. Approximately 100 adult specimens were isolated in well plates. After ~10 days,
approximately half of them had reproduced asexually. Juveniles (2–3 chambers) were
selected and exposed to decoupled pH–DIC treatments until they reached adult size.
Details of the culture medium preparation and carbonate system setup are described in
Kaczmarek et al. (2015) [37], with the exception that in our case the boron content of the
culture medium was equivalent to modern seawater. Briefly, the culture cups containing
the specimens were placed in beakers filled with modified North Sea water (NSW), as
summarised in Table 1. The water was changed weekly in order to avoid drifting of the
carbonate system parameters.
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Table 1. Water chemical variables for all treatments in both experiments. Alkalinity and pH were
measured every week and DIC was measured every second week; pCO2 and Ωcal were calculated
using the CO2SYS software. Uncertainties represent the external error (2σ).

Treatment

Experiment 1
(Normal Seawater)

Experiment 2
(×5 Li-Enriched Seawater)

Alkalinity
at 25 ◦C

(µeq kg−1)

pH
(pH NBS

scale)

DIC
(µmol·kg−1)

pCO2
(µatm) Ωcal

Alkalinity
at 25 ◦C

(µeq kg−1)

pH
(pH NBS

scale)

DIC
(µmol·kg−1)

pCO2
(µatm) Ωcal

Control 2501 ± 9 8.16 ± 0.01 2188 ± 10 471 5.33 2468 ± 7 8.10 ± 0.01 2189 ± 18 549 4.67
High pH 2657 ± 10 8.36 ± 0.01 2194 ± 20 282 8.07 2607 ± 17 8.22 ± 0.02 2235 ± 27 415 6.14
Low pH 2368 ± 14 7.88 ± 0.03 2191 ± 10 945 2.96 2356 ± 8 7.90 ± 0.01 2167 ± 20 889 3.02

High DIC 3248 ± 8 8.18 ± 0.01 2854 ± 12 584 7.26 3009 ± 8 8.10 ± 0.01 2580 ± 42 672 5.72
Low DIC 1575 ± 11 8.15 ± 0.01 1489 ± 83 299 3.26 1658 ± 13 8.05 ± 0.03 1397 ± 42 415 2.81

The specimens were fed with the algae Nannochloropsis spp. after every water change.
In this first set of experiments, two light treatments were applied in order to assess any
potential effects of the symbionts: all the beakers went through the same day/night cycles,
but half of them were wrapped in black mesh. As a result, the light intensity during
the light period was ~200 µmol photons·m−2·s−1 for half of the specimens (light/dark
treatment) and ~20 µmol photons·m−2·s−1 for the other half (dark treatment). This first set
of experiments lasted for 11 weeks.

A second set of experiments was performed under similar conditions using Li-enriched
seawater. The NSW was modified by adding LiCl to achieve a final Li concentration ([Li])
five times higher than normal seawater. It was then further modified in order to reach each
specific carbonate system condition, summarised in Table 1. Additionally, ~50 specimens
were grown in Li-enriched water with ten times higher [Li] than normal seawater and
maintained under control conditions (i.e., without any modifications of the carbonate
system). This second set of experiments lasted for 15 weeks.

Upon completion of the culture period, the specimens were rinsed three times with
distilled water and dried for 24 h at 50 ◦C. Scanning electron microscope (SEM) images were
taken for, on average, 18 random specimens per condition and were scrutinized for potential
dissolution features. No signs of decalcification were observed on any of the specimens.
The specimens added chambers under all experimental conditions. In the first experiment,
they increased in size from an average of 148 ± 16 µm as juveniles to an average adult size
of 511 ± 41 µm in the light/dark treatment, and to an average adult size of 465 ± 38 in
the dark treatment (Table 2). In the second experiment, specimens grew from an average
of 148 ± 16 µm as juveniles to an average adult size of 644 ± 48 µm in the ×5 Li-enriched
seawater, and to an average adult size of 419 ± 88 µm in the ×10 Li-enriched seawater
(Table 2). In both sets of experiments, the specimens grew the most under control conditions,
and grew the least under the slow-DIC conditions, although the differences were small.

