
ART I C L E

Me t h o d s , T o o l s , a n d T e c h n o l o g i e s

Measuring stability in ecological systems without static
equilibria

Adam Thomas Clark1 | Lina K. Mühlbauer1 | Helmut Hillebrand2,3,4 |

Canan Karakoç5

1Institute of Biology, University of Graz,
Graz, Austria
2Institute for Chemistry and Biology of
Marine Environments, Carl-von-Ossietzky
University Oldenburg, Wilhelmshaven,
Germany
3Helmholtz-Institute for Functional
Marine Biodiversity at the University of
Oldenburg, Oldenburg, Germany
4Alfred Wegener Institute,
Helmholtz-Centre for Polar and Marine
Research, Bremerhaven, Germany
5Department of Biology, Indiana
University, Bloomington, Indiana, USA

Correspondence
Adam Thomas Clark
Email: adam.clark@uni-graz.at

Funding information
Alfred-Wegener-Institute,
Helmholtz-Center for Polar and Marine
Research; Carl-von-Ossietzky University;
Deutsche Forschungsgemeinschaft,
Grant/Award Number: HI 848/26-1;
German Science Foundation; Ministry for
Science and Culture of Lower Saxony;
Volkswagen Foundation, Grant/Award
Number: ZN3285; University of Graz

Handling Editor: Debra P. C. Peters

Abstract

Ecological stability refers to a range of concepts used to quantify how

species and environments change over time and in response to disturbances.

Most empirically tractable ecological stability metrics assume that systems

have simple dynamics and static equilibria. However, ecological systems

are typically complex and often lack static equilibria (e.g., predator–prey
oscillations, transient dynamics, chaos). Failing to account for these factors

can lead to biased estimates of stability, in particular, by conflating effects of

observation error, process noise, and underlying deterministic dynamics. To

distinguish among these processes, we combine three existing approaches:

state space models; delay embedding methods; and particle filtering. Jointly,

these provide something akin to a deterministically “detrended” version of the

coefficient of variation, separately tracking variability due to deterministic

dynamics versus stochastic perturbations. Moreover, these variability estimates

can be used to forecast dynamics, classify underlying sources of stochastic

dynamics, and estimate the “exit time” before a state change takes place

(e.g., local extinction events). Importantly, the time-delay embedding methods

that we employ make very few assumptions about the functions governing

deterministic dynamics, which facilitates applications in systems with limited

data and a priori biological knowledge. To demonstrate how complex

dynamics without static equilibria can bias ecological stability estimates, we

analyze simulated time series of abundance dynamics in a system with

time-varying carrying capacity and empirically observed abundance dynamics

of the green algae Chlamydomonas terricola grown in a diverse microcosm

mixture under variable temperature conditions. We show that stability

estimates based on raw observations greatly overestimate temporal variability

and fail to accurately forecast time to extinction. In contrast, joint application

of state space modeling, delay embedding, and particle filters were able to:

(1) correctly quantify the contributions of deterministic versus stochastic

variability; (2) successfully estimate “true” abundance dynamics; and
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(3) correctly forecast time to extinction. Our results therefore demonstrate the

importance of accounting for effects of complex, nonstatic dynamics in studies

of ecological stability and provide an empirically tractable and flexible toolkit

for conducting these measurements.

KEYWORD S
ecological stability, empirical dynamic modeling, exit time, particle filter, state space model,
time to extinction

INTRODUCTION

Stability has long been a central focus in ecology
(Holling, 1973; Ives et al., 1999; Lewontin, 1969;
May, 1973; Pimm, 1984). Although many different defini-
tions and aspects of stability exist, a unifying theme is
that they aim to quantify variability and sensitivity to dis-
turbance in dynamical systems (Donohue et al., 2016;
Grimm & Wissel, 1997). These metrics are therefore vital
for, among other things, estimating the likelihood of
invasions or extinctions, forecasting population dynam-
ics, or predicting effects of anthropogenic disturbances.

Despite decades of work and major advances in
understanding of stability in ecological systems
(Donohue et al., 2013; Tilman, 1995), at least two related
methodological hurdles currently hinder progress. First,
although many flexible theoretical stability metrics have
been developed, most of these tend to be difficult to apply
in practice, leading theoretical versus empirical studies to
apply disparate, and generally incompatible, toolsets
(DeAngelis & Yurek, 2015; Donohue et al., 2016;
Evans, 2012). Second, most existing empirically tractable
metrics assume that systems have a single, static equilib-
rium (e.g., a carrying capacity), which is used as a “base-
line” against which effects of disturbances and recovery
rates are gauged (Donohue et al., 2016; Grimm &
Wissel, 1997; Ives et al., 1999; but see Chesson, 2017).
However, in real-world ecological systems, baseline con-
ditions are not always clear, and dynamics often vary
greatly across space and time (Clark et al., 2021;
Coulson, 2021; DeAngelis & Waterhouse, 1987; Hastings
et al., 1993; Pimm et al., 2019; Shoemaker et al., 2022).

