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Abstract
The Arctic Ocean’s Beaufort Gyre (BG) is a wind-driven reservoir of relatively fresh seawater, situated beneath time-mean 
anticyclonic atmospheric circulation, and is covered by mobile pack ice for most of the year. Liquid freshwater accumulation 
in and expulsion from this gyre is of critical interest due to its potential to affect the Atlantic meridional overturning circula-
tion and due to the importance of freshwater in modulating vertical fluxes of heat, nutrients and carbon in the ocean, and 
exchanges of heat and moisture with the atmosphere. Here, we investigate the hypothesis that wind-driven sea ice transport 
into/from the BG region influences the freshwater content of the gyre and its variability. To test this hypothesis, we use the 
results of a coordinated climate response function experiment with four ice-ocean models, in combination with targeted 
experiments using a regional setup of the MITgcm, in which we rotate the surface wind forcing vectors (thereby changing 
the ageostrophic component of these winds). Our results show that, via an effect on the net thermodynamic growth rate, 
anomalies in sea ice transport into the BG affect liquid freshwater adjustment. Specifically, increased ice import increases 
freshwater retention in the gyre, whereas ice export decreases freshwater in the gyre. Our results demonstrate that uncer-
tainty in the ageostrophic component of surface winds, and in the dynamic sea ice response to these winds, has important 
implications for ice thermodynamics and freshwater. This sensitivity may explain some of the observed inter-model spread 
in simulations of Beaufort Gyre freshwater and its adjustment in response to wind forcing.
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1 Introduction

1.1  The Beaufort Gyre and its freshwater content

The Beaufort Gyre is the largest reservoir of liquid fresh-
water content (FWC) in the Arctic Ocean (e.g. Haine et al. 
2015; Carmack et al. 2016), storing a mean of 21,800 km3 of 
FWC during 2003–2018 (Proshutinsky et al. 2019). Its abil-
ity to store, and potentially discharge, significant volumes of 
freshwater makes its dynamics of key interest for studies of 
the climate system (Lique et al. 2016). This is because large 
fluxes of freshwater from the Arctic to the North Atlantic 
have the potential to impact the global overturning circula-
tion (e.g. Jahn and Holland 2013; Yang et al. 2016; Wang 
et al. 2018a; Holliday et al. 2020; Zhang et al. 2021), have 
been implicated in previous salinity anomalies in the subpo-
lar North Atlantic (Dickson et al. 1988; Belkin et al. 1998), 
and are likely to increase in the future with climate change 
(Jahn and Laiho 2020).
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The upper-ocean circulation of the Beaufort Gyre is sus-
tained by the anticyclonic winds of the climatological Beau-
fort Sea High (Serreze and Barrett 2011; Timmermans and 
Marshall 2020), driving Ekman convergence and halocline 
deepening within the gyre (Proshutinsky et al. 2002). Hydro-
graphic observations and satellite-derived measurements of 
sea surface height have revealed a substantial freshening of 
the Beaufort Gyre since the mid-1990s (Rabe et al. 2011; 
Giles et al. 2012; Krishfield et al. 2014; Proshutinsky et al. 
2009), including an increase in FWC of 6400 km3 during 
2003–2018 (Proshutinsky et al. 2019); an increase of 40% 
relative to previous climatology. These changes are thought 
to have been driven by a combination of a relatively anti-
cyclonic atmospheric circulation since the mid-1990s, 
increases in the surface anticyclonic stress due to a chang-
ing sea ice cover, the direct contribution of sea ice melt, and 
redirection of low salinity flows from the Mackenzie River 
and the Bering Strait by winds (Armitage et al. 2017; Giles 
et al. 2012; Proshutinsky et al. 2019; Wang et al. 2018b; 
Johnson et al. 2018). In tandem, the kinetic energy of the 
gyre has approximately doubled during the same period 
(Regan et al. 2019b; Armitage et al. 2017).

While winds over the Canada Basin vary on a range of 
timescales, the time-mean wind stress is anticyclonic and 
the resulting time-mean Ekman transport is convergent (e.g. 
Ma et al. 2017). One or more stabilising processes must thus 
exist to oppose perpetual Ekman-driven halocline deepen-
ing and freshwater accumulation (Manucharyan et al. 2016). 
Mesoscale eddies, activated by baroclinic instability, can 
act to flatten the slope of the halocline around a conver-
gent lens (Marshall et al. 2002), and have been shown in 
eddy-resolving models to sustain a realistic Beaufort Gyre-
like halocline (Manucharyan and Spall 2016). The halo-
cline depth and equilibration timescales are then inversely 
related to the mesoscale eddy diffusivity (Davis et al. 2014; 
Manucharyan and Spall 2016). The other principal process 
opposing freshwater accumulation under anticyclonic winds 
arises from reductions (or reversals) of the anticyclonic 
ice-ocean shear. As the geostrophic circulation spins up, 
the relative stress imparted decreases (Zhong et al. 2018; 
Meneghello et al. 2018b; Wang et al. 2019). During winter, 
internal stresses within the pack ice slow ice motion, such 
that the ice may act as a drag on the surface ocean currents 
and impart cyclonic stress (Dewey et al. 2018; Meneghello 
et al. 2018b): a mechanism dubbed the ice-ocean governor 
(Meneghello et al. 2018a).

The steep continental slopes bordering the gyre stabilise 
halocline slopes, favouring stronger circulation, a deeper 
halocline, and prolonged equilibration timescale (Manucha-
ryan and Isachsen 2019). However, to the north, the gyre 
is unconstrained by bathymetry, and is able to expand out-
wards—a mechanism which may help limit the build-up 
of eddy kinetic energy (Regan et al. 2019b). Observations 

support this idea that the gyre is able to expand geographi-
cally and that its centre may wander in response to atmos-
pheric forcing (Regan et al. 2019a; Wang 2021).

As detailed above, much has been learnt in recent years 
about the dynamics of the Beaufort Gyre. As yet unexplored, 
however, is the role that sea ice may play as a means of 
redistributing freshwater into and out of the Beaufort Gyre.

1.2  Hypothesis under consideration: ice transport 
impacts freshwater

In this paper, we seek to test the hypothesis that Beaufort 
Gyre liquid FWC is sensitive to the lateral volume fluxes 
(i.e., import/export) of sea ice into/out of the region. In 
particular, we hypothesise that net ice import into the gyre 
region should bolster Beaufort Gyre liquid FWC, while net 
ice export should act to drain liquid FWC. We investigate 
this hypothesis both under natural variability and under 
forced change (by sustained wind anomalies).

