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Estimates of ocean CO2 uptake from global
ocean biogeochemistry models and pCO2-based
data products differ substantially, especially in high
latitudes and in the trend of the CO2 uptake since
2000. Here, we assess the effect of data sparsity on
two pCO2-based estimates by subsampling output
from a global ocean biogeochemistry model. The
estimates of the ocean CO2 uptake are improved from
a sampling scheme that mimics present-day sampling
to an ideal sampling scheme with 1000 evenly
distributed sites. In particular, insufficient sampling
has given rise to strong biases in the trend of the ocean
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carbon sink in the pCO2 products. The overestimation of the CO2 flux trend by 20–35% globally
and 50–130% in the Southern Ocean with the present-day sampling is reduced to less than
15% with the ideal sampling scheme. A substantial overestimation of the decadal variability of
the Southern Ocean carbon sink occurs in one product and appears related to a skewed data
distribution in pCO2 space. With the ideal sampling, the bias in the mean CO2 flux is reduced
from 9–12% to 2–9% globally and from 14–26% to 5–17% in the Southern Ocean. On top of
that, discrepancies of about 0.4 PgC yr−1 (15%) persist due to uncertainties in the gas-exchange
calculation.

This article is part of a discussion meeting issue ‘Heat and carbon uptake in the Southern
Ocean: the state of the art and future priorities’.

1. Introduction
The ocean sequesters a remarkably constant fraction of about 25% of anthropogenic CO2
emissions each year [1,2]. This is quantified in the annual releases of the Global Carbon
Budget (GCB) [2] through simulations with global ocean biogeochemistry models (GOBMs) and
data products based on measurements of surface ocean pCO2 (pCO2-products). This fraction
is consistent with interior ocean biogeochemical observation-based estimates [3], atmospheric
inversions [2] and observations of atmospheric O2 to N2 ratios [4]. There is agreement between
the data classes on a mean ocean carbon uptake of 2–2.2 PgC yr−1 in the 1990s, on a stagnation
of the ocean sink in the 1990s, and a reinvigoration since the early 2000s. However, there are
discrepancies in the temporal evolution of the ocean sink, in particular between the GOBMs and
pCO2 products [1,2]. The rate of increase 2000–2018 amounts to 0.41 ± 0.04 PgC yr−1 decade−1 in
the GOBMs and to 0.69 ± 0.14 PgC yr−1 decade−1 in the pCO2 products (table 1). The discrepancy
grows further in time, and is a factor of three for the trend since 2010 [1,2]: The ocean sink
increased by 0.9 PgC yr−1 decade−1 since 2010 according to the pCO2 products, but only by
0.3 PgC yr−1 decade−1 according to the GOBMs [2]. The diverging trends since around 2000 stem
from the Southern Ocean and the northern high latitudes [2]. The Southern Ocean also stands
out as the region of largest discrepancy in the mean flux [1,2]. This discrepancy, however, lies
within the uncertainty of the river flux adjustment [5] and its spatial distribution [6,7] that needs
to be accounted for when comparing the pCO2 products’ flux estimate, which includes signals of
carbon transport from land to ocean via rivers and associated ocean outgassing, with the GOBMs
ocean sink estimate without this signal [1,2].

Global ocean biogeochemistry models are general ocean circulation models with
biogeochemical modules. They simulate the CO2 flux at the air–sea interface and the exchange
of carbon between the surface and the deep ocean, with all their seasonal, interannual and longer
time-scale variations. They further include a low- to intermediately complex representation of
the biological carbon cycle [8]. They are closely tied to recent climate change and variability as
they are forced with atmospheric reanalysis fields, such as the Japanese 55-year atmospheric
reanalysis (JRA55-do) [9]. They reproduce the spatial and temporal variability of surface ocean
pCO2 observations relatively well on large spatial and annual scales [1]. A direct comparison with
ocean interior carbon accumulation 1994–2007 [3], as well as with the best estimate of the mean
1990s ocean carbon uptake as assessed by the Intergovernmental Panel on Climate Change (IPCC)
fourth Assessment Report (AR4) [10] indicates that the GOBMs underestimate the mean ocean
carbon sink by 0.2–0.4 PgC yr−1 [2]. A similar underestimation of ocean carbon uptake in Earth
System Models was related to model biases in surface to deep ocean carbon transport [11–13] and
in the surface chemical buffer capacity (Revelle factor) [14,15].

Annually updated estimates of the ocean carbon sink from surface ocean pCO2 observations
have been facilitated by the advent of the quality-controlled Surface Ocean CO2 Atlas (SOCAT)
in 2011 [16,17] and its annual updates since 2015 [18]. The SOCATv2022 release contains 33.7
million pCO2 observations with an estimated accuracy of better than 5 micro atmospheres. These
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Table 1. Decadal trend in the ocean carbonuptake over the period 2000–2018 in theGlobal CarbonBudget 2022 [2] global ocean
biogeochemistry models and surface ocean pCO2 based data products, and in the FESOM-1.4-REcoM2 version used here. The
ensemble mean and standard deviation (s.d.) are also given.

dataset trend 2000–2018 (PgC yr−1 decade−1)

global ocean biogeochemistry models used in Global Carbon Budget 2022
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CESM2 0.40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NEMO3.6-PISCESv2-gas (CNRM) 0.44
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

FESOM2.1-REcoM2 0.45
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NEMO-PISCES (IPSL) 0.38
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MOM6-COBALT (Princeton) 0.37
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MRI-ESM2-1 0.40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MICOM-HAMOCC (NorESM1-OCv1.2) 0.38
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NEMO-PlankTOM12 0.50
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CESM-ETHZ 0.40
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MPIOM-HAMOCC6 0.34
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ensemble mean ± 1 std 0.41 ± 0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aFESOM-1.4-REcoM2 0.43

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pCO2 products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CMEMS-LSCE-FFNN 0.62
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

JMA-MLR 0.52
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LDEO HPD 0.63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aMPI-SOM-FFN 0.95

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NIES-NN 0.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OS-ETHZ-GRaCER 0.60
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aJena CarboScope 0.67

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ensemble mean ± 1 std 0.69 ± 0.14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aThe model and mapping methods used for this subsampling study.

observations are, however, unevenly distributed in space, time and seasons ([18], updated). They
cover about 2% of all grid points in an array with monthly 1◦ longitude × 1◦ latitude dimensions,
1990 to present. Based on this dataset, mapping methods were developed that can fill the gaps
(98%) to obtain full global coverage. The ocean CO2 uptake can be calculated from these global
maps of surface ocean pCO2 with gas-exchange parametrizations [19,20], observation-derived
wind speed data (e.g. from atmospheric reanalysis) and sea surface temperature and salinity. The
first methods, based on a data-driven mixed-layer scheme, a neural network, and multi-linear
regression were published in 2013/2014 [21–24] and others have followed since then [25–28].
While a first comparison of the different methods identified substantial discrepancies in terms
of the amplitude of interannual variations [29], evaluation with independent data indicated that
data scarcity presents a larger limitation than potential methodological weaknesses [26]. This is
supported by model subsampling experiments that have revealed biases in pCO2 products due
to data scarcity [30–33]. Specifically, insufficient sampling leads to an overestimation of the global
and Southern Ocean amplitude of decadal variability by 21% and 31%, respectively [31], and to a
30% overestimation of the mean flux in the Atlantic Ocean [32]. These studies, however, could not
assess the confidence in the ocean carbon sink trend estimate since 2000. This is because one study
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was based on a large-ensemble Earth System Model testbed of a high emission future scenario
[31], which is not comparable to observed atmospheric CO2 trends in the period 2000–2018, while
the other studies were confined to single ocean basins [32,33].

