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Satellite-observed strong subtropical ocean
warming as an early signature of global warming
Hu Yang 1,2✉, Gerrit Lohmann 1,3, Christian Stepanek 1, Qiang Wang 1, Rui Xin Huang4, Xiaoxu Shi1,2,

Jiping Liu 2,5, Dake Chen2, Xulong Wang6,7, Yi Zhong8, Qinghua Yang 2,5, Ying Bao9 & Juliane Müller1,3

Satellite observations covering the last four decades reveal an ocean warming pattern

resembling the negative phase of the Pacific Decadal Oscillation. This pattern has therefore

been widely interpreted as a manifestation of natural climate variability. Here, we re-examine

the observed warming pattern and find that the predominant warming over the subtropical

oceans, while mild warming or even cooling over the subpolar ocean, is dynamically con-

sistent with the convergence and divergence of surface water. By comparison of observa-

tions, paleo-reconstructions, and model simulations, we propose that the observed warming

pattern is likely a short-term transient response to the increased CO2 forcing, which only

emerges during the early stage of anthropogenic warming. On centennial to millennial

timescales, the subpolar ocean warming is expected to exceed the temporally dominant

warming of the subtropical ocean. This delayed but amplified subpolar ocean warming has

the potential to reshape the ocean-atmosphere circulation and threaten the stability of

marine-terminating ice sheets.
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In the past century, and particularly in the past few decades, the
concentration of greenhouse gases (GHG) in the atmosphere
has increased at an unprecedented rate1, causing widespread

warming and climate changes2. Toward planning adaptation
measures, we are eager to know: how much warming we can
anticipate as a result of rising GHG? And what is the current
status of global warming? Given that the ocean is the primary
absorber of the anomalous heat trapped by rising GHG3, evalu-
ating ocean warming will promote our understanding of these
two questions.

The International Comprehensive Ocean-Atmosphere Data Set
(ICOADS) provides the longest ocean temperature data, spanning
more than three centuries4. However, these data are collected
primarily by commercial vessels, resulting in uncertainties due to
inconsistencies in sampling frequency, location, and
methodology5,6. The quality of ocean temperature records has
largely improved thanks to satellite observations, which have
recently reached a milestone of forty years of temporal coverage7.
The ocean warming pattern obtained from satellites reveals sev-
eral intriguing features. Accelerated warming is identified over the
subtropical extension of oceanic western boundary currents8,
while a cold patch is found over the subpolar North Atlantic
Ocean. The former is explained as a result of intensification and
poleward shift of oceanic western boundary currents9, whereas
the latter is likely linked to a weakening of the Atlantic Mer-
idional Overturning Circulation10–12. On a hemispheric scale, the
warming of the Northern Hemisphere is stronger than that of the
Southern Hemisphere13–17. Over the Southern Ocean, a slight
cooling is detected, likely related to the anomalous expansion of
sea ice18–20, upwelling of pristine deepwater17,21, and/or Ant-
arctic ozone depletion22–25. Apart from these well-identified
features, the dominant large-scale warmings are found in sub-
tropical latitudes.

In this study, the satellite-observed ocean warming pattern is
compared with the reconstructed mid-Pliocene sea surface tem-
perature (SST) and different stages of ocean warming simulated
by climate models. We argue that the observed warming pattern
is closely linked to the background circulation in the upper ocean
and emerges only at the early stage of anthropogenic warming
when the warming signal concentrates in the upper ocean. On
centennial to millennial timescales, we expect that the warming of
subpolar oceans will ultimately outpace the subtropical warming.

Results
Strong subtropical ocean warming recorded in satellite mea-
surements. The satellite-derived SST trend (Fig. 1a) illustrates a
pronounced warming over the subtropical oceans but a cooling in
the eastern equatorial Pacific Ocean. This pattern closely resembles
the conditions prevalent during a negative phase of the Pacific
Decadal Oscillation (PDO26) and consequently has been widely
attributed to internal climate variability27,28. However, strong
subtropical ocean warmings are found not only in the Pacific
Ocean but also across the Atlantic and Indian Oceans. These
patterns persisted even during the recent positive phase of PDO
(i.e., 2014–2018, Supplementary Fig. 1). This raises doubts con-
cerning the dominance of PDO in the observed warming trend29,30.

