
Geoderma 438 (2023) 116652

Available online 4 September 2023
0016-7061/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

High resolution mapping shows differences in soil carbon and nitrogen 
stocks in areas of varying landscape history in Canadian lowland tundra 

Julia Wagner a,b,*, Victoria Martin c, Niek J. Speetjens d, Willeke A’Campo a, Luca Durstewitz a, 
Rachele Lodi e, Michael Fritz f, George Tanski d,f, Jorien E. Vonk d, Andreas Richter c, 
Annett Bartsch g, Hugues Lantuit f, Gustaf Hugelius a,b 

a Department of Physical Geography, Stockholm University, Stockholm, Sweden 
b Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 
c University of Vienna Centre for Microbiology and Environmental System Science, Vienna, Austria 
d Vrije Universiteit Amsterdam, Department of Earth Sciences, Amsterdam, Netherlands 
e Ca’ Foscari University, Department of Environmental Sciences, Informatics and Statistics, and CNR Polar Sciences Institute, Venice, Italy 
f Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Potsdam, Germany 
g b.geos GmbH, Korneuburg, Austria   

A R T I C L E  I N F O   

Handling Editor: A. Agnelli  

Keywords: 
Random forest 
Machine learning 
Soil organic carbon 
Tundra 
Permafrost 

A B S T R A C T   

Soil organic carbon (SOC) in Arctic coastal polygonal tundra is vulnerable to climate change, especially in soils 
with occurrence of large amounts of ground ice. Pan-arctic studies of mapping SOC exist, yet they fail to describe 
the high spatial variability of SOC storage in permafrost landscapes. An important factor is the landscape history 
which determines landform development and consequently the spatial variability of SOC. Our aim was to map 
SOC stocks, and which environmental variables that determine SOC, in two adjacent coastal areas along Ca-
nadian Beaufort Sea coast with different glacial history. We used the machine learning technique random forest 
and environmental variables to map the spatial distribution of SOC stocks down to 1 m depth at a spatial res-
olution of 2 m for depth increments of 0–5, 5–15, 15–30, 30–60 and 60–100 cm. 

The results show that the two study areas had large differences in SOC stocks in the depth 60–100 cm due to 
high amounts of ground ice in one of the study areas. There are also differences in variable importance of the 
explanatory variables between the two areas. The area low in ground ice content had with 66.6 kg C/m− 2 more 
stored SOC than the area rich in ground ice content with 40.0 kg C/m− 2. However, this SOC stock could be 
potentially more vulnerable to climate change if ground ice melts and the ground subsides. The average N stock 
of the area low in ground ice is 3.77 kg m− 2 and of the area rich in ground ice is 3.83 kg m− 2. 

These findings support that there is a strong correlation between ground ice and SOC, with less SOC in ice-rich 
layers on a small scale. In addition to small scale studies of SOC mapping, detailed maps of ground ice content 
and distribution are needed for a validation of large-scale quantifications of SOC stocks and transferability of 
models.   

1. Introduction 

Approximately 22% of the Earth’s surface is defined as permafrost 
regions (Obu, 2021). These areas store large amounts of soil organic 
carbon (SOC), approximately twice as much carbon as in the atmosphere 
(Strauss et al., 2021). The upper three meters of permafrost region soils 
store 1035 ± 150 Pg of soil organic carbon (Hugelius et al., 2014). Air 
temperatures in high latitudes have increased more than double as the 

global average (Meredith et al., 2022). This warming of global air 
temperatures causes permafrost thaw at a global scale (Biskaborn et al., 
2019) which leads to SOC stocks stored in the soil becoming potentially 
available for decomposition and emission of greenhouse gases, which 
may shift permafrost ecosystems from carbon sinks to sources (Schuur 
et al., 2015). An Increase in ground temperatures has been observed in 
the past 20 years, in particular at arctic coasts (Miner et al., 2022). 

The degree of thaw and the subsequent greenhouse gas emissions 
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depend on different complex factors which are interlinked. Warming 
leads to the more frequent occurrence of abrupt thaw events, especially 
in areas with large amounts of ground ice. These include ice wedge 
polygon degradation and development of thermokarst lakes or wetlands 
which may accelerate the release of CO2 or methane (Turetsky et al., 
2020).Together with soil properties and geomorphological shifts, 
vegetation dynamics are key controls of carbon cycling and nitrogen 
cycling. Therefore, high resolution maps of N stocks are needed as a 
complement to SOC stocks. Vegetation changes in arctic tundra are 
complex (Heijmans et al., 2022; Van Der Kolk et al., 2016). In contrast to 
an anticipated broadscale trend of arctic greening (Arndt et al., 2019; 
Berner et al., 2020), Arctic browning (Myers-Smith et al., 2020) can be 
observed on smaller spatial and temporal scales, especially in ice-rich 
lowland tundra (Heijmans et al., 2022) caused by the occurrence of 
fires and abrupt thaw events (Phoenix and Bjerke, 2016). The soil–plant 
feedback under climate change remains complex, in particular with 
regard to interactions between roots (Blume-Werry et al., 2018), soil and 
microbially mediated processes (Ernakovich et al., 2022). Increased 
nutrient availability is thought to be linked to warming, because 
enhanced microbial activity accelerates the rate of soil organic matter 
decomposition (Wild et al., 2016; Wilson et al., 2022). 

The long-term landscape development determines the distribution 
and characteristics of periglacial landforms (French, 2007). In our study 
area, the Canadian Beaufort coast, glacial history played a major role in 
shaping the landscape and soil formation. The area was influenced by 
the Laurentide ice sheet during the Last Glacial Maximum (LGM) at 16.2 
BP (Fritz et al., 2012). Its limits were located west of Herschel Island 
(Fig. 1). Ice wedge polygon development, ground ice formation and 
degradation differed during the late Pleistocene and early Holocene 
between areas inside and outside of the glacial limit (Fritz et al., 2012; 
2016). Ice wedge polygons can be divided into two main categories with 
low-centered polygons being the non-degraded form consisting of a 
waterlogged or -filled center and elevated rims and high-centered being 
the degraded form of ice wedge polygons consisting of an elevated 
center and an often water-filled trough around it (French, 2007; 

Liljedahl et al., 2016). 
Maps of SOC storage exist for the entire Arctic, yet often fail to 

capture the high spatial variability of permafrost landscapes and soils 
(Hugelius et al., 2014; Mishra et al., 2021). Different processes dominate 
the distribution of soil properties from the pedon scale, via landfrom 
scale to landscape scale. These range from the influence of cryoturbation 
on scales from centimeters to meters, ice wedge dynamics on l scales of 
meters to tens of meters and landscape scale changes on scales of several 
hundred meters (Siewert et al. 2021). Because multiple processes at 
different scales are involved, and because of very high spatial hetero-
geneity, it is challenging to quantify the potential release of carbon from 
permafrost thaw. This is especially the case for abrupt thaw features 
related to thermokarst such as retrogressive thaw slumps and thermo-
karst lake expansion (Turetsky et al., 2020). Digital soil mapping gen-
erates model based maps for soil properties by finding relationships and 
spatial patterns between the soil forming factors and the soil properties 
(Lagacherie, 2008). Machine learning techniques, such as random forest 
classifiers are often used to perform these analyses (Heung et al., 2016; 
McBratney et al., 2003; Wadoux et al., 2020a). 