GOBMs were used for many years as the only data class for the ocean carbon sink estimate
in the GCB. Ocean carbon sink estimates from pCO2 products were used as an independent
comparison dataset for the GOBMs since 2013 [34]. In the budget 2021, the ocean sink estimate
was for the first time obtained as the average of the GOBM ensemble mean (eight GOBMs) and the
pCO2-product ensemble mean (seven pCO2 products) [2]. Sparsity in surface pCO2 observations
is thus one of the major sources of uncertainties for this combined ocean sink estimate, and
particularly for the temporal evolution, including the trend since around 2000. Autonomous
observations, e.g. from biogeochemical Argo floats (bgcArgo) [35,36] or uncrewed surface vehicles
[37] may potentially close gaps in the observational network [32,33]. This is of particular interest in
southern high latitudes that are less regularly accessed by ships, in particular in winter, although
the lower accuracy of pCO2 values derived from float-based pH measurements remains a major
challenge [30,35,38].

In this study, we use output from one global ocean biogeochemistry model that contributes
to the Global Carbon Budget to assess the effect of data sparsity on the pCO2-based estimates of
the ocean carbon sink. We train two mapping methods with pCO2 and other environmental data
from the GOBM, which was subsampled according to three sampling schemes (SOCAT, SOCAT
plus Southern Ocean bgcArgo floats, ideal bgcArgo coverage). Comparing the resulting pCO2
reconstructions and air–sea CO2 fluxes to the known model truth, we assess reconstruction biases
with respect to the mean flux, its variability and the magnitude of its trend 2000–2018.

2. Methods

(a) Ocean biogeochemistry model simulation
We use the ocean circulation model FESOM1.4 [39] coupled to the ocean biogeochemistry model
REcoM2 [1,40,41]. The unstructured mesh has 126 859 surface nodes, roughly equivalent to a
1◦ × 1◦ resolution. The surface nodes are unevenly distributed with the lowest resolution in the
subtropics, and higher resolution at the equator, the coasts, the southern high and in particular,
the northern high latitudes [39]. The model is started from initial conditions (World Ocean Atlas
for nutrient fields [42], GLODAPv2 for alkalinity and preindustrial dissolved inorganic carbon
[43]). It is spun up from 1850 to 1957 using repeated year atmospheric forcing, taken from the
year 1961. The atmospheric forcing fields for the spin-up and for the simulation period 1958–2018
are taken from the JRA55-do Reanalysis Version 1.4.0 [9]. Further, both spin-up and simulation
periods are forced with observed atmospheric xCO2 as provided by the GCB [44], which is the
average of atmospheric CO2 measurements from the Mauna Loa and South Pole stations since
1958 [45,46]. This is converted to pCO2 using spatiotemporally varying sea-level pressure and the
water vapour correction (a function of sea surface temperature and salinity). Carbonate chemistry
and air–sea CO2 exchange are calculated with the mocsy routines [47] that apply a quadratic gas-
exchange parameterization [20] (see equations (2.1) and (2.2)). This is the same model version
as used in the Global Carbon Budget 2020 [44] and the RECCAP project (https://reccap2-ocean.
github.io). The model output was interpolated to a 1◦ × 1◦ field using bilinear interpolation.

(b) Sampling masks
We create three sampling masks (figure 1). The first mask is based on SOCATv2019 (gridded
version) [18] and thus comparable to the current pCO2 product submissions to the Global
Carbon Budget. A second mask is created from SOCATv2019 and the bgcArgo observations of
the Southern Ocean Carbon and Climate Observations and Modeling project (SOCCOM). The
SOCCOM floats provide summer and winter data since 2014. Over the entire study period, this
mask is dominated by SOCAT, and SOCCOM contributes less than a quarter of Southern Ocean
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Figure 1. Annual mean partial pressure of CO2 (pCO2) averaged over the period 2009–2018 from the output from the global
ocean biogeochemistry model FESOM-REcoM. Upper left figure shows the full model output, and the other three panels show
themodel output after subsampling according to the threemasks, as indicated in the title (SOCAT, SOCAT + SOCCOM, bgcArgo).
In the bgcArgo panel, the white background shading in the Arctic depicts the Arctic region that is excluded from all analyses.
See text for more explanation.

observation since 2014 (figure 2). Finally, the third mask is based on the ideal bgcArgo sampling
scheme with 1000 bgcArgo floats which corresponds to a 6◦ × 6◦ regular grid [36]. Notably, even
though the ideal bgcArgo design aims for full global coverage, the floats do not extend into the
Arctic realm following Roemmich et al. [36]. We therefore chose to not place hypothetical floats
there, using the RECCAP Arctic mask (https://reccap2-ocean.github.io/), which is depicted
by lighter background shading in figure 1d. In the following, we refer to this ideal sampling
grid as bgcArgo. We compare the actual temporally varying data availability from SOCAT and
SOCCOM to a hypothetical case with full ideal bgcArgo sampling since 1970. We do not account
for movement of floats in the bgcArgo case. We also do not account for higher uncertainty of
bgcArgo derived pCO2 values.

The mean pCO2 over the period 2009–2018 for the original model output and the three
sampling schemes is illustrated in figure 1. The difference in annual mean pCO2 in the Southern
Ocean between full model output and pCO2 at SOCAT (and SOCAT + SOCCOM) locations can
be explained by the summer bias in SOCAT (see electronic supplementary material, figures S1
and S2). The data coverage increases globally from SOCAT to SOCAT + SOCCOM to bgcArgo,
except for the Arctic (by design). We therefore exclude the Arctic from our analysis, again using
the RECCAP Arctic mask. The number of observations from the three data sources (SOCAT,
SOCCOM, bgcArgo) is presented in figure 2. The ideal (hypothetical) bgcArgo grid provides
more filled grid cells than SOCAT until 2004 in the global case, until 1994 for the North (north of
30◦N, Arctic excluded), until 2005 in the tropics (and intermittently thereafter, 30◦S to 30◦N), and
always in the Southern Ocean (south of 30◦S). This picture holds throughout seasons, except in the
Southern Ocean. Here, SOCAT can offer more summer grid cells covered than bgcArgo since 2006,
but only about half the amount of grid cell coverage in winter (electronic supplementary material,
Figures S3 and S4). Globally, coverage corresponds to 2.4% of all monthly 1◦ × 1◦ grid cells in the
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Figure2. Number ofmonthly 1◦ × 1◦ grid cells coveredper year. Shown is thedata coverage in theglobal ocean (top) and three
large-scale regions, top to bottom: North (north of 30◦N, excluding the Arctic), Tropics (30◦S to 30◦N), South (south of 30◦S).
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data sets. The hypothetical ideal bgcArgo data coverage is constant in time as indicated by the dark blue horizontal line. Note
the different axis scales. Average number of filled grid cells is given within the figures for the periods before 2000, 2000–2018
and 2014–2018. Total number of monthly 1◦ × 1◦ ocean grid cells per region is given at the top of the panels.
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Figure 3. Data distribution in pCO2 space for the regions: (top to bottom) global (no Arctic), North (no Arctic), Tropics, and
South, and for the periods (from left to right) 1982–2000, 2000–2018 and the last 5 years 2014–2018. The thick grey line depicts
the full model output, and the coloured lines the three sampling masks (SOCAT: yellow; SOCAT + SOCCOM: dashed orange;
bgcArgo: red).

bgcArgo scheme, whereas SOCAT would cover 2.6% in the period 2000–2018 and 3.1% in the
last five years 2014-2018 (3.3% SOCAT + SOCCOM). The majority of observations come from
the North, where 7.6% of the spatio-temporal field 2000–2018 was covered with SOCAT (3.0%
in the bgcArgo scheme). In the same period, SOCAT coverage amounts to 2.5% (2.9% bgcArgo)
in the tropics, and to 1.4% (2.7% bgcArgo) in the Southern Ocean (figure 2).