A major challenge is that variability in complex sys-
tems can be attributed to at least three different sources:
observation error, process noise, and deterministic varia-
tion (de Valpine & Hastings, 2002). These describe,
respectively: deviations between imperfect measurements
and the true state of a system; stochastic fluctuations that
actually influence dynamics; and variability caused by
repeatable system processes (i.e., such that two identical
systems starting in the same state will follow exactly the
same dynamics). Because observation error results only

in changes in our perception of a system but not its actual
state, it can lead to overestimates of variability, and thus
underestimates of stability (de Mazancourt et al., 2013).
In contrast, both process noise and deterministic varia-
tion can influence stability, although their relative contri-
butions can be difficult to disentangle. For example,
fluctuations in species abundances might be driven by
repeated environmental perturbations, which could indi-
cate instability and that local extinction is imminent
(Scheffer et al., 2009), or they might result from stable
oscillatory cycles (e.g., predator–prey dynamics), which
can be consistent with long-term persistence and coexis-
tence (Blasius et al., 2020).

In this study, we seek to overcome these methodologi-
cal hurdles by combining a suite of established methods
that are both empirically tractable and suitable for ana-
lyzing dynamic systems even in the absence of static
equilibria. By “systems in the absence of static
equilibria,” we mean those that do not fluctuate around a
single fixed plot, including, for example, systems under-
going limit cycles, oscillations, or chaotic dynamics, those
with time-varying equilibria, and even those with no
equilibrium state at all. Jointly, the methods presented
here return estimates of: (1) the true dynamic trajectory
of the system after accounting for effects of observation
error; (2) the relative contributions of observation error,
process noise, and deterministic dynamics to overall tem-
poral variability; and (3) average “exit time” until a state
change occurs (e.g., time to extinction). To test this
approach, we first apply it to simulated abundance
dynamics for a system with time-varying carrying capac-
ity, for which these three attributes are already known a
priori. We then apply the methods to analyze empirically
observed abundance dynamics of the green algae
Chlamydomonas terricola grown under temporally oscil-
lating temperature conditions. Taken together, our
results show how classic stability metrics based on raw
observations can substantially overestimate temporal var-
iability in complex systems without static equilibria.
However, we find that in many cases these biases can be
mitigated by properly separating the influences of differ-
ent sources of variability.
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METHODS

The methods we present here build on three
well-established toolsets. First, observations of a single long
time series, or of multiple spatially replicated time series,
are collected (Figure 1a). Then, nonparametric delay embed-
ding methods are employed to reconstruct the underlying
deterministic dynamics of the system (Figure 1b,c). Next,
estimates from the delay embedding methods are combined
with hypothesized parametric distributions describing the
effects of process noise and observation error as part of a
state space model (Figure 1d). Then, the parameters for the
stochastic distributions are fitted using particle filtering and
Markov chain Monte Carlo (MCMC) optimization
(Figure 1e). Finally, the outputs of this optimizer can be
used to estimate, for example, the relative contributions of
deterministic variation, observation error, and process noise,
or to forecast system dynamics and expected time to local
extinction (Figure 1f,g).

We call this joint approach “Particle-Takens filtering,”
following from the related, existing method of
“Kalman-Takens” filtering (Hamilton, Berry, & Sauer,
2017; Hamilton, Lloyd, & Flores, 2017). Functions for
implementing these methods and detailed step-by-step
guides of the underlying functions are available in the
accompanying pttstability (Particle-Takens stability) pack-
age for the R programming language (R Development
Core Team, 2019). More information on these methods,
and a detailed workflow for the package, are described in
theMethod definitions and Detailed workflow.

Method definitions

State space models

State space models are commonly applied to account
for stochasticity in time series data and are the
foundation of many methods in population ecology
(de Valpine & Hastings, 2002; Knape & de Valpine, 2012;
Plard et al., 2019). The approach decomposes dynamics
into two “states”: one representing imperfect observa-
tions of the system at time t, Nobs(t), and a second,
unobservable state, representing the “true” value Ntrue(t).
These states can represent any dynamical variable,
though in population ecology, Nobs(t) typically represents
observed abundance dynamics, and Ntrue(t) represents
hypothetical “true” abundances in the absence of obser-
vation error. Jointly, these yield a model of the form:

Nobs tð Þ¼N true tð ÞþO, ð1aÞ

N true tþ1ð Þ¼ g N true tð Þð Þ þP: ð1bÞ

Here, g is a deterministic function that governs changes
in Ntrue over time, and O and P are functions representing
effects of observation error and process noise, respec-
tively. Because Equation (1b) separates the effects of vari-
ability driven by deterministic processes in function
g from stochastic processes driven by P, the process noise
function effectively represents a “detrended” analogue of
the classic coefficient of variation stability metric
(CV, i.e., √var(Nobs)/<Nobs>, where <x> is the arithmetic
mean of variable x) after separating the effects of
deterministic variability and observation error. Although
all three sources of variability are important for under-
standing system dynamics, as we will discuss below, sep-
arating the contributions of these underlying processes
can yield substantially more useful and tractable forecasts
of system dynamics.

In theory, the model in Equations (1a) and (1b) is
both simple and general: unbiased estimates of Ntrue(t)
can be generated by maximizing the joint likelihood of
observations given in Equation (1a), versus the likelihood
of subsequent estimates given in Equation (1b). In prac-
tice, however, fitting these equations to observations is
challenging and usually requires long time series
(Massoud et al., 2018). Additionally, model predictions
are strongly influenced by the functional form and under-
lying processes chosen for g, O, and P (Ovaskainen &
Meerson, 2010). In particular, if deterministic dynamics
modeled by g do not accurately describe those of the real
system, then this modeling error will be incorporated into
P, leading to an overestimate of process noise. Thus, espe-
cially with limited data and little a priori knowledge of
underlying biology, it can be difficult to separate robust
model predictions from spurious effects of model choice
(Auger-Méthé et al., 2016).

