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Abstract
Coastal water quality in urban cities is increasingly impacted by human activities such as agricultural runoff, sewage discharges,
and poor sanitation. However, environmental factors controlling bacteria abundance remain poorly understood. The study
employed multiple indicators to assess ten beach water qualities in Ghana during minor wet seasons. Environmental parameters
(e.g. temperature, electrical conductivity, total dissolved solids) were measured in situ using the Horibamultiple parameter probe.
Surface water samples were collected to measure total suspended solids, nutrients, and chlorophyll-a via standard methods and
bacteria determination through membrane filtration. Environmental parameters measured showed no significant variation for the
sample period. However, bacteria loads differ significantly (p = 0.024) among the beaches and influenced significantly by nitrate
(55.3%, p = 0.02) and total dissolved solids (17.1%, p = 0.017). The baseline study detected an increased amount of total
coliforms and faecal indicator bacteria (Escherichia coli and Enterococcus spp.) in beach waters along the coast of Ghana,
suggesting faecal contamination, which can pose health risks. Themean ± standard deviations of bacteria loads in beach water are
total coliforms (4.06 × 103 ± 4.16 × 103 CFU/100 mL), E. coli (7.06 × 102 ± 1.72 × 103 CFU/100 mL), and Enterococcus spp.
(6.15 × 102 ± 1.75 × 103 CFU/100 mL). Evidence of pollution calls for public awareness to prevent ecological and health-related
risks and policy reforms to control coastal water pollution. Future research should focus on identifying the sources of contam-
ination in the tropical Atlantic region.
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Introduction

Life is refreshing at the beach, but pollution of the water is a
risk to human health.

Coastal water bodies are impacted through pollution, dete-
riorating urban sanitation, land use, and hydrological changes
(Armah et al. 1997, Berendesa et al. 2020, Pommepuy et al.
2005, Shuval 2006, Stewart et al. 2008). The human activities
in Ghana’s urban coastal regions are increasingly contributing
to coastal water pollution (Akita et al. 2020, Gretsch et al.
2015, Labite et al. 2010, Lawson 2014). About 50% of the
world’s population lives in towns and cities within 100 km of
the coast (Monney et al. 2013, Shuval 2006, Stewart et al.
2008). Many people do not have access to clean drinking
water, and numerous people die of waterborne bacterial infec-
tions (e.g. cholera, typhoid, diarrhoea) (Cabral 2010, Ecklu-
Mensah et al. 2019, Gretsch et al. 2015, Igobinosa and Okoh
2009, McGarvey et al. 2008, Osiemo et al. 2019). In develop-
ing countries, especially in Africa, water-borne diseases infect
millions, especially children (Fenwick 2006, Osiemo et al.
2019, WHO 2015, Yang et al. 2012).
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Ghana is a low-lying region (on average, 30 m above sea
level) and bordered by the Gulf of Guinea between 4 and 12°
N (Figure 1). The coastline is about 550 km long, and the
continental shelf (about 75–120 m deep) is narrow and covers
approximately 26,000 km2 (Armah and Amlalo 1998, Armah
et al. 2005, Lawson 2014). The Ghanaian coastal shore is
categorised into the western, central, and eastern coastlines
(Armah 1991, Armah et al. 2005, Ly 1980). The west coast
covers 95 km of the stable shoreline and extends from
Ghana’s border with Côte d’Ivoire to the Ankobra River’s
estuary (Lamptey et al. 2010, Wiafe et al. 2013). The central
zone includes 321 km of shoreline and extends from the
Ankobra River’s estuary, near Axim to Prampram on the east-
ern coast (Lamptey et al. 2010, Wiafe et al. 2013). The east
zone covers 139 km of the shoreline, which extend from
Prampram to Aflao, at the border to the Republic of Togo,
and characterised by sandy beaches with a central deltaic es-
tuary (e.g. Ada, Volta, Densu) and coastal lagoons (e.g. Keta
and Songor) (Akita et al. 2020, Klubi et al. 2019, Lamptey
et al. 2010, Larbi et al. 2018, Wiafe et al. 2013).

The Gulf of Guinea Coast is characterised by current and
dynamic hydrodynamic conditions (Acheampong et al. 2021,

Hardman-Mountford and McGlade 2003). The coast re-
sources serve as a source of seafood, recreational, educational,
medicinal, and an important social and economic value to the
well-being of coastal communities (McGlade et al. 2002,
Okafor-Yarwood 2018).

Human activities in the Gulf of Guinea (GOG) coast have
caused deterioration, eutrophication, and oxygen depletion in
the coastal waters in the urban cities, resulting in biodiversity
loss and waterborne diseases (Pabis et al. 2020, Scheren et al.
2002, Yeleliere et al. 2018a). Therefore, the discharge of ef-
fluents without inadequate treatments into nearshore waters is
a critical environmental issue. However, monitoring of coastal
waters in Africa using multiple indicators and lack of contin-
uous oceanographic observational data from the sub-Sahara
region is still scarce (Akita et al. 2020, López-López and
Sedeño-Díaz 2015, Parmar et al. 2016, Zaghloul et al.
2020). Moreover, there is a lack of knowledge on bacteria
distribution in beach water in West Africa, Ghana, and their
environmental factors are unknown.

Beaches and bathing areas worldwide are dynamic zones in
urban cities and contribute to coastal economics (Abdelzaher
et al. 2013, Efstratiou 2001, Tiwari et al. 2021). However, the

Fig. 1 AAmap of sampled ten selected coastal beaches in Ghana.B Some of study beaches in the coast of Gulf of Guinea, Ghana (Ghana-Côte d’Ivoire
border, Amisa, Muni,Aboadzi, Densu, Kpeshi, Anyanui, Ghana-Togo border)
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discharging of urban, industrial, and domestic wastewaters
into the sea, which can be a pollutant, raises concern for dis-
ease outbreaks and ecological and public health risks

(Bienfang et al. 2011, Prieto et al. 2001, Weiskerger et al.
2019). There are bacteria and pathogenic organisms in beach
water and sand (Efstratiou 2018, Ferguson et al. 2005, Sabino

Fig. 1 continued.
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et al. 2014, Whitman et al. 2014). Therefore, sensitive indica-
tor organisms are used for quantitative water quality assess-
ment as potential pollution signals (Griffith et al. 2016, Soto-
Varela et al. 2021, Thoe et al. 2018). Water quality is a canon-
ical group of a given water’s physical, chemical, and biolog-
ical properties (Gökçe 2016). Environmental factors affecting
bacteria dominance and distribution in fresh and marine water
are still inadequate (Hirn et al. 1980, Piggot et al. 2012,
Whitman et al. 2011). A short survey was conducted to assess
Ghana’s beach water quality via multiple indicators, specifi-
cally physical, chemical, and biological analyses. We
hypothesised no variability in physical, chemical, and biolog-
ical characteristics of nearshore waters along the coast of
Ghana during the minor wet season. The second hypothesis
assumes no bacteria in the beach water in the Gulf of Guinea,
Ghana. The study reveals high bacterial loads in beach water
coupled with spatial variation along the coast of Ghana.
Environmental parameters of the water body control the spa-
tial variability and abundance of bacterial. Bacterial contami-
nation in coastal waters is a major threat to public health,
beach swimmers, and possible transfer in the food chain,
resulting in food contamination. The preliminary results serve
as useful ecological knowledge for public awareness, preven-
tion of further contamination, policy reforms to safeguard
beach swimmers, and future monitoring of nearshore waters
in the tropical Atlantic Coast

Sampling and analytical methods

Geological settings

The climate in Ghana is tropical; the eastern coastal belt is dry
and warm, while the south-western zone is hot and humid
(Nyarko et al. 2015). The climate is drier from southwest to
northeast of Accra. The climate variation in the coastal envi-
ronment of Ghana is characterised by wet and dry seasons
(Biney 1993, Biney and Asmah 2010). Two-thirds of the
coastal zone falls within the dry coastal savannah strip, where
annual rainfall ranged from 625 to 1000 nm and an average of
900 nm (Armah and Amlalo 1998). The coastal belt is
characterised by twowet seasons: the major rainy season starts
from May and ends in July, while the minor one occurs be-
tween August and October. The dry season starts from
November to April (Allersma and Tilma 1993). The minimum
temperature occurs in July-August and the maximum in
February-March. The relatively dry coastal climate of the
southeast is caused by the prevailingwinds (south-south-west-
erlies) blowing almost parallel to the coast and to cool current
of water originating offshore, local annual upwelling (Armah
and Amlalo 1998).