The data distribution in pCO2 space also varies between the sampling schemes (figure 3). The
SOCAT and SOCAT + SOCCOM sampling masks result in a skewed data distribution relative to
the full FESOM-REcoM output. In particular, pCO2 is skewed towards higher pCO2 values before
2000 in all regions, and towards lower pCO2 values after 2000. The latter is most pronounced in
the Southern Ocean and hence also in the global mean, but also has a contribution from the north.
The bgcArgo scheme captures the data distribution well throughout all time periods and regions.

(c) Mapping methods
We use two mapping methods that were among the first included in the GCB (CarboScope [48],
MPI-SOM-FFN [49]). Both methods produce global maps of seawater pCO2 (pCOsw

2 ), and the CO2
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flux (FCO2) is calculated from the gas transfer velocity kw, the solubility of CO2 in seawater (K0)
and the difference between pCO2 in seawater and in the atmosphere (pCOatm

2 ) [20]:

FCO2 = kw · K0 · (pCOsw
2 − pCOatm

2 ). (2.1)

The gas transfer velocity is calculated as a function of wind speed (U), the coefficient of gas
transfer (a), the temperature-dependent Schmidt number (Sc) and is scaled with the ice-free area
(1−Fice):

kw = a · U2 · (1 − Fice) · 660
Sc

0.5
. (2.2)

The CarboScope pCO2 interpolation (also known as Jena mixed layer scheme, Jena-MLS) is a
hybrid scheme that uses a multi-linear regression model to link ocean internal carbon sources and
sinks to environmental variables, and an explicit interannual correction when pCO2 observations
are available [48]. The following input fields for the regression and for the parametrizations of
gas exchange and carbonate chemistry, normally taken from observation-based data sets, are
replaced here by FESOM-REcoM output (interpolated from monthly to daily time-steps, and
from 1◦ × 1◦ to 2.5◦ longitude × 2◦ latitude): sea surface temperature, sea surface salinity, ice-
fraction, alkalinity and mixed layer depth. Wind speed and sea-level pressure are taken from
JRA55-do both in FESOM-REcoM and the standard CarboScope pCO2 interpolation. Usually,
CarboScope uses an alkalinity climatology based on sea surface salinity and temperature [50].
In our application, the time-varying FESOM-REcoM alkalinity is used. Likewise, the pCO2 data
are subsampled from the surface pCO2 field of FESOM-REcoM. In addition, CarboScope uses a
prior estimate of the decadal trend of the CO2 flux taken from an ocean inverse model (OCIM,
[51]). In an additional test case, the prior is replaced with the decadal trend of a FESOM-REcoM
simulation forced by increasing atmospheric CO2 and repeated year atmospheric forcing fields
(1961, referred to as simulation C in the Global Carbon Budget and RECCAP, no climate change
and variability). The scheme thereby attempts to reconstruct the surface pCO2 fields 1958–2019.

We use two realizations of the CarboScope product. The first realization calculates the air–
sea CO2 flux at the daily time-step used in CarboScope with the gas-transfer velocity from
FESOM-REcoM, which was calculated at every 15 min time step and saved as monthly kw660, i.e.
normalized to a Schmidt number of 660. The temperature dependence (varying Schmidt number)
is taken into account based on the monthly FESOM-REcoM sea surface temperature output. CO2
solubility is also calculated from FESOM-REcoM sea surface temperature and salinity fields.
These daily CO2 flux fields are then averaged into monthly fields. The gas-transfer velocity in
FESOM-REcoM has a mean value of 14.0 cm h−1. Atmospheric pCO2 is also taken from FESOM-
REcoM, i.e. from a globally uniform xCO2 value converted to pCO2 with spatiotemporally
varying sea-level pressure, sea surface temperature and salinity. The second realization uses the
native CarboScope gas-exchange formulation based on the quadratic wind speed dependence [52]
with the transfer coefficient scaled to match a global mean transfer velocity of 16.5 cm h−1 [53] and
the spatially resolved atmospheric CO2 fields from the CarboScope atmospheric inversion [48].
The same wind fields (JRA55-do reanalysis) as in FESOM-REcoM are used. In CarboScope,
the surface pCO2 differs between the two realizations as the ocean internal sources/sinks may
respond to the air–sea CO2 flux.

The MPI-SOM-FFN method uses a self-organizing map (SOM) approach to divide the
global ocean into large-scale and highly dynamic biogeochemical provinces, in which pCO2
is reconstructed with a feed-forward neural network (FFN) model, that has previously been
trained with pCO2 observations and environmental variables [49]. Here, the monthly 1◦ × 1◦
MPI-SOM-FFN reconstruction 1982–2018 uses chlorophyll a, sea surface temperature, sea surface
salinity, atmospheric CO2 concentration and mixed layer depth as environmental variables from
FESOM-REcoM model output. By training the feed-forward neural network model on pCO2
data from the FESOM-REcoM model that is subsampled according to the experiment setup of
this study, the network reconstructs a nonlinear relationship between environmental drivers and
pCO2 within each biome, that is then used to fill gaps in the sea surface pCO2.
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As for CarboScope, we use two air–sea CO2 flux datasets for MPI-SOM-FFN that both build on
the same monthly 1◦ × 1◦ pCO2 fields, and on FESOM-REcoM output of atmospheric pCO2. Note
that MPI-SOM-FFN has no feedbacks between CO2 flux and pCO2, in contrast to CarboScope.
Firstly, CO2 flux is calculated with FESOM-REcoM output (kw660, sea surface temperature, sea
surface salinity) according to equations (2.1) and (2.2) and we thereby take into account the
temperature dependency of the gas-transfer velocity as in the model equations [20,47]. Secondly,
following the native MPI-SOM-FFN methodology, the air–sea CO2 exchange is calculated with
a quadratic gas-exchange velocity parametrization [52], scaled to a global mean transfer velocity
〈kw〉 of 16.5 cm h−1. The solubility of CO2 in seawater is calculated from sea surface temperature
and salinity output from FESOM-REcoM and the formulation of Weiss [54]. The transfer velocity
kw is calculated from ERA5 6-hourly u- and v-wind components from which the square of wind
speed (i.e. U2) is calculated at 6-hourly temporal resolution. The second moment wind speed is
then obtained by averaging into monthly means (〈U2〉) before calculating gas-exchange according
to equations (2.1) and (2.2). Additionally, the air–sea CO2 exchange is limited to ice-free ocean
areas, determined by the sea-ice fraction provided by the FESOM-REcoM model output.

(d) Statistics
We primarily compare the mean CO2 flux estimate over the last decade of the reconstructions
(2009–2018, FCO2009–2018

2 ) and the trend 2000–2018 which is calculated as a linear fit over these
years. We further calculate the standard deviation and correlation coefficient of the detrended
CO2 flux time-series 1982–2018 as a measure of the amplitude and phasing of interannual
variability of the large-scale fluxes [2,29], acknowledging that the so-calculated metrics also
contain signals from decadal variability.