Delay embedding methods

A partial solution to this problem is to integrate delay
embedding methods into state space models, as demon-
strated by the recently developed Kalman-Takens filter
(Hamilton, Berry, & Sauer, 2017; Hamilton, Lloyd, &
Flores, 2017). This method builds on Kalman filtering, a
classic approach for parameterizing state space models,
by replacing the deterministic function g with a nonpara-
metric estimate rooted in Takens’ delay embedding
theorem (Sugihara et al., 1990; Takens, 1981). Takens’
theorem effectively shows that future states of dynamical
systems can be forecast by averaging across historically
observed dynamics, weighted by their similarity to the
current state. These historical dynamics can represent
repeated measurements of a single variable or of multiple
variables and covariates.

ECOSPHERE 3 of 18
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F I GURE 1 Workflow for the pttstability package. (a) A noisy time series of abundance dynamics simulated from Equations (6a) and (6c)

with r = 1.2, K = 1, σO = 0.3, and σP = 0.15. (b) Delay embedding of abundance dynamics. Nobs(t) shows observed abundance at time t. Gray

lines show the trajectory of observations in phase space, and black circle shows the deterministic trajectory. (c) True abundances versus

predictions from empirical dynamic model trained on observations. Pearson correlation coefficient (ρ) and coefficient of efficiency (E2) show

goodness of fit. (d, e) Particle filter results for a subset of dynamics. Thick blue line in (d) shows average trajectory predicted by the filter,

whereas thin blue lines and points show individual particles representing prediction uncertainty. (e) True abundance at t = 30 (black dashed

line), and distributions showing effects of process noise and observation error (blue and yellow, respectively), and posterior estimate from the

filter (gray). (f) Effects of process noise. Green points show what abundances would have been in the absence of process nose (Ntrue
0), while

blue-shaded region shows estimates of these states from the filter. Note stochastically driven extinction event at t = 34. (g) Relationship

between abundance, process noise, and probability of mortality.
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In practice, delay embedding methods have yielded
spectacularly good predictive performance across a wide
range of systems (Clark et al., 2015; Hsieh et al., 2008;
Perretti et al., 2012; Sugihara et al., 1990). Additionally,
this approach has two major advantages over other
nonparametric methods. First, given sufficiently long
time series, delay embedding methods can, in theory,
accurately predict the deterministic component of
almost any system, including those with nonstatic,
nonlinear, or chaotic dynamics (Deyle & Sugihara, 2011;
Sugihara et al., 1990). Second, even in complex, multivar-
iate systems, forecasts can be made based on limited data,

because time-lagged observations can be substituted for
missing variables (Schaffer, 1984; Sugihara et al., 2012).

Particle filtering

Although delay embedding methods replace the determin-
istic function g in Equation (1b), stochastic effects of obser-
vation error and process noise must still be represented
parametrically. A limitation of Kalman filters is that
they apply only when O and P follow relatively simple
functional forms, for example, normally distributed

F I GURE 1 (Continued)
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fluctuations with a fixed mean and standard deviation
(Hamilton, Berry, & Sauer, 2017). This presents a problem,
as realistic observation error and process noise functions
in ecological systems are often complex, for example, for
abundance dynamics, distributions must be censored at
zero, since abundances cannot become negative.
Moreover, although Kalman filters excel at generating
unbiased estimates of true dynamics, they are typically not
designed to accurately estimate the parameters of O and P.

To overcome these problems, we instead apply parti-
cle filtering to fit the state space models (Knape & de
Valpine, 2012). Particle filtering simulates a swarm of
synthetic time series based on Equations (1a) and (1b),
each called a “particle,” where O and P can be chosen to
represent any hypothesized functions regardless of func-
tional form. The likelihood of observations given the
hypothesized model can then be calculated directly from
the resulting estimates of the true system state. The state
space model can then be fit to data using established
methods such as MCMC (Hartig et al., 2019;
Wilkinson, 2018). The advantage of particle filtering over
other methods, such as Kalman filtering, is that it can be
used to fit much more complex statistical distributions,
providing more flexibility for users in defining stochastic
functions; however, this flexibility does come at the cost
of much longer computational times, and in some cases
lower statistical power when applied to simple systems.

Detailed workflow

Our workflow proceeds in five steps, discussed below. A
step-by-step walk-through of a worked example is avail-
able in help documentation for the pttstability package.

Specifying functions

First, we specify parametric functions for O and
P representing the effects of observation error and pro-
cess noise as follows:

O σO, <Nobs>, Nest tð Þð Þ
¼ pmax –Nest tð Þ, rnorm μ¼ 0,ðð
σ¼ pmax 0:01�<Nobs>, σO�Nest tð Þð ÞÞÞ, ð2aÞ

P σP, Nest
0 tð Þð Þ¼ pmax –Nest

0 tð Þ, rnorm μ¼ 0, σ¼ σPð Þð Þ,
ð2bÞ

where rnorm and mean are functions in the R stats and
base packages, <Nobs> is the average state observed across

all timesteps, Nest(t) is estimated state at time t, and Nest
0(t)

is an estimate of what the state would have been in the
absence of process noise, that is, g(Nest(t – 1)). To make the
functions applicable for abundance dynamics, we censor
the distributions using the pmax command from the base
R package, which ensures that Equations (1a) and (1b)
return only nonnegative results. For Equation (2a), we
assume that the standard deviation of the observation error
function is a fixed fraction of the current abundance, σO,
with a minimum value of 1% of mean observed
abundance, which is necessary to prevent infinitely
small likelihoods when abundance falls to zero (see
Equations 6a and 6b). For Equation (2a), we assume that
process noise is drawn from a normal distribution with fixed
standard deviation σP and minimum resulting abundance 0.