The winds are characterised by persistent southwesterly
monsoon modified by land and sea breezes in the coastal area

(Armah et al. 2003). Speeds vary between 0.5 m/s at night and
2.0 m/s at day (Armah et al. 2003). The tidal range determines
the area of shore that is exposed to the air at any low tide. The
tide on the coast of Ghana is regular and semi-diurnal (Armah
et al. 2003). The tidal wave has the same phase across the
country’s coast (Armah et al. 2003). The tidal current has a
low and insignificant influence on coastal processes, except
within tidal inlets (Armah et al. 2003, Bakun 1993). Off the
coast of West Africa, a counter equatorial current, the Guinea
Current, flows eastward, and this flow is most prominent near
Cape Three Points (Armah et al. 2003, Bakun 1993). The
southwest monsoon winds show a maximum from May to
July when it frequently exceeds one knot and occasionally
reaches two knots (Armah et al. 2003, Bakun 1993). The
currents are weaker during the rest of the year, with a mini-
mum occurring between November and January at an average
of about 0.5 knots (Armah et al. 2003, Bakun 1993).
Throughout the year, particularly due to the northeasterly
winds, the current direction may reverse temporarily and
may reach a speed of 1.0 knot (Armah et al. 2003, Bakun
1993).

The upwelling is seasonal for Ghanaian coastal waters,
dominated by two upwelling peaks per year. During either
January, February, or March, weaker upwelling occurs and
is strongest off Côte d’Ivoire, whereas intense upwelling fuels
the system off Ghana between late June to early October
(Quaatey 1996). The two seasons are characterised by de-
creasing sea surface temperature (SST; typically < 25 °C),
increasing salinity, and decreasing dissolved oxygen. The sea-
sonal coastal upwelling periodically modifies the physical and
chemical properties of the water masses and controls the biol-
ogy of the sub-system (Koranteng and McGlade 2002, Minta
2003). Most of the year, coastal waters are stratified thermally
with a well-mixed layer of warm (25–36 °C), low salinity
water (33.67–34.22) 30–40 m above a sharp thermocline
(Mensah and Anang 1998). Salinity is at maximum (35.05–
35.38) below the thermocline at 60–80 depth. During upwell-
ing, the thermocline weakens and rises to the surface resulting
in a vertically homogeneous salinity profile above the shelf
(Mensah and Anang 1998).

Sampling

The sampling randomised selected ten beaches were located
in Ghana’s eastern, central, and western coasts (Figure 1A, B;
Table 1). The Global Position System (Garmin eTrex 10
Model) (Garmin Limited, KS, USA) (www.garmin.com)
was used to record the coordinates of the beaches. A short
survey was carried out from 8 to 14 October 2016 during a
minor wet season at low tide to assess multiple beaches’
nearshore water quality status in the tropical Atlantic coast
using multiple indicators (e.g. physical, chemical, and
biological methods). Horiba digital multiple parameter probe
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(Model U-52G 30M) (Horiba Company Limited, Japan)
(www.Horiba.com) was used for in situ measurements of
sea surface temperature, salinity, specific electrical
conductivity, total dissolved solids, pH, redox potential,
dissolved oxygen concentration, and saturation in nearshore
beach waters. Each parameter was recorded three times, and
the average was computed. Three replicates of water samples
from each beach were collected from 10 cm depth into
500-mL clean plastic bottles for total solids, phosphate, and
nitrate analyses. Three replicates of water samples from each
beach were also collected into 500 mL plastic bottles covered
with black polyethene bags for chlorophyll-a analyses. Ten
surface water samples were collected at nearshore waters at
shallow depth (10 cm) into 500-mL sterilised plastic bottles
for bacterial examination at Laboratory at Council for
Scientific and Industrial Research (CSIR)-Water Research
Institute (WRI), Accra, Ghana. The water samples were stored
on ice (4 °C) during transport to the laboratory. The analysis
was carried out within 12 h of collection.

Analytical methods

Water samples from each beach were prepared using standard
methods to examine water and wastewater (APHA 2012,

2017). Phosphates and nutrient concentrations were deter-
mined using HACH spectrophotometer (Model DR/2010)
(HACH Company, Loveland, CO, USA) (www. hach.com)
(HACH 2012). Total suspended solids (TSS) were measured
gravimetrically (APHA 2012, 2017). Chlorophyll-a was ex-
tracted from 250 mL of water samples in 96% ethanol and
determined spectrophotometrically at a specific wavelength
method (Lorenzen 1967, Welschmeyer 1994, Wintermans
and De Mots 1965). Chlorophyll-a (Chl-a) concentration
(μg/L) is an indicator of phytoplankton concentration in the
water column (Hinga et al. 1995).

Bacteria in beach water were analysed using standard
methods and membrane filtration method (Millipore 1991).
Total coliforms (Method APHA 9222A) and Escherichia coli
(Method APHA 9260F) were determined by placing the filter
on solidified Cromocult Agar Medi plates, following 18–24 h
incubation at 37 ± 0.5 °C. Similarly, Enterococcus spp. (Method
APHA9230C)was enumerated by placing the filters on plates of
Slanetz Bartley medium for 18–24 h at 44.5 ± 0.5 °C. Bacteria
loads in beach water are expressed in units of organisms per 100
mL of water. Total coliforms were determined by membrane
filtration method using M-Endo-Agar Les (Difco) at 37 °C and
on membrane faecal coliform agar at 44 °C, respectively (Cabral
2010). The medium contains a fluorogen that reacts with

Table. 1 Description of the coastal beaches of Ghana

Names of the beaches Alternatives names
of the beaches

Coastal
zone in
Ghana

Latitude Longitude Human impact
level

Type of human
activities

Estimated
population

Ghana-Côte d’Ivoire border
(Gh-Côte), beach, New
Town

New
Town/Ghana-Côte
d’Ivoire border

Western 5° 5.452′
N

3° 6.106′W Transboundary/west Transportation/fishing Populated

Domunli beach Jerusalem Western 5° 1.372′
N

2° 45.853′
W

Moderate Fishing activities Moderately
populated

Esiama beach Esiama-Elimna Western 4°
55.89-
5′N

2° 20.957′
W

Moderate Fishing activities Populated

Aboadzi beach Aboadzi Thermal
Plant

Western 4°
58.02-
9′N

1° 40.158′
W

High industry Hydrothermal
generation

Populated

Amisa beach Amissano beach
Amissano village

Central 5°
12.12-
3′N

0° 59.849′
W

Moderate Fishing activities Populated

Muni beach Apam Central 5°
19.61-
1′N

0° 38.842′
W

Moderate Fishing activities Populated

Densu beach Bojo Central 5°
30.40-
3′N

0° 19.718′
W

High industry Tourism,
fishing/-
transportation

Highly
populated

Kpeshi beach La/Laboma Central 5°
33.85-
4′N

0° 8.041′W High industry Tourism, fishing Highly
populated

Anyanui beach Fuvenie Eastern 5°
46.37-
2′N

0° 41.785′
E

Moderate Fishing
activities/-
transportation

Moderately
populated

Ghana-Togo border (Gh-Togo),
Afloa

Afloa, Ghana-Togo
border

Eastern 6° 6.493′
N

1° 11.319′
E

Transboundary/east Transportation/fishing Populated
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galactosidase in total coliforms, and a chromogen reacts with
glucoronidase in Escherichia coli. The medium contains a
chromagen that reacts with the enzyme glucosidase in
Enterococcus spp. (Ferretti et al. 2011, Haugland et al. 2005).
With the aid of colony counter, purple and blue colonies were
counted as total coliforms, only blue colonies counted as
Escherichia coli, and pinkish to red colonies counted as
Enterococcus spp. colonies. The number of total coliforms,
Escherichia coli and Enterococcus spp., are expressed by
counting the colony-forming units (CFU) per 100 mL of water
(Wade et al. 2003). The faecal indicator bacteria (FIB) such as
Escherichia coli (E. coli) and Enterococcus spp. (enterococci)
are sensitive biomarkers used to detect the faecal presence and
potential pathogens in coastal waters and understand associated
health risks (Piggot et al. 2012, Wade et al. 2010).

