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Abstract

The viscous-plastic (VP) rheology and the Maxwell elasto-brittle (MEB) rheology were
compared in a common framework. To this end, the Massachusetts Institute of Technology
general circulation model (MITgcm) was complemented by the MEB rheology for sea ice.
The results challenge the reported advantages of the MEB rheology over the VP rheology
and encourage further research on the source of spatial heterogeneity in sea ice models.

Kurzfassung

Die viskos-plastische (VP) Rheologie und die Maxwell elasto-brittle (MEB) Rheologie
wurden in einem gemeinsamen Simulationsframework miteinander verglichen. Zu diesem
Zweck wurde das “Massachusetts Institute of Technology general circulation model” (MIT-
gcm) um die MEB Rheologie erweitert. Die gewonnenen Ergebnisse stellen die vorherge-
sagten Vorteile der MEB Rheologie in Frage und ermutigen die weitere Untersuchung der
Ursache von räumlicher Heterogenität in Meereismodellen.
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1 Introduction

Sea ice modelling is an important part of global climate modelling mainly because of the
ice-albedo feedback and its effect on the density structure of the ocean. At the same time,
sea ice is sensitive to climate warming and can be used as an indicator for the same. In
winter, the sea ice protects the warm ocean from the cold atmosphere and in spring and
summer, it reflects much of the incoming solar radiation (Hunke et al. 2010). The areal
extent, concentration, and thickness of sea ice in Arctic regions effects circulation patterns.
Models and observations suggest that a decline of sea ice in the Arctic, together with
an increase in snow cover in Eurasia, favours the negative phase of the North Atlantic
Oscillation and the Arctic Oscillation (Vihma 2014). Both oscillations influence the weather
and climate on global scales.
Sea ice is and has been studied at different scales ranging from micro-scales to scales of
thousands of kilometers in order to improve the accuracy of models. While basic large-
scale models for either the thermodynamics (Maykut et al. 1971) or dynamics (Hibler 1979)
of sea ice have existed for more than 40 years, new models are still being developed. Either
new models are being developed to gain more precise descriptions of sea ice’s physical pro-
cesses and characteristics or to extend the existing models with biogeochemical processes
(Hunke et al. 2010). Modern sea ice models consider the distribution of sea ice thickness,
thermodynamic processes within the ice and its environment, and dynamic processes.
The dynamic processes depend, among other things, on the relation between internal stress
and deformation which is called rheology. Until today the commonly used rheology for
sea ice is the viscous-plastic rheology (VP). Models using the VP rheology were shown to
generate observed statistics of sea ice deformation on large scales. For example, simulated
sea ice deformation of a VP model follow a multi-fractal spatial and temporal scaling, as
observed from RGPS data (Hutter et al. 2020). However, on small scales, several aspects
of the VP models have been discussed to be inconsistent with observations: Weiss et al.
(2007) found scaling properties of the modeled sea ice deformation to be in disagreement
with observations. Also, they concluded that models such as VP and EVP lack temporal
intermittency, in which a small, local perturbation triggers other and larger events while
being spatially heterogeneous. The VP model assumptions are based on observations made
during the Arctic Ice Dynamics Joint Experiment (AIDJEX) in the 1970s. For example, it
was observed that sea ice is strong in compression and weak in tension (no tensile stress
allowed). Based on more recent observations, these assumptions have been re-evaluated
and found insufficient (Coon et al. 2007). Furthermore, Ringeisen et al. (2019) showed that
observed intersection angles between faults in sea ice cannot be simulated with a standard
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1 Introduction

VP model. Ringeisen et al. results were confirmed by Hutter et al. (2022).
The presented thesis follows the aim to develop more precise descriptions of sea ice’s
physical processes. Specifically, models on scales of hundred kilometers in space and on
scales of hours to a few days in time were used. This study focuses on sea ice dynamics and
discusses a not yet commonly used rheology for sea ice: The Maxwell elasto-brittle rheol-
ogy (MEB). In this thesis, the Massachusetts Institute of Technology general circulation
model (MITgcm) (MITgcm Group 2021) was complemented by the MEB rheology for sea
ice. This way, a modelling set-up was created to directly compare the already implemented
VP and the new MEB rheology in the same numerical framework. Thereby, the results
of both rheologies can be analysed and compared in terms of the named inconsistencies
between observations and models without other confounding factors such as numerical
discretization, advection scheme, and grid resolution.
This thesis starts with a general overview of sea ice modelling, giving a summary of the
history of sea ice research (chapter 2) and continuing with a general description of the
different parts of a sea ice model (chapter 3). In the next step, the VP rheology and the
MEB rheology are explained by introducing the elastic theory of solid, continuous bodies
(chapter 4). The implementation of the MEB rheology is presented in chapter 5 as the
first part of the results of this thesis and then is tested and compared to already existing
results in the following chapters. Firstly, simple analytical solutions of the momentum
equation are studied (chapter 6) and secondly, phenomenological tests of simple idealized
experiments are analysed (chapter 7). A test for symmetry is presented first, and the
results of an idealized ice channel experiment are compared to a MEB implementation in
an uncoupled sea ice model (Plante et al. 2020) afterwards. Finally, the newly developed
implementation is used for a direct comparison between the results of the VP rheology
and the MEB rheology based on the study of Linear Kinematic Features (LKFs) carried out
by Mehlmann et al. (2021) (chapter 8). The results challenge previous statements about
the advantages of the MEB rheology, specifically, spatial heterogeneity of simulated fields,
over the standard VP rheology (Girard et al. 2011).
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2 History of Sea Ice Modelling