To illustrate this, we diminish the influence of PDO on the SST
trend. The SST variability related to PDO fluctuations is identified
and eliminated by a linear combination of the fingerprint and
index of PDO (see “Methods”). After this approach, the
amplitudes of Northern Pacific subtropical warming and eastern
equatorial Pacific cooling are reduced (Fig. 2a). Nevertheless, the
pattern of enhanced subtropical warming persists. Using the same
approach, we can also diminish the impact of the Atlantic
Multidecadal Oscillation on the SST trend. Again, the enhanced

subtropical warming persists (Fig. 2b), indicating that it may be
independent of internal climate variability.

The subtropical warming shows a stronger and more extensive
signal in the western basins than in the eastern basins. This appears
to be similar to the structure of subtropical gyres, which are
illustrated by the barotropic streamfunction (Fig. 1a, contours).
These subtropical gyres are characterized by the convergence of
surface water and downwelling at their centers located at the western
ocean basins because of the effect of ‘western intensification’31.
Previous studies32–34 demonstrated that surface convergence is
responsible for a heavy accumulation of floating marine debris over
the subtropical gyres. For the same dynamical reason, under GHG-
induced anomalous radiative heating, surface convergence may also
contribute to fast warming over the subtropical gyres.

To verify our hypothesis, we compare the observed warming
pattern with the forced warming pattern simulated by climate
models. Here, we use the Coupled Model Intercomparison Project
Phase 6 (CMIP6) abrupt4xCO2 experiment35, in which the
atmospheric concentration of CO2 abruptly quadruples, and the
climate thereafter adjusts to the radiative imbalance. Strong CO2

forcing amplifies the forced response with respect to climate
noises. To avoid model-dependent results, we analyze the
ensemble mean results from 22 climate models (Supplementary
Table 1) participating in the CMIP6.

Despite some regional discrepancies over the southern Indian
Ocean and the eastern equatorial Pacific Ocean (discussed later),
the abrupt4xCO2 experiment reproduces a warming pattern that
resembles the observations (Fig. 1a, b). In the first year of the
abrupt4xCO2 experiment, the pattern correlation is 0.53 and
reaches 0.67 after a decade (Fig. 3). This is due to the
development of a hemispheric asymmetry in warming with an
amplified signal in the Northern Hemisphere and relatively weak
warming in the Southern Hemisphere (Supplementary Fig. 2).
Interestingly, this resemblance in warming patterns persists
briefly over the first one to two decades of the CO2 perturbation,
but thereafter diverges from observations (Fig. 3 and Supple-
mentary Fig. 2). Given that the abrupt4xCO2 experiment is too
idealized, we also examined the other transient experiment (i.e.,
the 1pctCO2 experiment) with relatively mild GHG forcing. The
results exhibit a similar evolution (Supplementary Fig. 3).

To further deduce whether the atmosphere or ocean dynamics
are responsible for generating the enhanced subtropical warming
pattern, we conducted two simulations using the Finite Element Sea
Ice-Ocean Model (FESOM1.436). A control simulation is performed
by applying observational atmosphere forcing. A second simulation
is similar to the control experiment except that the air temperature
is increased uniformly by 4 K in the sea ice-free regions. We refer to
this simulation as the Uniform4K experiment. As atmospheric
wind, cloud, and humidity patterns may contribute to a spatially
nonuniform surface heat flux to the ocean, we simplify the bulk
formulation of surface heat flux37. In the simplified scheme, the net
surface heat flux into the ocean is linearly proportional to the
differences between SST and surface air temperature.