2.2. Analytical Methods
2.2.1. Seawater Carbonate Parameters

The pH (NBS scale) and alkalinity of the culture matrices were measured every week,
and the DIC was measured every second week. The pH was measured with a multi-
meter Multi 340i (WTW), calibrated with a pH of 6.87 and 9.18 WTW technical buffer
solutions. Alkalinity and DIC were determined as described in Kaczmarek et al. (2015) [37]
(Table 1). The CO2SYS software program [38] was used to estimate the partial pressure
of carbon dioxide (pCO2) and calcite saturation (Ωcal). Input parameters were alkalinity,
pH, salinity, and temperature. Equilibrium constants from Lueker et al. (2000) [39] were
applied for K1 and K2, and a HSO4

− dissociation constant from Dickson (1990) [40] and
a total boron concentration from Uppström (1974) [41] were used, as recommended in
Orr et al. (2015) [42].
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2.2.2. Seawater Li Isotopes

The modified seawater samples were purified and analysed for Li isotopes as detailed
in Pogge von Strandmann et al. (2019) [43]. Briefly, the samples were passed through
a two-stage cation exchange chemistry using AG50W X-12 resin and 0.2 M HCl as an
eluent. Analyses were performed on a Nu Plasma 3 multi-collector inductively coupled
plasma mass spectrometer in the LOGIC laboratories at University College London, using
a sample-standard bracketing technique normalised to the IRMM-016 standard, which
has an identical isotopic composition to the LSVEC standard [43]. Seawater was analysed
alongside these samples, providing δ7Li values of 31.2 ± 0.2‰, in agreement with a
long-term value in those laboratories of δ7Li = 31.18 ± 0.38‰ (n = 43). Other geological
standards for this method are reported in Pogge von Strandmann (2011; 2019) [43,44]. The
δ7Li values for normal seawater, ×5 enriched-Li seawater, and ×10 Li-enriched seawater
were 31.2 ± 0.2, 24.8 ± 0.2, and 24.8 ± 0.2‰, respectively.

2.2.3. Foraminifera Li Isotopes

Between one and three specimens per treatment for both sets of experiments were
selected for Li-isotope analysis by ion microprobe. The specimens were embedded in
epoxy sections, polished down to 1 µm, and coated with gold. Analyses were performed
using the Cameca IMS 1280 HR ion probe at the Centre de Recherches Pétrographiques
et Géochimiques (CRPG, Nancy, France). The Li isotopic compositions were measured
with in situ spot analysis, using a 15–20 µm 16O− primary beam of about 50 nA for both
the foraminifera and the in-house reference material (CAL-HTP calcite [27]). The mass-
resolving power (MRP) was set to 3000, with the energy slit well-centred and opened
to 30 eV. A single Li-isotope analysis consisted of 1 min of pre-sputtering and 30 cycles
of peak switching on masses 6 and 7, which were successively counted on an electron
multiplier for a duration of 12 s and 8 s, respectively. The background was measured at
mass 5.5. Reproducibility based on repeated measurements of the CAL-HTP was between
± 0.6 and ± 1.1‰ (1σ) for the analytical session. The Li-isotope analysis could not be
performed on the specimens grown in the low-DIC treatment under dark conditions in
experiment 1 because none of the tests were thick enough to allow for the measurements.

Table 2. Specimen size at the end of the culture period, δ7Li values, and Li/Ca ratios in Amphistegina
lessonii for all treatments in both experiments. Note that δ7Li values in the specimens grown under
low-DIC and dark treatment in experiment 1 could not be measured (see text for details). Uncertainties
represent the external error (2σ).

Treatment

Experiment 1
(Normal Seawater)

Experiment 2 1

(×5 Li-Enriched Seawater)

Size (µm) δ7Li (‰) Li/Ca (µmol/mol) Size (µm) δ7Li (‰) Li/Ca
(µmol/mol)

light/dark dark light/dark dark light/dark dark light/dark light/dark light/dark
Control 569 ± 93 568 ± 104 26.0 ± 0.8 22.8 ± 1.5 14.3 ± 3.1 14.9 ± 8.3 693 ± 75 26.3 ± 1.4 55.7 ± 1.5