Sea ice growth rate is determined by a combination of 
thermodynamic and dynamic processes (Thorndike et al. 
1975). Thermodynamic processes comprise freezing and 
melting, while dynamic thickness changes result from 
convergence via ridging and rafting, and thinning due to 
divergence through lead formation, which creates open 
water. Thermodynamic changes in sea ice thickness result 
in an exchange of freshwater with the ocean, owing to the 
comparatively low salinity of sea ice. By acting as a path-
way between locations of freeze and melt, sea ice motion 
redistributes freshwater around the Arctic (Steele and Flato 
2000). Sea ice motion can also change the local sea ice 
thickness through advection of thicker/thinner sea ice, and 
deformation of the ice pack. While these dynamic changes in 
themselves cause no exchange of freshwater with the ocean, 
they may alter the net thermodynamic growth rate—which 
is partly controlled by sea ice thickness—and thereby yield 
exchanges of freshwater with the ocean. We hypothesise 
that, via this connection between dynamic and thermody-
namic sea ice thickness changes, wind-blown sea ice trans-
port may impact liquid freshwater.

During winter, a negative feedback exists between sea ice 
thickness and thermodynamic growth rate of sea ice: thin ice 
grows faster than thick ice (Bitz and Roe 2004; Thorndike 
et al. 1975). In the absence of sunlight, the thermodynamic 
growth rate is determined by the balance of upwards heat 
fluxes to the base of the ice, and the conductive heat flux 
across the ice to the atmosphere. In the Canada Basin, oce-
anic heat fluxes to the underside of the ice are low, generally 
< 1Wm

−2 (Shaw et al. 2009). As a result, the winter ther-
modynamic growth rate of sea ice is dominantly explained 
by the conductive heat loss through the ice and overlying 
snow; a flux that is inversely proportional to the thickness 
of both layers (e.g. Petrich and Eicken 2010). As such, we 
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hypothesise that the winter export of ice from a region acts 
to drain the liquid reservoir of freshwater through dynami-
cally thinning the ice pack, increasing the thermodynamic 
growth rate, transferring water from the liquid to the solid 
phase, and transporting that freshwater out of the region 
through sea ice export. During the summer melt season, 
these relationships may change, as thin sea ice can lead to 
more rapid melting by allowing earlier penetration of solar 
radiation into the mixed layer (Maykut and McPhee 1995; 
Perovich et al. 2008), thereby returning freshwater to the 
ocean at a faster rate. However, the amount of freshwater 
that can be returned to the ocean is limited by the thickness 
of the ice.

Mean dynamic ice thickness changes in a given region are 
related to the volume transport of ice across the region’s lat-
eral boundaries by the divergence theorem. This ice import/
export relies on the sea ice velocity field—specifically, either 
the strain in that velocity field or the way it advects ice of 
spatially non-uniform thickness. In this paper, we focus our 
attention on the transport of ice under a stationary sea-level 
pressure (SLP) pattern. In this scenario, whether ice con-
verges into the regions or diverges, depends on the angle 
between ice flow and isobars. Note that there are other 
potential scenarios in which ice transport into/out from the 
region could occur.

1.3  Ageostrophic motion of atmospheric 
and oceanic boundary layers in presence of sea 
ice

In the atmospheric and oceanic boundary layers, friction 
breaks the geostrophic balance, causing flow to deviate from 
isobars. The observed flow, � is then comprised of a geo-
strophic component, �

�
 , and an ageostrophic component, 

�
�
 , as per � = �

�
+ �

�
 . The ageostrophic or cross-isobaric 

flow in the frictional boundary layers determines the con-
vergence and divergence of mass within these boundary lay-
ers: whether air, sea ice, or seawater. These turning angles 
are thus highly relevant for the freshwater dynamics of the 
Beaufort Gyre—given that freshwater is concentrated in the 
surface ocean and in sea ice. Variation in the angle between 
sea ice motion and isobars, and corresponding influence on 
divergence/convergence of sea ice is illustrated in Fig. 1. 
We now briefly review the controls on the angular rela-
tions between geostrophic winds, surface winds, and sea 
ice motion.

1.3.1  Cross‑isobaric angle of surface wind

Surface wind is rotated anticlockwise relative to geos-
trophic wind in the northern hemisphere, and clockwise in 
the southern hemisphere. Observed turning angles show 
a considerable range: values of 6 ◦–45◦ are reported over 

land (e.g. Blackadar 1962; Lettau 1967; Mendenhall 1967; 
Hoxit 1973; Hess and Garratt 2002; Lindvall and Svensson 
2019), and smaller values of 6 ◦–14◦ over the ocean (Gray 
1972; Mendenhall 1967). There are fewer observations in 
the polar marine environment, but the drag coefficient of 
sea ice surfaces lies between those of the open ocean and 
most land surfaces (Andreas 1996; Overland 1985), imply-
ing intermediate values for the cross-isobaric angle over sea 
ice. This is dependent on the roughness and hence the age 
of the sea ice. The cross-isobaric angle of surface wind is 
known to change with several variables. In a neutral atmos-
phere, Rossby number (Ro) theory states that when the geo-
strophic wind speed, G, Coriolis parameter, f, and the rough-
ness length, z

0
 , are known then the cross-isobaric angle and 

geostrophic drag coefficient can be calculated (e.g. Hess and 
Garratt 2002). With the surface Rossby number formulated 
as Ro ≡ G∕(|f |z

0
) , the cross-isobaric angle should decrease 

as Ro increases (Blackadar 1962; Kung 1968). However, in 
non-neutral atmospheric cases, the isobaric angle shows a 
strong dependence on atmospheric stability (Lindvall and 
Svensson 2019; Van Ulden and Holtslag 1985). In the polar 
marine environment, there are important seasonal variations 
in G, z

0
 (which is related to the drag coefficient; Overland 

1985) and atmospheric stability, and potentially long-term 
trends associated with climate change. As a result, we might 
expect seasonal and long-term trends in the cross-isobaric 
angle of surface wind.

1.3.2  Air‑ice turning angle

Sea ice velocities are primarily explained by the tractions 
applied on the top and bottom surfaces by the atmosphere 

Fig. 1  Sea ice may converge or diverge under a stationary SLP 
anomaly according to the cross-isobaric angle of flow. Diagram sche-
matically depicts BG region, as indicated by black box. Blue arrows 
indicate ice motion. Whether sea ice flow is solenoidal, divergent, 
convergent is indicated in italics. Dashed magenta line outlines the 
scenarios we explore experimentally in Sect.  3.2. BGP stands for 
Beaufort Gyre Plus, the anticylonic wind anomaly experiment; BGM 
stands for Beaufort Gyre Minus, the cyclonic wind anomaly experi-
ment; these experiments are introduced in Sect. 2.2
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and ocean, but also depend on Earth’s rotation, internal 
stresses within the ice, and the tilt of the sea surface (e.g. 
Thorndike and Colony 1982; McPhee 2012; Colony and 
Thorndike 1984). The turning angle of ice relative to sur-
face winds (the air-ice angle) also varies substantially with 
these parameters (Park and Stewart 2016). While it is an oft-
cited rule of thumb that sea ice in the northern hemisphere 
drifts at about 2% of the surface wind speed, and at an angle 
30◦–45◦ to the right of the surface winds (Nansen 1902; 
Colony and Thorndike 1984; Rigor et al. 2002), observa-
tions show a wide range of air-ice angles, and a seasonal 
cycle with deviations further to the right of isobars in the 
summer (Thorndike and Colony 1982; Heorton et al. 2019; 
Cole et al. 2017).