Although the uniformity in temperature anomaly applied in
the Uniform4K experiment, the model simulates stronger
warming in subtropical gyres where maxima align with the
maxima in the streamfunction (Fig. 4). This demonstrates that
the surface convergence of subtropical gyres constrains the
surface warming and favors enhanced subtropical warming. It
should be noted that in observations and the abrupt4xCO2
experiment, unlike in the Uniform4K experiment, the subtropical
ocean warming is maximized on the polar side of the subtropical
gyres (Fig. 1a, b). This discrepancy is caused by a poleward shift
of the oceanic and atmospheric circulation in observations38,39

and the abrupt4xCO2 experiment40. Such a shift does not appear
in the Uniform4K experiment, as the wind forcing is frozen.
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To understand why ocean circulation constrains an enhanced
subtropical ocean warming, we perform another coupled
atmosphere-ocean simulation with an age tracer tracking the
trajectory of ocean surface water. The surface water is forced to
have the youngest age, i.e., 0, while the deep ocean, which has
little contact with the surface, will develop the oldest age (see
“Methods”). After integrating the model for 3000 years, we find
that the subtropical ocean water is considerably younger (with an

age of 0–5 years) than that of subpolar oceans and the eastern
equatorial Pacific Ocean, where upwelling maintains older water
via pumping deepwater to the surface (Fig. 5). The age pattern of
the upper ocean implies that the subtropical water originates
from the surface, as a result of Ekman convergence and dominant
downwelling.

Constrained by upper ocean circulation, the surface radiative
heating converges toward the subtropics, favoring an enhanced

Fig. 1 Short-term and long-term ocean surface warming patterns in response to greenhouse gases (GHG) forcing. a Satellite-observed SST trend during
the past 41 years (1982–2022). Stippling indicates regions where the trends pass the 95% confidence level (two-tailed Student’s t-test). b Early stage of
ocean surface warming in response to abruptly increased GHG. The pattern represents SST anomalies in the first year of the CMIP6 abrupt4xCO2
experiment. The position of subtropical ocean gyres is illustrated by the climatological barotropic streamfunction of the AWI-ESM pre-industrial
simulation103 (black contours). The thickened black lines mark the boundaries of ocean gyres (zeros-crossing of barotropic streamfunction). c Simulated
SST anomalies during the mid-Pliocene. Results are based on an ensemble mean of seven models (Supplementary Table 2) that participated in the
PlioMIP287. Circles represent proxy-based reconstructions of SST compiled in the framework of the PRISM78. Circle sizes illustrate the confidence level.
Small: low confidence. Medium: medium confidence. Large: High confidence. d Long-term ocean warming pattern under 4xCO2 forcing. Results are the last
100 years of SST anomalies from a 3000-year abrupt4xCO2 simulation conducted using AWI-ESM (see “Methods”). Note: to emphasize the spatial
pattern, the color bars have been scaled. The corresponding scaling factors are given on the right side of the individual color bar.

Fig. 2 Observational SST trends after removing the multidecadal climate variabilities. a SST trends after removing the PDO signal. b SST trends after
removing the AMO signal. Stippling indicates regions where the trends pass the 95% confidence level (two-tailed Student’s t-test). To illustrate the
position of subtropical ocean gyres for comparison, we overlay the climatological barotropic streamfunction by the black contours.
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subtropical ocean warming as seen in satellite measurements and
the abrupt4xCO2 experiment (Fig. 1a, b).

Strongest ocean warming expected in subpolar ocean. The
observed warming pattern (Fig. 1a) contradicts our under-
standing of how ocean temperature has changed in the geologic
past. SST reconstructions covering the mid-Pliocene, the most
recent time when atmospheric GHG concentrations were similar
to today41, highlight the strongest large-scale ocean warming over
the subpolar oceans (Fig. 1c). Comparably, warmings in sub-
tropical regions are less pronounced, except for the subtropical
extension of western boundary currents, where a poleward shift of
western boundary currents contributes to a local maximum
temperature increase8,9.

Geological reconstructions and climate simulations covering
other past climate intervals, such as the Last Glacial Maximum42,43,
the Miocene44,45, the Eocene46, and the Cretaceous47, also
consistently suggest that subpolar ocean temperature is more
sensitive to GHG forcing than subtropical ocean temperature. This
robust feature is determined by several factors. First, subpolar

ocean temperature is constrained by the presence of polar sea ice.
Under a warming climate, sea ice loss permits the SST at high-
latitude to rise more freely. Second, according to the
Clausius–Clapeyron relation and the Stefan–Boltzmann law,
temperature has a nonlinear relationship with evaporation and
thermal radiation. It is thus more difficult to change ocean
temperatures as the background temperature rises. Consequently,
under anomalous radiative forcing, the subpolar ocean is expected
to warm more than oceans at lower latitudes48, whereas the
warming at lower latitudes is primarily manifested by increasing
humidity49.