Statistical analysis

Statistical analysis such asmean,maximum, andminimumalong
with analysis of variance coupled with correlation analysis using
Paleontological statistical software, PAST 3 (Hammer et al.
2001), and statistical package for social sciences version 21.0
(SPSS 21.0) (Leech et al. 2011). The environmental parameters
were square-root transformed and then classified by clustering of
samples based on Euclidean distance. The abundance of bacteria
was log-transformed [ln(x ± 1)]; then, dendrograms were
established based Bray-Curtis similarity (Bellier et al. 2012,
Bray and Curtis 1957, Legendre and Gallagher 2001). Principal
component analysis (PCA) was used to established sources of
variation. Redundancy analysis (RDA) is the canonical form of
PCA (Jongman et al. 1995, Rao 1964). Redundancy analysis is
simply PCA with on-site restriction scores (Rao 1973, Ripley
1981). The advantage of using PCA and RDA biplots is that
they provided more quantitative information than correspon-
dence analysis (CA) (Jongman et al. 1995). Interactive selective
forward selection in redundancy analysis (RDA) detected a sub-
set of environmental variables which best explain the bacteria
matrix (Šmilauer and Lepš 2014, ter Braak and Verdonschot
1995). The Monte Carlo permutation test (α = 0.05; 999 permu-
tations) was adopted and performed using the Canoco software
version 5.03 (Šmilauer and Lepš 2014). Correlation coefficients
at 0.05 and 0.01 levels were adopted. Pearson correlation coeffi-
cient (r) close to 1 was considered a better indicator of a strong
association (Kinnear and Gray 1999).

Results

Physical, chemical, and bacteria indicators

There is no significant variation (one-way ANOVA Fcal 9, 60 =
0.208; p > 0.05) in the physical parameters (7) measured
among the ten beaches. The chemical parameters (5) do not

differ significantly (one-way ANOVA Fcal 9, 40 = 0.419; p >
0.05) among the ten beaches. However, there is a significant
(Fcal 9, 40 = 0.4966; p < 0.05) spatial variation in the counts
(CFU/100 mL) of total coliform and faecal bacteria
(Escherichia coli and Enterococcus spp.) measured among
the beaches (Figure 2B). The Student t-test indicated that the
count of E. coli is significantly (one-tailed, p = 0.026, p =
0.051) higher than Enterococcus spp. among the beaches.

The descriptive statistics of environmental parameters (e.g.
ranges, geometric mean, percentiles) are summarised in
Table 2. High loads of total coliforms, Escherichia coli, and
Enterococcus spp. were found in beach waters along the coast
of Ghana (Table 3; Figure 2A, B). Maximum bacteria loads
(CFU/100 ML) occur in central zones (Densu and Kpeshi
beaches). However, there is also a high in transboundary bor-
der eastern zone (Ghana-Togo beach). However, minimum
counts (CFU/100 mL) occur in the eastern zone of Ghana,
where freshwater influx is (Anyanui beach).

Multivariate statistical analyses

Cluster analyses

The similarity of environmental parameters formed a cluster
(Figure 3A). There is a significant association between tem-
perature and pH (Figure 3A). Similar associations of average
group dendrograms of beaches (Euclidean distance) based on
environmental characteristics of nearshore waters (Figure 3B).
There is a significant association between Escherichia coli
and Enterococcus spp. (Figure 4A). The corresponding hier-
archical clusters of beaches are grouped based on bacteria
counts (Bray-Curtis similarity) (Figure 4B).

Principal component analyses

The PCA plots display the relation of environmental factors
influencing a given site (species-environmental variables)
(Figure 5A). There are four major clusters of beach sites based
on environmental factors. Sites with similar environmental char-
acteristics cluster together: (i) Anyanui beach (freshwater influ-
ence, eastern zone); (ii) Ghana-Côte d’Ivoire and Domonli
beaches (increase in oxygenation, western zone); (iii) Aboadzi,
Kpeshi, Densu, Ghana-Togo border beach (increase in solute
composition-total dissolved solids, western-central-eastern
zones); and (iv) Amisa, Esiama and Muni beaches (increased
in nutrient content, central zone) (Figure 5A).

Principal component analysis showed spatial grouping of
beaches based on environmental data (Figure 5A). The first
and second axes contributed to 59.43% of total variation in
grouping of four clusters of beaches: (i) Anyanui; (ii) Ghana-
Côte d’Ivoire and Domonli; (iii) Aboadzi, Kpeshi, Densu, and
Ghana-Togo border; and (iv) Amisa, Esiama, and Muni
(Figure 5A).

50946 Environ Sci Pollut Res (2021) 28:50941–50965



A combination of environmental factors and bacteria data
(species-environment) (Figure 5B) showed four groups of
beaches with different levels of contamination, mainly (i)
cluster 1, Kpeshi (total coliform and Escherichia coli most
contaminated site); (ii) cluster 2, Ghana-Côte d’Ivoire,
Domonli, and Aboadzi (more oxygenated and low contami-
nated sites); (iii) cluster 3, Esiama, Muni, Anyanui, and
Ghana-Togo border; and (iv) cluster 4, Amisa and Densu.

Redundancy analysis

Redundancy analysis (RDA) indicated that two significant
environmental factors account for 72.42% variability in the
spatial distribution of bacteria (Figure 6) in study sites.

Nitrate (55.3%) and total dissolved solids (17.2%) significant-
ly (p < 0.05) influenced the spatial distribution of total coli-
forms, Escherichia coli, and Enterococcus sp. in the coastal
beaches of Ghana (Table 4; Figure 6)

Pearson correlations

Salinity (Table 5) significantly positively correlated with elec-
trical conductivity (r = 0.995, p = 0.000) and total dissolved
solids (p = 0.956, p = 0.000). There exist significantly posi-
tively r = 0.942, p = 0.000) correlation between dissolved
oxygen concentration and dissolved oxygen saturation. Total
suspended solids significantly positively correlated with phos-
phate (r = 0.818, p = 0.004) and nitrates (r = 0.694, p = 0.026).

Fig. 2 A Boxplot of bacteria in
beach water, Gulf of Guinea
Coast. The whisker type is the
standard error; whisker length is
95% interval, quartile method is
an interpolation, and outliers
(double asterisks). TC_w, total
coliform in water; Ecoli_w,
Escherichia coli in water; Ent_
sp_w, Enterococcus spp. in water.
B Spatial fluctuation (95% CI =
confidence interval) of bacteria
loads (CFU/100 mL) at study
beaches. TC_w, total coliform in
water; Ecoli_w, Escherichia coli
in water; Entsp_w, Enterococcus
spp. in water
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There is a significant positive correlation (r = 0.633, p =
0.049) between Escherichia coli and total coliforms. There
is positive significant (r = 0.997, p = 0.000) correlation be-
tween Escherichia coli and Enterococcus spp. Escherichia
coli (r = 0.662, p = 0.037) and Enterococcus spp. (r =
0.678, p = 0.031) positively and significantly correlated with
dissolved oxygen saturation (Table 5).

Discussion

Physical and chemical characteristics of nearshore
beach water

The lowest temperature (26.94 °C) was recorded at Aboadzi
beach on the western coast and the highest (30.82 °C) at
Kpeshi beach in the central zone. Sea surface water tempera-
ture along the coast of Ghana ranged from 25.0 to 28.7 °C
with mean ± SD 26.9 ± 1.28 °C, and Chorkor beach ranges
from 24.5 to 28.7 °C with mean ±SD 27.2 ± 1.32 °C (Akita
et al. 2014). Ghana is situated in the tropical equatorial climate
belt with an annual mean temperature between 25 and 36°C

(Allersma and Tilma 1993). In this region, the sea surface
water temperature varies marginally throughout the year
(Biney 1982, 1993). The coastal waters are thermally stratified
with a well-mixed layer of warm (25–36 °C), low salinity
water of 33.67–34.22 PSU in 30–40 m above a sharp thermo-
cline (Mensah and Anang 1998). The salinity of 35.05–35.38
PSU is below the thermocline at 60–80 depth. During upwell-
ing, the thermocline weakens and rises to the surface resulting
in vertically homogeneous salinity profile above the shelf
(Mensah and Anang 1998). The lowest salinity (14.01 PSU
scale) was recorded at Anyanui beach on the eastern coast due
to freshwater intrusion fromVolta River at Lower Volta Lake,
which also connects to Anyanui Lagoon, whereas the highest
(34.70 PSU scale) in Densu beach in the central coast. Marine
waters have a much higher conductivity than fresh to estua-
rine, ranged from 20.0 to 40.0 mS/cm). Salinity of seawater is
normally 36 PSU scale. The salinity of coastal beach waters in
Ghana ranged from 33.5 to 37.9 (PSU scale) with mean ± SD
value 36.6 ± 1.53 (e.g. for La beach) and from 34.5 to 38.0
(PSU scale) with mean ± SD value 36.7 ± 1.21 (e.g. for La
beach) (Akita et al. 2014). The lowest (8.30) pH was mea-
sured at Esiama beach and the highest (9.05) at Domunli

Table. 2 Descriptive statistics of environmental parameters of coastal beaches in Ghana