3. Results
The results section is structured into three parts. Firstly, we analyse the air–sea CO2 fluxes and
the mismatch between pCO2 products and known model truth based on the air–sea CO2 fluxes
calculated from mapped pCO2 and the FESOM-REcoM gas-exchange formulation (§3a). This is
to analyse the effect of sampling distribution without interference of gas-exchange calculations.
Secondly, we compare differences in reconstructed surface ocean pCO2 (§3b). Finally, we analyse
the difference between using the ocean model’s or the pCO2 products’ native gas-exchange
formulation for the calculation of air–sea CO2 flux from mapped pCO2 (§3c).

(a) Air–sea CO2 fluxes
The reconstructed global and regional CO2 flux time-series from the three sampling experiments
with the same gas-exchange calculation as in FESOM-REcoM are presented in figure 4, and
the key statistics of the global CO2 flux in figure 5. Both mapping methods overestimate the
mean CO2 uptake 2009–2018 and the trend 2000–2018 in the SOCAT sampling scheme. In the
MPI-SOM-FFN method, the 12% overestimation of the mean in the SOCAT scheme is reduced
to 9% in bgcArgo. The 9% overestimation in CarboScope (SOCAT) vanishes in the bgcArgo
scheme (2% underestimation, figures 4 and 5). For the trend since 2000, the overestimation of
35% in the SOCAT scheme turns into a 10% underestimation with the bgcArgo scheme for
MPI-SOM-FFN and the 20% overestimation to a 2% underestimation in CarboScope. Increasing
data availability from SOCAT to the bgcArgo scheme hence leads to substantially improved
agreement on the trend since 2000 (FESOM-REcoM: 0.43 PgC yr−1 decade−1, MPI-SOM-FFN
(SOCAT): 0.58 PgC yr−1 decade−1, (bgcArgo): 0.39 PgC yr−1 decade−1, CarboScope (SOCAT):
0.52 PgC yr−1 decade−1, (bgcArgo): 0.43 PgC yr−1 decade−1), and on the mean flux 2009–2018
in both products (FESOM-REcoM: 2.44 PgC yr−1, MPI-SOM-FFN (SOCAT): 2.73 PgC yr−1,
(bgcArgo): 2.67 PgC yr−1, CarboScope (SOCAT): 2.66 PgC yr−1, (bgcArgo): 2.39 PgC yr−1). The
difference between the reconstructions based on SOCAT and SOCAT + SOCCOM sampling

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 M

ay
 2

02
3 



10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220063

...............................................................

3
C

O
2 

fl
ux

 (
Pg

C
 y

r–1
)

C
O

2 
fl

ux
 (

Pg
C

 y
r–1

)
C

O
2 

fl
ux

 (
Pg

C
 y

r–1
)

C
O

2 
fl

ux
 (

Pg
C

 y
r–1

)

2

1

0
1960 1970

MPI-SOM-FFN CarboScope

global w/o Arctic

North w/o Arctic

Tropics

South South

Tropics

North w/o Arctic

1980 1990 2000 2010 2020

SOCAT + SOCCOM

FESOM-REcoM

SOCAT

bgcARGO

3

2

1

0
1960 1970

global w/o Arctic

1980 1990 2000 2010 2020

0.5

1.0

1.5

0.5

1.0

2.0

1.5

0.5

1.0

2.0

1.5

0.5

1.0

1.5

1960 1970 1980 1990 2000 2010 2020 1960 1970 1980 1990 2000 2010 2020

–1.00

–0.75

–0.50

–0.25

0 0

–1.00

–0.75

–0.50

–0.25

1960 1970 1980 1990 2000 2010 2020 1960 1970 1980 1990 2000 2010 2020

1960 1970 1980 1990 2000 2010 2020 1960 1970 1980 1990 2000 2010 2020

SOCAT + SOCCOM

FESOM-REcoM

SOCAT

bgcARGO

Figure 4. Annual mean air-to-sea CO2 flux (PgC yr−1) from the pCO2 reconstructions (coloured lines) compared with the
original FESOM-REcoM CO2 flux (black line). The left column shows the MPI-SOM-FFN and the right column the CarboScope
reconstructions for the three sampling schemes as indicated in the figures. MPI-SOM-FFN and CarboScope fluxes are calculated
from mapped pCO2 and FESOM-REcoM gas-transfer velocity. From top to bottom: Global without Arctic, North (north of 30◦N)
with Arctic excluded, Tropics (30◦S to 30◦N), South (south of 30◦S). Positive fluxes denote a flux into the ocean.

schemes is small (global and Southern Ocean FCO2009–2018
2 0.04–0.05 PgC yr−1). The amplitude

of variability is with 0.14 PgC yr−1 relatively well captured by MPI-SOM-FFN (SOCAT) in
comparison to FESOM-REcoM (0.16 PgC yr−1) and is somewhat underestimated in the bgcArgo
sampling scheme (0.10 PgC yr−1). The amplitude of variability of CarboScope turns from a slight
underestimation with SOCAT sampling (0.14 PgC yr−1) to a good match with bgcArgo sampling
(0.16 PgC yr−1). The CarboScope method reproduces the phasing of temporal variability, as
measured by the correlation coefficient with the FESOM-REcoM annual time-series, more
skilfully than MPI-SOM-FFN, and responds more strongly to higher and more evenly distributed
data availability (MPI-SOM-FFN (SOCAT): 0.69, (bgcArgo): 0.83, CarboScope (SOCAT): 0.81,
(bgcArgo): 0.99).

A notable result is found in the Southern Ocean (figure 4). Here, the overestimation of the
trend with the SOCAT sampling scheme of 50% in CarboScope and 130% in MPI-SOM-FFN is
eliminated with the bgcArgo scheme (trend 2000–2018 FESOM-REcoM: 0.13 PgC yr−1 decade−1,
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Figure 5. Effect of sampling distribution on statistics of annual mean air-to-sea CO2 flux (PgC yr−1) calculated from the pCO2
reconstructions with FESOM-REcoM gas-transfer velocity (coloured bars) compared with the original FESOM-REcoM CO2 flux
(black line). From left to right: Mean CO2 flux 2009–2018 (PgC yr−1), trend 2000–2018 (PgC yr−1 decade−1), amplitude of
variability (standard deviation of detrended time-series) 1982–2018, phasing of variability (correlation coefficient of detrended
time-series) 1982–2018. The blue bars show the MPI-SOM-FFN and the green bars the CarboScope reconstructions for the three
sampling schemes as indicated in the figures (SOCAT: light colour, SOCAT + SOCCOM: medium colour, bgcArgo: dark colour).
These statistics are calculated from the area-integrated time-series for (top to bottom): global excluding the Arctic, North
excluding the Arctic, Tropics, South.