To examine how the long-term ocean warming pattern evolves
in response to 4xCO2 forcing, we extend the abrupt4xCO2
experiment to 3000 years using AWI-ESM (see “Methods”).
Despite extended model integration, the global mean ocean
temperature continues to rise at a rate of 0.04 °C per century at
the end of our simulation (Supplementary Fig. 4). This long-term
ocean warming, as expected, occurs primarily in the deep ocean
and at the surfaces of the subpolar ocean (Figs. 1d and 6), where
surface water is connected to the deep ocean via deep convection
and overturning circulation50. When the climate approaches a
quasi-equilibrium state in response to 4xCO2 forcing, the large-
scale surface warming pattern (Fig. 1d) is consistent with the mid-
Pliocene warming anomaly, showing the greatest ocean warming
over the subpolar regions.

According to the simulation with age tracer (Fig. 5), radiative
warming can affect the subtropical upper ocean and continental
shelf water quickly, i.e., within a decade. However, for the
subpolar ocean, especially the Southern Ocean, the equilibrium
surface warming is contingent upon the completion of deep ocean
warming, a process that is projected to span multiple millennia.
This distinct latitudinal difference in response time leads to
enhanced subtropical warming (Figs. 1a, b, and 6a) during the
initial phases of radiative forcing but amplified subpolar warming
(Figs. 1c, d, and 6b) as the system approaches equilibrium.

Discussion
In this study, we evaluate the ocean warming pattern derived
from four decades of satellite measurements. We find widespread
strong subtropical ocean warming, concentrating mostly on the
western ocean basins. In contrast to these observations, studies of
paleoclimate suggest that the greatest ocean warming occurs at

Fig. 3 Evolution of pattern correlation between observational SST trends
(Fig. 1a) and simulated SST warming pattern in the CMIP6 abrupt4xCO2
experiment. The pattern correlation is calculated based on the warming
pattern between 70°S and 70°N. The resemblance in the warming pattern
between the observations and the model simulation is evident during the
initial phase of CO2 perturbation.

Fig. 4 SST anomalies in the Uniform4K experiment conducted by FESOM1.4. Contours illustrate the climatological barotropic streamfunction for the last
100 years of the FESOM1.4 pre-industrial control simulation. The anomalies are shown as ensemble mean of five ensemble members over their whole run
time of 40 years. Despite the applied uniform warming forcing, ocean dynamics favor enhanced subtropical ocean warming.
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Fig. 5 Simulated averaged age of the upper 300-m ocean water column. Result based on the last 100 years of the AWI-ESM pre-industrial control
simulation with ocean age tracer. The contours represent the climatological barotropic streamfunction103, which help to illustrate the position of
subtropical and subpolar gyres. The thickened black lines mark the boundaries of ocean gyres (zeros-crossing of barotropic streamfunction). The fact that
the subtropical water is young implies that the water there comes from the surface of the ocean (downwelling).

Fig. 6 The short-term and long-term ocean warming in response to abrupt4xCO2 forcing from the vertical and zonal means perspective.
a Temperature anomalies in the very first 3 years of the AWI-ESM abrupt4xCO2 experiment with respect to the pre-industrial control experiment.
b Temperature anomalies in the last 100 model years (2901–3000) of the AWI-ESM abrupt4xCO2 simulation with respect to the mean of the first 3 years
of the same simulation. The contours illustrate the streamfunction of overturning circulation103, solid lines represent clockwise circulation, and dashed lines
stand for anti-clockwise circulation. To emphasize the spatial pattern, we show the SST anomaly using the same color bar as in Fig. 1. However, the
temperature anomalies are scaled to fit the color bar range.
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higher latitudes. By pairing the observed warming pattern with
SST evolution in long-term climate simulations, we propose that
the observed warming pattern is constrained by ocean dynamics
of surface convergence (downwelling, subtropical gyres) and
divergence (upwelling, subpolar gyres) rather than being domi-
nated by internal variabilities, such as the PDO. This pattern
emerges only at the early stage (a few decades) of anthropogenic
warming when absorption of heat concentrates in the upper
ocean. On centennial (for the Northern Pacific Ocean) to mil-
lennial (for the North Atlantic Ocean and Southern Hemisphere)
timescales, when deep ocean water warms, the greatest ocean
warming is expected to occur in the subpolar region, as indicated
by paleo-reconstructions and the long-term and equilibrium cli-
mate simulations.