High pH 485 ± 87 445 ± 104 24.5 ± 1.4 24.4 ± 1.1 13.5 ± 2.8 16.6 ± 4.3 636 ± 88 24.1 ± 0.7 61.1 ± 2.6
Low pH 504 ± 110 512 ± 82 25.4 ± 0.9 23.1 ± 1.4 15.3 ± 1.8 12.0 ± 1.2 670 ± 121 23.6 ± 0.7 66.9 ± 3.3

High DIC 521 ± 88 471 ± 65 24.3 ± 1.3 24.5 ± 1.1 15.8 ± 2.1 19.4 ± 2.0 650 ± 130 25.7 ± 0.6 61.9 ± 2.6
Low DIC 476 ± 78 328 ± 61 25.0 ± 1.2 - 16.6 ± 3.8 27.6 ± 5.9 573 ± 113 24.1 ± 0.7 61.9 ± 2.6

1 For the ×10 Li-enriched seawater experiment implemented in control conditions, size was 419 ± 88 µm, and
δ7Li was 23.9 ± 1.3‰.

2.2.4. Foraminifera Li Concentrations

Between two and three specimens per treatment were selected for [Li] analysis. A
femtosecond-laser-ablation system coupled to an ICP-MS (AWI) was used, and the masses
monitored included 7Li and 44Ca. The beam diameter was set at 50 µm, the repetition
rate was 30 Hz, and the specimens were ablated in the test central area (knob) with an
energy at the surface sample of 1 J·cm−2. Using the software program PULSE [45], the
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foraminifera data were blank-corrected and the element-to-Ca ratios were calculated and
drift-corrected using a standard-sample-standard bracketing technique with the NIST SRM
610 glass standard [46].

For the experiments using ×10 Li-enriched seawater, we used the number of counts
per second (cps) obtained with the ion probe measurements, as the cps are proportional
to the abundance of the element. Since the cps for Li were almost identical between the
×5 Li and ×10 Li samples from the control-condition experiments, and assuming that the
Ca concentration is the same, we considered the Li/Ca ratios between the two enriched
water experiments to be the same.

3. Results

The δ7Li values in the foraminifera cultured in normal seawater ranged from 24.3 ± 1.3
to 26.0 ± 0.8‰ for the light/dark treatment, and from 22.8 ± 1.5 to 24.5 ± 1.1‰ for the
dark treatment (Table 2). No significant correlation was observed with either the pH or
DIC of the medium within analytical uncertainty (Figure 1A). Similarly, no correlation with
the pH or DIC was observed for the δ7Li values in specimens cultured in ×5 Li-enriched
seawater within analytical uncertainty (Figure 1B), and those values ranged from 23.6 ± 0.7
to 26.3 ± 1.4‰ (Table 2). The δ7Li value in the foraminifera cultured in control conditions
and ×10 Li-enriched seawater was 23.9 ± 1.3‰. In the first set of experiments (normal
seawater), the δ7Li values of the specimens cultured in the control and in the low-pH media
were significantly lower in the dark treatment when compared to those cultured in the
light/dark treatment (Figure 1A).
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Brown symbols—dark only. Note that δ7Li values in the specimens grown under low DIC and
dark treatment in experiment 1 could not be measured (see text for details). The error bars for δ7Li
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The Li/Ca ratios in the specimens cultured in normal seawater ranged from 13.5 ± 2.8 to
16.6 ± 3.8 µmol·mol−1 for the light/dark treatment and from 12.0 ± 1.2 to 27.6 ± 5.9 µmol·mol−1

for the dark treatment (Table 2; Figure 2A). In the specimens cultured in
×5 Li-enriched seawater, the Li/Ca ratios ranged from 55.7 ± 1.6 to 66.9 ± 3.3 µmol·mol−1

(Table 2; Figure 2B). There was no significant correlation between the pH or DIC of the
medium and Li/Ca ratios in the foraminifera tests, for either the normal seawater or the
×5 Li-enriched water cultures, within analytical uncertainty (Figure 2). In the first set of
experiments (normal seawater), the Li/Ca ratios of the specimens cultured in the low-pH
and in the low-DIC media were lower and higher, respectively, in the dark when compared
to in the light/dark treatment (Figure 2A).
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We calculate the apparent partition coefficient, K*d, which is defined as:

K*d = (Li/Ca)foram/(Li/Ca)w

where (Li/Ca)w is the Li/Ca ratio in the culture medium and (Li/Ca)foram is the Li/Ca
ratio measured in the foraminifera tests. The apparent K*d values, calculated considering a
[Li] of 26 µM and a Ca concentration ([Ca]) of 10.28 M for the normal seawater medium,
Li concentrations of 130 µM for the ×5 Li-enriched medium, and [Li] of 260 µM for the
×10 Li-enriched medium, are 5.97 × 10−3, 4.86 × 10−3, and 2.43 × 10−3, respectively
(Figure 3A). The apparent K*d seems to decrease with increasing [Li] in the culture medium
(Figure 3A). This decrease in K*d is accompanied by a change in the isotopic fractionation
from –5.2 ± 0.1‰ in the normal seawater to –0.9 ± 1.5 and +1.6 ± 1.6‰ in the ×10 Li-
enriched and ×5 Li-enriched seawaters, respectively (Figure 3B). This observation suggests
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that the manipulation of the [Li] of the culture medium has an impact on the incorporation
of Li into the foraminifera test.
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Figure 3. Effect of 1, 5, and 10× Li-enriched seawater on (A) apparent partition coefficient K*d and
(B) the Li isotopic fractionation factor between foraminiferal calcite and seawater (∆7Liforam-w).
Values from the control treatments were used. The error bars represent the external error (2σ).

The δ7Li values and Li/Ca ratios showed no dependency on foraminiferal growth rates
in the light/dark treatments for both normal and ×5 Li-enriched seawater (Figure 4A,B).
However, an effect was observed in the dark treatment, with δ7Li values and Li/Ca ratios
decreasing with increasing growth rates (Figure 4A).
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4. Discussion
4.1. Comparison with Inorganic Calcite

In inorganic calcite precipitation experiments, δ7Li values and Li/Ca ratios were
shown to be affected by both growth rate and pH over a pH range from 6.3 to 9.5 [31,32]. In
those studies, the authors observed a decrease in the apparent partition coefficient with pH,
together with an increase in the isotopic fractionation. They suggested that this behaviour
could be explained by the presence of two or more Li-bearing species, whose abundances in
the solid could control the Li isotopic fractionation and the Li/Ca ratio. In comparison, the
data from LBF in our study, together with those from Vigier et al. (2015) [21], do not show
any relationship between pH and either the apparent partition coefficient or the isotopic
fractionation. Meanwhile, Roberts et al. (2018) [22] found an inverse relationship for the
isotopic fractionation with the pH. This apparently contradictory behaviour was explained
by Füger et al. (2022) [32] as an effect of the growth rate, which they suggested increased
with the increasing pH. No growth rate data were available in Roberts et al. (2018) [22], and
in our study there is no clear relationship between pH and the final size of the foraminifera
tests (504 ± 110 µm at a low pH vs 485 ± 87 µm at a high pH in experiment 1; Table 2).
Although the precipitation rate itself is not readily obtained in foraminifera-culturing
experiments, we could assume that there would be a link between the precipitation rate
and the final test size. However, it is important to emphasise that the pH range in our
experiments (from 7.88 to 8.36) was small compared to the range in Füger et al. (2022) [32],
and that they observed only a small difference in isotopic fractionation over our pH range
(∆7Li ≈ −3‰ at pH 7.4 and ∆7Li ≈ −2.75‰ at pH 8.3). Hence, the expected difference in
δ7Li values of less than 0.2‰ between our low pH and high pH experiments would be too
small to be detected by ion microprobe measurements (with a typical reproducibility of
±1‰), or even in MC-ICP-MS data (with a typical reproducibility of ±0.4‰).

Another factor to consider when comparing the Li-isotope behaviour between the inor-
ganic experiments of Füger et al. (2019; 2022) [31,32] and foraminifera culture experiments
such as ours is the chemistry of the solutions, because their precipitation experiments were
conducted by mixing CaCl2, LiCl, and Na2CO3 instead of using seawater.