Delay embedding

Next, a delay embedding model must be fitted to replace
function g in Equation (1b). This model jointly incorporates
the effects of deterministic dynamics (e.g., growth,
predator–prey oscillations, etc.) and persistent effects of press
perturbations. To fit these functions, we apply the S-mapping
empirical dynamic modeling (EDM) routine from the rEDM
package (Park et al., 2020; Sugihara et al., 1990). The algo-
rithm requires user-defined parameters describing optimal
embedding dimension (E) and nonlinearity (θ) as inputs,
which are selected via leave-one-out cross validation using
the s_map function (Ye et al., 2018).

S-mapping has two advantages over classic delay
embedding methods. First, it often results in better pre-
dictions and extrapolations, because it fits a series of local
regressions that allow the relative weighting of embed-
ding dimensions to vary across state space (Sugihara
et al., 1990). Second, it produces a static prediction matrix
rather than recalculating neighbor distances for every
particle, which substantially increases computational effi-
ciency. Finally, it allows for inclusion of covariates (Ye &
Sugihara, 2016). Following Hamilton, Lloyd and Flores
(2017), we generate delay embedding predictions directly
from noisy observations (i.e., Nobs). This approach also
increases computational efficiency and is theoretically justi-
fied for most observation error functions (Deyle &
Sugihara, 2011). Recall that the resulting predictions are
solely used to replace the deterministic function g and are
not direct estimates of Ntrue.

Particle filtering

The observation error, process noise, and EDM functions are
then passed to the particle filter, in order to estimate the
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likelihood of observations given in the model. We apply a
modified version of the filters proposed by Knape and de
Valpine (2012)—see the function particleFilterLL in the
pttstability package for details. As is standard in state
space models, this likelihood is calculated using the
inverse of the observation error function. To account for
the censored distributions in Equation (2a), we apply a
Tobit model centered on Nest with lower bound zero. The
Tobit model has the advantage of jointly accounting for
zero and nonzero abundances as part of a single distribu-
tion with only three parameters (i.e., mean, standard devi-
ation, and lower limit), which simplifies the optimization
process. For any given parameter set, likelihood for each
particle i is calculated as follows:

ui ¼ exp LL NobsjNest,ið Þ – max LL NobsjNest,ið Þ½ �ð Þ, ð3Þ

where LL is the log-likelihood from the inverse observa-
tion error function and the max function prevents
rounding errors for small likelihoods (Wilkinson, 2011).
These likelihood estimates are then used to generate
weights for each particle as follows:

wi ¼ exp uið Þ=Σj exp uj
� �

, ð4Þ

which also cancels out the maximum function in
Equation (3). Particles are then resampled with replace-
ment over every timestep based on these weights, gener-
ating a joint estimate of Ntrue and corresponding
likelihoods resulting from the combined effects of the
deterministic EDM function, the stochastic process
noise and observation error functions, and the observa-
tions. Resampling is conducted in order to prevent
“particle degeneracy,” that is, cases were all particles in
the set being tracked have such low likelihood that they
can no longer be used to model system dynamics
(Knape & de Valpine, 2012; Wilkinson, 2011).

Optimization

To fit parameter estimates for the observation error and
process noise functions in Equations (2a) and (2b),
log-likelihoods from the filter must be passed to an opti-
mizer. We used the differential-evolution MCMC zs
(DEzs) sampler from the BayesianTools package (Hartig
et al., 2019) with bounded flat priors (details below) for σO
and σP. We chose this solver because particle filtering pro-
duces noisy likelihood estimates (i.e., estimates for a fixed
parameter set fall within a distribution, rather than on a
fixed point), which can cause issues for some other more
commonly used MCMC algorithms that include a gradient
assent step. We then substituted these estimates into the

particle filter to produce estimates of true states for each
timestep Nest and of Nest

0(t), that is, what the system state
would have been in the absence of process noise.

State changes

For models that undergo state changes (e.g., extinction events
or “critical transitions”), results from the filter can also be
used to estimate the average waiting time before the next
state change takes place, even if none have been observed
yet. This estimate is equivalent to “exit time” sensu Arani
et al. (2021). However, while existing methods for calculating
exit times are limited to long, low-dimensional time series
(Arani et al., 2021), exit times can be computed for our
methods directly from the fitted EDM and process noise func-
tions. In particular, for abundance dynamics, average
per-timestep mortality probability can be calculated as follows:

Prmor ¼mean pnorm 0, μ¼Nest,i
0 tð Þ, σ¼ σPð Þð Þ

for allNest,i
0 tð Þ≠ 0,

ð5Þ

with expected time to extinction 1/Prmor. In other words,
Equation (5) is the average probability per timestep of
process noise driving abundance to zero, that is, a mea-
sure of persistence sensu Law and Morton (1996). This
metric is of particular interest for stability analysis, as it
summarizes species abilities to persist in communities
over time, based on the joint effects of both deterministic
variation (i.e., in Nest) and stochastic variation (i.e., σP) in
the system. Thus, in Equation (5), high Prmor can arise
from either high rates of process noise or from low aver-
age abundances (or both). Note that Equation (5) can be
applied even for short time series where no extinctions
have been observed by simulating the particle filter for-
ward in time and analyzing the resulting dynamics.