Several previous studies noticed that the mean ocean circula-
tion affects the surface warming pattern17,29,30. By introducing
uniform downward heat flux, Marshall et al.17 found that the
accelerating/delaying warmings in the Arctic/Antarctic are
determined by the background downwelling/upwelling of Arctic/
Antarctic circulation. The present study highlights that the pre-
vailing surface convergence (downwelling) contributes to rela-
tively fast warming over the subtropical gyres at the early stage of
anthropogenic climate change. In contrast, sea ice thermo-
dynamics and the physical law governing temperature changes
prefer a subpolar amplified warming when the climate approa-
ches an equilibrium state. The simulation with age tracer (Fig. 5)
and CMIP6 simulations (Supplementary Fig. 2) suggest that the
reversal of subtropical and subpolar warming patterns can be
expected within a century in the North Pacific Ocean. However,
the reversal of the warming pattern in the North Atlantic Ocean
and Southern Hemisphere requires the warming of the deep
ocean, which occurs on a millennial timescale. This is consistent
with an earlier study on the equilibrium thermal response time-
scale of global oceans51.

Satellite observations illustrate a reduction in SST in the
southern Indian Ocean that cannot be reproduced by model
simulations (Fig. 1a, b). This discrepancy may be due to the lack
of iceberg activity in the CMIP6 models. Marine sediment core
from the northeastern tip of the Antarctic Peninsula reveals that
iceberg discharge from the Antarctic ice sheet has increased sig-
nificantly in the past few millennia52. This contributes to regional
cooling along their drift path53. However, CMIP6 models do not
include processes of iceberg drift and melting, a circumstance that
may lead to discrepancies between models and observations in
the Indian Ocean.

We also note that the CMIP6 models are incapable of simu-
lating the observed cooling in the tropical eastern Pacific Ocean
(Fig. 1a, b). This discrepancy has been extensively discussed in
previous literature54–62 and is likely a consequence of a cold bias
in the model’s mean state of the equatorial eastern Pacific
Ocean59. However, other factors, such as aerosol forcing63,64,
misrepresentation of the Antarctic Ozone Hole65 or missing
Antarctic meltwater impact15,52, might also contribute to this
discrepancy. Failing to capture the initial cooling signal in the
tropical eastern Pacific Ocean leads to Bjerknes feedback and
weaker equatorial trade winds, which can further enhance the
model biases (Supplementary Fig. 2). This impact is evident in the
CMIP6 historical experiment (Supplementary Fig. 5). With an
improved ocean mixing scheme, part of the CMIP6 models, such
as the FIO-ESM2.066 can simulate a cooling tropical eastern
Pacific Ocean at the initial phase of GHG forcing (Supplementary
Fig. 6). The abrupt CO2 experiment performed by CESM also
illustrates an initial cooling of the tropical eastern Pacific Ocean,
that can be maintained only for a few decades67. Nevertheless, the
model deficiency discussed above is unrelated to the main focus

of our study, which is surface warming in the subpolar and
subtropical regions.