Toblerś first law of Geography, “everything is related to everything 
else, but near things are more related than distant things” (Tobler, 1970) 
is the theoretical basis for various digital soil mapping methods, espe-
cially variogram-based mapping such as Kriging. Siewert et al. (2021) 
provide evidence that this is not applicable in complex tundra envi-
ronments. There are rapid, sometimes repetitive, changes of soil prop-
erties over very short distances due to patterned ground and associated 
variations in e.g. ground ice content, organic layer thickness and the 
occurrence of cryoturbation. Machine learning techniques that find re-
lationships between environmental factors and the target variable 
without consideration of spatial structures or autocorrelation have the 
potential to overcome many of the issues associated with SOC mapping 
in tundra environments. It has been shown that they can resolve small- 
scale soil variations, which cannot be mapped with variogram-based 
methods. 

Many soil mapping approaches on local (Siewert, 2018) as well as 

Fig. 1. Locations and overview of the two study areas sampled during the two field campaigns in 2018 and 2019 (coordinate system of the map on the left: WGS 84 
UTM Zone 7 N, Basemap: Esri, 2023). 
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regional (Hanes et al., 2022; Ramcharan et al., 2018) and global scale 
(Poggio et al., 2021)- are based on machine learning. Studies have 
demonstrated that in arctic tundra environments random forest models 
have the best performance (Siewert, 2018; Siewert et al., 2021). 

In our study we sampled two small study areas, representative of 
lowland coastal tundra ecosystems along the Canadian Beaufort coast, to 
investigate  

(1) the distribution of SOC and N stocks within the first meter of soil, 
(2) which environmental parameters control SOC and N stocks dis-

tribution and  
(3) to assess whether contrasting glacial histories of the two study 

areas left an imprint on the prevailing SOC stocks. 

To answer these questions, we used environmental variables ranging 
from a spatial resolution of 1.24 m up until 20 m resampled to a reso-
lution of 2 m and applied a random forest (Breiman, 2001) model and 
further assessed the uncertainty of the model by using the quantile 
regression forest method (Vaysse and Lagacherie, 2017) following the 
workflow of Yigini et al (2018). 

2. Material and methods 

2.1. Study area and background 

The study areas Ptarmigan Bay and Komakuk Beach are located on 
the Canadian Beaufort Sea coast which is the terrestrial extension of the 
Canadian Beaufort shelf. The plain stretches ca. 300 km long from the 
Alaskan border in the west until the Mackenzie River delta in the east. 
The study area in the east, Ptarmigan Bay, lies within the limits of the 
Laurentide ice sheet during the LGM, while the study area in the west, 
Komakuk Beach, lies outside those ice sheet limits. The study areas were 
affected by periglacial processes over long timescales in the late Qua-
ternary and are composed of ice wedge polygonal lowland tundra 
(Rampton, 1982). The Ptarmigan Bay area is defined by lacustrine, 
fluvial and morainal deposits (Rampton, 1982). The Komakuk Beach 
area lies between two alluvial fans. The surficial geology is defined by 
lacustrine and fluvial sediments in the lowland area and colluvial sedi-
ments in the upland area (Rampton, 1982). 

Both study areas have a tundra climate. The mean annual tempera-
tures (1972–2000) at the nearby climate stations Shingle Point and 
Komakuk Beach are − 9.9 ◦C and − 11.0 ◦C and the mean annual pre-
cipitation is 254 and 161 mm, respectively. The average summer tem-
peratures during June, July and August are 8.6 ◦C (±1.7 ◦C) at Shingle 
point and 6.0 ◦C (±1.6 ◦C) Komakuk Beach (Government of Canada, 
2022). 

Reported average active layer depths in the literature are 30––40 cm 
on Herschel Island – Qikiqtaruk (Siewert et al 2021), and generally < 50 
cm along the Yukon mainland coast (Wolter et al., 2018). This is in 
agreement with our measurements of on average 33 cm at Ptarmigan 
Bay in 2018 and 35 cm at Komakuk Beach in 2019. Average amounts of 
volumetric ground ice in the area are 46%, but also up to 74% in some 
areas (Couture et al., 2018; Couture and Pollard, 2017). The regional 
vegetation is defined as low shrub tundra, subzone E in the Circum 
Arctic Vegetation Map (Walker et al., 2005). The species and plant 
functional type composition of the vegetation is strongly linked to micro 
topography and influenced by ice wedge degradation. Elevated areas 
such as high-center polygon centers and low-center polygons rims 
accommodate dwarf and low shrubs such as Betula nana or Salix sp. 
Whereas lower areas such as low-center polygon centers are dominated 
by gramindoids, especially sedges (Carex sp.) (Wolter et al., 2016). 

The landscape typically consists of low-centered and high-centered 
polygons. The former being the non-degraded form composed of an 
elevated circular rim around a lowered often water-filled center. The 
latter represents the degraded form characterized by a high drained 
center surrounded by often water-filled troughs around them (French, 

2007; Liljedahl et al., 2016). The transformation of low-centered poly-
gons into high-centered polygons is characterized by the following 
sequential processes: (i) the melt of ground ice, (ii) the formation of wet 
troughs (iii) the increased drainage of polygon centers and the thermal 
erosion which occurs along ice wedges, and (iv) the redistribution from 
rim material towards the center, as ice wedges grow wider in size 
(Wolter et al., 2018). The degradation of ice wedge polygons is mostly 
initiated or accelerated by geomorphic disturbances (Wolter et al., 
2018). When waterlogged conditions are sustained, ice wedge polygons 
remain stable, however, the current climate change may induce 
geomorphic changes accelerating the degradation process (Liljedahl 
et al., 2016; Wolter et al., 2018). 