Names of the
beach

Temp.
(°C)

EC (mS/
cm)

Sal
(PSU)

pH O2

(mg/L)
O2 Sat
(%)

TDS
(mg/L)

TSS
(g/L)

Eh (mV) Phos
(mg/L)

Nit
(mg/L)

Chl a
(μg/L)

Gh-Côte 29.24 43.04 27.52 8.33 6.40 85.10 21.52 4.00 83.50 0.06 1.97 2.61

Domunli 27.53 49.39 30.57 9.05 5.06 75.00 23.57 7.00 61.83 0.04 2.10 2.26

Esiama 27.47 43.50 27.95 8.03 3.80 55.80 21.74 23.00 194.40 0.25 2.77 2.88

Aboadzi 26.94 48.76 31.75 8.66 4.01 59.61 24.36 7.00 163.00 0.12 2.30 2.64

Amisa 28.20 33.13 21.00 8.70 3.68 52.00 16.57 76.33 109.57 0.54 3.57 2.61

Muni 30.82 41.85 76.67 9.20 4.33 65.80 20.94 10.33 217.20 0.37 2.17 0.43

Densu 30.74 52.60 34.70 8.30 6.44 109.60 31.60 10.67 194.70 0.16 3.27 1.23

Kpeshi 28.27 50.23 32.81 8.75 3.69 55.90 25.09 18.67 265.00 0.16 2.73 1.69

Anyanui 29.36 23.41 14.01 8.56 6.17 86.90 11.71 13.00 134.90 0.07 1.63 2.44

Gh-Togo 29.51 49.21 33.01 8.80 4.85 74.50 24.61 12.00 158.20 0.08 2.53 6.13

Mean ± SD 28.81 ±
1.4

43.51 ±
9.1

33.00 ±
16.6

8.64 ±
0.4

4.84 ±
1.1

72.02 ±
18.1

22.17 ±
5.3

18.20 ±
21.2

158.23 ±
62.7

0.18 ±
0.2

2.50 ±
0.6

2.49 ±
1.5

Minimum 26.94 23.41 14.01 8.03 3.68 52.00 11.71 4.00 61.83 0.04 1.63 0.43

Maximum 30.82 52.60 76.67 9.20 6.44 109.60 31.60 76.33 265.00 0.54 3.57 6.13

Geom. mean 28.65 43.13 27.67 8.63 4.83 71.74 21.86 12.71 136.94 0.14 2.44 2.08

75 percentile 27.51 40.56 25.89 8.5 3.77 55.88 103.08 20.28 7 0.07 2.07 1.57

25 percentile 29.4 49.6 32.86 8.77 6.23 85.55 194.48 24.73 19.75 0.28 2.9 2.7

Median 28.76 48.89 31.16 8.72 4.96 74.75 146.55 23.97 11.34 0.14 2.42 2.52

Std. error 0.38 2.9 2.03 0.09 0.36 5.75 19.01 1.69 6.7 0.05 0.19 0.47

Natural background
ranged

27–33 20–52.60 34–36 8–9 6–7 - - - - - - -

Temp temperature, EC electrical conductivity, Sal salinity,DO dissolved oxygen concentration,DO Sat dissolved oxygen saturation, Eh redox potential,
TDS total dissolved solids, TSS total suspended solids, Phos phosphate,Nit nitrates,Chl a chlorophyll-a, SD standard deviation, Std. error standard error,
Geom. mean geometric mean
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beach. The EU has set protection limits of pH ranged from 6 to
9 as harmless for fisheries and aquatic life (Chapman 1996).
The pH values fall within the pH ranged between 6 and 9 for
natural waters and pH of 8.30 for seawater (Stumn and
Morgan 1981). The lowest (3.68 mg/L) dissolved oxygen
concentration (DO) was recorded in Amisa beach and the
highest (6.44 mg/L) at Densu beach. The nature of beach
morphodynamics type may influence circulation in this sys-
tem. Dissolved oxygen concentration is 7.0 mg/L for tropical
surface waters (Biney 1993, Clark 2000) and unpolluted
waterbodies of 8.0 to 10.0 mg/L at 25 °C (DFID 1999).
Dissolved oxygen concentration is another important environ-
mental variable used for water quality controls. Adequate ox-
ygen is needed tomaintain the biological life of ecosystems. A
dissolved oxygen concentration of 4–5 (mg/L) can sustain
aquatic life. However, below 5.0 (mg/L) may indicate high
microbial activity and adversely affect aquatic life (DFID
1999, Stumn and Morgan 1981). In extreme situations, de-
crease dissolved oxygen levels can lead to anoxic conditions,

fish kills, and odours resulting from anaerobic conditions
(DFID 1999, Stumn and Morgan 1981). The lowest (61.80
mV) redox potential was measured at Domunli beach and
the highest (265.00 mV) at Kpeshi beach. A low redox poten-
tial corresponds to high pH, as observed in Domunli beach.
Higher redox potential means anoxic conditions as observed
in Kpeshi. The redox potential for natural waters ranged from
500 to 600mV (Stumn andMorgan 1981,Wetzel 2001).With
depletion of oxygen, the redox potential decreased to 0 to
200 mV (Stumn and Morgan 1981, Wetzel 2001). The lowest
total dissolved solids (11.71 mg/L) concentration was record-
ed at Anyanui beach and the highest (31.60 mg/L) at Densu
beach. The lowest total suspended solids (4.00 g/L) concen-
tration was recorded at the Ghana-Côte d’Ivoire, border beach
and the highest (76.33 g/L) at Amisa beach which is connect-
ed to the Amisa Estuary, has tidal mixing and a large fishing
industry. These activities may results in resuspension of min-
erals and salt particles through tidal influx and bottom
trawling. High total dissolved solids in water originate from

Table. 3 Bacterial loads (CFU/
100 mL) in beach waters, Gulf of
Guinea, Ghana

Beaches Bacteria types

TC_w (CFU/100
mL)

E. coli_w (CFU/100
mL)

Ent._sp_w (CFU/100
mL)

Gh-Côte 3.72 × 103 5.0 × 101 1.0 × 101

Domunli 4.65 × 103 2.20 × 102 1 × 100

Esiama 1.40 × 103 5.5 × 101 3.5 × 101

Aboadzi 2.79 × 103 3.60 × 102 5 × 100

Amisa 5.12 × 103 4.10 × 102 2.85 × 102

Muni 4.20 × 102 1.20 × 102 30 × 101

Densu 11.16 × 103 5.58 × 103 5.58 × 103

Kpeshi 11.16 × 103 2.40 × 102 1.0 × 102

Anyanui 3.6 × 101 1 × 100 0 × 100

Gh-Togo 1.70 × 102 2.0 × 101 1.10 × 102

Mean ± SD 4.06 × 103 ± 4.16 ×
103

7.06 × 102 ± 1.72 ×
103

6.15 × 102 ± 1.75 ×
103

Minimum 3.6 × 101 1 × 100 0 × 100

Maximum 11.16 × 103 5.580 × 103 5.58 × 103

Geom. mean 1.6 × 103 1.11 × 102 0 × 100

75 percentile 6.63 × 103 3.72 × 102 1.53 × 102

25 percentile 3.57 × 102 4.20 × 101 4 × 100

Median 3.26 × 103 1.70 × 102 3.20 × 101

Std. error 1.32 × 103 5.43 × 102 5.52 × 102

Confidence level 95% 2.98 × 103 1.23 × 103 1.25 × 103

Ghana Standard Water Quality (GS
175-1)

0 × 100 0 × 100 0 × 100

WHO guidelines 0 × 100 0 × 100 0 × 100

WHO guidelines (< 1 CFU/100 mL) for potable water (WHO 2011). The drinking water quality guideline (0
CFU/100 mL) of Ghana, Ghana Water Company Limited

TC total coliforms, E. coli_w Escherichia coli in water, Ent._sp_w Enterococcus sp. in water, SD standard
deviation, Std. error standard error, Geom. mean geometric mean
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natural sources, urban and agricultural runoff, sewage dis-
charges, and industrial wastewater. The lowest phosphate
(0.04 mg/L) concentration was measured at Domunli beach
and the highest (0.54 mg/L) at Amisa beach. The mean phos-
phate concentration of (0.18 ± 0.16 mg/L) is higher concen-
tration in unpolluted, natural waters (ranged from 0.005 to
0.020 mg/L) (Biney 1993, Clark 2000) (Chapman 1996).
Phosphate concentration is as low as 0.001 mg/L in some

pristine waters (Chapman 1996). Phosphate is the limiting
nutrient for algal growth and controls a surface water body
(Crouzet et al. 1999, Paerl et al. 2011). High phosphate con-
centrations may indicate pollution and are largely responsible
for eutrophic conditions (Omoike and Vanloon 1999, Saad
and Younes 2006). The lowest nitrate (1.63 mg/L) concentra-
tion was measured at Anyanui beach and the highest (3.57
mg/L) at Amisa beach. Nitrates in the coastal beach waters