1.3.3  Cross‑isobaric angle of ice flow

The angle between ice motion and the geostrophic wind is 
determined by the sum of the cross-isobaric angle of surface 
wind and the air-ice turning angle. As (in the northern hemi-
sphere) the former turns to the left, while the latter turns 
to the right, the cross-isobaric angle of ice flow tends to 
be relatively small, though it shows considerable spread in 
observations, as well as systematic spatial, seasonal, and 
long-term variability (Kimura and Wakatsuchi 2000; Maeda 
et al. 2020).

1.3.4  Ice‑ocean boundary layer

The ice-ocean boundary layer exhibits similar frictional phys-
ics to the atmospheric boundary layer, though at a planetary 
scale that is roughly 30 times smaller (McPhee 2017). The ice 
concentration and roughness of the underside of the ice, the drift 
speed (itself related to ice properties), the stability of the water 
column, and the geostrophic velocities below again combine to 
help determine the complex flow pattern of the ice-ocean bound-
ary layer and present major challenges for simulation efforts 
(McPhee and Smith 1976; McPhee 1981, 2012; Cole et al. 2014, 
2017). Integrating over the frictional boundary layer in the upper 
ocean yields the Ekman transport; directed c. 90◦ to the right of 
the surface wind.

Climate models may directly solve for these turning 
angles across the boundary layers, rather than prescribing 
them (as per Hibler 1979). However, different bulk formu-
lae exist and different vertical resolutions may affect how 
justified these solving schemes are (e.g. Hunke et al. 2011). 
Comparisons show that model solutions show important dif-
ferences in turning angle statistics and often disagree mark-
edly with observations, whether for sea ice drift (Girard 
et al. 2009; Martin and Gerdes 2007) or the cross-isobaric 
angle of surface wind (Lindvall and Svensson 2019; Sven-
sson and Holtslag 2009).

2  Methods

2.1  CRF method: background

In this study, we use a model perturbation method known 
as a Climate Response Function (CRF) experiment (Mar-
shall et al. 2017). A CRF experiment involves observing 
how a model responds to an abrupt and sustained change 
in some aspect of model forcing, through a comparison 
to an unperturbed control run. CRF experiments have 
proven useful in cleanly delineating relationships in sim-
ulated climate systems, including responses to changes 
in: the concentration of greenhouse gases, ozone or aer-
osols; wind patterns; river or glacial meltwater runoff 
(e.g. Good et al. 2011, 2013; Marshall et al. 2014; Lam-
bert et al. 2019; Muilwijk et al. 2019). The CRF (or step 
response function) is the time integral of the characteristic 
impulse response function. The latter can be convolved 
with a time history of the forcing to estimate a time his-
tory of the response, as per linear response theory (e.g. 
Hasselmann et al. 1993). Linear response functions can 
also be derived directly from long control runs of fully 
coupled models (e.g. Kostov et al. 2017), and convolved 
with observationally-derived forcing timeseries in order 
to compare against nature (Johnson et al. 2018; Cornish 
et al. 2020). In model intercomparisons, climate response 
functions offer a means to go beyond comparing mean 
states and benchmark across models how climate variables 
respond to specific forcings. These comparisons provide 
the opportunity to identify the underlying causes of these 
differences, assisting both model development and con-
ceptual understanding.

In this study, we rely on coordinated CRF experiments 
designed by Marshall et al. (2017) to probe the behaviour 
of key circulation systems in the Arctic Ocean; an effort 
in collaboration with modelling groups under the auspices 
of the Forum for Arctic Modelling and Observational Syn-
thesis (FAMOS; Proshutinsky et al. 2016). The first such 
coordinated series of experiments is presented and ana-
lysed by Muilwijk et al. (2019), and focuses on ocean and 
sea ice responses to changes in the strength of the Green-
land Sea Low. Here, we present results from experiments 
designed to probe the response of the Beaufort Gyre to 
abrupt changes in the wind associated with the strength of 
the Beaufort Sea High (Marshall et al. 2017). We require 
additional climate variables to those proposed by Marshall 
et al. (2017) and rely on the output from CRF experiments 
conducted by four contributing modeling groups.
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2.2  Experimental setup

The experimental procedure involved perturbing the 
selected ice-ocean models with an identical 10 m wind 
anomaly, which was added to the original forcing fields 
(which vary from model to model). Two anomaly patterns 
were used: an anticyclonic pattern based on a strengthened 
Beaufort Sea High (BGP, for Beaufort Gyre Plus; Fig. 2a), 
and a cyclonic pattern based on a weakened Beaufort Sea 
High (BGM, for Beaufort Gyre Minus; Fig.  2b). The 
anomalies are centred on 77 ◦ N, 149 ◦ W, with a radius of 
influence on the order of 1000 km. This choice of location 
was based on an analysis of the modes and magnitudes of 
variability (Marshall et al. 2017) in sea-level pressure in 
the 1948–2015 6-hourly NCAR-NCEP atmospheric rea-
nalysis (Kalnay et al. 1996). The peak magnitude of the 
perturbations is 4 hPa, a magnitude chosen to be repre-
sentative of multi-year to decadal trends. The 10 m winds 
were then computed using the relation to the geostrophic 
wind in Eq. 1, following Proshutinsky and Johnson (1997):

As described in Sect. 1.3, the cross-isobaric angle and speed 
of the 10 m wind can be expected to vary in space and time 
in nature according to a range of factors. The choice of a 
specific, arbitrary cross-isobaric angle (30◦ ) eliminates this 
uncertainty in the CRF experiments. Whether ice converges 
or diverges in the anomaly under this pattern depends on the 
air-ice turning angle (consider Sect. 1.3 and Fig. 1. The sur-
face wind anomalies and associated SLP patterns are shown 
in Fig. 2.

Control runs were archived after some initial “spin-up” 
time (Marshall et al. 2017). The perturbations were then 
applied abruptly to the control runs and sustained, in par-
allel, for 30 years. The CRFs are then determined by the 
anomalies in the perturbed run relative to the control run.