4.2. Comparison with Biogenic Carbonates
4.2.1. Li/Ca Ratios

Since [Li] are homogeneous in the ocean, the large range of Li/Ca ratios observed in
marine organisms may indicate the effects of different biomineralization processes [23].
Whereas the Li/Ca ratios of planktic and benthic foraminifera are found to be in a relatively
small range (between 3.6 and 24.8 µmol·mol−1, Figure 5A), there is a much wider range for
modern brachiopods (between 5.7 and 122.1 µmol·mol−1, Figure 5A). While the low values
could be explained by the presence of an element-depleted tertiary layer [47], the highest val-
ues correspond to the primary layer and could reflect kinetic effects (e.g., [48]) or precipita-
tion via an amorphous precursor [47]. The range measured in core-top foraminifera is even
smaller than in LBF culture studies, with Li/Ca ratios between 13.8 and 16.9 µmol·mol−1

in planktic foraminifera and between 10.4 and 15.8 µmol·mol−1 in SBF (Figure 5A).
The Li/Ca ratios observed in our study are in the range of the previous study using the

genus Amphistegina by Vigier et al. (2015) [21] (3.6 to 19.7 µmol·mol−1), but lower than those
reported in Roberts et al. (2018) [22] (18.4 to 24.8 µmol·mol−1) (Figure 6). These Li/Ca ratios
are also comparable with previous data on SBF [30]. We observed a positive correlation
between the Li/Ca ratios of the culture medium and Li/Ca ratios in the foraminiferal test
(Table 2), which was also previously reported in A. lessonii grown in a seawater-like fluid
when the [Li] but not the [Ca] of the fluid was changed [49]. In that study, the apparent
partition coefficient decreased with increasing Li/Ca ratios of the culture medium [49]; this
was also observed in the planktic species Globigerinoides sacculifer and Orbulina universa [50],
in the LBF Operculina ammonoides [51], and is also seen here (Figure 3). These observations
are also equivalent to findings in Operculina ammonoides for K*d(Na) and K*d(Mg) [52].
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While we observed a positive correlation between the Li/Ca ratios of the fluid and the
foraminifera for seawater and the ×5 Li-enriched medium (Table 2), the foraminifera from
the 10× Li-enriched medium have similar Li/Ca ratios to those from the 5× Li-enriched
medium, so there appears to be a plateau in this relationship. This plateau could indicate
that there is a threshold in the amount of Li that can be incorporated into the foraminifera
test, although we note that, at present, this finding is based on a single control run for the
10× Li-enriched medium. Such an effect has not previously been proposed, but we note
that none of the previous experiments manipulated the Li/Ca ratio of the culture medium
to values more than five times the normal [Li] in seawater. The presence of such a threshold
seems to suggest that foraminifera may be able to partly control the incorporation of Li into
their tests. To our knowledge, Li is not considered as an essential element in biology, so
this possible upper limit in the incorporation of Li should be investigated further. If this
threshold is also present in other foraminifera species, it would mean that foraminifera
could not be applied as a proxy for the Li/Ca ratios of past seawater if the Li content of
seawater increased to more than five times the present level. However, such a large increase
seems not to have occurred over at least the last 400 Ma [53].

4.2.2. Li Isotopic Compositions

The δ7Li values in our specimens from normal seawater, ×5 Li-enriched seawater, and
×10 Li-enriched seawater (22.8 to 26.3‰) are in the range of previously measured values
in LBF from the genus Amphistegina (20 to 40‰ [21] and 27.5 to 30.5‰ [22]; Figure 5B), and
in SBF from the genus Uvigerina (24.7 to 27.5‰ [30]). In contrast, regarding correlations
with carbonate chemistry parameters, the lack of correlation of both δ7Li values and Li/Ca
ratios with the pH or DIC of the culture medium (Figures 1 and 2) differs from previous
studies on LBF. In the existing studies, δ7Li values were observed to be positively correlated
with DIC [21] and negatively correlated with pH [22], while Li/Ca ratios were reported
to be negatively or positively correlated with DIC ([21,22] respectively). Considering the
study by Vigier et al. (2015) [21], some reservations about the methods were underlined
by Roberts et al. (2018) [22], which could potentially explain some bias in the results. In
addition, in the study by Roberts et al. (2018) [22], the use of B-enriched water may have
modified the foraminifera physiology, since increased B concentrations would also change
the alkalinity of seawater, particularly at a high pH. To the extent that our results are
more widely applicable to LBF, the lack of control exerted by carbonate system parameters
on the δ7Li values of LBF would appear to support their potential as an archive of past
seawater Li isotopic compositions during the Phanerozoic era, including during significant
perturbations of the carbon cycle.