2.2. Field campaign and soil data 

Soil sampling was carried out in the two coastal areas using a strat-
ified random sampling design based on catchment area and Quaternary 
geology (Rampton, 1982) at the Canadian Beaufort coast. The sampling 
sites were registered in the field with a handheld GPS. During a field 
campaign in August 2018, 40 sites were sampled in Ptarmigan Bay, 
followed by a field campaign during August 2019 where 46 sites were 
sampled in Komakuk Beach. The sampling in both years was carried out 
at the end of the summer near the time of maximum annual thaw of the 
active layer depth. We sampled the sites using a combination of sam-
pling by soil horizon from open soil pits in the active layer and at fixed 
depth interval with a permafrost corer (Palmtag et al., 2022). At each 
site a one-meter-wide soil pit was dug until the permafrost table was 
reached. The samples of the active layer were taken using either fixed- 
volume cylinders or, where soil density was low (usually in the 
organic horizons) by cutting blocks and measuring their dimensions. At 
sites that were too wet to be sampled from a soil pit, the upper soil was 
sampled from blocks that were cut out from the top. The frozen part of 
the profile was cored by hammering a steel pipe (outer diameter: 4.2 cm) 
in 10 cm depth increments into the ground. Whenever possible, all sites 
were sampled to a 100 cm depth. Sampling was stopped before that 
depth if a massive ice wedge was reached. Additional information about 
each sampling site, such as description about visible ice content, vege-
tation composition, amount of roots and landforms were noted in the 
field. Further, photos of the soil pit, the site itself from the top, and the 
surroundings of the locations were taken with a digital camera. 

2.3. Soil chemical analysis 

Samples were oven-dried at 65 ◦C for at least 72 h. Bulk density (g 
cm− 3) was calculated by dividing the dry weight (DW, g)) by the volume 
of the sample (VOL, cm3).  

(1) DBD [g cm− 3] = DW/VOL. 

All samples were analyzed for C % and N % content at the Centre for 
Microbiology and Environmental Systems Science, University of Vienna 
via EA1110 (CE instrument, Italy) coupled to a continuous-flow isotopic 
ratio mass spectrometer. Isotopic signatures (δ13C, ‰) were assessed by 
relating the abundance of 13C to 12C in reference to Vienna Pee Dee 
Belemnite (VPDB) standard (IRMS, DeltaPlus, Finnigan MAT). The loss 
on ignition method (Heiri et al., 2001) was performed on the samples 
after drying them at 105 ◦C. In a first step they were burnt at 550 ◦C for 
four hours to obtain soil organic matter (SOM) content. In a next step 
they were burnt at 900 ◦C for two hours to obtain inorganic carbon 
content. The latter was negligibly low (below 0.5 %), so we assume the 
total carbon content measured equals the SOC content. 

2.4. Pre-processing of soil data 

Due to frost heave processes, soil horizons in permafrost soils often 
vary horizontally (Siewert et al., 2016). Therefore, the depth of the 
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horizons were calculated using the notes from the field and by digitizing 
the soil horizon extent onto perspective corrected pictures of the soil pits 
(Supplementary material Fig. S1). The SOC stocks (kg C/m− 2) (2) and 
total nitrogen stocks (3) (kg N/m− 2) were calculated for each sampling 
depth using the fraction of organic carbon (% OC)/ total nitrogen (% 
TN), dry bulk density (DBD, g cm− 3), coarse fragments > 2 mm (CF, 
weight %) and thickness of the depth (T, cm) multiplied by 10 for unit 
conversion (Palmtag et al., 2018; Siewert et al., 2015):  

(2) SOC [kg m− 2] = (DBD * %OC *((1-CF) *T)*10.  
(3) TN [kg m− 2] = (DBD * %TN *((1-CF)*T)*10. 

In some cases, sufficient sample material was not available to 
perform laboratory analyses for some depth increments. For Komakuk 
Beach approx. 12 % and for Ptarmigan Bay 25 % of the data is based on 
values that were gap-filled from qualitative observations (field notes) 
and interpolation from adjacent depth increments. Depending on the 
position of the missing sample within the soil profile, rules were set up to 
estimate missing values. If samples above and below were available, the 
mean of those samples was used. In some cases, the same values as the 
sample below or above was used or the mean of similar soil horizons 
from other soil profiles. The soil data was then recalculated to the depth 
increments that are also present in the soil grids dataset (Poggio et al., 
2021) (0–5, 5–15, 15–30, 30–60 and 60–100 cm) using the same 
approach as in Siewert et al. (2016). The sampling depths were split into 
artificial depths of 1 mm (Wickham, 2011) and aggregated to the needed 
depth increments. All data calculations were performed in R statistical 
software (R Development Core Team, 2021). 

A total of 43 sites were used for the mapping of the Komakuk Beach 
area, three sites which were outside the mapping extent were excluded. 
For Ptarmigan Bay 40 sites plus six additional sites were used. The six 
additional sites were not part of the stratified random sampling design 
and were subjectively chosen based on being representative landforms 
during the same field campaign. 

2.5. Covariates 

Environmental covariates (Table 1) for the digital soil mapping were 
selected in accordance with the SCORPAN modelling framework 
(McBratney et al., 2003). The concept of covariates representing the soil 
forming factors is based on the traditional CLORPT model (Jenny, 1994) 
defined by the factors climate (CL), organisms (O), relief (R), parent 
material (P) and time (T). This model was updated for digital soil 
mapping and includes the factors soil (S), climate (C), organisms (O), 
relief (R), parent material (P), age (A) and the spatial location (N), also 
known as SCORPAN-model (McBratney et al., 2003). High resolution 8- 
band and panchromatic worldview-3 images (for Ptarmigan Bay: Digi-
talGlobe 18 July 2018 and for Komakuk Beach: DigitalGlobe 12 July 
2019) were acquired for each study area at the timing of the respective 

field season to show the conditions exactly at the time of the sampling. 
From these images 17 spectral indices were derived using the package 
RStoolbox (Leutner et al., 2022) in R from which the NDVI and GEMI 
indices were used for the final mapping due to a high level of intercor-
relation between the indices. Here we used the function findCorrelation 
from the package caret (Kuhn, 2022) and a cutoff value of > 0.8, indi-
cating a high correlation of the variables. Landcover information was 
used from a Landcover dataset based on Sentinel 1 and 2 data from 
Bartsch et al. (2019a) which is an indicator for different soil properties 
in tundra environments (Bartsch et al., 2019b). 