Tests on simulated data

To test the ability of our methods to accurately estimate
true dynamics, parameter values for σP and σO, and
extinction probabilities, we applied it to simulated time
series of species abundance dynamics from the model:

N true tþ1ð Þ¼N true tð Þ exp r 1�N true tð Þ=K tð Þð Þ½ �
þP σP, N true

0 tð Þð Þ, ð6aÞ

Nobs tð Þ¼N true tð ÞþO σO, <Nobs>, N true tð Þð Þ, ð6bÞ

K tð Þ¼ sin t=2ð Þþ1:5ð Þ 2=3ð Þ: ð6cÞ

ECOSPHERE 7 of 18
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The oscillatory K function in Equation (6c) ensures that
the model equilibrium varies over time (Figure 2a) and
roughly matches the period observed in the empirical
example described below.

For each of 1255 simulations, we drew parameter
values from random uniform distributions, ranging from
0.01 to 0.5 for σO and from 0.0065 to 0.65 for σP (ranges
were chosen because these produced a wide range of
dynamics; iteration count was determined by the number
of simulations that completed within the time frame allo-
cated to us on our high-performance computing cluster).
We then used Equations (6a) and (6c) to generate dynam-
ics, with growth rate r = 1.2 for all simulations (i.e., the
nonchaotic regime of the Ricker model). If extinction
events occurred, the simulation was “recolonized” with a
probability of 20% per timestep, with initial abundance of

0.1. All simulations were run for 150 timesteps (roughly
matching the total composite time series length per treat-
ment in the empirical examples below). Note that
because <K(t)> = 1 over long time spans, σO and σP
roughly describe the average size of fluctuations due to
observation error or process noise, relative to the average
population size.

To test the performance of the delay embedding
methods, we compared two different approaches for
fitting state space models to Nobs. First, we applied the
“correct” underlying deterministic function, that is, by
substituting g in Equation (1b) with Equations (6a) and
(6c) and the true r and colonization parameter values.
This approach might represent, for example, a well-tuned
integrated population model. Second, we replaced g with the
nonparametric estimate derived from EDM, representing a

F I GURE 2 Example of different sources of temporal variation in a system without static equilibria. (a) A noisy time series

representing hypothetical abundance dynamics with oscillating carrying capacity, simulated following Equations (6a) and (6c) in the main

text (r = 1.2, K0 = 1, σO = 0.2, and σP = 0.1). Black dashed line shows true dynamics, yellow line shows noisy observations, and shaded

regions show mean estimate � 1 standard deviation from the particle filters based on the correct analytical model (red), or empirical

dynamic model (EDM) (blue), as described in the main text. (b) Partitioning of total temporal variance into observation error, process

noise, and deterministic variation. “True dynamic” shows actual underlying contribution of each type of variation: Process noise

magnitude is determined by function P in Equation (6a), observation error by function O in Equation (6b), and deterministic variation as the

total remaining variation, driven primarily by the time-varying carrying capacity in Equation (6c). “Observation” assigns all observed
variation to process noise, as is typically implied in standard CV calculations. “Analytical function” and “EDM estimate” show results from

two particle filters.
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case where the underlying deterministic function is not
known a priori.

For both approaches, we specified uniform bounded
priors over 0.01 to 0.5 for σO, and 0.0065 to 0.65 for σP,
simulated trajectories for 1000 particles per time series,
and 6000 MCMC steps over three chains including a
1000-step burn-in. We retained only estimates from
models for which good MCMC convergence was indicated,
that is, R-hat ≤ 1.1. This criterion was met for approxi-
mately 74% of simulations fitted using the true determinis-
tic function and approximately 79% using EDM (�65%
met the criteria for both approaches). Note that higher
convergence rates could have been achieved by
hand-tuning MCMC options for each simulation. To com-
pare observed versus predicted values, we used two met-
rics: Pearson correlation coefficient (ρ) and the coefficient
of efficiency (E2), which is similar to R2, but tracks corre-
spondence along the 1–1 line rather than a fitted regression
line, that is, as 1 – Σ(xtrue – xest)

2/(xtrue – <xtrue>)
2.

Empirical example

We applied our methods to analyze empirically observed
abundance dynamics of the green algae C. terricola in a
microcosm experiment (Burgmer & Hillebrand, 2011). In
this experiment, 19 phytoplankton species were grown
together in a semicontinuous culture over 70 weeks.
Abundance for each species was measured as cell counts
via microscopy 17 times over the experiment, at approxi-
mately four-week intervals. We focus on C. terricola because
it was consistently one of the most abundant species in mix-
ture and present results for two experimental treatments:
cultures raised at high- versus low-oscillating temperature
conditions, each replicated eight times. Both treatments
were subject to slow, smooth, oscillatory changes in temper-
ature ranging from 22 to 8�C, or from 20 to 4�C, with an
oscillatory period of 52 weeks, meant to mimic seasonal
effects, and with predators present (“HSP” and “LSP” in the
original paper). We choose these treatments because they
represent similar conditions, but display divergent dynamics
(long-term oscillations vs. decline toward extinction).