4.2.3. Effect of Light Intensity

Lithium is not considered an essential element for microalgae [54,55], so an impact of
the light intensity was not expected. However, small but significant differences in the δ7Li
values and Li/Ca ratios were observed in the dark treatment in the low pH and low DIC
treatments (Figures 1 and 2). In addition, growth rate had an effect on δ7Li values and Li/Ca
ratios only in the dark treatments (Figure 4). Photosynthesis of the symbionts is known to
locally increase the pH around the foraminifera, thereby reducing or even overriding the
impact of a lower ambient pH [56,57]. In the dark treatments, this photosynthetic activity
cannot counter low pH or low DIC conditions, which could therefore have affected the δ7Li
values and Li/Ca ratios in the low pH and low DIC treatments. This finding is consistent
with a culture study using the LBF Peneroplis spp., in which three days under lower pH and
darker conditions were sufficient to affect the geochemical signatures of their tests [58].

At present, it is difficult to explain the different results observed in the three cultur-
ing studies conducted on Amphistegina. The Li/Ca ratios do not reflect the composition
expected for an inorganic calcite precipitating from seawater (Figure 5A), with the values
being generally higher in the tests of LBF. This finding could be explained by a mechanism
that increases the [Li] in the calcification fluid, and one possibility could be the presence
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of Na-ATPase. The Na-ATPase can be used to increase the pH of the calcification fluid,
as previously observed by microelectrodes [59], fluorescence [60,61], and δ11B measure-
ments [62], by exchanging one proton with one Na+ ion. Since Li+ and Na+ ions have
relatively similar chemical properties, this exchange could also promote an increase of Li
in the calcification fluid and thus in the foraminifera tests. If this scenario is correct, then
it would be interesting to establish whether the behaviour of this Na+/H+ exchanger is
the same under both light and dark conditions. It would also be interesting to study the
impact of Na-ATPase inhibitors on the calcification of foraminifera and on the elemental
ratios and isotopic compositions of the tests. The impacts of elevated [Li] and/or [B] in the
culture medium could also be further explored to better understand the behaviour of Li
partitioning and isotopic fractionation in LBF.
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experiments. (A) Li/Ca ratios and (B) δ7Li values. Data for the inorganic calcite are from Marriott et al.
(2004) [30] for Li/Ca ratios, and Marriott et al. (2004) [30] and Füger et al. (2022) [32] for δ7Li values.
For Li/Ca ratios in inorganic calcite, the grey field takes into account the range of temperatures for
the Amphistegina experiments (between 18 and 33 ◦C), and the black line represents the Li/Ca ratio for
a temperature of 25 ◦C, as most commonly used in LBF experiments. Data for planktic foraminifera
are from Hall et al. (2005) [26], Hathorne and James (2006) [7], and Misra and Froelich (2012) [8]. Data
for SBF are from Marriott et al. (2004) [30]. Data for brachiopods are from Delaney et al. (1989) [53],
Dellinger et al. (2018) [23], Rollion-Bard et al. (2019) [47], Washington et al. (2020) [18], and Gaspers
et al. (2021) [63]. The pink diamonds are outliers.
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Figure 6. Comparison with previous studies on species from the Amphistegina genus [21,22].
(A) Li/Ca ratios versus DIC and (B) δ7Li values versus Li/Ca ratios. The three sets of experiments
from Vigier et al. (2015) with varying temperature, DIC, and pH are presented.

5. Conclusions

Culture experiments performed on the coral reef-dwelling benthic foraminifera species
Amphistegina lessonii under decoupled pH–DIC conditions show no effect of these carbonate
system parameters on either δ7Li values or Li/Ca ratios in the tests under light/dark
conditions, contrary to two previous studies conducted on similar species. In addition,
no effect of growth rate was observed on either δ7Li values or Li/Ca ratios. However,
the partition coefficient and isotopic fractionation were sensitive to the [Li] of the fluid.
Moreover, an effect of different light treatments was observed, probably due to different
physiological processes of the symbionts occurring in dark conditions. Overall, these
findings suggest that Li isotopes in LBF can be used as a reliable archive for past bottom
water Li isotopic compositions, with the potential to trace chemical weathering changes
through major carbon cycle perturbations over the last several hundred million years of
Earth history.
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