Studies have shown that C-band synthetic aperture radar can be used 
as an indicator for carbon stocks estimation and prediction across the 
arctic tundra landscape (Bartsch et al., 2016). Therefore, a dataset that 
contains the C-HH (Widhalm et al., 2019) and C-VV winter backscatter 
from Sentinel-1 preprocessed following the schemes detailed in Wid-
halm et al. (2018) and Bartsch et al. (2020) were used as covariates. In 
further explanations the variables S1 C-HH and S1 C-VV (Table. 1) are 
referred to as radar backscatter. 

Another covariate was the elevation derived from the Arctic DEM at 
2-meter resolution (Porter et al., 2018). The ArcticDEM is a digital 
surface model obtained from high resolution satellite imagery (World-
view-1,2,3 and GeoEye-1). Although covariates derived from a DEM are 
commonly used in digital soil mapping (e.g. Lamichhane et al., 2019; 
McBratney et al., 2003) we did not further use terrain parameters such 
as slope, aspect or curvature due to the very flat terrain of the study 
areas and a low accuracy of the DEM over the area. All covariates were 
resampled to a resolution of 2 m to account for the uncertainty in GPS 
measurements, but to still create high resolution maps. 

2.6. Predictive model 

We trained a Random Forest algorithm for each depth increment 
using the package randomForest implemented in the package caret 
which offers functions for data splitting, pre-processing, feature selec-
tion, model tuning and variable importance estimation (Kuhn, 2022). 
Random Forest is a technique that builds an ensemble of several decision 
trees (Breiman, 2001). To reduce the prediction error, random forests 
are based on the concepts of bagging (bootstrap and aggregating). Based 
on bootstrap samples of the training data a large amount of trees is built 
which is later averaged by aggregating (Breiman, 2001, 1996; Wadoux 
et al., 2019). Three parameters can be modified in a random forest 
model. The first parameter is ntree which is the amount of computed 
trees and which we set to 500. The second is mtry which is the amount of 
covariates randomly selected at each split. Here we tested several 
numbers of mtry by using grid search and the model with the lowest 
RMSE was chosen for prediction. The last parameter is the nodesize, 
which defines the minimum amount of training data to continue split-
ting of the tree. This was kept at its default value of 5. The variable 
importance was calculated using the varImp function of the caret 

Table 1 
Description of the raster layers used as covariates within the SCORPAN digital soil mapping framework (McBratney et al., 2003). All layers were resampled to a 
resolution of 2 m. The table shows only the covariates that were used for the models. Further spectral indices derived from the Worldview-3 images and individual 
bands were removed due to intercorrelation (r > 0.8).  

SCORPAN Category Variable Source Data 
source 

Resolution Acronym 

Soil Blue this study Worldview-3 image 1.24 m B 
Organisms Near Infraread 2 this study Worldview-3 image 1.24 m NIR2 
Organisms Global Environmental Monitoring Index (Pinty and Verstraete, 1992) Worldview-3 image 1.24 m GEMI 
Organisms, Soil Normalised Difference Vegetation Index (Rouse et al., 1974) Worldview-3 image 1.24 m NDVI 
Organisms, Soil, 

Parent material, Age 
Landcover data (Bartsch et al., 2019a) Landcover derived from Sentinel 1 and 2 data 20 m LC 

Relief (terrain), Soil, 
Organisms, Climate 

Normalized C-VV-winter backscatter this study Sentinel 1 10 m S1 C-VV 

Relief (terrain), Soil, 
Organisms, Climate 

Normalized C-HH winter backscatter (Widhalm et al., 2019) Sentinel 1 20 m S1 C-HH 

Relief (terrain) Elevation (Porter et al., 2018) ArcticDEM 2 m DEM  
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package. The function findCorrelation of the caret package was used to 
remove continuous variables that are highly intercorrelated (r > 0.8) to 
reduce redundancy in the model. The chosen covariates to be the least 
intercorrelated were: B, NIR2, GEMI, NDVI, LC, S1 C-VV, S1 C-HH, 
elevation (Table 1). The landcover data was not included in this process 
and all landcover data was added to the predictor variables. Each 
landcover class was converted into a binary layer [0,1 – presence/ 
absence] to handle uneven distribution of classes across the study areas. 
The classes of interest that occur in the study areas are as follows: 1: 
Sparse vegetation (without shrubs), mostly sandy soil; flood plains, 
recent landslides, also within fire scars, 2: Dry cryptogamic-crust or 
sparse vegetation, 3: Graminoid, prostrate dwarf shrub, patterned 
ground, partially bare, 4: Dry to moist prostrate to erect dwarf shrub 
tundra, 5: Moist to wet graminoid prostrate to erect dwarf shrub tundra, 
13: Disturbed, including forest fire scars, seasonally inundated areas and 
landslide scars. They are referred to as LC_PB1-13 and LC_KB1-13 in the 
following. 

The random forest model was internally validated using leave-one- 
out crossvalidation (LOOCV) due to the limited amount of sampling 
sites. The final prediction was computed for the catchment area for 
Ptarmigan Bay. For Komakuk Beach the actual predicted area is a 
selected area in the lowland. 

In addition to the validation of the model itself, the uncertainty of 
each predicted value was assessed using the quantile regression forest 
(QRF) method following the workflow of Yigini et al. (2018). The 
resulting datasets provide an uncertainty measure at the pixel – level 
that depicts the range of uncertainty across the whole study areas. This 
method combines an estimation of the model uncertainty and the un-
certainty caused by the variations of the data. Use of QRF is recom-
mended when only a limited amount of soil data is available and no 
independent validation dataset is available (Vaysse and Lagacherie, 
2017). Both of these conditions apply to this study. In the first step of 
QRF the sensitivity of the model to the data was tested by running 
several repetitions of the algorithm. We did 20 repetitions based on 70% 
of the data and used 30% for testing. The sensitivity of the model to 
available data was created based on the standard deviation of all 20 
predictions. In the next step quantile regression forest was used to assess 
the uncertainty of the model caused by variations of the data by 
generating a probability distribution of the values that each pixel can 
take. The total uncertainty is the combined uncertainty. Yigini et al. 
(2018) also mention that further errors are introduced by uncertainties 
in the soil data and uncertainties in the covariates which were not 
further estimated in this work. 

In a final step we performed an additional analysis for the SOC stock 
data by adding the accumulated SOC stock predictions from the upper 
depth as predictor variable to the model for the respective lower depth 
interval. For simplification in following explanations this variable is 
called “accumulated SOC stocks”. The SOC stocks were mapped in kg C/ 
m− 2, but the final results were converted to kg C/m− 3 for a better 
comparison due to the different thicknesses of the depth intervals. 