For both treatments, we combined observed dynamics
across replicates to generate long composite time series of
17 � 8 = 136 observations per treatment. Methods for
analyzing composite time series are well developed for
EDM and are already implemented in the rEDM package
(Clark et al., 2015; Hsieh et al., 2008). For each subset,
we simulated between 1000 and 512,000 particles, choos-
ing the minimum number needed to avoid particle
degeneracy (i.e., infinitely low likelihoods). See the help
documentation in the pttstability package for the
particleFilterLL_piecewise function for more details.

Prior to analysis, composite time series for each
treatment were standardized by dividing abundances by
their mean (i.e., such that mean(Nobs) = 1). We again
used uniform priors, with lower limit 0.001 and upper
limit 2 for both σO and σP, and ran 10,000 MCMC steps,
including 2000 burn-in steps. Because systems were
“closed,” we set colonization probability arbitrarily near
zero (1e–6 per timestep). We then applied the workflow
described above to fit parameter estimates for σO and σP,
estimate true abundance dynamics for each replicate,
and forecast expected time to extinction.

RESULTS

Analysis of the simulated time series demonstrated that
both when fitted using the “correct” underlying determin-
istic function and when fitted using nonparametric EDM
methods, the state space models performed well across a
wide range of process noise and observation error regimes.
For particle filters fitted to simulated dynamics, predic-
tions of abundance dynamics from both approaches signif-
icantly outperformed raw observations, although
predictive ability declined with higher observation error,
σO (Figures 2 and 3a,b). In general, predictions from the
correct deterministic function were somewhat better than
those from EDM, and differences among methods were
more pronounced for E2 (i.e., correspondence of predic-
tions vs. observations along the 1–1 line) than for ρ
(i.e., Pearson correlation).

Predictions for observation error strength, σO, closely
matched true values for the simulated system, both for
particle filters fitted using the correct deterministic func-
tion and fitted using EDM (Figure 4a). For filters fitted
with the correct deterministic function, estimates of pro-
cess noise strength, σP, closely matched true values across
all simulations (Figure 4b,c). For those fitted with EDM,
predictions of σP became worse under stronger observation
error, although estimates remained relatively accurate for
observation error σO < 0.3 (see Appendix S1: Figure S1).
In contrast, regardless of observation error strength, total
variability observed in the raw time series (e.g., as might
be used to calculate CV) greatly overestimated σP (yellow
points and intervals in Figure 4b,c).

For estimates of mean per-timestep mortality proba-
bility Prmor as derived from Equation (5), patterns in pre-
diction accuracy were similar to those for σP. Both
particle filters yielded good predictions when observation
error was low (Figure 5a,b), but when observation error
was high, filters fitted with EDM tended to overpredict
mortality probabilities, especially when the true mortality
probability was low (Figure 5d,e). This bias likely
resulted from errors in the EDM predictions of
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deterministic function g, which began to overestimate the
frequency of “true” zero abundances in very noisy time
series. In contrast, estimates of mortality probability
derived by counting the number of times that species fell
to zero abundance in raw observations only remained
accurate so long as the average expected time to extinc-
tion was shorter than the observed time series length
(i.e., such that on average at least one mortality
event occurred over the observed time span). For
1/Prmor < time series length, no estimates were possible

(Figure 5c,f). Note that we do not account for
recolonization in these raw estimates, as colonization
rates cannot be calculated from raw data where no
extinctions have been observed.

Analysis of the empirically observed C. terricola abun-
dance dynamics revealed relatively similar effects of obser-
vation error σO and process noise σP on dynamics across
both the high- and low-temperature treatments (Figure 6).
However, compared with the high-temperature treatment,
in the lower temperature treatment, abundance was
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F I GURE 3 Goodness of fit between true abundances for the simulated dynamics described in the main text versus observations

(yellow), and predictions from the particle filters based on the correct analytical model (blue), or on empirical dynamic model (red). Points

show results from individual simulations, and shaded regions show mean trend � 1 standard deviation. Variable σO describes the magnitude

of observation error following Equation (6b) and roughly relates to the fraction of overall observed variability that is attributable to

observation error. Coefficient of efficiency (E2) is conceptually similar to R 2, but measures scatter around the 1–1 line rather than around a

fitted regression, as 1 – Σ(xtrue – xest)
2/(xtrue – <xtrue>)

2.
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generally lower (Figure 6a vs. 6b), observation error
and process noise were stronger (Figure 6c,e), and
projected time to extinction was shorter (Figure 6f vs. 6g).
Overall, these estimates also accorded with observed
dynamics, which showed generally stable oscillations
in the high-temperature replicates up to about Day
400 (Figure 6a) versus apparent extinction of C. terricola in
all low-temperature replicates after Day 200 (Figure 6b).