Fig. 3 AGroup average
hierarchical dendrogram of
environmental parameters. There
are three major clusters. The only
significant cluster exists between
temperature and pH. The thin red
dotted lines indicate a significant
structure of similarity (SIMPROF
Test, p < 0.05). The thick black
lines indicate no significant
structure. TSS, total suspended
solids; Phos, phosphate; Chla,
chlorophyll-a; Eh, redox poten-
tial; Temp, temperature; pH; O2,
dissolved oxygen concentration;
O2 Stat, dissolved oxygen satu-
ration; Nit, nitrates; TDS, total
dissolved solids; EC, electrical
conductivity; Sal, salinity. B
Hierarchical cluster (group aver-
age) of beaches based Euclidean
distances of environmental data.
The cluster displays the similarity
of beaches based on environmen-
tal data
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of Ghana ranged from 0.5 to 0.25 to 1.8 mg/L in coastal waters
of Ghana (Akita et al. 2014, Biney and Asmah 2010). Low
nitrates occur in unpolluted waters (Jaji et al. 2007). Nitrates is
the most highly oxidised form of nitrogen compounds present
in surface waters (Igobinosa and Okoh 2009). Nitrogen-fixing
bacteria and algae convert free nitrogen gas (N2) into nitrates

(NO3
-) (Igobinosa and Okoh 2009). Nitrogen waste products

such as urea and uric acid are converted to ammonia. Nitrate
bacteria then utilise ammonia to form nitrites (NO2

−), which
are converted into nitrate. Phosphates and nitrates are essential
nutrients necessary for primary production and naturally
replenished by river runoff (Correl 1998, Sharpley et al.

Fig. 4 A Group average
hierarchical dendrogram of
bacterial loads. There is a
significant association between
Escherichia coli and
Enterococcus spp. Thin red
dotted lines showed significant
clusters (SIMPROF Test, p <
0.05). TC_w, total coliform in
water; E. coli_w, Escherichia coli
in water;Ent. sp_w,Enterococcus
spp. in water. The thick black
lines indicate no significant
structure. B Group average
hierarchical clusters of beaches
based on only bacteria. There
exist three significant clusters of
beaches except for Anyanui beach
(evidence of structure)
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2013). Phosphates and nitrates are limiting nutrients for plant
growth (Paerl and Huisman 2008). However, excess nutrients
lead to the phytoplankton blooms process, often termed eutro-
phication (Kennish 2001, Nixon 1995, Smith and Schindler
2009). The major proportion of phosphate are transported to
the aquatic environment from cultivated land usually in par-
ticulate form through erosion and leaching transports relative-
ly little soluble P, as P is strongly adsorbed on clay particles
(Carpenter et al. 1998, Elser et al. 2007, Sharpley et al. 2013).

The trophic state of beach water in Ghana based on
chlorophyll-a concentration (0.43 to 6.13 μg/L) indicated ultra-
oligotrophic (<0.95 - 2.5 μg/L) to mesotrophic condition (2.5–
7.3 μg/L) (Gökçe 2016, Vollenweider and Kerekes 1982).
Chlorophyll-a concentration at the Densu estuary ranged be-
tween 0.96 and 4.38 μg/L (Akita et al. 2020). Chlorophyll-a
concentration ranged from 0.10 to 3.80 mg/L (average 1.39 ±
0.84) in coastal waters of the Caspian Sea (Boyer et al. 2009,
Bucci et al. 2012, Möller and Scharf 1986). Very low and high
levels of chlorophyll-a concentration can be harmful to marine
biota (Acheampong et al. 2021, Jamshidi and Abu Bakar 2011).
Chlorophyll-a concentration act as an indicator of phytoplankton
abundance and biomass in coastal ecosystems (Addico et al.
2018, Hinga et al. 1995, Monbet 1992). The chlorophyll-a con-
centration provides estimates of phytoplankton biomass and thus
productivity of a water body (Boyer et al. 2009, Jamshidi et al.
2010, Tripathy et al. 2005, UNESCO 1994). Eutrophication is
associated with increased phytoplankton blooms and increased
primary production (Gökçe 2016, Wellman et al. 2002).

Bacterial loads in beach water

The presence of bacteria (total coliforms, Escherichia coli,
and Enterococcus) in beach water (Figure 2A) is an indicator
of pollution along the coast of Ghana. High bacteria indicator
organisms were measured at central zone beaches (e.g. Densu,
Kpeshi) (Table 3; Figure 2A), characterised by massive hu-
man activities such as populated coastal fishing communities,
industries, beach resorts, coastal tourism, and frequent tourism
beach swimmers, among others. A maximum and equal
amount of Escherichia coli (5.58 × 103 CFU/100 mL) and
Enterococcus (5.58 × 103 CFU/100 mL) were detected at
Densu beach (Table 3; Figure 2A). In urban cities such as
Greater Accra, the Metropolitan has to deal with insufficient
waste treatment facilities. There are inadequate sewage treat-
ment plants; hence, sometimes, there is dumping of effluent
without treatment directly at the coast. The bacteria pollution
can be either a single point source or diffuse sources from
different sources such as industries, factories, beach resorts,
domestic activities, and Ghana’s coastal belt. A minimum
(Figure 2B) E. coli (1.0 × 100 CFU/100 mL) without

Fig. 5 A Principal component analysis (PCA) of a grouping of beaches
(circles) based on environmental parameters (blue arrows). The long ar-
rows show the most influential environmental parameters for the group of
beaches. The horizontal first axis contributes 31.73% in the PCA plots,
and the vertical second axis contributed 27.7%. The orientations of these
arrows indicate the correlation of these parameters in PCA ordination
axes. Thus, the PCA shows the influencing environmental factors at a
given beach. B Principal component analysis (PCA) ordination of inte-
grated environmental parameters (thick violet arrows) and bacteria data
(thin blue arrows) (triangles). The long arrow indicates the most influen-
tial parameters. The first and second axes of PCA contribute 96.9% to
explain the variation. The Escherichia coli and total coliform are preva-
lent in beaches with increased nitrate concentration, while Enterococcus
spp. are predominant in beaches with higher total dissolved solids
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Enterococcus was recorded at Anyanui beach, characterised
by freshwater flow into the nearshore waters and less populat-
ed communities.

Sources of spatial variation in bacteria load

Cluster (Figure 3A) and principal component analyses
(Figure 4A) established four clusters of beaches based on only
environmental factors at a given site: (i) cluster 1, Anyanui
beach located in the eastern coast is influence by freshwater
flow from Volta River leading to low saline condition and
controlled by chlorophyll-a concentration; (ii) cluster 2,
Ghana-Côte d’Ivoire and Domonli beaches are situated in
the western coast and mostly influenced by high oxygenated
seawaters; (iii) cluster 3, Aboadzi, Kpeshi, Densu, and Ghana-
Togo border beaches are located in western-central-eastern
coast and characterised by increased electrical conductivity,
salinity, total dissolved solids, and pH; and (iv) cluster 4,
Amisa, Esiama, and Muni beaches are situated in the central
zone and characterised by high total suspended solids, phos-
phate, and nitrates and redox potential (Figure 3A). The
grouping of the beaches suggests similar characteristics for a
group of beaches due to the major influential physical and
chemical composition of water quality.