In all models, we compute diagnostics within a bound-
ing box spanning 130 ◦W–170 ◦ W and 70.5 ◦N–80.5 ◦ N 
(see outline in Fig. 2). This area definition corresponds 
closely to that used in observational studies (Proshutinsky 
et al. 2009, 2019). There are drawbacks to this definition, 
however—not all forced ice-ocean models show a gyre that 
is tightly constrained within this area (Wang et al. 2016). 
Indeed observations and models suggest that the gyre can 
expand toward the interior of the Arctic Ocean (Regan 
et al. 2019a, b). Nonetheless, the centre of the perturbation 
pattern lies within this region and therefore the bounding 
box captures the centre of action.

The principal diagnostics that we use and present here 
are: (1) total freshwater content, as

measured relative to a reference salinity ( Sref ) of 34.8, as 
per Aagaard and Carmack (1989; 2) sea ice volume; (3) sea 
ice volume transport to/from the region. For the latter two 
diagnostics, snow is included after conversion to a sea ice 
volume equivalent using a conversion factor of 330 kg m−3

/910 kg m−3 , according to the assumed densities of snow 
and ice, respectively.

(1)Ws = 0.7 ×

[
cos30 − sin30

sin30 cos30

]
×Wg

(2)FWC(t) = ∭
0

z(S=Sref )

Sref − S

Sref
dV

Fig. 2  Wind forcing patterns used in the CRF experiments and their 
associated SLP patterns. a Beaufort Gyre Plus (BGP), an anticyclonic 
pattern that strengthens the Beaufort Sea High when applied to forc-
ing fields; b Beaufort Gyre Minus (BGM), a cyclonic pattern that 
weakens the Beaufort Sea High when applied to forcing fields. White 
box outlines the BG study region

Table 1  Information about participating models

Group Ocean model Ice model Horizontal res. Domain/grid Forcing Top ocean 
cell thick-
ness (m)

S restoring

Alberta NEMOv3.4 LIM 2 Nominal 0.5◦ Regional/tripolar ORCA05 CGRF (Smith et al. 2014) 1.0225 No
AWI FESOM FESIM 25 km Arctic Global/unstructured CORE normal yr. (Griffies et al. 

2012)
10 No

MIT MITgcm MITgcm 36 km Regional/cubedsphere JRA-25 (Onogi et al. 2007) 5 No
UiB NorESM-O CICE 4 Nominal 1 ◦ Global/tripolar 20CR (He et al. 2016) 2.5–10 Yes
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2.3  Participating models

Basic information about the participating models is shown in 
Table 1. The University of Alberta group contributed results 
from a regional version of NEMO (Madec and NEMO Sys-
tem Team 2008); the Alfred Wegner Institute (AWI) group 
contributed simulations with the unstructured mesh model 
FESOM (Wang et al. 2014; Danilov et al. 2015); the MIT 
group contributed a regional configuration of MITgcm (Mar-
shall et al. 1997); and the University of Bergen (UiB) group 
contributed simulations from NorESM (Bentsen et al. 2012).

The models are all ice-ocean models, with prescribed 
atmospheric forcing, including near-surface winds, air 
temperatures, humidity, downward longwave and short-
wave radiation, and precipitation (see Table 1). The Alberta 
NEMO model uses a repeated 2002–2016 forcing and 
FESOM uses a “normal year” forcing. Because 30 years 
are required for the CRF comparisons, these shorter atmos-
pheric forcing datasets must be repeated. The MITgcm and 
NorESM runs are forced by atmospheric reanalyses that 
exceed 30 years in length, and the wind anomalies were 
applied in January 1980 in both cases.

In their control simulations, the models receive surface winds 
from their respective forcing datasets. As such, the uncertainty in 
the cross-isobaric angle of surface winds is “outsourced” to the 
reanalysis product or climatology that they use to provide these 
fields. However, the turning of the ice beneath these surface 
winds, and the dynamics of the ice-ocean boundary layer, are 
simulated by the models. All models use a 0 ◦ turning angle in 
the ice-ocean stress. The implicit assumption in the use of this 
zero value is that the upper ocean vertical resolution is sufficient 
to resolve the dynamics of the ice-ocean boundary layer, includ-
ing the Ekman spiral, without needing a prescribed adjustment 
(Hunke et al. 2011). The thickness of the uppermost ocean grid 
cell is listed in Table 1 and gives an indication of whether this 
assumption is fair.

2.4  Modified wind experiments with MITgcm

In order to directly test the sensitivity of freshwater accu-
mulation in the Beaufort Gyre to wind-driven ice export/
import, we perform dedicated experiments with the MIT-
gcm. We seek to actively perturb sea ice trajectories—and 
therefore sea ice import into the gyre region—by modifying 
the surface wind forcing, and investigating the cascade of 
downward impacts.

We perform two parallel sets of experiments. Firstly, the 
original CRF experiment, as per Sect. 2.2, which is com-
prised of the model runs CTRL, BGP, and BGM. Secondly, 
a CRF experiment with a rotation of wind vectors by 10◦ 
anticlockwise only over sea ice. The modification is applied 
to both the background winds and the perturbation winds, 
and yields the runs CTRL10, BGP10, and BGM10. The 10◦ 

angle is considered to roughly reflect the uncertainty in the 
cross-isobaric angle of surface wind over sea ice. Only one 
direction of rotation to the wind vectors is required in order 
to probe both ice export and import scenarios, because it is 
applied to both anticyclonic and cyclonic wind anomalies 
(see Fig. 1). We isolate the effect of ice import or export 
by comparing against the original perturbation experiments. 
CRFs are calculated using the respective control and per-
turbation runs for each experiment, described in Sect. 2.2.

Note that in calculating the CRFs we explicitly separate 
these two model configurations: the control simulation for 
calculating the BGP10 and BGM10 CRFs is a control sim-
ulation with a 10◦ rotation of surface winds over sea ice 
(Table 2). As such, the BGP10 CRF represents the modeled 
response to the BGP wind forcing pattern in a model Arctic 
with surface winds (including the anomalous winds) rotated 
10◦ anticlockwise of the original model solution for surface 
winds. See Table 2 for details of the experiment names.

We examine additional model diagnostics in the MIT-
gcm (Table 3). As well as (1) freshwater content, (2) sea ice 
volume and (3) sea ice export, we also analyse: (4) liquid 
freshwater fluxes, (5) ice-to-ocean freshwater fluxes from 
melting and freezing, (6, 7) precipitation minus evaporation 
on ice and ocean, respectively, and (8) sea ice thickness. 
Diagnostics (2, 3, 5–7) permit the construction of a complete 
freshwater budget for the ice component, while (8) allows us 
to see how the ice export/import relates to thickness changes. 
While diagnostics 6 and 7—precipitation on ice and ocean—
were significant in the control run freshwater balance, they 
exhibit very little change in anomaly runs, and so we do not 
present them here. We include liquid freshwater fluxes (4) 
in order to understand whether modifying the cross-isobaric 
angle of surface wind affects liquid freshwater accumulation 
directly via Ekman transport.