Ocean warming pattern affects regional climate change and
global climate sensitivity29,68,69. Recent studies29 demonstrate
that enhanced subtropical warming forces a poleward displace-
ment of the meridional temperature gradient and, consequently,
drives a poleward shift in the oceanic and atmospheric
circulation30,40. The displacement in ocean circulation is asso-
ciated with maximum warming along the oceanic subtropical
fronts39. Thus, the observed enhanced subtropical warming is
maximized toward the poleward-oriented flanks of the sub-
tropical gyres. The PDO-like pattern drives a stronger Walker
Circulation67,70–72. Relatively strong subtropical ocean warming
sharpens mid-latitude meridional temperature gradients and
intensifies westerlies and storm activity, especially in the Southern
Hemisphere50,73. However, these changes seem to be transient.
On centennial to millennial timescales, the observed strengthen-
ing of the Walker Circulation and westerlies can be reversed when
ocean warming in the upwelling zones exceeds that in the
downwelling zones67,68,74,75.

Observations show that the global mean surface temperature
has increased by 1.31 °C up to today76 under the current CO2

forcing. This estimation was for a time frame when the upwelling
zones of the ocean experienced little warming or even cooling.
However, this is a transient phenomenon coupled with regional
ocean dynamics10,21,50,77. Once ocean warming reaches equili-
brium, the committed warming at the current GHG level is
expected to be nearly twice (2.31 °C) the recorded value
(1.31 °C)76, exceeding the Paris agreement of limiting global
warming to well below 2 °C. Hence, reducing GHG levels is
essential for mitigating long-term warming and keeping global
warming below 2°.

Geological reconstructions and model simulations illustrate
that during the mid-Pliocene when the GHG level was similar to
the present, ocean temperature anomalies of about 2–5 °C
occurred over the subpolar ocean78–80. Further back in time,
during the Eocene, when the concentration of GHG was
approximately 4xCO278, there is evidence that the ocean’s
deepwater was around 10 °C81. Given that the ocean’s deepwater
is formed at polar regions, this implies a high ocean temperature
around both poles. Such amplified ocean warming at high
latitudes has fundamental impacts on the marine-terminating
ice sheets and sea level82,83. Subpolar ocean temperature
anomalies of comparable amplitudes have neither been detected
in current observations nor been projected by climate simula-
tions at the end of this century, regardless of warming
scenarios2. However, our work indicates that the observed ocean
warming is still in its infancy. Once the high-latitude ocean
warming develops, it can have irreversible consequences, such as
the collapse of marine-terminating ice sheets82, which occurred
during the mid-Pliocene, along with a sea level rise of more than
10 m84,85. In this context, both the level and duration of elevated
GHG concentrations are important in determining future
climate.

Methods
We have used four kinds of data in our investigation: satellite-observed SST,
multimodel simulations from the CMIP6 and PlioMIP2, mid-Pliocene SST proxies,
and sensitivity simulations based on FESOM1.4 and AWI-ESM. These data and
simulations are described in the following sections.

Satellite observation. The satellite-observed sea surface temperature (SST) data,
i.e., NOAA OI SST V2, is used to examine the ocean warming pattern in the past
four decades (1982–2022). This dataset is publicly available and provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at https://
www.esrl.noaa.gov/psd/.
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CMIP6 data. The abrupt4xCO2 and piControl experiments from the Coupled
Model Intercomparison Project (CMIP6) are used to evaluate the early stage of
ocean warming response to rapidly rising greenhouse gases. In addition, the his-
torical ssp245 and 1pctCO2 experiments are also examined in the Supplementary
Information to further validate our hypothesis. Results from 47 models are
included. They are listed in Supplementary Table 1. In the abrupt4xCO2 experi-
ment, the climate simulations impose an abrupt quadrupling of the concentration
of atmospheric CO2 initialized from the piControl experiment, and that is then
held fixed35. To calculate the CMIP6 multimodel ensemble mean, all data are
interpolated onto a common 1 × 1° resolution grid using bilinear interpolation.

We inspect the SST anomaly in the abrupt4xCO2 experiment with respect to
the piControl experiment. The CMIP6 abrupt4xCO2 experiments are initialized at
different years of the piControl simulations. In our analysis, the reference
piControl climate is obtained as the three-year piControl climate around the initial
condition of abrupt4xCO2 experiments. The initial condition year is identified as
the year with minimum globally averaged surface salinity anomaly between the first
year of abrupt4xCO2 simulations and individual year of piControl experiments.