Cluster analysis of only bacteria data (Figure 3B) also
established four major groups of beaches, mainly (i) cluster
1: Kpeshi beach is a major contaminated beach with high
loads of total coliform and Escherichia coli. The Kpeshi beach
is situated on the central coast in the Greater-Accra region,
Ghana. The beach is a tourism centre with two major hotels,
La Beach Hotel and La PalmHotel, and the location is densely
populated communities along the coast. Discharges of sewage
without adequate treatment can lead to high bacterial loads,
i.e. (ii) cluster 2: Ghana-Côte d’Ivoire, Domonli, and Aboadzi
less contaminated beaches characterised by oxygenation.
These beaches are located in western region where the

Table. 4 Summary of
redundancy analyses (RDA) on
selecting the best environmental
variables influencing spatial vari-
ation of bacteria loads in beach
waters in Ghana

Analysis “constrained”

Method: RDA

Total variation is 129.38; explanatory variables
account for 72.4%

(Adjusted explained variation is 64.5%)

Summary table:

Statistics Axis 1 Axis 2 Axis 3 Axis 4

Eigenvalues 0.7099 0.0142 0.202 0.0479

Explained variation (cumulative) 70.99 72.42 92.62 97.41

Pseudo-canonical correlation 0.9591 0.303 0 0

Explained fitted variation (cumulative) 98.03 100

Analysis “constrained”

Forward selection results:

Name of environmental parameter Explains
%

Contribution
%

Pseudo-F P P(adj)

Nit (nitrates—mg/L) 55.3 55.3 9.9 0.002 0.024

TDS (total dissolved solids—mg/L) 17.2 17.2 4.4 0.017 0.102

Fig. 6 Redundancy analysis (RDA) diagram of the best environmental
variables (red arrows) selected by the forward selection procedure
influencing the bacteria (blue arrows) counts in the studied beaches.
The ordination diagram with the first axis (horizontal) and the third
(vertical) axis of distance-based constrained RDA. The first and second
axis of RDA contributes 72.24% to species response to environmental
variables. The RDA analysis showed beaches with high nitrate group
together while beaches with high total dissolved solids also form another
cluster group. The RDA indicates nitrates to control the abundance of
Escherichia coli and total coliform, while total dissolved solids promote
an increase in Enterococcus spp.
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population may be low and less frequent beach users and
hotels, i.e. (iii) cluster 3: Esiama, Muni, Anyanui, and
Ghana-Togo border beaches with moderated contaminated
beaches characterised by chlorophyll-a concentration may
have minimal human impact; (iv) cluster 4: Amisa and
Densu beaches with second major contamination are
characterised by Enterococcus spp. and nitrates. Densu beach
is situated in an area with high populated coastal vicinity and
adjoining Densu beach Resort and Bojo beach coupled with a
connection to Densu estuary and subsequent Densu river. The
Amisa Beach is connected with Amisa estuaries and
connecting the Amisa River. There are increasing human ac-
tivities of fish farming, animal husbandry, and water transpor-
tation in these coastal systems, which can cause an increase in
nutrients and bacteria load.

The principle component analysis (PCA) established spa-
tial variability in sites due to specific environmental factors at
a given beach (Figure 5A, B). The best ecological factors are
nitrate and total dissolved solids (Table 4; Figure 6). These
ecological factors influenced the spatial distribution and abun-
dance of bacteria in the study beaches. Enterococcus is mostly
abundant in Esiama beach influenced by nitrated enrichment
of the seawater (Figure 5A). Increased bacteria loads mea-
sured at the nearshore waters of Densu and Kpeshi beaches
could be due to the increased concentration of total dissolved
solids of seawater, high population of coastal communities,

and increased human activities such as industries, agriculture
farming, and coastal tourisms, frequent beachgoers. and major
hotels situated in this central zone (Figure 5A). Pearson cor-
relation shows strong linearity between salinity, conductivity,
and total dissolved solids (Table 5). The combination of clus-
ter and Pearson correlation established a significant linear as-
sociation among the bacteria (Table 5; Figure 4A). Both cor-
relation and ordination analyses established an association
between environmental factors and bacteria in beach water.

Bacterial water quality

Total coliforms, Escherichia coli, and Enterococcuswere low
in Anyanui beach but high at Densu and Kpeshi beaches
(Table 1). The small communities with limited waste dis-
charges have contributed to the low contamination at
Anyanui beach. The major polluted beaches, Densu and
Kpeshi, are characterised by densely populated human settle-
ments. Large industries, beach resorts and hotels, coastal fish-
ing communities, beach tourism, animal husbandry, and agri-
cultural farming surround the catchments of these two
beaches. The possible contamination sources, including un-
treated disposal of human and animal waste and runoff from
agricultural farmlands, may affect the beach water quality in
these localities (Islam et al. 2004, Pandey et al. 2014).
Contamination of water bodies is a serious environmental

Table. 5 Pearson correlation (r) between environmental parameters and bacteria in beach waters of Ghana

Environmental
parameters

Temp EC Sal pH O2 O2

Sat
Eh TDS TSS Phos Nit Chl a TC_w E.

coli_w
Ent_sp_w

Temp 1

EC −.049 1

Sal −.011 .995** 1

pH .114 .298 .278 1

O2 .619 −.102 −.108 .058 1

O2 Sat .625 .099 .101 .186 .942** 1

Eh −.129 .274 .323 −.180 −.376 −.193 1

TDS .046 .948** .956** .271 .057 .302 .354 1

TSS −.083 −.440 −.421 −.040 −.454 −.451 −.138 −.406 1

Phos −.205 −.162 −.138 −.087 −.667* −.600 .355 −.138 .818** 1

Nit .042 .190 .224 .033 −.281 −.078 .120 .322 .694* .632 1

Chl a .050 −.080 −.041 −.061 −.041 −.098 −.260 −.158 .039 −.292 −.008 1

TC_w .441 .360 .350 .267 .379 .537 −.227 .496 .107 .014 .551 −.401 1

E.coli_w .176 .329 .346 .185 .429 .662* .253 .604 −.080 −.022 .492 −.317 .633* 1

Ent_sp_w .212 .310 .330 .161 .449 .678* .265 .590 −.079 −.025 .489 −.287 .612 .997** 1

The bold shows significant corrections between two variables

Temp temperature (°C), EC electrical conductivity (mS/cm), Sal salinity (PSU), DO dissolved oxygen concentration (mg/L), DO Sat saturation of
dissolved oxygen (%),Eh redox potential (mV), TDS total dissolved solids, TSS total suspended solids (g/L), Phos phosphate (mg/L),Nit nitrates (mg/L),
Chl a chlorophyll-a (μg/L), Tcol_w total coliforms in seawater (CFU/100 mL), E. coli_w Escherichia coli in seawater (CFU/100 mL), Ent.spp_w
Enterococcus spp. in seawater (CFU/100 mL)

*Correlation is significant at the 0.05 level (2-tailed); **correlation is significant at the 0.01 level (2-tailed)
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issue since it can affect the ecosystem’s health and human
health (Parmar et al. 2016, Sabae and Rabeh 2007, Scheren
and Ibe 2002). The faecal sources of contamination can be
animal or human waste (Domingo and Edge 2010, Dufour
et al. 2012, Newton et al. 2013). Most faecal material reaches
water bodies either indirectly through discharge after treat-
ment or directly by being washed off the surface by rainfall
or through defecation directly into water bodies (Daniel et al.
2000, Devane et al. 2020, Dufour et al. 2012, Karikari and
Ansa-Asare 2006). This faecal material can carry pathogenic
microbes that may pose a risk to humans exposed to contam-
inated surface water (Devane et al. 2020, Dufour et al. 2012,
Osiemo et al. 2019, Wheater et al. 1979). In south-east
Nigeria, maximum bacterial colony count (up to 6 × 104

CFU/100 mL) and the largest variability were found in
mesotidal estuaries and adjoining nearshore waters (Anita
and Showell 1997). In this study, some limitations are due to
the short duration of the research. However, the detection of
Escherichia coli and Enterococcus spp. in the coastal beach
waters in Ghana provides enough evidence of faecal pollution,
possibly due to animal and human waste sources.

The health of human populations depends on the health of
fresh and marine water resources. The coastal communities
rely heavily on coastal resources for their economic and social
wellbeing. Increasing human activities are pathways for mi-
crobes to enter into the freshwater and marine ecosystems.
Beach water quality is essential for public health and coastal
tourism, linked to the “Sun, Sea and Sand” market and the
need to quantify faecal indicator bacteria (Soto-Varela et al.
2021, Zhang et al. 2016). Total coliforms occur in animal
intestines, sediment, water, and industrial waste (Osiemo
et al. 2019). Escherichia coli occurs in the gastrointestinal
tract of warm-blooded animals and direct evidence of faecal
contamination (Bergholz et al. 2011, Malla et al. 2018b,
Niemela et al. 2003, Shields et al. 2015, Zhang et al. 2016).
Enterococcus spp. are a subset of faecal streptococci and com-
monly present in the faeces of warm-blooded animals
(Cornejova et al. 2015, Moe et al. 1991). Enterococcus are
more persistent in water than coliforms (Byappanahalli et al.
2012, Xue et al. 2018). They provide a different assessment of
the transport of faecal contamination in water than coliforms
because of their different shape and survival rate (Ecklu-
Mensah et al. 2019, USEPA 2002). These faecal bacteria in
marine waters can indicate the possible presence of disease-
causing bacteria, virus, and protozoans (Crowther et al. 2001,
Korajkic et al. 2018, Price and Wildeboer 2017, Solic and
Krstulovic 1992). These pathogens may pose health risks to
beach swimmers and seafood consumption (Harwood et al.
2014, Rodrigues and Cunha 2017, Xue et al. 2018). Faecal
bacteria can arise from multiple sources such as human and
animal waste discharges (Savage 1905, Sayler et al. 1975,
Schroeder and Wuertz 2003). Escherichia coli is mostly com-
mon in fresh and estuarine waters, whereas Enterococcus sp.