MPI-SOM-FFN SOCAT: 0.30 PgC yr−1 decade−1, bgcArgo: 0.15 PgC yr−1 decade−1; CarboScope
(SOCAT): 0.19 PgC yr−1 decade−1, bgcArgo: 0.13 PgC yr−1 decade−1). Similarly, the amplitude of
variability is reduced by a factor of two in MPI-SOM-FFN in the bgcArgo relative to SOCAT
sampling scheme. The correlation with the FESOM-REcoM time-series increases in both products
with the bgcArgo scheme (MPI-SOM-FFN: from 0.59 to 0.90, CarboScope: from 0.65 to 0.98).
Interestingly, an erroneous acceleration of the Southern Ocean carbon sink since the late 1990s
in MPI-SOM-FFN is corrected by increased data availability. The mean flux in the bgcArgo
scheme is then, however, consistently overestimated by about 0.2 PgC yr−1 (16%, 2009–2018) in
MPI-SOM-FFN. The temporal evolution of CarboScope after 1980 is not as strongly affected as
in MPI-SOM-FFN, although the mean FCO2009–2018

2 and particularly the trend are also reduced
in CarboScope. The bgcArgo sampling scheme corrects a low bias in the CarboScope CO2 flux
prior to 1985.
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An improvement of the reconstructions with increased and more evenly distributed data
availability also occurs in the tropics (figure 4). In the bgcArgo scheme, the mean FCO2009–2018

2
is well captured with a slight overestimation of the ocean carbon outgassing by both products
(FESOM-REcoM: −0.05 PgC yr−1, MPI-SOM-FFN: −0.08 PgC yr−1, CarboScope: −0.11 PgC yr−1).
This is a substantial improvement compared with the SOCAT scheme in MPI-SOM-FFN
(−0.20 PgC yr−1), whereas the offset is somewhat larger and of opposite sign for CarboScope
in the bgcArgo sampling scheme (SOCAT, −0.02 PgC yr−1). The phasing of temporal variability
improves in the bgcArgo scheme (correlation coefficients MPI-SOM-FFN: from 0.64 to 0.75,
CarboScope: from 0.89 to 1.00). The amplitude of variability is too low in both products, but the
discrepancy is eliminated in CarboScope with the bgcArgo scheme. The availability of data prior
to 1990 in the bgcArgo scheme corrects a large tropical outgassing signal in CarboScope based on
SOCAT (and SOCCOM, figure 4), which we relate to the very low data availability before 1990
and to the skewed SOCAT pCO2 distribution towards higher pCO2 (figure 3, tropics, 1982–1999).

In the North (north of 30◦N, Arctic excluded), there is little improvement from SOCAT
to ideal bgcArgo sampling for the mean CO2 uptake and amplitude of variability (figures 4
and 5). This is because more observed grid cells have been available in SOCAT since 1995
than in bgcArgo (figure 2). The reconstructed mean flux in MPI-SOM-FFN bgcArgo scheme
is 4% higher than in the FESOM-REcoM data. Interestingly, the effect of the skewed SOCAT
distribution (figure 3) on the CO2 flux in the North is small, but notable for the last 5 years
and the trend in MPI-SOM-FFN. The overestimation of the trend (2000–2018) is reduced in
MPI-SOM-FFN with the ideal sampling (FESOM-REcoM: 0.08 PgC yr−1 decade−1, MPI-SOM-FFN
(SOCAT): 0.14 PgC yr−1 decade−1, MPI-SOM-FFN (bgcArgo): 0.09 PgC yr−1 decade−1; no change
in CarboScope: 0.09 PgC yr−1 decade−1) and the correlation is increased for MPI-SOM-FFN and
CarboScope (MPI-SOM-FFN: from 0.74 to 0.90, CarboScope: from 0.82 to 0.96). As in the other
regions, an underestimation of the CarboScope CO2 flux before 1980 in the SOCAT scheme is
corrected with the bgcArgo scheme.

The spatial patterns of the air–sea CO2 fluxes averaged over the period 2009–2018 are very well
reproduced by the MPI-SOM-FFN and CarboScope methods in all sampling schemes (figure 6).
The only exception is anomalous outgassing in the Arctic in the bgcArgo scheme, which does
not include any input data from this region. In MPI-SOM-FFN, the biases go generally into
the same direction as the fluxes, i.e. fluxes into the ocean are overestimated in magnitude and
fluxes out of the ocean are equally overestimated. Exceptions are a smaller outgassing signal
along the west coast of South America and smaller uptake in the south Atlantic high uptake
regions. A higher sampling density reduces the overestimation throughout the ocean, but reduces
the overestimated outgassing more than the overestimated uptake. In CarboScope, biases are
smaller but with the same patterns. However, the bias in the tropical outgassing regions is
negligible, leaving the biases mostly located in high-wind CO2 uptake regions. In the bgcArgo
scheme, patches of over- and underestimation alternate. We next inspect how well surface pCO2
is reconstructed, before investigating the role of transfer velocity in §3c.

(b) Surface pCO2
We inspect area-weighted pCO2 biases as the differences between regionally averaged (area-
weighted) annual time series of the pCO2 reconstructions and the original FESOM-REcoM model
output (figure 7), as well as spatial patterns of the 2009–2018 mean pCO2 bias (figure 8). We note
that regionally averaged pCO2 biases are within −10 to +10 μatm outside the Arctic (figure 7).
Locally, the biases can be larger (figure 8).

In all regions, the interannual variability of the bias remains unimproved from SOCAT to
bgcArgo sampling distribution for MPI-SOM-FFN (figure 7). In CarboScope, the interannual
varying component of the bias is reduced with improved data coverage. In the tropics, the pCO2
reconstruction is improved in the bgcArgo compared with the SOCAT sampling scheme in terms
of the mean pCO2 (both products), and variability (CarboScope; figure 7). A larger positive pCO2
bias before 1985 and a small negative bias after 2000 in CarboScope (SOCAT) vanishes in the
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FESOM-REcoM
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MPI-SOM-FFN (bgcArgo) CarboScope (bgcArgo)

MPI-SOM-FFN (SOCAT) minus FESOM-REcoM

MPI-SOM-FFN (bgcArgo) FESOM-REcoM

CarboScope (SOCAT) minus FESOM-REcoM

CarboScope (bgcArgo) minus FESOM-REcoM
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air-sea CO2 flux (mol m–2 yr–1)

0 1.5 3.0 4.5 6.0

–2.4 –1.6 –0.8

air-sea CO2 flux difference (mol m–2 yr–1)

0 0.8 1.6 2.4

Figure 6. Air–sea CO2 flux in FESOM-REcoMand in the reconstructions byMPI-SOM-FFN (left) and CarboScope (right) products.
Positive fluxes (purple) denote a flux into the ocean. In the difference maps, positive numbers (blue) denote a larger flux into
the ocean (or a smaller flux out of the ocean) in the reconstruction than in FESOM-REcoM. Top: FESOM-REcoM, then from
top to bottom: reconstructed air–sea CO2 flux in SOCAT sampling scheme, in bgcArgo scheme, and difference in air–sea CO2
flux between reconstruction and FESOM-REcoM in SOCAT and bgcArgo schemes, as indicated in the titles. Only the SOCAT and
bgcArgo sampling schemes are shown. The differences between SOCAT and SOCAT + SOCCOM sampling schemes are small.
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Figure 7. Biases in reconstructed annual mean surface pCO2 (µatm) (coloured lines) as calculated from the two pCO2 products
minus the original FESOM-REcoM pCO2. The left column shows the MPI-SOM-FFN and the right column the CarboScope
reconstructions for the three sampling schemes as indicated in the figures. From top to bottom: Global (excluding Arctic), North
(excluding Arctic), Tropics, South.

bgcArgo case. Thus, pCO2 is skilfully reproduced in the tropics with data availability as in the
hypothetical bgcArgo sampling scheme.