Table 2  Reference table for experiment names. BGP CRF and BGM 
CRF are computed for all participating models. The rest are com-
puted in the experiments with MITgcm only. BGP is ‘Beaufort Gyre 
Plus’, the wind-forcing pattern corresponding to a strong Beaufort 
Sea High (Fig. 2a). BGM is ‘Beaufort Gyre Minus’, the wind-forcing 
pattern corresponding to a weakened Beaufort Sea High (Fig.  2b). 
CTRL is ‘control’

Name in text Calculated as Appears in  
figure

BGP CRF BGP − CTRL 3a, c and 6a
BGM CRF BGM − CTRL 3b, d and 6c
CTRL10-CTRL CTRL10 − CTRL 5
BGP10 CRF BGP10 − CTRL10 6b
BGM10 CRF BGM10 − CTRL10 6d
EXP BGP10 − CTRL10 − (BGP − CTRL) 7
IMP BGM10 − CTRL10 − (BGM − CTRL) 8



Impact of sea ice transport on Beaufort Gyre liquid freshwater content  

1 3

3  Results

3.1  Coordinated CRF experiments

In Fig. 3 we present the CRFs for the four participating 
models (see Sect. 2.3). Under the anticyclonic BGP wind 
forcing, corresponding to an intensified Beaufort High, 
all models show an accumulation of liquid FWC (Fig. 3a), 
while under the cyclonic wind forcing (BGM), the models 
show a flushing of liquid FWC from the Beaufort Gyre 
(Fig. 3b).

In both the BGP and BGM CRFs, the initial adjustment 
in the first 4 years is very similar across the models. The 
overall timescale of adjustment is also similar between 
models. In both BGP and BGM, there is approximately a 
factor 2 difference between the maximum and minimum 
FWC anomalies at the end of 25 years. There are various 
possible explanations for the differences between the CRFs 
from each model. Likely important are different realisa-
tions of processes thought to dominate the freshwater bal-
ance in the gyre: Ekman pumping (despite a common sur-
face wind anomaly), eddy-mediated isopycnal slumping, 
and effective ice-ocean governor strength. Here, however, 

we focus on the potential role of sea ice transport in 
explaining some of the observed differences (Fig. 3c, d).

Two models show approximately no response in ice 
volume import under BGP: the Alberta NEMO model and 
the MITgcm (Fig. 3c, green and yellow lines), while the 
other two show ice export from the region (blue and pink 
lines). The cumulative sea ice export reaches 2000 km3 in 
FESOM and 3000 km3 in NorESM by the end of the 25 
year comparison period. Meanwhile, FESOM and NorESM 
show muted responses in sea ice volume within the region 
(as do all models; thin lines in Fig. 3c). By mass conserva-
tion, the difference between the sea ice volume anomaly and 
the anomaly in cumulative sea ice export must be balanced 
by sea ice growth. The two models showing sea ice export 
in the CRFs for BGP (NorESM and FESOM) also show 
lower liquid FWC accumulation than the other two models. 
This is consistent with our hypothesis, and suggests that the 
sea ice transport may—at least in part—explain the differ-
ences between simulated wind-driven Beaufort Gyre FWC 
accumulation.

All models show some ice import into the gyre region 
under the BGM wind forcing pattern. The Alberta model 
shows a muted response in the first ten years before exhib-
iting a similar rate of import to the other models, which 
show remarkably similar accumulations of ice within the 

Table 3  Acronyms for climate variables as displayed in figures

Acronym Meaning Sign convention

FWC Liquid freshwater content relative to S
ref

= 34.8

IVOL Sea ice volume
IVOLF Cumulative lateral sea ice volume flux (import/export) Import is positive, export is negative
FWF Cumulative lateral liquid freshwater flux above S

ref
 isohaline Inflow is positive, outflow is negative

IOF Cumulative ice-to-ocean freshwater flux (melting/freezing) Melting is positive, freezing is negative
SIT Sea ice thickness

Fig. 3  Climate response func-
tions for BGP (left) and BGM 
(right) forcing patterns in four 
participating models. Liquid 
FWC responses shown in a, 
b. Cumulative sea ice import 
responses shown in c, d. Thin 
lines indicate sea ice volume 
responses. The SLP and associ-
ated surface wind forcing pat-
terns are shown in Fig. 2
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region. Again, all models show a muted response in sea ice 
volume (the Alberta model shows a reduction, but this never 
exceeds 1000 km3 ). The difference between accumulated sea 
ice import and sea ice volume changes in these models can 
be reconciled by an overall reduction in net thermodynamic 
growth rate. This is in line with the operation of a stabilizing 
feedback of sea ice thickness on growth rate. A reduction in 
sea ice growth rate implies a relative gain in liquid freshwa-
ter. In the case of BGM, this would result in a weaker fresh-
water loss. However, the differences in ice import across 
the models are small, and so we cannot expect this to be a 
significant source of variability in the FWC CRFs. Indeed, 
we see no obvious link between FWC and sea ice import in 
the BGM CRFs. Nonetheless, the relative stability of the ice 
volume timeseries (thin lines) is evidence that the hypoth-
esised mechanism linking sea ice import and freshwater gain 
is at play. This relative gain in FWC may help to explain why 
the magnitude of freshwater loss in the BGM CRFs is gener-
ally smaller than the freshwater gain in the BGP CRFs—and 
not a perfect mirror image.

3.2  Modified wind experiments

We now perform a stronger test of our hypothesis using a 
series of targeted experiments with one model, the MITgcm. 
We seek to isolate the effect of sea ice import/export, as 
described in Sect. 2.4.

We begin by describing the MITgcm control run (CTRL) 
climatology, and examine how an angular modification to 
the surface winds changes that climatology. Next, we investi-
gate the system under forced change: we compare the results 

of the standard CRF experiments as described in Sect. 2.2, 
to those with an angular modification to the surface winds 
(Sect. 2.4). We explore the way that sea ice dynamics affect 
sea ice thermodynamics, and how this varies spatially and 
seasonally, in order to explain the overall effect on freshwa-
ter changes in the gyre.

3.2.1  The MITgcm CTRL and CTRL10 runs

In the MITgcm control run (CTRL), sea ice at the end of 
winter has a mean thickness of 2–3 m in the gyre region 
(Fig. 4a), with ice thickening towards the Canadian Arctic 
Archipelago in the east. At the end of summer, the mean 
ice thickness approaches zero in the southern portion of 
the gyre region, but is 1–2 m thick in the north and east 
(Fig. 4b). This change in sea ice thickness over the summer 
involves a flux of freshwater to the ocean: Fig. 4c shows how 
these summertime freshwater fluxes are more intense (2–3 
m) in the southern portion of the gyre region where the ice 
thickness decreases the most. In the winter, ice thickness 
is restored by a freshwater flux from the ocean into the ice 
(Fig. 4d). In addition to these thermodynamic changes in 
Fig. 4c, d, there are also dynamic contributions to sea ice 
thickness changes, and the spatial configuration of sea ice 
thickness.