3. Results 

3.1. Model performance 

The results of the crossvalidation show stable model results, with all 
RMSE values being lower than the standard-deviation. The model for the 
study area Ptarmigan bay depth interval 0 – 5 cm for example had an 
RMSE value of 0.67, while the standard-deviation of the sampling values 
is 0.95. For models where the variable “accumulated SOC stocks” were 
included, performance was further improved, showing a lower RMSE 
value than the respective model where it was not included. This was the 
case for all the models of Komakuk Beach but not for the soil layer below 
15 cm at Ptarmigan Bay (15–30, 30–60 and 60–100 cm). 

3.2. Variable importance 

At Ptarmigan Bay, radar backscatter (a proxy for micro topography) 
was an important variable for SOC stocks in the upper depth increments 
0–5 and 5–15 cm and for the lowest depth 60–100 cm. Vegetation 
indices were the most important for the depth intervals from 15 to 60 cm 
(Table 2,Fig. 4). The models for the N stocks have a similar behavior. 
Radar backscatter was among the most important variables for depth 
15–30 cm and it was also important for depth 0–5 and 60–100 cm. For 
the SOC-stocks as well as for the N stocks landcover (LC, Table 1) was the 
second most important variable after radar backscatter when looking at 
the depth 60–100 cm. At Komakuk Beach radar backscatter (C-HH) 
together with the LC were important variables across all depths. How-
ever, for the SOC stocks, NDVI was the most important for the upper soil 
and the worldview-3B for the lowest depth interval. For the N stocks 
worldview-3B was important for the lowest depth interval was well. For 
the upper depth intervals LC was more important than radar backscatter. 

When adding the accumulated SOC stocks as predictor variable, this 
variable is selected as the second most important variable for depth 
5–15 cm at Ptarmigan Bay and the second most for depth 15–30 cm. For 
depth 30–60 cm the soil was not selected as important and GEMI, NIR2 
and NDVI were the most important variables, which is the same result as 
without the soil variable. This applies as well to the depth 60–100 cm 
where radar backscatter and LC were most important. At Komakuk 
Beach the accumulated SOC stocks was the most important variable for 
depth 5–15, 30–60 and 60–100 cm, but not for depth 15–30 cm. 

The models for the SOC content (Supplementary material 
Figs. S14–15) show similar patterns as the models for the SOC stocks 
with in general higher importance of the radar backscatter at Ptarmigan 
Bay and lower relevance at Komakuk Beach. A difference can be seen 
that for 30–60 and 60–100 cm the elevation is the most important 
variable at Komakuk Beach. Relevance of LC and radar backscatter de-
creases with depth whereas at Ptarmigan Bay particularly radar back-
scatter is important across all depths, except 0–5 cm. 

3.3. Predictions 

The highest amounts of SOC stocks and N stocks can be found in 
depth 15–30 cm in both study areas (Fig. 2). At Ptarmigan Bay SOC and 
N stocks are on average higher in all depth intervals except 60–100 cm 
where the average SOC and N stocks are higher at Komakuk Beach than 
at Ptarmigan Bay (Supplementary material. Table S 1). At Ptarmigan 
Bay more sites were cored, but often the coring hit an ice wedge which 
led to a higher presence of zero-values in the depth interval 60–100 cm. 
In this depth interval SOC and N stock values show a substantially higher 
variability at Ptarmigan Bay than at Komakuk Beach (Fig. 2). A higher 
variability can be also observed in the SOC stock data at depth 15–30 cm 
(Fig. 2 B). 

The prediction maps reflect the values of the input data and show 
high SOC stocks and N stocks in depth 15–30 cm. The area in the 
northwest of the stream is dominated by dry high-center polygons where 
higher values are predicted in contrast to the wetter fen area east of the 
stream. Here lower SOC stock and N stock values were predicted. At 
Ptarmigan Bay in depth 15–30 cm there is a trend visible with higher 
SOC and N-stock values towards the west of the study area. This trend is 
not visible across the other depth intervals. In general the centers of 
high-centered polygons and the rims of low-centered polygons show 
higher predicted SOC and N stock values, whereas areas of low-centered 
polygon centers show lower predicted values. 

The SOC content is the highest in 0–5 and 5–15 cm depth and de-
creases substantially with the 15–30 cm depth interval (Fig. 2 A). At 
Ptarmigan Bay there is a lower spread in the data for 0–5 and 5–15 cm 
than for Komakuk Beach. For 30–60 and 60–100 cm the spread is higher 
at Ptarmigan Bay and for 15–30 cm both areas have a relatively high 
spread. At Komakuk Beach the total study area is 20.7 km2 and the 
average SOC stock is 66.6 kg m− 2 and the average N stock is 3.77 kg m− 2 
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in the upper meter. The Ptarmigan Bay study area is 2.8 km2 and the 
average SOC stock is 40.0 kg m− 2 and the average N stock is 3.83 kg m− 2 

in the upper meter. 

3.4. Uncertainty 

The results of the uncertainty modelling based on quantile regression 
forest shows that higher accuracy is achieved close to the sampling lo-
cations and in areas were the spectral properties of the ground surface 
are similar to sampling locations (Fig. 6). Especially for Komakuk Beach, 
fen areas with partially inundated surface have the highest uncertainty. 
In Ptarmigan Bay, areas with higher uncertainty are more widespread 
across the area. The uncertainty differences in the depth 60–100 cm for 
Ptarmigan Bay are the highest. Observed vs. predicted value plots 
(Fig. 3) show a fairly good prediction of values around the mean value of 
the target variable, whereas an over-prediction of low values and an 
under-prediction of high values can be observed. This applies in 
particular to the zero-values of the depth interval 60–100 cm which 
were substantially over predicted. 

4. Discussion 

We have developed high resolution maps of SOC (Fig. 5) and N stocks 
and SOC content (Supplementary material Figs. S2–5) for two coastal 
areas along Canadian Beaufort Sea coast using a random forest algo-
rithm. We show the distribution of C and N across the landscape and also 
discuss vertical differences in the upper 1 m of soil. We assessed the 
sensitivity of the model to available data and uncertainty of the model 
with quantile regression forest (Vaysse and Lagacherie, 2017; Yigini 
et al., 2018). We also developed models for SOC stocks where the soil 

Table 2 
Model results of random forest models. The table shows the mtry at which the 
best performing model was chosen according to the RMSE and the three most 
important variables of each model. The standard deviation was added to put the 
RMSE value into context.  