In the North and the South, pCO2 is underestimated by both products in the regionally
averaged time-series. In the North, the mean bias as well as a trend towards increasingly negative
bias since 2005 is reduced in the bgcArgo relative to the SOCAT sampling scheme (both products).
However, a bias in the mean of about −2 µatm persists in MPI-SOM-FFN and the bias varies
between about −2 and +2 µatm in CarboScope. A similar result is found in the South, where
the SOCAT (and SOCAT + SOCCOM) sampling scheme leads to an increasingly negative pCO2
bias between 2002 and 2008 in MPI-SOM-FFN (from near 0 to −8 µatm), which persists thereafter.
This bias in the temporal evolution vanishes with more data availability in the bgcArgo case.
The SOCCOM floats do not reduce this bias, which is located mostly in the Weddell Sea and
coastal regions (figure 8). The Southern Ocean mean pCO2 bias is negative in the bgcArgo scheme,
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MPI-SOM-FFN (SOCAT) minus FESOM-REcoM

MPI-SOM-FFN (bgcArgo) minus FESOM-REcoM

CarboScope (SOCAT) minus FESOM-REcoM
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Figure 8. Spatial patterns of biases in reconstructed surface pCO2 (average 2009–2018) as calculated from the two pCO2
productsminus the original FESOM-REcoMpCO2, forMPI-SOM-FFN (left) and CarboScope (right) in the sampling schemes SOCAT
(top) and bgcArgo (bottom).

varying between −4 and +1 µatm in MPI-SOM-FFN and between −4 and −1 µatm in CarboScope
(figure 7).

The maps of the mean pCO2 bias (figure 8) illustrate that the pCO2 biases are only partly
co-located with the CO2 flux biases (figure 6). In fact, CarboScope pCO2 biases (outside of the
Arctic) stem mostly from the Weddell and Ross Seas and a small region in the northwest Pacific.
These Southern Ocean regions are usually ice-covered and it is unlikely that pCO2 biases in these
regions lead to substantial biases in CO2 flux. In MPI-SOM-FFN, the negative pCO2 biases are
more equally distributed in the Southern Ocean, but are also not co-located with the CO2 flux
biases (figures 6 and 8).

In summary, we conclude from the analysis of CO2 flux and pCO2 biases that more and
regularly spaced observations can cure or substantially reduce biases in the temporal evolution
of the observation-derived CO2 flux estimates. However, even with regular 6◦ × 6◦ sampling
schemes, a discrepancy in the mean CO2 flux between FESOM-REcoM and MPI-SOM-FFN
persists in the Southern Ocean, which suggests a methodological origin (figure 4). The pCO2
comparison (figures 7 and 8) suggests that the generally larger CO2 flux in the pCO2 products
with near perfect sampling (bgcArgo) may be related to a persistent underestimation of pCO2, but
with an additional imprint of high wind speed regions. The comparisons so far were conducted
with the reconstructed pCO2 fields and a consistent use of the gas-exchange calculation as in
FESOM-REcoM. Next, we investigate additional discrepancies in the mean CO2 flux, when using
the method’s native gas-exchange calculations.

(c) Gas-exchange calculation
In addition to artefacts due to skewed data distribution, choices in gas-exchange calculations
contribute to discrepancies between air–sea CO2 fluxes from mapping methods and from the
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ocean biogeochemistry model. The difference between air-sea CO2 flux calculated with FESOM-
REcoM gas transfer velocity (as used for figures 4–6) and the MPI-SOM-FFN and CarboScope
native gas-exchange calculation is not only substantial in magnitude, but also increases over time
and affects the amplitude of interannual variations (figure 9). For example, the difference between
the two gas-exchange calculations nearly doubles between 1982 and 2018 from 0.18 PgC yr−1 to
0.34 PgC yr−1 for the global flux in MPI-SOM-FFN, with roughly equal contributions from the
North and South. The air–sea CO2 flux in the tropics is hardly affected. Similarly, the discrepancy
between the two ways to calculate gas-exchange increases by more than a factor of five from
0.07 PgC yr−1 to 0.42 PgC yr−1 for the global flux in CarboScope. Here, the offset is larger in
the North (0.13 PgC yr−1) than in the South (0.06 PgC yr−1) at the beginning of the time-series
in 1958, but reaches similar levels towards the end of the time-series (around 0.22 PgC yr−1). Note
that the native gas-exchange experiment with CarboScope was conducted with a climatological
FESOM prior rather than the OCIM prior, but the difference related to the choice of prior is
small in the ideal sampling case (compare green and grey dotted lines in figure 9). Choice of
prior affects mostly the period before 1990 in the SOCAT and SOCAT + SOCCOM sampling
cases (see electronic supplementary material, figure S6). As a result, the amplitude of interannual
variations is enlarged with the product’s native gas-exchange formulations, as is the trend since
2000 (figure 9, see also electronic supplementary material, figure S7 for the barplot equivalent to
figure 5 but with MPI-SOM-FFN native gas-exchange calculation).

We further use the gridded FESOM-REcoM output to test the effects of offline gas-exchange
calculation with monthly time stepping as is done in the MPI-SOM-FFN and most other products
(CarboScope uses a daily time-step), and choice of the gas transfer coefficient (figure 9 third
column). Differences between the direct model output (FESOM-REcoM, online calculation at
every 15-min time-step) and the CO2 flux recalculated from monthly averaged pCO2 and gas-
transfer velocity fields are on the order of 0.07 to 0.09 PgC yr−1 in the Southern Ocean and even
smaller elsewhere (compare green and black line in figure 9 third column). We interpret this
difference as an averaging bias resulting from the high winds in the Southern Ocean whose
effect is overestimated when the gas-exchange calculation is done on a monthly time-step. An
interpolation bias in pCO2 and auxiliary fields may contribute as well (interpolation bias in CO2
flux is small, 0.03 PgC yr−1). Tests with 6-hourly model output result in an estimate of the error
associated with using monthly time-steps for gas-exchange calculation of 0.05–0.06 PgC yr−1 in
the Southern Ocean and globally (as biases of −0.03 PgC yr−1 in the tropics and +0.03 PgC yr−1

in the North compensate). We note that this error is small, but it has the same spatial distribution
as the CO2 flux bias (compare electronic supplementary material, figure S5 and figure 6) leading
to CO2 uptake that is too strong in the temperate and high latitudes. We conclude that the
procedure of using monthly fields to calculate gas-exchange works within reasonably small
uncertainty.

Another source of uncertainty is the recommended and commonly applied scaling of the
coefficient of gas-transfer a to reach a global mean value of the gas-transfer velocity of
16.5 cm h−1 [53]. This scaling is applied in the native gas-exchange calculations in MPI-SOM-
FFN and CarboScope. The coefficient of gas-transfer in FESOM-REcoM is not scaled and the
gas-transfer velocity yields a long-term mean of 14.0 cm h−1. We test the effect of the scaling of
the gas-exchange, which we approximate by scaling the gas-transfer velocity kw from FESOM-
REcoM to 16.5 cm h−1 [53], rather than adjusting the coefficient of gas-transfer as commonly done
[53,55]. This approach leads to a global flux increase by 0.17–0.48 PgC yr−1, and this difference
also increases over time and stems in roughly equal amounts from the North and South (compare
green and orange lines in figure 9 third column). A previous study [55] reported a difference in
CO2 flux of 0.07 PgC yr−1 between scaled and unscaled JRA forcing (note that this is a different
version than the JRA55-do data set, which adjusts biases in JRA55 [9], used in FESOM-REcoM).