DISCUSSION

Our results demonstrate the problems that complex
dynamics without static equilibria pose for classic ecolog-
ical stability metrics. When multiple underlying sources
of variation are not properly accounted for, stability esti-
mates based on raw observations of temporal variance
overestimated variability, and therefore underestimated
stability. Similarly, raw observations were generally not
very good indicators of true system state, nor could they
forecast the timing of rare state transitions such as extinc-
tions. In contrast, the Particle-Takens filtering methods
that we introduce here were able to correctly separate the
effects of observation error, process noise, and determin-
istic dynamics, and produced substantially more accurate
estimates of the strength of stochastic disturbances and of
time to extinction. Jointly, these results highlight the
importance of properly accounting for different sources
of variation in ecological stability analysis (Loreau & de
Mazancourt, 2013).

Importantly, by separating deterministic versus sto-
chastic dynamics using the EDM particle filter, process
noise parameter σP provides an estimate of variability
that is akin to the classic CV metric, but can be estimated
even in systems with nonstatic equilibria. In effect, these
methods “detrend” deterministic variation and observa-
tion error from observed time series data before calculat-
ing variability. Ours is by no means the first method to
develop a deterministically detrended analogue to CV
(e.g., Arani et al., 2021; Guiz et al., 2016; Hamilton,
Berry, & Sauer, 2017), but our approach has the great
advantage that it does not require specifying the func-
tional forms underlying deterministic dynamics and
applies even in complex and high-dimensional systems.
Critically, this link allows us to leverage existing

ecological theory across a wide range of systems, even in
cases with limited data and where average states vary
greatly over time (Coulson, 2021; Pimm et al., 2019).

Note that in order to separate deterministic versus
stochastic variation, our methods effectively define deter-
ministic dynamics as those that are repeatable and pre-
dictable based on past system behavior, that is, given
multiple replicates that start in exactly the same state,
deterministic dynamics describe changes in system state
that would play out identically across all replicates. In
contrast, we define process noise as variability that is not
repeatable or predictable, that is, causing replicates that
start at the same state to diverge over short time spans
(Shoemaker et al., 2019). Consequently, σP describes
overall variability resulting from the joint effects of dis-
turbances and of system recovery from those distur-
bances (Arnoldi et al., 2016). Theoretical analyses of
simple linear systems have shown that, in some cases,
this process noise term can be further decomposed into
separate parameters representing resilience (i.e., the rate
at which systems recover from disturbances) and resis-
tance (i.e., the direct effect of a disturbance on system
state) (Arnoldi et al., 2019; Clark et al., 2021). While it
might be possible to apply similar decompositions to σP
in the Particle-Takens framework (especially over short
time spans), doing so would require making strong
assumptions about the functional form of the determinis-
tic function g.

Perhaps of greater practical importance, our results
show that the process noise term σP can be combined
with estimates of deterministic dynamics to predict exit
times even if no regime shifts have yet been observed, for
example, as demonstrated for per-timestep probability of
extinction (Prmor) following Equation (5). Note that Prmor

is closely related to the concept of persistence
(Lande, 1987; Law & Morton, 1996) or estimates of time
to extinction from integrated population models (Plard
et al., 2019). For the process noise function in
Equation (2a), extinction probability rises as a function of
the strength of process noise relative to species abun-
dance, that is, as N(t)/σP. Thus, high extinction risk can
result either from deterministic dynamics that hold
populations close to zero or from strong stochastic forc-
ing caused by process noise. Prmor therefore captures at
least one definition of press perturbations, that is, effects

F I GURE 4 Estimates of (a) observation error (σO) and (b, c) process noise (σP) for the simulated dynamics described in the main text.

Black dashed line shows 1–1 relationship (i.e., “perfect” estimates). Blue shows particle filter estimates based on the correct analytical model,

red shows estimates from the empirical dynamic model-based filter, and yellow shows estimated variability based on raw observations

(i.e., based on the incorrect assumption that all observed variability is attributable to process noise). Shaded regions show mean � 1 standard

deviation. Panels (b) versus (c) separate process noise estimates for simulated time series with low (b) versus high (c) observation error. See

Appendix S1: Figure S1 for a more detailed comparison. Obs., observation; Proc., process.
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of slow, persistent changes in abundances, such as those
caused by the time-varying K in our simulated examples,
or the seasonal temperature fluctuations in our empirical
examples. This insight accords with our results for
C. terricola grown under cool conditions, for which the
average displacement in abundances caused by press per-
turbations (σP) was roughly the same size as the average
abundance (i.e., <N(t)> ≈ σP), thus leading to relatively
rapid extinction across all replicates.

Again, we emphasize that the primary contribution of
the method presented here is that it applies in cases with
very complex dynamics, and arbitrarily complex process
noise and observation error functions, which is beyond
the scope of most other existing methods. An important
caveat is that this flexibility necessarily comes at the cost
of decreased computational speed, lower precision, and
poorer extrapolative ability. For example, each time series
presented here took about 1–2 h to analyze with 10,000
MCMC iterations, whereas applications of the
Kalman-Takens filter often run in just a few seconds
(Hamilton, Berry, & Sauer, 2017). Similarly, accuracy and
precision of estimates from our approach will usually be
lower than for a well-tuned integrated population
model—note, for example, that the particle filter fitted
with the correct underlying deterministic function always
outperformed the EDM (but see Perretti et al., 2012). In
general, estimates from Particle-Takens filtering will only
ever be as good as the EDM model and parametric sto-
chastic functions used to fit them. For example, as EDM
predictions grew poorer due to high levels of observation
error in our simulations, more of the total observed varia-
tion was incorrectly subsumed into σP (see Appendix S1:
Figure S2). Although such poorly tuned models may still
provide reasonably good predictions of true dynamics,
and even of extinction probabilities, they will no longer
yield accurate estimates of the relative strength of
deterministic versus stochastic forcing (Auger-Méthé
et al., 2016). In some cases, it may be possible to improve
performance by conducting repeated observations per
timestep to help separate the effects of observation
error (Knape & de Valpine, 2012), collecting longer time
series or more spatial replicates (Clark et al., 2015), or
incorporating covariates (Chang et al., 2021; Ye &
Sugihara, 2016). Alternatively, in cases with very weak

deterministic forcing, the S-mapping routine can be
reduced to a simple estimate of the overall mean state,
that is, by setting E = 1 and θ = 0.