is common in marine water but both are good markers of
faecal contamination (Akrong et al. 2019, Leclerc et al.
2001, Malla et al. 2018a, Pachepsky and Shelton 2011).
Agriculture runoff and domestic sewage waste water are often
associated with high loads of bacteria (Schroeder and Wuertz
2003, Solo-Gabriele et al. 2000). Environmental parameters
(thus salinity, temperature, nutrients, and light) can influence
the survival and sometimes the proliferation of pathogens and
bacteria (Cabral 2010, Edge et al. 2010, Herrig et al. 2019,
Pommepuy et al. 2005). Other issues such as climate change
such as sea level rise causing coastal flooding and storms
runoff may affect beach water quality and cause water borne
diseases and illness (Buckerfield et al. 2019, Holcomb and
Stewart 2020, Pandey et al. 2014, Weiskerger et al. 2019,
Xue et al. 2018). The faecal bacteria organisms such as E.
coli are often used to detect the presence of perilous faecal
pollution and recognised as valuable biomarkers for water
quality assessment (Odonkor and Ampofo 2013, Shrestha
et al. 2020, Wright et al. 2004, Yeleliere et al. 2018b).
Faecal indicator organisms in coastal waters are a growing
concern for environmental and human health (Idalia and
Franco 2017, Odonkor and Ampofo 2013, Rodrigues et al.
2019, Whitman et al. 2003). Total coliform, Escherichia coli,
and Enterococcus sp. bacteria are used to indicate pathogens
of faecal origin in surface and coastal water bodies (Table 2)
(Berthe et al. 2013, Guillaud et al. 1997, Ling et al. 2018,
Medema et al. 2003, Noble et al. 2003). Escherichia coli
and Enterococcus sp. occurs in intestinal bacteria of warm-
blooded animals (Carson et al. 2001, Schönheit et al. 2016,
Sinton et al. 1998). Their presence in coastal waters serve as
an indicator of potential sewage pollution (Ahmed et al. 2019,
Efstratiou 2001, Eichmiller et al. 2013, Oster et al. 2014) Total
coliform numbers include non-faecal bacteria, so additional
testing is often done to confirm the presence and numbers of
faecal indicator bacteria as best markers of faecal pollution
(Bettelheim 2003, Leclerc et al. 2001, Maipa et al. 2001,
Vantarakis et al. 2006). Escherichia coli is the main marker
of faecal pollution (Alm et al. 2011, Nowicki et al. 2021,
Quilliam et al. 2019, Stewart et al. 2008). But faecal entero-
cocci are also used as complementary microbiological water
quality indicator (Byamukama et al. 2000, Katukiza et al.
2013, Maipa et al. 2001, Oster et al. 2014).

Escherichia coli and Enterococcus sp. in waters originate
from domestic and animals waste discharges (Abdelzaher
et al. 2013, Bauer and Alm 2012, Boehm and Sassoubre
2014, Ferguson et al. 2005, Schroeder and Wuertz 2003).
Waterborne diseases may impact public health (Beaudeau
et al. 2008, Fong and Lipp 2005, Jang et al. 2017, Mwabi
et al. 2012). Bacteria in water can transmit diseases such as
cholera, typhoid fever, bacillary dysentery, and diarrhoea
(Cabral 2010, Drasar 2003, Harwood et al. 2014, Pitkänen
2013). The total coliform abundance in water (mean 4.06 ×
103 ± 4.15 × 103) exceeded the mandatory levels for the water
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quality for swimming from most countries (Table 3). The
mean total coliforms ranged between 1.14 × 103 and 1.89 ×
103 (CFU/100 mL), while the faecal coliforms ranged be-
tween 3.36 × 102 and 7.39 × 102 (CFU/100 mL). When com-
paring with WHO standards (WHO 2008), the results suggest
that the sanitary quality of the beach water is unacceptable. In
the USEPA, marine recreational water quality criterion for
enterococci in water is not more than 1.04 × 102 (CFU/100
mL) (single-sample standard) and 3.5 × 101 (CFU/100 mL)
(geometric mean standard) (USEPA 2011). In the EU, bathing
water standards for enterococci range from limits of 1.0 ×
102–4.0 × 102 (CFU/100 mL), depending on whether the
beach is marine or fresh and whether the beach is rated as
excellent or sufficient ((EU 2006).

In previous studies, the abundance of bacteria (total coli-
forms, Escherichia coli and Enterococcus spp.) in water does
not differ from sediments in Densu estuary (Akita et al. 2020).
However, high numbers of faecal indicator bacteria
(Escherichia coli and Enterococcus spp.) were found close
to landfill sites than seawards suggesting landward contami-
nation sources (Akita et al. 2020). Furthermore, Escherichia
coli was dominance in water than in sediment while
Enterococcus spp. were higher in the sediment than water in
Densu estuary (Akita et al. 2020). The faecal indicator bacteria
in coastal waters arise from multiples sources such as diffuse
sources, industrial and domestic sewage discharges, runoff
from agricultural and livestock farms (Buckerfield et al.
2019, Kay et al. 1999a, Wyer et al. 1998), migratory shore
birds (Jones and Obiri-Danso 1999), and point sources direct-
ly at sea.

Bacteriological water quality shows variation according to
the magnitude of such inputs, the flux and dispersion of or-
ganisms as a result of nearshore hydrodynamics, and the rate
of die-off consequences of exposure to UV light (Davies-
Colley et al. 1994, Solic and Krstulovic 1992). Microbial con-
centrations may differ along a particular stretch of the coast
and can exhibit marked temporal fluctuations through the
bathing season (Crowther et al. 2001, Kay et al. 1999b,
Love et al . 2014, Obiri-Danso and Jones 1999).
Anthropogenic activities (e.g. land-use activities, sewage dis-
charges) increasingly deteriorate water quality in Ghana
(Lawson 2014). Untreated effluents discharges directly at
coast can contribute to the microorganisms in the seawater,
and the microbes can be transported in the food chain
(Fleisher et al. 1996, Haas 2001, Metcalf 1982, Nuzzi and
Buhrans 1997, Pommepuy et al. 2005). Bacteria pollution
may impose potential health hazards and seafood contamina-
tion via transfer in the food chain. The presence of pathogenic
microorganisms from sewage discharges leads to human and
animal related diseases in the seawater and seafood (Malakoff
2002, Pandey et al. 2014, Poloczanska et al. 2016).
Bacteriological and epidemiological studies (Table 6) suggest
health risks in swimming contaminated marine coastal waters

(Efstratiou 2001, Ferguson et al. 2005, Godfree et al. 1997,
Rodrigues and Cunha 2017, WHO 2002, Xue et al. 2017).
There are also acceptable bacteria loads such as total coliforms
for swim bathing water (Table 6). For instance, human enteric
viruses such as norovirus, astrovirus, rotavirus, hepatitis A
virus, and pathogenic bacteria including Salmonella, Listeria
monocytogenes, Shiga toxin–producing Escherichia coli
(Table 6) Vibrio cholerae, and Vibrio parahaemolyticus caus-
ing diseases were associated with faecal contamination in
coastal waters (Bosch et al. 2001, Grimes 1991, Kong et al.
2002, Metcalf 1978, Pandey et al. 2014, Rothenheber 2017,
Tiwari et al. 2021).

Microorganisms can cause infections such as gastrointesti-
nal and respiratory illnesses, skin diseases, and eye infections
(Gerba 2000, Griffin et al. 2003, Payment et al. 1991, Tawiah
et al. 2012, Tiwari et al. 2021, VanMensel et al. 2019). High
concentration of E. coli (~ 3.7 ×102–2.4 × 104 CFU/100 mL)
is associated with diseases outbreak. High levels of enterococ-
ci were observed after significant rainfall events, in 36 sam-
ples (35.6%) that exceeded USEPA’s statistical threshold val-
ue of 1.3 × 102 (CFU/100 mL) (Dufour et al. 2012, Dufour
1984, Dufour 2001, EPA 1986). The US Public Health
Service used epidemiology to detect swimming-associated ill-
ness with total coliform levels of 2.3 × 103 (CFU/100 mL)
(Dufour et al. 2012, Dufour 1984, Dufour 2001, EPA 1986).
An acceptable bacteria load (e.g. total coliforms) for swim
bathing waters varies from country to county (Efstratiou
2001, 2018). For example, in the USA, single-sample stan-
dards are total coliforms, 10.0 × 103 (CFU/100 mL), and E.
coli, 1.04 × 102 (CFU/100 mL) (Dufour et al. 2012, Dufour
1984, Dufour 2001, EPA 1986).