PlioMIP2 data. The mid-Pliocene was the most recent geologic period when the
GHG concentrations in the atmosphere were similar to today41. The mid-Pliocene
SST anomaly is quantified by averaging the mid-Pliocene SST anomalies derived
from 7 models that participated in the PlioMIP2. We have selected those models
for which output has been freely available via the Earth System Grid Federation
(https://esgf.llnl.gov/) and have also included the COSMOS as this is the PlioMIP2
ensemble member contributed by us86. These models are listed in Supplementary
Table 2. All models provide both a Pliocene climate simulation and a corre-
sponding pre-industrial simulation for comparison. The CO2 level for the mid-
Pliocene simulation is set to be 400 ppmv41. The CO2 levels for the corresponding
pre-industrial simulations are 280/284 ppmv for the non-CMIP6/CMIP6 models.
Details of the modeling methodology are available from ref. 87, which describes the
overall PlioMIP2 modeling strategy, and from ref. 86, which illustrates the setup of
the COSMOS PlioMIP2 simulations.

Mid-Pliocene SST proxies. The Pliocene Research Interpretation and Synoptic
Mapping (PRISM) database is used to evaluate the mid-Pliocene SST anomalies.
This dataset includes 95 SST proxies reconstructed from three main palaeo-
thermometers using faunal assemblages, Mg/Ca, and alkenones78.

AWI-ESM abrupt4xCO2 simulation. The abrupt4xCO2 experiments within the
CMIP6 were typically run for 150 years, which is insufficient for the climate to
reach an equilibrium state. To evaluate the long-term ocean warming pattern, we
conducted a 3000-year-long simulation of the abrupt4xCO2 experiment using
AWI-ESM88. This simulation is initialized from a pre-industrial control simulation,
which is also compared to the abrupt4xCO2 experiment. After 3000 years of
spinup, the abrupt4xCO2 experiment reaches a quasi-equilibrium state, with
radiation imbalance at the top of the atmosphere being less than 0.15W/m2

(Supplementary Fig. 3).
The AWI-ESM was developed by the Alfred Wegener Institute–Helmholtz-

Centre for Polar and Marine Research. It consists of the atmospheric model
ECHAM689 and the Finite volumE Sea ice-Ocean Model (FESOM), version 290.
The simulations performed in this study employed the AWI-ESM with an
atmosphere resolution of 1.875 × 1.875°. The ocean model’s resolution is high
(approximately 25 km) near the coast, the poles, and the equator and coarse (up to
110 km) elsewhere. The atmosphere has 47 vertical levels, and the ocean has 46
vertical levels. AWI-ESM has been evaluated and widely used in the study of
present and paleoclimate research39,88,91–96.

FESOM1.4 Uniform 4 K experiment. To evaluate the ocean warming pattern
under a uniform 4 K surface air temperature forcing, we conduct two simulations
using the FESOM1.436. The control simulation is performed based on the CORE2
climatology (1948–1999) atmospheric forcing97. The sensitivity experiment is
exposed to an anomalous uniform 4 K surface air temperature forcing on top of the
CORE2 climatology in the ice-free ocean (60°S–60°N). As atmospheric wind, cloud,
and humidity patterns may contribute to a spatially nonuniform surface heat flux
to the ocean, we simplify the bulk formulation of surface heat flux37. In our
simplified heat flux scheme, the net surface heat flux into the ocean is linearly
proportional to the differences between SST and surface air temperature. A similar
approach has also been applied in an aqua-planet simulation29.

The control simulation is integrated for 1000 years. The sensitivity experiment
is conducted five times using different initial conditions. Each sensitivity simulation
is integrated for 40 years. We evaluate the ensemble mean SST resulting from the
uniform 4 K perturbation over the whole run time of the five ensemble members
with respect to the last 100 years of the control simulation.

AWI-ESM simulation of ocean water age. To illustrate the circulation char-
acteristics, a pre-industrial simulation with an age tracer is performed using the
AWI-ESM. In this framework, the age tracer is set to zero in the model’s ocean
surface layer at each time step, and an increment equal to the model integration

time is added to it below the surface98. Otherwise, the age tracer evolves in the
ocean just like any other passive tracer, according to the same advection-diffusion
equation99. The simulation starts with zero age everywhere in the ocean and is
integrated for 3000 years. In this context, ocean water that has no contact with the
surface layer has the oldest age, i.e., 3000 years, in this simulation. We examine the
layer-thickness weighted average age of ocean water in the upper 300 m, which, in
general, shows where the upper ocean water originates (Fig. 5).