model mtry RMSE MAE StDev Var1 Var2 Var3 

Ptarmigan Bay 
SOC stocks 
PB_0-5 

cm 
5  0.67  0.67  0.95 DEM S1 C-HH NDVI 

PB_5- 
15 cm 

11  2.10  2.10  2.51 S1 C-HH NIR2 GEMI 

PB_15- 
30 cm 

4  4.66  4.66  6.48 GEMI NDVI B 

PB_30- 
60 cm 

2  6.51  6.51  8.24 GEMI NIR2 NDVI 

PB_60- 
100 
cm 

7  11.76  11.79  13.03 S1 C-HH S1 C-VV LC_PB1  

SOC stocks (prediction of soil above included) 
PB_5- 

15 cm 
14  1.84  1.84  2.51 SOC 

stock 
above 

S1 C-HH GEMI 

PB_15- 
30 cm 

7  4.66  4.66  6.48 GEMI SOC 
stock 
above 

B 

PB_30- 
60 cm 

2  6.53  6.53  8.24 GEMI NIR2 NDVI 

PB_60- 
100 
cm 

3  12.03  12.03  13.03 S1 C-HH S1 C-VV LC_PB1  

N stocks 
PB_0-5 

cm 
9  0.06  0.07  0.09 DEM B S1 C- 

HH 
PB_5- 

15 cm 
2  0.16  0.16  0.21 NIR2 LC_PB2 NDVI 

PB_15- 
30 cm 

4  0.28  0.28  0.42 B GEMI S1 C- 
VV 

PB_30- 
60 cm 

2  0.39  0.39  0.5 GEMI NDVI NIR2 

PB_60- 
100 
cm 

9  0.72  0.72  0.81 S1 C-HH LC_PB1 NDVI  

SOC content 
PB_0-5 

cm 
2  5.54  5.54  6.9 B NDVI LC_PB3 

PB_5- 
15 cm 

2  5.02  5.02  5.72 S1 C-VV B NDVI 

PB_15- 
30 cm 

2  9.09  9.09  10.21 LC_PB4 S1 C-VV B 

PB_30- 
60 cm 

8  7.87  7.87  9.19 B S1 C-HH DEM 

PB_60- 
100 
cm 

4  10.12  10.12  11.43 S1 C-HH DEM NIR2  

Komakuk Beach 
SOC stocks 
KB_0-5 

cm 
7  0.78  0.78  1.04 NDVI NIR2 S1 C- 

HH 
KB_5- 

15 cm 
2  1.53  1.53  1.82 S1 C-HH NIR2 LC_KB4 

KB_15- 
30 cm 

2  4.04  4.04  5.94 LC_KB5 NIR2 DEM 

KB_30- 
60 cm 

2  6.06  6.06  7.35 S1 C-HH LC_KB4 DEM 

KB_60- 
100 
cm 

2  9.80  9.80  11.97 B GEMI LC_KB5  

SOC stocks (prediction of soil above included)  

Table 2 (continued ) 

model mtry RMSE MAE StDev Var1 Var2 Var3 

KB_5- 
15 cm 

14  1.31  1.31  1.82 SOC 
stock 
above 

LC_KB5 NIR2 

KB_15- 
30 cm 

2  3.90  3.90  5.94 S1 C-HH NIR2 LC_KB5 

KB_30- 
60 cm 

12  5.04  5.04  7.35 SOC 
stock 
above 

NIR2 B 

KB_60- 
100 
cm 

2  9.65  9.65  11.97 SOC 
stock 
above 

B GEMI  

N stocks 
KB_0-5 

cm 
2  0.05  0.05  0.07 LC_KB4 NIR2 NDVI 

KB_5- 
15 cm 

2  0.12  0.12  0.13 LC_KB4 DEM NIR2 

KB_15- 
30 cm 

2  0.23  0.23  0.3 NIR2 S1 C-HH LC_KB5 

KB_30- 
60 cm 

2  0.36  0.36  0.41 LC_KB4 S1 C-HH B 

KB_60- 
100 
cm 

2  0.61  0.61  0.72 B NDVI GEMI  

SOC content 
KB_0-5 

cm 
2  9.81  9.81  12.12 S1 C-HH GEMI NIR2 

KB_5- 
15 cm 

2  10.85  10.85  12.47 LC_KB4 NDVI LC_KB3 

KB_15- 
30 cm 

2  9.82  9.82  13.28 NDVI GEMI LC_KB3 

KB_30- 
60 cm 

2  7.01  7.01  10.03 DEM NDVI S1 C- 
HH 

KB_60- 
100 
cm 

2  6.66  6.66  8.96 DEM NDVI NIR2  
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itself is added a predictor variable in the form of the accumulated SOC 
stocks. This is in line with the SCORPAN model (McBratney et al., 2003), 
as the soil itself is suggested to be an explanatory variable as well. With 
the help of the Random Forest models, it is further possible to identify 
important parameters that influence the target variables spatially across 
the landscape and also vertically within the soil profile. 

4.1. Variable importance 

A previous study introduced the usage of Sentinel 1C - HH winter 
backscatter to map SOC stocks in tundra environments (Bartsch et al., 
2016). That study found a negative linear relationship between SOC 
stocks for 0–30 and 30–100 cm depth and early winter radar back-
scatter. The hypothesized mechanism is that varied microtopography 
(roughness) governs in early winter, when the other factors such as soil 
moisture and snow structure are minimal. A low roughness (low back-
scatter) indicates high SOC (Bartsch et al., 2016). 

Our findings support that early winter radar backscatter can be used 
to map SOC stocks in tundra environments. It is a proxy for surface 
roughness, aboveground remains of vascular plants and near-surface soil 
texture and represents only volume scattering and surface roughness 
(Bartsch et al., 2016). In contrast, the signal during the summer is 
influenced by liquid water. High backscatter can be caused by open 
water and wetlands, but also by areas with high surface roughness. High 
SOC stocks are associated with areas of low surface roughness, therefore 
winter backscatter is used as it represents similar conditions as dry soil 
(Bartsch et al., 2016). 

Our results underline the usage of radar backscatter as one predictor 
among several other predictors in a machine learning framework. In our 
study, radar backscatter, specifically C-HH, was important for the 
topsoil in both study areas, and even for the depth interval 60–100 cm at 
Ptarmigan Bay. This link between surface roughness and C stocks re-
flects an interaction between micro- topography (pronounced IWP rims 

at the surface) and the presence of massive ice wedges at depth (which 
reduce C and N stocks). Plotting linear fits between SAR backscatter and 
SOC stocks in surface (5–15 cm) and deep soils (30–60 cm) shows 
concurring increases of surface soil C with surface roughness, but 
opposing patterns for deep soil (Fig. 7). We interpret the opposing pat-
terns for deep soil as a higher presence of ice wedges in the subsoil at 
Ptarmigan bay (commonly associated to LCPs), while the more mature 
HCPs at Komakuk Beach typically do not express massive ice wedge 
polygons in the upper meter of soil (but massive ice is likely present at 
greater depths), For the surface soils, weak positive trends indicate 
higher SOC stock values with increased surface expression of micro-
topography. This is in line with discussions in Bartsch et al. (2016) who 
suggest higher SOC stocks in cryoturbated soils where surface roughness 
and therefore radar backscatter is often higher. However, the correlation 
between SOC stocks and radar backscatter in our study is not strongly 
linear (Fig. 7) and further assessment of links between landform prop-
erties and C stock distributions are needed. 