Further, we test the sensitivity of FESOM-REcoM to a higher value of the coefficient of gas-
transfer a=0.31, which is taken as a value at the upper end of the previously reported range [52].
We perform a short test simulation 1981–2019, i.e. without a corresponding spin-up, and thus
the results should be interpreted with some caution. Nevertheless, this test illustrates the low
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Figure 9. Effect of choices in gas-exchange calculations based on the ideal sampling case for (top to bottom:) global without
Arctic, North without Arctic, Tropics, South. All panels show the ‘known truth’ of the FESOM-REcoM air–sea CO2 flux (flux
integrated on native model mesh, black). Left column: MPI-SOM-FFN CO2 flux calculated from mapped pCO2 based on ideal
samplingwith either FESOM-REcoMpiston velocity (blue) orwithMPI-SOM-FFN native gas-exchange formulation (red). Middle
column: CarboScope CO2 flux calculated frommapped pCO2 based on ideal samplingwith its native prior fromOCIM and FESOM-
REcoM piston velocity (green, same as in figure 4), with FESOM-REcoM (FR) prior and FESOM-REcoM piston velocity (light grey,
dashed), and with FESOM-REcoM prior and CarboScope native gas-exchange (purple). Right column: Test cases to quantify the
error introduced by recalculating the air–sea CO2 flux from FESOM-REcoM pCO2 fields (full global coverage) and FESOM-REcoM
piston velocity (green), from FESOM-REcoM pCO2 fields (full global coverage) and FESOM-REcoM gas-transfer velocity scaled to
a global mean of 16.5 cm h−1 (orange). Also shown is a model experiment with higher gas-transfer coefficient a (0.31 instead
of 0.251, light blue).

sensitivity of the ocean biogeochemistry model to choices in the coefficient of gas-transfer. The
difference between the two simulations quickly decreases from about 0.25 PgC yr−1 globally in
the first years to reach 0.07 PgC yr−1 at the end of the simulated period (compare black and light
blue lines in figure 9 third column). The change over time is likely attributable to the lack of spin-
up. This is a notably small effect in CO2 flux given that the global mean gas-transfer velocity is
substantially higher with 17.2 cm h−1 relative to the 14.0 cm h−1 in the standard simulation. The
reason for the low sensitivity of the ocean biogeochemistry model to the gas-transfer coefficient
is that the pCO2 difference between ocean and atmosphere that determines the CO2 flux between
these two compartments quickly adjusts to the initially higher flux [56]. The transfer of carbon
between the surface mixed layer and the ocean interior is then the rate-determining step for air–
sea CO2 flux in the model as in the real world. However, the regional distribution of the flux seems
to be sensitive to the choice in gas-transfer coefficient, with the difference originating mainly from
the North (0.06 PgC yr−1, figure 9).
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All in all, the scaling of the gas-transfer coefficient to reach the best estimate of the global
gas-transfer velocity explains the majority of the difference between the two products’ CO2
flux reconstructions with their native and FESOM-REcoM gas-transfer velocity. Additional
uncertainty comes from the use of a different wind product in the native gas-exchange calculation
in MPI-SOM-FFN (ERA5) than in FESOM-REcoM, and a different atmospheric pCO2 field in the
native gas-exchange calculation of CarboScope. Using ERA5 may amount to a difference in the
global mean flux of 0.13 PgC yr−1 based on the assessment of Fay et al. [55].

4. Discussion
We investigated the uncertainty in pCO2 observation based estimates of the ocean carbon sink
due to data sparsity. We show that two pCO2 mapping products using input data according to
the SOCAT data distribution overestimate the global mean CO2 flux, and the trend since 2000
relative to the known model truth (figure 4). Our experiments suggest that the strong decadal
variability, and particularly the reinvigoration of the Southern Ocean carbon sink [57] is to a large
degree an artefact generated by sparse and decadally skewed data distributions, in line with the
finding that the neural network based MPI-SOM-FFN method overestimates decadal variability
in the Southern Ocean by 30% [31]. We relate the overestimation of the sink since the late 1990s to
the skewed SOCAT data distribution towards low pCO2 (figure 3) that leads the neural network to
also underestimate pCO2 by 5–10 µatm averaged over the Southern Ocean (figure 7). Interestingly,
the dynamics of the reconstructed ocean carbon sink in the ’stagnation’ period of the 1990s is less
affected by data sparsity and appears to be real. The more robust reconstruction for the 1990s
may be related to the distribution of observations in pCO2 space, which is not skewed towards
low pCO2 values in the period 1982–1999 in our analysis (figure 3).

Even with the ideal sampling scheme, the mean Southern Ocean flux is consistently
overestimated by about 0.2 PgC yr−1 in MPI-SOM-FFN. This seems to be a methodological issue
that may be related to the fact that MPI-SOM-FFN aims to minimize the global mismatch with
SOCAT observations. While regional pCO2 biases average out in the first 20 years of the time-
series (figure 7), the local pCO2 biases in high wind speed regions do not compensate in terms of
CO2 flux (figure 6). Further, the biogeochemical provinces that merge regions from different parts
of the globe with similar environmental conditions may contribute as well [23]. Southern Ocean
mean flux and its trend are also reduced with the ideal sampling in CarboScope, but the effect is
smaller than in MPI-SOM-FFN. This is because the CarboScope mixed layer scheme reproduces
Southern Ocean pCO2 well even with the skewed data distribution. A mean pCO2 offset of −2
to −3 µatm in CarboScope (figure 7) stems from local biases in ice-covered regions which are less
important for gas-exchange (figure 8). Similarly, in the North, which is the best observed area, a
regularly spaced observation network and equal distribution in pCO2 space (figure 3) leads to
reduction in pCO2 bias in both products (figure 7) and to a reduced CO2 flux trend since 2000
in MPI-SOM-FFN. The results illustrate that a process-based mapping method as CarboScope
is less prone to biases due to data distribution. This is because a neural network can only
reproduce patterns that are included in the training and target data set. With sparse and skewed
observations, not all real world pCO2 values and dependencies on environmental variables are
included in the training dataset. CarboScope normally uses a climatological alkalinity field, which
is derived from sea surface salinity and temperature [50]. In our study, the model’s alkalinity is
used as input to CarboScope, and hence additional uncertainty due to the relationship between
alkalinity, salinity and temperature and due to missing interannual alkalinity variations in
CarboScope are not included in our assessment. The use of data from SOCCOM floats (2014–2018)
in addition to SOCAT has a negligible effect on the reconstructed pCO2 and CO2 flux (figures 4
and 5). However, an idealized sampling scheme with 1000 regularly (6◦ × 6◦) spaced sampling
sites [36] with high-accuracy pCO2 measurements would be sufficient to reduce the sampling
and methodological bias of the mean CO2 flux to 2–9% globally, and to 5–17% in the Southern
Ocean. This would also lead to a reasonably good estimate of the amplitude and particularly the
phasing of CO2 flux variability (figure 5).
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Despite the good reconstruction of surface pCO2 in the ideal (‘bgcArgo’) sampling scheme,
a mean and growing offset in CO2 flux of 0.4 to 0.6 PgC yr−1 at the end of the time-series
remains between the ‘known-truth’ and the products when using the products native gas-transfer
velocity. For MPI-SOM-FFN, this offset can be attributed to methodological biases and gas-
exchange uncertainty in about equal amounts. For CarboScope, the discrepancy is entirely due
to choices in gas-exchange calculation. All contributions work towards a discrepancy particularly
in the high latitudes. This is in agreement with reported uncertainties of the pCO2 observation-
based estimates of 0.45 PgC yr−1–0.6 PgC yr−1 with a dominant contribution from the gas-transfer
velocity [48,53,55,58].