Removal of PDO and AMO from observational SST trends. To identify and
remove the PDO and AMO fluctuations from the observational records, we first
identify the fingerprint of these climate modes by performing a linear regression of
HadISST (1900–2021) against the PDO and AMO indices. Afterward, we recon-
struct and remove the fluctuations of PDO and AMO using the following equation:

Yðx; y; tÞ ¼ Rðx; yÞ � VðtÞ
where Y(x, y, t) are the reconstructed climate variabilities related to PDO and
AMO, R(x, y) are the SST fingerprints of PDO and AMO, and V(t) are the indices
of PDO and AMO. A similar approach has also been applied by several previous
studies29,72,100. The PDO index has been accessed from the National Centers for
Environmental Information from their website at https://www.ncei.noaa.gov/
access/monitoring/pdo/ (accessed on 10.02.2023). This data is based on NOAA’s
extended reconstruction of SSTs according to ref. 101. The AMO Index Data is
provided by the Climate Analysis Section, NCAR, Boulder, USA, in ref. 102.
(updated yearly; last accessed on 10.02.2023).

Barotropic streamfunction. The barotropic streamfunction illustrates the spatial
structure of ocean gyres. It is computed by integrating the barotropic flow from north
to south. Therefore, for every grid (x, y) point, the barotropic streamfunction ψ is

ψðx; yÞ ¼
Z y

y0

Txðx; y0Þ
ρ

dy0

where Tx(x, y) is the depth integrated mass transport, y0 is located at the North Pole,
and ρ is the density of seawater.

Clausius–Clapeyron relations. The Clausius–Clapeyron relation describes the
dependency of evaporation on temperature. It is given as:

lnPvap ¼
�4Hvap

R

� �
1
T
þ C

where Pvap denotes the vapor pressure, △Hvap is the heat of vaporization, R is the
gas constant, T is the temperature, and C is a constant that is specific to the liquid
being examined. According to the Clausius–Clapeyron equation, the relationship
between the water temperature and its vapor pressure is nonlinear. As shown by
the August–Roche–Magnus equation that approximates temperature dependency
of latent heat and saturation vapor pressure: for every 1 °C increase in temperature,
the vapor pressure rises by around 7%. This implies that in the tropics, a specific
temperature rise will cause substantially more evaporation than it does at high
latitudes where temperatures are much lower.

Stefan–Boltzmann law. The Stefan–Boltzmann law describes the power radiated
from a black body in terms of its temperature.

F ¼ σT4

where F is the radiative flux, σ is the Stefan–Boltzmann constant, and T is the
temperature of the black body. According to the Stefan–Boltzmann law, an increase
in sea surface temperature in the warm regions (low latitudes) is much more
difficult to maintain than the same temperature increase over the cold regions
(high latitudes).

Data availability
The monthly sea surface temperature data (NOAA_OI_SST_V2) is provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at https://www.psl.
noaa.gov/data/gridded/data.noaa.oisst.v2.html. The abrupt4xCO2 and piControl
experiments from the CMIP6 are publicly available for download via any one of the
following portals: USA, PCMDI/LLNL (California) - https://esgf-node.llnl.gov/search/
cmip6/France, IPSL - https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/, Germany, DKRZ -
https://esgf-data.dkrz.de/search/cmip6-dkrz/, UK, CEDA - https://esgf-index1.ceda.ac.uk/
search/cmip6-ceda/. The mid-Pliocene model results are available from https://esgf-data.
dkrz.de/search/cmip6-dkrz/. The AWI-ESM model results can be accessed at https://doi.
org/10.5281/zenodo.7837865.

Code availability
The AWI-ESM code is publicly available at https://fesom.de/models/awi-cm/. The
FESOM1.4 code is publicly available at https://fesom.de/models/fesom14/.
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