The integrated FWC within the gyre region is shown in 
Fig. 5a, in black for CTRL and red for CTRL10 (described in 
Sect. 2.4). We also show observational estimates of the FWC 
in the same region from Proshutinsky et al. (2009, 2019). 
A striking feature of both the CTRL run and the observa-
tional estimates is the marked increase in FWC that occurs 

Fig. 4  Mean control run 
(CTRL) fields from the MIT-
gcm: sea ice thickness (SIT) 
in April (a) and September 
(b); thermodynamic ice-ocean 
freshwater fluxes (IOF) during 
summer (c) and winter (d). 
The contour that passes most 
centrally through the region in 
each case is highlighted in white 
to aid interpretation of scale
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2005–2010 in the MITgcm and 2003–2010 in the observa-
tions (note that observations show further FWC increases 
after the end of the model run in 2014; Proshutinsky et al. 
2019). As described in Sect. 1.1, this inflation of the gyre 
is thought to be mainly due to increasing anticyclonic wind 
stress, partly a result of atmospheric changes, and partly a 
result of changes to the pack ice that resulted in a more effi-
cient transfer of momentum from winds to the ocean (e.g. 
Proshutinsky et al. 2009, 2019; Giles et al. 2012; Wang et al. 
2018b). The MITgcm captures a considerable part of this 
FWC accumulation, but appears to slightly underestimate 
the increase in the earliest few years of the observational 
period presented; meanwhile, the absolute magnitude of 
FWC is higher in the MITgcm than in the observational esti-
mates. Note that the simulation CTRL10 is not an attempt to 
improve the fit to the observational data—it is used solely 
for the purposes of investigating processes.

Comparing the MITgcm CTRL and CTRL10 runs high-
lights the impact of the 10◦ anticlockwise rotation of sur-
face winds over sea ice in CTRL10 on sea ice and FWC in 
the BG. Over the CTRL10 run, a clear difference in FWC 
emerges relative to CTRL, which grows approximately lin-
early (black line, Fig. 5b), reaching − 1000 km

3 by the end of 
the run. Some of the other key variables can help to explain 
this relative loss of FWC. There is an approximately con-
stant flux of ice volume out of the gyre region in CTRL10 
versus CTRL (teal line, Fig. 5b); indeed, the 10◦ anticlock-
wise rotation in CTRL10 should lead to a more divergent 
ice flow field under the anticyclonic winds that dominate the 
region. In absolute terms, the gyre is a net importer of sea 
ice in CTRL, and a net exporter in CTRL10; over the whole 
run, sea ice transport into the region reaches c. + 2000 km

3 
in CTRL and c. − 2200 km

3 in CTRL10 (not shown). This 

difference in sea ice transport is closely matched by a com-
mensurate increase in net thermodynamic growth rate 
(Fig. 5b, orange line), which leaves the sea ice volume res-
ervoir in the gyre region relatively unaltered (Fig. 5b, grey 
line). The negative ice-to-ocean flux, in turn, drains the liq-
uid freshwater reservoir. There is a small positive contribu-
tion to the FWC in CTRL10 versus CTRL from an increase 
in the liquid freshwater flux across the region’s boundaries 
(Fig. 5b, cyan line); however, the net effect acts to deplete 
the FWC reservoir (black line).

The 1000 km3 FWC difference between CTRL and 
CTRL10 by the end of the run is a similar magnitude to the 
uncertainty in the observational estimates of FWC (Fig. 5a). 
As such, it is of a magnitude that might go undetected, but is 
still considerable, especially when considering differences 
across models (see Sect. 3.1).

3.2.2  Anomaly experiments

Spatially integrated changes
We now investigate the response of Beaufort Gyre FWC 

to wind forcing, and the hypothesised role of sea ice trans-
port in influencing this response. Fig. 6 shows the responses 
to imposed anticyclonic ‘BGP’ and cyclonic ‘BGM’ winds, 
in the normal model configuration, and in the configura-
tion with a 10◦ anticlockwise rotation of the surface winds 
over sea ice. Importantly, the BGP10 and BGM10 CRFs are 
defined relative to the CTRL10 run (Table 2).

In the BGP CRF experiment, the imposed anticyclonic 
winds (Fig. 2a) induce a time-dependent accumulation of 
FWC up to a total of c. 8000 km3 after 34 years (Fig. 6a, 
black line). The increase in FWC is clearly driven by the 
cumulative liquid freshwater flux (FWF) into this region 

Fig. 5  a Liquid freshwater content timeseries in the MITgcm CTRL 
run (black) and CTRL10 run (red). Observational estimates of FWC 
in the same region (blue, uncertainty shown by grey shading) from 

Proshutinsky et al. (2009, 2019). b Difference between diagnostics in 
the CTRL10 run and corresponding variables in the CTRL run. Flux 
terms are integrated through time. Acronyms are defined in Table 3



 S. B. Cornish et al.

1 3

(Fig.  6a, cyan line). The fact that the response curve 
approaches an equilibrium with time demonstrates that 
there must be one or more negative feedback processes (or 
‘sinks’) that are dependent on the volume of freshwater in 
the gyre (Manucharyan et al. 2016; Doddridge et al. 2019); 
note how the source of FWC due to FWF clearly outstrips 
the FWC response. The subtle decrease in the slope of the 
cyan line during the first 5 years most likely reflects the 
damping effect of the ice-ocean governor: as the geostrophic 
circulation spins up, the relative anticylonic stress imparted 
by the ice decreases, leading to a decrease in the convergent 
Ekman transport of liquid freshwater (Meneghello et al. 
2018a), detectable in the FWF term (Fig. 6). The timescale 
for this adjustment is known to be significantly shorter than 
that mediated by baroclinic eddies (Doddridge et al. 2019). 
There is almost no response of ice import in the BGP CRF; 
the ice velocity anomalies follow a solenoidal trajectory (not 
shown) as schematised in Fig. 1 (upper left hand panel).

The BGP10 CRF (see Sect. 2.4 for definition), on the 
other hand, exhibits roughly linear cumulative sea ice 
export, reaching − 5000 km

3 after 34 years (Fig. 6b, dashed 
teal line). A more divergent sea ice flow field is expected 
under an anticlockwise modification of an anticyclonic 
flow pattern (consider Fig. 1, upper central panel). This ice 
export is compensated by a commensurate flux of fresh-
water from the ocean to ice (orange line), which buffers 
the ice volume in the region, keeping it at a steady (though 
non-zero) level (grey line). A small thickness anomaly is 
required to drive anomalies in thermodynamic growth rate, 
as we show later in this subsection. Relative to the BGP 
CRF, the FWC accumulation in the BGP10 CRF is reduced 

by 15%, or 1175 km 3 (after 34 years). Given that the liq-
uid freshwater fluxes into the region in the BGP10 CRF 
are actually slightly higher than in the BGP CRF (compare 
the cyan lines in Fig. 6a, b), the most plausible explana-
tion for the lower FWC accumulation is the draining of the 
liquid freshwater reservoir by sea ice export and attendant 
increase in sea ice growth.