For Ptarmigan Bay, vegetation indexes (NDVI, NIR2 and GEMI) were 
among the most important variables for the SOC stocks across depths 
from 5 to 60 cm. Previous studies show that NDVI is linked to SOC stock 
distribution in permafrost regions and use NDVI as single predictor 
(Horwath Burnham and Sletten, 2010) or among other predictors (Sie-
wert, 2018; Wu et al., 2022). Further studies in other climatic areas use 
NDVI as predictor for SOC stocks and could identify NDVI as one of the 
most important predictors (Gomes et al., 2019; Yang et al., 2016; Zhou 
et al., 2019). GEMI is a non-linear vegetation index and is similar to 
NDVI, but less sensitive to atmospheric effects. The importance of these 
vegetation-related variables shows that SOC stocks accumulation in 
these depths are related to plant activity and indirectly to rooting depth 
(Grosse et al., 2011). The latter is limited by the active layer depth which 
was around 30 cm during the time of the sampling. The influence of 
vegetation indices on the mainly frozen depth 30–60 cm might be 
caused by the strong link to near-surface organic matter by providing 

Fig. 2. Value distribution of SOC content (A), SOC stocks (B) and N stocks (C) for Komakuk Beach (KB) and Ptarmigan Bay (PB) across all sampled sites.  
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inputs of SOC into the upper permafrost through cryoturbation (Ping 
et al., 2015). For Komakuk Beach however, landcover and micro-
topography (radar backscatter) related parameters were more important 
for the SOC stocks across all depths. NIR2 and GEMI were the second 
most important variables for the upper soil (0–5, 5–15 and 15–30 cm) 
and the lower soil (60–100 cm). This shows that vegetation, but also 
factors related to cryoturbation and permafrost processes are equally 
important at Komakuk Beach. At Ptarmigan Bay there is a difference 
between the different depths with more importance of vegetation 
related parameters in the middle and microtopography related 

parameters in the upper soil and lower soil linked to the ice wedges. 
For some models the blue band of the worldview-3 image was chosen 

to be the among the most important variables. Water shows a higher 
reflectance in the blue band and therefore flooded areas and saturated 
soils are reflected in the blue band. The moisture conditions have a high 
influence on SOC stock accumulation and decomposition (van Huis-
steden, 2020a). 

The high importance of the overlying soil layers for all depths at 
Komakuk Beach in contrast to Ptarmigan Bay indicates a tighter 
coupling between surface soil and deep frozen soils at Komakuk Beach 
(Supplementary material Figs. 10 and 11). At Ptarmigan Bay there was 
only high importance of the accumulated SOC stocks until depth 15–30 
cm which indicates only an importance of the topsoil within the Active 
Layer. Here the influence of ground ice and its related processes and 
properties (van Huissteden, 2020b) on the deeper depth increments 
could play a more important role on SOC stocks than the upper soil. 

At Komakuk Beach the reason for the influence of the overlying soil C 
on deeper layers could be caused by less ground ice in the upper meter or 
because the landforms are older and the SOC has accumulated deeper 
into the soil over time. According to Fritz et al. (2012) there has been 
extensive syngenetic peat growth at Komakuk Beach until 6700 cal years 
BP, and a gradual slowing (afterwards) with lower carbon accumulation 
rate during the last 4000 years (Fritz et al., 2016). However, there has 
been still regular peat growth initiations during the last 300 years at a 
studied ice wedge polygon at Komakuk Beach (Wolter et al., 2018), 
which shows continuous peat growth. A studied ice wedge polygon at 
Ptarmigan Bay shows that peat formation started within the last 
1600–600 years especially with a buildup of peat in ice wedge polygons 
during at least 1100 years (Wolter et al., 2018). This indicates that the 
peat at Ptarmigan Bay is younger and soils at Komakuk Beach formed 
over longer time which is why the accumulated SOC stocks are impor-
tant for deeper soil. The longer period of peat accumulation at Komakuk 
Beach also indicates that ice wedges, and therefore massive ground ice, 
might be found deeper than our 1 m sampling depth. However, this 
cannot be confirmed by our study, since no data from deeper soils was 
collected in this study. The results of our study with 66.6 kg C/m− 2(− |− ) 
at Komakuk Beach and 40.03 kg C/m− 2(− |− ) at Ptarmigan Bay is in 
contrast to the predicted values by the Northern Circumpolar Soil Car-
bon Database (NCSCD) (Hugelius et al., 2013). Here the average SOC 
stocks at Komakuk Beach are 18.1 kg C/m− 2 and 92.8 kg C/m− 2 at 
Ptarmigan Bay. Our results indicate less SOC storage where ground ice 
content is high. 

4.2. Uncertainties and limitations 

Our study shows relatively high uncertainties reflected by the RMSE 
values in relation to the standard deviation. This supports previous 
findings of a high variability of soil properties on a small scale in 
northern latitudes, especially in permafrost areas (e.g. Ping et al., 2015; 
Siewert et al., 2021, 2016). 

One limitation of our study might be the amount of sampling points 
which could be collected in the field due to very challenging logistical 
constraints. The small amount of field sampling points lead to the se-
lection of “leave-one-out” cross validation as internal validation 
method, which was used as well in a study by Wu et al. (2022). 

By analyzing the variables chosen as most important in a random 
forest model, inferences can be made regarding which soil forming 
processes or mechanisms most affect SOC or N distribution. Studies use 
variable importance to interpret their relationships with soils and soil 
processes (e.g. McNicol et al., 2019). In contrast some studies suggest to 
not use variable importance to draw causal relationships between the 
target variable and the variable importance (Fourcade et al., 2018; 
Wadoux et al., 2020b). However, these studies test model performance 
by using pseudovariables in machine learning models. To be able to 
interpret and relate variable importance to soil processes and properties 
expert knowledge is necessary. This includes knowledge on which 

Fig. 3. Observed SOC stocks [kg m− 2] vs predicted SOC stocks [kg m− 2] by the 
random forest model for each depth interval at A Ptarmigan Bay and B 
Komakuk Beach. The 1:1 dashed line is added for reference and the blue line is 
the regression line. RMSE from observed and predicted values and adjusted R 2 

from a linear model between observed and predicted values were added. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 4. Variable Importance for the random forest models for each depth interval (0–5, 5–15, 15–30, 30–60, 60–100 cm) at A Ptarmigan Bay and B Komakuk Beach 
(for explanations of abbreviations see Table 1 and section 2.6 for the different landcover classes. LC stands for landcover, PB for Ptarmigan Bay and the number for 
the landcover class described in section 2.6). 