Despite these limitations, the Particle-Takens methods
we apply here appear to work very well in practice,
even in the presence of high observation error or
strong process noise. In particular, for true abun-
dance (Figures 3 and 6a,b) stochastic function param-
eters (Figures 4 and 6d,e), and even extinction
probability (Figures 5 and 6f,g), the approach
returned unbiased estimates for systems where obser-
vation error accounted for up to about 30% of total
variability. Above this threshold, process noise
strength and extinction probabilities tended to be
overestimated, although estimates were still positively
and significantly correlated with their true values
(Appendix S1: Figure S1). In total, these results sug-
gest that the approach should perform well across a
wide range of empirical systems—and that results
will almost always be less biased than those gener-
ated from raw observations of temporal variance.

Method extensions

Beyond the functionalities discussed in detail here, there
are several additional features built into the pttsstability
package that can be used to analyze more complex dynam-
ics. First, the default function for describing process noise
effects, procfun0, can be fit with two parameters rather than
just one, yielding process noise that grows in intensity as a
function of abundance following a Taylor power law (i.e., of
the form P(aP, bP, Nest

0(t)) = pmax(–Nest
0(t), rnorm(μ = 0,

σ = √(aP Nest
0(t)^bP)))) (Taylor, 1961). This functionality

can be used, among other things, to incorporate the
effects of demographic stochasticity versus environmen-
tal variability into fitted models, with bP < 2 consistent
with variability in demographic rates that decline as a
function of abundance (Arnoldi et al., 2019). To use this
feature, users simply need to input three sets of priors
into the optimization function rather than two (see
example analyses in Appendix S1: Figure S3, and in the
analyze_burgmer_casestudy_powerscaling.R script in
the ptstability_analyze_burgmer code repository).

F I GURE 6 Results from the empirical dynamic model-based particle filter, fitted to dynamics of the green algae species

Chlamydomonas terricola. (a, b) Estimated true abundances under conditions with high mean temperature (a) or low mean temperature (b);

shaded regions show mean � 1 standard deviation. (c) Partitioning of temporal variance: Process noise magnitude is determined by function

P in Equation (6a), observation error by function O in Equation (6b), and deterministic variation as the total remaining variation not

attributable to P or O. (d, e) Distributions showing posterior estimates for the observation and process noise parameters under low (teal) and

high (purple) temperatures. (f, g) Estimated time to extinction for each replicate (colored lines) and averaged across replicates (black line)

under conditions with high mean temperature (f), or low mean temperature (g); dashed lines show mean estimates. Est. Abund., estimated

abundance; Obs., observation; Proc., process; Temp., temperature.
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Similarly, the default observation error function,
obsfun0, can also be fit with two parameters instead of
one, yielding observation error that grows linearly with
abundance, but with a fixed lower bound (i.e., of the form
O(aO, bO, <Nobs>, Nest(t)) = pmax(–Nest(t), rnorm(μ = 0,
σ = aO + bO � Nest(t)))). This feature can be used to
capture the effects of zero-inflated distributions
(e.g., zero-inflated Poisson) and is helpful for modeling
populations with low average abundances or frequent
extinction events. To use this feature, users simply need
to supply four sets of priors to the optimizer (which by
default fits both the two-parameter process noise and the
two-parameter observation error functions).

Lastly, for users who wish to go beyond the package
defaults, the observation error, process noise, and deter-
ministic functions are all editable, and can be replaced
with arbitrarily complex user-defined functions. For
details of necessary function inputs and outputs, see the
help files for procfun0, obsfun0, detfun0 (for analytical
deterministic models), EDMfun0 (for EDM deterministic
models), and parseparam0 (the function used to pass
parameters between the particle filter and simulation
functions). For users who wish to apply multivariate
EDM embeddings (e.g., to account for species interac-
tions or environmental covariates) (Deyle et al., 2016;
Ye & Sugihara, 2016; Ye et al., 2018), multivariate
S-mapping can also be handled by the default EDM func-
tion, whereas multivariate simplex methods need to be
custom-coded by the user. See Appendix S1 and the
EDMfun0 help file for more details.

CONCLUSIONS

Our study shows that failing to account for multiple sources
of variability can bias ecological stability analyses and pre-
sents a potential toolkit to overcome these challenges. We
expect that these methods could be especially useful for ana-
lyzing systems with nonstatic equilibria (e.g., predator–prey
oscillations), or undergoing rapid changes due to anthropo-
genic disturbances (Coulson, 2021; Pimm et al., 2019), and
are therefore hopeful that our work will facilitate studies of
stability across a much wider range of systems than has pre-
viously been possible.
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