In the BGM CRF experiment, a cyclonic wind pattern 
is applied (Fig. 2b), designed to promote the flushing of 
the gyre. The BGM freshwater content CRF is close to a 
mirror image of the BGP equivalent, and shows a time-
dependent decrease of FWC that slows over time, reach-
ing − 7200 km

3 after 34 years (Fig. 6c, black line). This 
flushing is driven by anomalous liquid freshwater export 
through the region’s boundaries (cyan line). This outwards 
freshwater flux is offset to a small extent by ice import 
(dashed teal line) and a commensurate slowing of the net 
thermodynamic growth rate (orange line), leading to an 
input of freshwater into the liquid phase. The flattening of 
the FWC CRF curve represents the gradual slowing of the 
FWC-dependent sink process relative to the CTRL run, in 
which FWC levels are relatively elevated.

The BGM10 CRF exhibits a greater rate of ice import 
into the region (Fig. 6c, dashed teal line) than in the BGM 
CRF. A more convergent ice flow field is expected with 
an anticlockwise modification of a cyclonic flow pattern 
(consider Fig. 1, lower central panel). The anomalous ice 
import is compensated by a net flux of freshwater from ice 
to ocean (Fig. 6c, orange line). The lateral liquid fresh-
water flux (cyan line) is relatively unchanged versus the 

Fig. 6  CRFs for different FWC 
budget terms in the regular CRF 
experiment (left side) and with 
+ 10◦ wind forcing modifica-
tion (right side). Fluxes are 
positive when directed into the 
gyre. Flux terms are integrated 
through time, so have units of 
FWC. BGM and BGP FWC 
curves are overlain on BGM10 
and BGP10 plots as dashed 
black lines for ease of compari-
son. Acronyms for climate vari-
ables are defined in Table 3



Impact of sea ice transport on Beaufort Gyre liquid freshwater content  

1 3

BGM CRF. The net effect of these processes is to bolster 
the FWC in the BGM10 CRF relative to the BGM CRF 
(black line versus black dashed line) by 17%, or 1230 km3 
(after 34 years).

Relative to the BGP and BGM CRFs, the BGP10 and 
BGM10 CRFs exhibit significant anomalies in ice-ocean 
freshwater fluxes (dashed teal lines). These exceed the 
resulting anomalies in FWC. The lower magnitude of 
change in FWC is most likely due to the fact that the sink 
terms of FWC are FWC-dependent (Manucharyan et al. 
2016); any change in constant flux terms into or from 
the gyre will be buffered by the adjustment of the FWC-
dependent sink terms.

The results show that, by changing the ice import into 
the gyre region, liquid FWC can be affected via a feed-
back between ice volume and thermodynamic exchange 
of freshwater between the ice and ocean. We now exam-
ine how this relationship between dynamic and thermody-
namic changes in sea ice manifests spatially and season-
ally, in order to understand the spatially integrated signal 
in Fig. 6.

Spatial and seasonal changes
As described above, the main differences between the 

BGP10 CRFs and BGP CRFs are driven by the additional 
sea ice export in the BGP10 CRF. We can isolate the effect 
of the elevated ice export by taking the difference between 
these sets of anomalies, yielding results we refer to as EXP 
(Table 2). In Fig. 7, we show the seasonal evolution of 
anomalies in sea ice thickness and ice-ocean fluxes under 
EXP. The sea ice export yields persistently low sea ice 
thickness anomalies in the gyre region in both summer and 

winter (Fig. 7). Note that this persistent thickness anomaly is 
related to persistent, but small, differences in sea ice volume 
(Fig. 6).

In the summer period, the low sea ice thickness promotes 
melting across the central, northern, and eastern parts of 
the region. Observations show that thin sea ice gives way 
to open water sooner than thick ice, allowing earlier solar 
heating of the mixed layer, which increases SSTs (Steele and 
Dickinson 2016) and drives basal melting of ice (Perovich 
et al. 2011, 2008). We expect these effects to be captured 
in our simulations, explaining the enhanced melting in the 
interior part of the gyre region (Fig. 7c). In the southern part 
of the region, the dynamic thinning preconditions a reduc-
tion in melting, because these are regions where little ice 
survives the summer (Fig. 4b), and thus reduced ice thick-
ness equates to reduced freshwater availability.

In the winter period, on the other hand, the dynamic thin-
ning yields an increased freshwater flux from the ocean to 
sea ice—an increase in the net thermodynamic growth rate 
of ice, due to the inverse dependence of growth rate on sea 
ice thickness (e.g. Petrich and Eicken 2010). There is a close 
spatial match ( R = 0.70 in the plotted region) between the 
mean September sea ice thickness anomaly pattern and the 
mean winter ice-ocean freshwater flux anomaly (compare 
Fig. 7b, d). Note that the strength of this correlation is bound 
to be limited due to advection of the uneven sea ice thickness 
field during the winter (after September). This strong winter 
signal dominates the overall freshwater response.

In contrast, the difference between the BGM10 anoma-
lies and BGM anomalies yields an ice import scenario, IMP 
(Fig. 8). The anticlockwise rotation of the cyclonic wind 

Fig. 7  Mean seasonal evolution 
of anomalies in ice thickness 
and ice thermodynamics in EXP 
(defined in Table 2). Blue col-
ours in a, b denote thinned sea 
ice cover in April and Septem-
ber, respectively. Red colours in 
c indicate increased summer-
time melting, while blue colours 
in d show increased wintertime 
freezing
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anomaly causes ice convergence and yields a dynamically 
thickened sea ice anomaly in the gyre region in IMP. In 
the summertime, this thick sea ice anomaly preconditions 
enhanced melting in the southern part of the gyre region 
(Fig. 8a,c), where ice generally melts by the end of sum-
mer (c.f. Fig. 4c); increased ice thickness provides increased 
freshwater availability. Towards the basin interior, the thick 
anomaly leads to lower summer ice melt (Fig. 8c).

During winter, the thick anomaly suppresses sea ice 
growth (Fig. 8b, d). The spatial correlation between the 
mean September sea ice thickness anomaly and the mean 
winter ice-ocean freshwater flux is R = 0.76 . The strong 
winter signal in the ice-ocean freshwater flux dominates over 
the spatially heterogeneous summer pattern, such that the net 
annual effect of relative sea ice import is one of increased 
freshwater flux from the ice to the ocean.