J. Wagner et al.                                                                                                                                                                                                                                 



Geoderma 438 (2023) 116652

10

variables are related to the target variable. In the case of permafrost SOC 
stocks Sentinel 1 backscatter (Bartsch et al., 2016) or NDVI (Horwath 
Burnham and Sletten, 2010) have been proven to be related to SOC stock 
distribution. Another advantage of random forest models is their 
robustness and good performance in general (e.g. Li et al., 2011; 

Fig. 5. SOC stock predictions for the five different depth intervals 0–5, 5–15, 
15–30, 30–60 and 60–100 cm at A Ptarmigan Bay and B Komakuk Beach. The 
predictions were made in kg C/m− 2, but for a better comparability the values 
were converted into kg C/m− 3. 

Fig. 6. Uncertainty of SOC stock predictions (fraction of mean from 0 to 1) at A 
Ptarmigan Bay and B Komakuk Beach using the Quantile Regression Forest 
method, where crosses indicate the soil sampling points. Note that each un-
certainty map is based on an individual uncertainty assessment for that specific 
depth model and should be interpreted separately. The maps were combined in 
this figure with the same legend to be able to show all figures in the manuscript. 
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Tziachris et al., 2019), but especially in permafrost environments (Sie-
wert, 2018) which is why it is recently among the most popular used 
algorithms (Wadoux et al., 2020a). It performs well around the mean of 
the dataset (Fig. 3), however, a limitation in random forest models is 
that they cannot be used for extrapolation outside the range of the 
dataset. High values are under predicted and low values over predicted 
(Fig. 3). Especially the latter lead in our case to an over prediction of 
zero values in depth 60–100 cm at Ptarmigan Bay (3). 

4.3. Implications and further research 

Our study underlines the importance of ground ice as one major 
factor influencing the SOC stocks distribution in permafrost areas in 
lowland tundra ecosystems. Melting of ground ice can cause abrupt thaw 
events that potentially change SOC stocks and fluxes irreversibly 

(Turetsky et al., 2020). Both our study areas show similar surface 
properties such as typical lowland tundra landforms and associated 
plant communities. However, the subsurface structure with regard to 
soil properties and ground ice varied greatly between both areas in the 
upper meter with higher amounts of ground ice at Ptarmigan Bay than at 
Komakuk Beach. To be able to transfer our models and data to areas with 
no soil data availability, information on ice wedge structure and ground 
ice content is needed, in addition to organic layer thickness and peat 
depth. This information could be helpful to place pseudo-points based 
on expert knowledge that can generate possible new data points for 
digital soil mapping studies as shown by Koch et al. (2019). Data 
augmentation which is commonly used in deep learning applications 
(Padarian et al., 2019) could be an additional step in the pre-processing 
of predictor variables to make models more robust and potentially 
transferable to other study sites. Further, 3D models could be developed 

Fig. 7. Sentinel 1C-HH winter backscatter vs SOC stocks for A Ptarmigan Bayand B Komakuk Beachfor selected depth intervals where Sentinel 1C-HH was chosen to 
be the most important variable by the random forest model. Sentinel 1C-HH backscatter values are in sigma 0 at 30◦ and range in the full dataset from 0 to − 30 dB 
(Widhalm et al. 2019). 

J. Wagner et al.                                                                                                                                                                                                                                 



Geoderma 438 (2023) 116652

12

to represent changes with depth (e.g. Adhikari et al., 2013; Zhang et al., 
2020), though the algorithm needs to be selected carefully and the re-
sults assessed properly whether they can reflect variation with depth 
(Ma et al., 2021). 

To gain detailed knowledge on ground-ice content and distribution, 
geophysical surveys could help to improve the knowledge on ice dis-
tribution (Schennen et al., 2022; Schwamborn et al., 2002). 

In total, more SOC is stored in the upper meter at Komakuk Beach 
than at Ptarmigan Bay. However, considering the higher amounts of 
ground ice at Ptarmigan Bay, degradation of ice wedge polygons could 
make the soil carbon at this site more vulnerable to warming, particu-
larly through abrupt thaw events. Siewert et al. (2021) strongly rec-
ommended landform-scale maps, which our study now provides. This 
will provide necessary information for modeling studies that assess 
subgrid-variability (Beer, 2016) as well as potential carbon fluxes in ice 
wedge polygon landscapes. 

5. Conclusion 

Our study provides one of the first high spatial and vertical resolu-
tion datasets of SOC stock and N stock in a coastal lowland tundra area in 
northwestern Canada. We also present maps of SOC stock, N stock and 
SOC content distribution at a spatial scale of 2 m which represents 
landform- and sub-landform-scale. This study partially captures the high 
variability in permafrost areas at a sub-regional scale and demonstrates 
that permafrost soils are highly complex. 

Though landforms in both study areas are characterized by HCP and 
LCP being typical for lowland tundra, their developmental stages vary 
between the two study sites which has an impact on the C storage in the 
upper meter of the soil. The during the LGM previously glaciated area 
contains 40.0 kg C/m− 2, 3.83 kg N m− 2 and more ground ice whereas 
the unglaciated area contains 66.6 kg C/m− 2 and 3.77 kg N m− 2 in the 
upper meter. Our study may contribute to improved understanding of C 
and nutrient fluxes and ice wedge polygon degradation on fine spatial 
scales. 

Our results show that the random forest machine learning algorithm 
performs well for landscape scale mapping in areas with limited data 
availability. It is further possible to identify important parameters 
selected by these models. A limitation of random forest models is that 
they overpredict zero-values in ice rich depth intervals. High resolution 
maps of ground ice distribution and content, that we currently lack, are 
therefore vital to properly map SOC stocks for those depth intervals that 
contain a lot of ice. We therefore recommend to improve data on ground 
ice content as well as peat and organic layer thickness to refine the 
transferability of the models to other areas where no data is available. 
Geophysical techniques in combination with satellite data may here be 
valuable tools. 
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