In regard to the water quality of beaches in the long depart-
ment of Atlántico (Caribbean Sea of Colombia), a study ob-
served that E. coli counts ranged from 0 × 100 to 2.4 × 102

(CFU/100 mL) with higher values close to urban areas (Soto-
Varela et al. 2021). On the other hand, a similar study in the
same region but northern part established the highest values of
E. coli ≥ 5.0 × 102 (CFU/100 mL) in beaches located at urban
areas (e.g. Salgar, Pradomar, Puerto Colombia, and Northern
zone of Puerto Velero) but low values between 1.6 × 101 and
5.4 × 101 (CFU/100 mL) in beaches located in rural areas
(Sabanilla and the southern zone of Puerto Velero) (Moreno
et al. 2019).

The study demonstrated the environmental factors such as
nitrates and total dissolved solids significantly controlled the
spatial abundance of bacteria in beach seawater. The survival
of most bacteria in seawater is also dependent on salinity,
temperature, pH, solar radiation, and other factors (Boehm
et al. 2018, Hirn et al. 1980, Johnson 2011, Maipa et al.
2001). PH influenced the spatial fluctuations of faecal bacteria
at the Densu estuary (Akita et al. 2020). The local environ-
mental factors contribute to the abundance of bacteria in beach
water. Faecal indicator bacteria in the water column are
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removed by adsorption and deposition through sedimentation
(Whitman et al. 2011). The deposition of indicator bacteria is
dependent on the association between bacteria and suspended
particles (Whitman et al. 2011). Faecal indicator bacteria are
also known as chemo-organotrophic bacteria, depending on
the decay of organic compounds for food and growth (Maipa
et al. 2001). Faecal pollution of water resources is a major
concern for public health (Ercumen et al. 2011, Fleisher
et al. 1996, Ishii and Sadowsky 2008, Sinigalliano et al.
2010, Wade et al. 2003). There are other pollutant pathogens
such as streptococci, staphylococci, and pseudomonas
(Johnson 2011). The number of bacterial species in bathing
waters depends on other factors such as time of sampling,
season, and collection location (Maipa et al. 2001, Obiri-
Danso et al. 1999). Tracking sources for contamination, com-
munity education, beach hygiene, and local beach regulation
plan can help prevent localised accumulation (Abdelzaher
et al. 2013). Integrating knowledge from multiple factors
(e.g. bacteria, pathogens, ecology, and public health) would
increase the understanding of pollution, possible potential
causes of pollution and support coastal management planning
to improve water quality (Pandey et al. 2014, WHO 2002).
Beach monitoring is critical to detect early hazards to warn
people to avoid swimming in contaminated waters to safe-
guard their well-being (Crank et al. 2019, Griffith et al.
2016, Wade et al. 2006). Overall, clean sanitation promotes
clean water and protects life below water, leading to good
health and well-being. Preventive measures include policy

reformations to regulate waste discharges, pollution pay prin-
ciple, and penalty for pollution. Research on faecal indicator
bacteria using genetic markers (Griffith et al. 2016, Korajkic
et al. 2018, Xue et al. 2017) and identification of sources of
bacteria in the Gulf of Guinea shall expand the understanding
of contamination and potential human health risks. The sus-
tainable development goals advocate for good health and
well-being (SDG 3) and clean water and sanitation (SDG, 6)
(Espey et al. 2015, Persson et al. 2016).

Conclusion

The Gulf of Guinea coast, Ghana, is faced with environmental
problems such as water pollution. Beach water quality is ex-
amined for bacteria to combat swimming-associated illness.
Ten beaches were quantitatively assessed for bacteria detec-
tion coupled with measurement of physical and chemical
properties of near shore water to understand the status of
coastal pollution. Anyanui beach is characterised by freshwa-
ter influence from the Volta River Lake system with less sa-
line, whereas Densu beach showed higher saline conditions.
The trophic state of beach waters ranged from ultra-
oligotrophic to mesotrophic status. Muni beach is
characterised by low Chl-a concentration, whereas high con-
centration occurs at Ghana-Togo border beach. Amisa beach
is enriched with high nitrate concentration.

Table. 6 The bacteriological and
epidemiological studies in
seawater

Indicators
examined

Pathogens
examined

Indicator/pathogen
correlating

Symptoms Country Source

TC Salm TC/Salm GI UK PHILS (1959)
E. coli Salm E. coil/Salm Denmark Grunnet (1969)
ent, E. coli - ent Ear USA Cabelli (1982)
TC, E. coli, ent,

TVC
Salm, S. aur,

Campobacteria
Salm

TC, E. coli, ent,
TVC/Salm, FC, Cl,
perf/Salm

- Greece Papadakis
(1988)

TC, FC, FS Salm TC, FC, FS/Salm - Spain Polo (1996)
TC, ent, E. coli V.vuln TC, ent/V.vuln - Denmark Hoi (1998)
FC, E. coli, ent,

staph, coliph
- - - South

Africa
Von Schirnding

(1993)
E. coli, staph E. coli/staph S/GI Hong

Kong
Chenug (1990)

ent, E. coli - Ent/E. coli GI Egypt El Sharkawi and
Hassan
(1982)

Tcol_w, E. coli_
w, Ent. spp_
w.

- Tcol_w/E. coli_w, E.
coli_w/Ent. spp_w

Ghana This study

The bold illustrate our contribution to knowledge in what has been previously studied in other regions

TC total coliforms, FC faecal coliforms, FS faecal streptococci, ent enterococci, E. coli Escherichia coli, Salm
Salmonella spp., Cl.perf Clostridium perfringens, V.vuln Vibrio vulnificus, staph staphylococci, coliph coli-
phages, Tcol_w total coliforms in seawater, E. coli_w Escherichia coli in seawater, Ent. spp_w Enterococcus
spp. in seawater, GI gastrointestinal, Ear ear, S skin (modified from Godfree et al. 1997, Efstratiou 2001)
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There is no significant variation (p > 0.05) in the measured
environmental factors for the sampled season. However, mul-
tiple indicators (total coliforms, Escherichia coli, and
Enterococcus spp.) showed pollution in the ten beaches. The
study integrates physical and chemical characteristics of mul-
tiple beaches with an abundance of bacteria to understand
ecological conditions favouring spatial fluctuation of the bac-
teria loads in near shore water. The mean ± standard deviation
of total coliforms (4.06 × 103 ± 4.16 × 103) and faecal indica-
tor bacteria (Escherichia coli, 7.06 × 102 ± 1.72 × 103 and
Enterococcus spp., .15 × 102 ± 1.75 × 103) suggest faecal
contamination in the tropical coastal region of Ghana. There
exists significant (p < 0.05) spatial variation in bacteria loads
(total coliforms, E. coli, and Enterococcus) in the beach water.
The Anyanui beach recorded low bacterial contamination,
while Densu and Kpeshi beaches (highly populated central
coastal areas) were highly contaminated. Beaches with similar
bacteria loads and environmental characteristics of near shore
water formed similar clusters. Environmental factors influ-
enced spatial variation of bacteria abundance in the multiple
beach study. Redundancy analyses suggest nitrates (55.3%)
and total dissolved solids (17.2%) are the best environmental
factors controlling the bacteria abundance in beach water.
There exist significant (p < 0.05) associations between the
bacteria (total coliforms, Escherichia coli, and Enterococcus
spp.) and with environmental factors.

The presence of faecal indicator bacteria (FIB)
(Escherichia coli and Enterococcus spp.) suggests that near
shore coastal areas are recipients of contaminants and may
affect water quality and beach users. Improved water quality
is possible through improved sanitation (Bartram et al. 2014,
Osiemo et al. 2019, Yang et al. 2012).

The detection of bacteria in the beach water from multiple
sites along the coast of Ghana is a concern for beach swim-
mers, coastal managers, and public health risks associated
with contact with contaminated water. Furthermore, policy
reforms regulating waste discharges into water resources will
help prevent and protect the public from water pollution. The
study provides environmental knowledge for improving
beach water quality, a basis for safety precaution by beach
swimmers, and future biomonitoring of coastal waters in the
tropical Atlantic region.
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