4  Concluding discussion

In this paper, we have investigated how the interplay 
between mechanically driven sea ice transport and thermo-
dynamic sea ice growth rate affects the mean state and var-
iability of Beaufort Gyre liquid freshwater content. Using 
forced experiments with the MITgcm, we have shown that 
BG FWC is sensitive to the degree of ice import/export 
into the region. Specifically, increased sea ice export 
yields reduced FWC in the gyre, while increased sea ice 
import yields increased FWC in the gyre. The same mech-
anism appears to be at play in three other ice-ocean mod-
els, and—because these models exhibit different responses 

of sea ice transport to the same imposed wind forcing pat-
terns—is a source of variability that may help to explain 
the spread in BG FWC between the CRFs presented here 
(Fig. 3), and other model simulations more generally.

Using the MITgcm, we have isolated the effect of anom-
alies in ice transport and examined spatial and seasonal 
responses to these anomalies. Sea ice export leads to thin-
ning of the mean sea ice cover in the region (Fig. 7a, b), 
promoting sea ice growth during winter (Fig. 7d), because 
the thermodynamic growth rate of ice is inversely related 
to its thickness (e.g. Thorndike et al. 1975; Bitz and Roe 
2004). During summer, dynamic thinning yields a spatially 
varying response. There is increased melting in the interior 
of the Canada Basin, most likely due to earlier and increased 
penetration of solar radiation into the mixed layer, warm-
ing the ocean (Perovich et al. 2008, 2011; Steele and Dick-
inson 2016). Meanwhile, there is decreased melting along 
the southern margin of the region (Fig. 7c) due to reduced 
ice availability in this region where ice rarely survives the 
summer in the model (Fig. 4) and in observations (Stro-
eve et al. 2011). The net effect of these seasonally distinct 
responses is a reduction of BG FWC under ice export. In 
the other case, with anomalous sea ice import, the pack ice 
thickens (Fig. 8a, b), winter freezing reduces in intensity 
(Fig. 8d), and summer melting reduces across the interior 
and increases on the southern margin (Fig. 8c). The winter 
signal dominates, leading to increased FWC in the BG. This 
explanation is consistent with the export case—the patterns 
are opposite, but the underpinning physical relationships are 
the same. Our results also highlight the importance of the 
cross-isobaric angle (ageostrophic component) of the surface 

Fig. 8  Seasonal evolution of 
anomalies in ice thickness 
and ice thermodynamics in 
IMP (defined in Table 2). Red 
colours in a, b denote a thicker 
sea ice cover in April and 
September, respectively. Blue 
colours in c indicate decreased 
summertime melting, while red 
colours in d show decreased 
wintertime freezing
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wind for sea ice dynamics in the BG, and—via the mecha-
nism outlined above—FWC.

Previous work has explored the interplay between a 
source of freshwater from Ekman convergence in the upper 
ocean (modulated by the ice-ocean governor effect), and a 
sink due to eddy fluxes (e.g. Davis et al. 2014; Manucharyan 
and Spall 2016; Doddridge et al. 2019). Here, we identify a 
further pathway for freshwater due to ice transport and com-
pensating thermodynamic responses. The impact of this term 
on the FWC reservoir is buffered by the adjustment of FWC-
dependent sinks (Manucharyan et al. 2016), explaining why 
anomalies in the cumulative flux of freshwater between ice 
and ocean are larger in magnitude than resulting anomalies 
in FWC (Figs. 5, 6). Our results also show that BG flushing 
or accumulation events may be enhanced in magnitude due 
to the identified mechanism (depending on the cross-isobaric 
angle of winds and ice flow in the gyre region). To the extent 
that the mechanism modifies freshwater fluxes into the sub-
polar North Atlantic, it may be consequential for the strength 
of the AMOC (Jahn and Holland 2013; Yang et al. 2016; 
Wang et al. 2018a; Holliday et al. 2020).

Our findings have both strengths and caveats. In coordi-
nated experiments with four ice-ocean models, we found 
evidence that a compensation existed between anomalies in 
sea ice export/import, and thermodynamic growth rate: sea 
ice volume anomalies were limited in all cases. In the BGP 
experiments, differences in sea ice transport likely explain 
some of the inter-model spread in FWC accumulation 
(Fig. 3). However, without further experiments, it was not 
possible to isolate the effect on FWC due to sea ice transport. 
Using the MITgcm, we isolated the impact of changing sea 
ice transport by performing targeted experiments with modi-
fied wind fields. We were further able to assess the seasonal 
and spatial characteristics of the processes at play. We used 
a CRF approach, applying a stationary wind perturbation 
for 34 years. However, satellite observations show that sea 
ice transport anomalies into the BG also exhibit substan-
tial variability on interannual timescales (e.g. Mallett et al. 
2021; Stroeve et al. 2011). Further experiments could probe 
the impact of short-lived and high magnitude sea ice trans-
port anomalies on the FWC of the BG. Additionally, further 
experiments could investigate how dependent the details 
of the outlined mechanism are on the choice of model, or 
indeed on climate conditions—would the same relationships 
hold in a warmer climate?

One caveat to extrapolating our model-based results to 
nature comes from our use of ice-ocean models. These mod-
els enable us to apply specific atmospheric forcings, but nat-
urally do not represent atmospheric feedbacks. A potentially 
important feedback results from changing ice growth rate 
and corresponding vertical heat fluxes across sea ice, which 
can change the surface air temperature (e.g. Maykut 1978). 
However, surface air temperatures are positively correlated 

with ice growth in coupled climate models in the contem-
porary and historical Arctic (Petty et al. 2018), suggesting 
that this atmospheric feedback has not been an important 
limitation on ice growth. Examining the mechanism outlined 
here in coupled climate models would be a natural next step 
to test the importance of such feedbacks.

Our targeted experiments with the MITgcm highlight 
the importance of angular relationships in the air-sea ice 
boundary layer in affecting Beaufort Gyre FWC. Under a 
stationary SLP pattern, we have seen that (a) changing the 
cross-isobaric angle of surface winds by 10◦ can affect FWC 
under a naturally varying climatology (Fig. 5); (b) depend-
ing on the cross-isobaric angle of surface winds, responses 
of FWC to wind forcing are different (Fig. 6). Observations 
show a wide range and strong seasonal cycle in the cross-iso-
baric angle of surface wind (e.g. Maeda et al. 2020; Kimura 
and Wakatsuchi 2000). We suggest that uncertainties in this 
angle, and in the flow directions of sea ice in response to 
surface winds, should be considered important for large-
scale hydrographic properties and ocean dynamics. Signifi-
cant natural variability exists in the angular relationships 
across the polar marine and atmospheric boundary layers 
(Cole et al. 2017; Maeda et al. 2020; Heorton et al. 2019); 
accurately representing these boundary layer processes in 
climate models is a significant challenge (e.g. Hunke et al. 
2011). Our results provide further large-scale motivation for 
improving the representation of these relatively small-scale 
processes.
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