The 1-σ uncertainty of pCO2-based CO2 flux estimates in the Global Carbon Budget [2] is
quantified as a contribution of random uncertainty (0.3 PgC yr−1, standard deviation of pCO2
product ensemble) uncertainty in pCO2 measurements (0.2 PgC yr−1, [59]), gas-transfer velocity
k (0.2 PgC yr−1, [59], wind product (0.1 PgC yr−1, [55]), uncertainty in river flux adjustment
(0.3 PgC yr−1, 2-σ [5]) and pCO2 mapping (0.2 PgC yr−1, [23]), resulting in a total 1-σ uncertainty
of 0.6 PgC yr−1. Our analysis illustrates that the total uncertainty is increasing over time and
may be 0.6 PgC yr−1 even when the river flux adjustment is not needed as in our study design.
Based on the subsampling experiments conducted here, the mapping uncertainty may be an
underestimate and an additional uncertainty term due to sparse and skewed data distribution
of 0.2 PgC yr−1 (difference between mean flux in SOCAT and ideal sampling schemes) should be
added to this assessment (§3a, figure 5).

The discrepancy between the ocean carbon sink estimates by the ten global ocean
biogeochemistry models (such as FESOM-REcoM) and the 8 surface pCO2-based data products
(such as MPI-SOM-FFN and CarboScope) in the Global Carbon Budget is large [2]. While
they matched reasonably well in the 1990s, they have diverged after 2000. The full range
of all estimates amounts to 2 PgC yr−1 in 2021, and the difference between the GOBM and
pCO2-product ensemble means to 1 PgC yr−1. It is estimated that the GOBMs underestimate
the ocean carbon sink by 10–20% as evidenced by a direct comparison to interior ocean
anthropogenic carbon accumulation [2,3]. This is also supported by higher estimates from
atmospheric inversions (although they often use pCO2 products as priors, and are thus equally
affected by the uncertainties studied here) and O2 : N2 ratios [2,4]. Analysis of Earth System
Models (which may differ from the biases in GOBMs forced by atmospheric reanalysis) indicate
that this underestimation may be explained by biases in ocean carbon transport and mixing
[11–13], biases in the chemical buffer capacity [15], and by a late starting date of the simulations
[60]. Here, we demonstrate that the divergence since the early 2000s can to a large degree be
explained by the overestimation of the trend by the pCO2 products. This effect is stronger in
the neural network method than in CarboScope. The effect of sparse and unevenly distributed
observations on other neural network and cluster regression methods that contribute to the
Global Carbon Budget [24,28,61] remains to be tested. The MPI-SOM-FFN product shows by
far the largest CO2 flux trend since 2000 compared with the other GCB2022 pCO2 products
(table 1), although the exact numbers depend on chosen start date. However, cluster-regression
(OS-ETHZ-GRaCER) and neural network (CMEMS-LESCE-FFNN) approaches can also have
trend estimates on the lower end of the spectrum (table 1), reflecting the role of methodological
choices within these methods. Yet, all pCO2 products show a larger trend than the GOBM
ensemble mean and also higher than the GOBM with the largest trend (table 1). Notably, the
standard deviation of the pCO2 products’ trends is an order of magnitude larger than of the
GOBMs, illustrating that the trend is poorly constrained by the pCO2 products. The trend
in the GOBM FESOM-1.4-REcoM (0.43 PgC yr−1 decade−1) that is used here, falls close to the
GOBM ensemble average (0.41 PgC yr−1 decade−1) and close to the successor version FESOM-
2.1-REcoM2 (0.45 PgC yr−1 decade−1). This indicates that the data distribution plays a role in
the full set of observational products within the Global Carbon Budget. A pCO2-product based
on pCO2 mismatches between GOBMs and observations [62] clusters with a few products
estimating a somewhat slower growing ocean carbon sink, but still close to the product ensemble
average and well above any GOBM estimate (table 1). In conclusion, we advocate for continued
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pCO2 mapping intercomparisons [29] and observation-system design experiments [31,32] to
understand the biases in all mapping methods. The ensemble of global ocean biogeochemistry
models forced with atmospheric reanalysis and observed atmospheric CO2 as used in the GCB
are closer to interannual climate and carbon variability than Earth System Models, and thus are
an ideal tool for such experiments. While the results on data distribution may be dependent on
the simulated pCO2 in the ocean model used, the subsampling experiment demonstrates the
sensitivity of the mapping products to sparse and unevenly distributed observations, as well as
uncertainties in gas-exchange choices.

In terms of decadal and interannual variability, the pCO2 products are skilful when driven
with sufficient and evenly distributed pCO2 observations. We note that the metric for amplitude
of variability (standard deviation of detrended time-series) does not separate between interannual
and decadal variability and thus needs to be interpreted with some caution. Inspection of
the time-series (figure 4) indicates the reduction of erroneous decadal variability and slight
improvement in interannual variability in the ideal bgcArgo sampling scheme (except for MPI-
SOM-FFN in the tropics). We further note that also the estimate of variability and trend is affected
by choices in gas-exchange calculations.

In agreement with previous studies of observation system design [31–33], we emphasize
the need for a sustained and coherent network of high-quality pCO2 observations. Ship-based
measurements provide high-accuracy data, but are too sparse in many regions of the ocean,
especially in the Southern Hemisphere. A combination of multiple platforms will be needed
including autonomous devices, such as biogeochemical Argo floats, but also saildrones [37],
wave gliders, moorings. We demonstrate that an observation network with a coverage similar
to the planned global deployment of 1000 biogeochemical Argo floats may be sufficient to fill the
gaps in the current ship-based networks. In reality, the network will not follow such a regular
distribution, and high accuracy pCO2 measurements will be needed to at least partially fill the
gaps in the Southern Ocean. The bgcArgo floats are equipped with pH sensors, and hence pCO2
needs to be derived from pH and a multi-linear regression-derived alkalinity estimate. Currently,
this procedure is associated with uncertainties that are substantially larger than for the pCO2
measurements on ships [18,35,63]. Our analysis reveals that systematic biases of around 5 µatm
can lead to large errors in reconstructed pCO2 and CO2 flux. As the array of biogeochemical
Argo floats expands, it will be essential to conduct on-going intercomparisons between float
and ship-based measurements with the goal of developing an unbiased multi-platform sampling
array that captures the relevant spatial and temporal variability. This may involve more extensive
sampling of surface pH and alkalinity on research vessels and ships of opportunity to allow better
assessment of float pH and salinity-derived alkalinity and targeting float locations for purposeful
crossover comparisons.

5. Conclusion
We have assessed the sensitivity of surface ocean pCO2 reconstructions to sparse observations and
uneven sampling in space and time. The Southern Ocean decadal variability stands out as being
especially prone to such uncertainties, and this is stronger in the neural network compared with
the process-based mapping scheme. We thus caution the reader to not relate to pCO2 products
as observations, but to acknowledge that they are statistical models of sparse observations. There
are two possible ways forward that both need to be addressed in order to improve robustness
of the ocean carbon monitoring system. First, the observational network must be strengthened,
with sustained and operational funding and with a combination of multiple platforms. Notably,
the total number of global high-quality ocean CO2 observations has surpassed the number of
observations in our tested ‘ideal’ sampling design, indicating that the considerate distribution
of sampling sites is more important than simply adding more observations in the same places.
Secondly, the mapping methods should be routinely evaluated for their ability to handle skewed
data distribution, and should be improved when necessary.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

07
 M

ay
 2

02
3 



21

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A381:20220063

...............................................................

Data accessibility. The underlying data sets (sampling masks, FESOM-REcoM output fields, MPI-SOM-FFN and
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