In the second half of the 20th century, the work on sea ice models started. Discussions
on thermodynamic and dynamic processes arose based on observations during the Inter-
national Geophysical Year (IGY) (1957-1958) and later the AIDJEX (1975-1976). The IGY
increased the research in the Arctic and Antarctic polar regions. Afterwards, the AIDJEX
program focused on the dynamics of sea ice. In this context, two different ways of treating
sea ice were established: a viscous rheology and an elastic-plastic rheology.
The idea to model ice as a viscous fluid was to treat ice in a similar way as water and
air and have “some sort of eddy viscosity” (Hibler 1977). In the viscous rheology, the
internal ice stress is proportional to the ice deformation rate which makes the computation
straightforward. Proponents of the viscous rheology were W. D. Hibler, J. W. Glen, and W.
J. Campbell. It was found that results of their models could be used for mean annual ice
circulation of the Arctic Ocean (Campbell 1965) and prediction of sea ice dynamics with a
lead time of several days (Hibler 1974).
Following further observations made during the AIDJEX program, ice resists compression
with fixed stress. This observation contradicts the assumptions of the VP rheology. Also,
ice was observed to have little to no resistance to diverging strains once a converging
deformation had occurred and stresses behaved independently of the deformation rate.
These observations were the basis for an isotropic, plastic continuum approach: the elastic-
plastic rheology. Proponents of this opponent rheology were, for example, M. Coon, R. S.
Pritchard, and D. A. Rothrock. In 1974, they formulated, among others, the elastic-plastic
rheology for large-scale mechanical behaviour of pack ice (Coon et al. 1974a). The rhe-
ology distinguishes between elastic, reversible behaviour for small internal stresses and
plastic, irreversible behaviour for stresses beyond a critical stress. Both dynamics were
described by separate equations and therefore had to be treated differently. Consequently,
one had to keep track of the deformation rate indefinitely to distinguish between both
dynamics, which made the rheology numerically and theoretically complex (Hibler 1979).
Nevertheless, the elastic-plastic model (Coon et al. 1974a, (p.93-94)) was “designed [...] to
include what [was] believed to be the important behavior of the ice”.
Combining both, the numerical simplicity of the viscous model with the physical correct-
ness of the elastic-plastic model W. D. Hibler presented his idea of a “Viscous Sea Ice Law
as a Stochastic Average of Plasticity” (Hibler 1977), which led to his “Dynamic Thermody-
namic Sea Ice Model” (Hibler 1979). W. D. Hibler showed that the viscous constitutive law
averaged for small and large deformation rates has a viscous-plastic behaviour. Hence,
the plastic behaviour is retained in the VP model and the elastic behaviour was replaced
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2 History of Sea Ice Modelling

by a viscous law (Hibler 1979). The implemented MEB sea ice model and the classic VP
sea ice model are described in the section on the viscous-plastic rheology (section 4.2).
The continuous “Dynamic Thermodynamic Sea Ice Model” and its variants is the basis for
almost all sea ice components of global climate models such as the MITgcm.
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3 Modern Sea Ice Modelling

Modern sea ice models are used for a wide range of resolutions. To produce operational
weather and marine forecasts, resolutions 100 times finer than the ones discussed in the
outcomes of the AIDJEX are needed. Short-term sea ice models simulate periods from a
few hours to a few days, seasonal models simulate periods over a few month and models
which can be used for climate predictions simulate periods over years. The following
paragraph follows the book “Sea Ice Analysis and Forecasting” by Carrieres et al. (2017).
Starting with the formation of sea ice, the thermodynamics of sea ice growth and melting is
essential. Seawater in polar oceans has a freezing point of approximately −1.8 ∘C varying
with the salinity of the ocean. Sea ice forms needle-shaped ice crystals in seawater around
the freezing point. With further cooling, an assembly of these needles forms a layer called
grease ice. The grease ice itself forms plates of diameters between tens of centimeters to a
few meters when driven closer together by external forces such as wind and waves. Sea ice
then grows at the base of this already-formed ice layer depending on the sea ice thickness.
The sea ice thickness itself depends not only on the thermodynamic processes but also
on dynamic processes. Vice versa, the sea ice thickness influences the thermodynamic
growth and the mechanical strength of sea ice which also affects the dynamic processes.
There are two common strategies to model ice thickness: Two-Category and Multi-
Thickness Category models. Categories in this context mean different states of ice con-
centration and ice thickness in which an ice thickness distribution (ITD) is discretized.
For example, in two-category models, there is only a zero-thickness category for open
water and a mean-thickness category for areas covered with ice. Multi-thickness category
models usually have between 5 and 10 different categories.
Already formed sea ice influences the ocean around it. During the formation of sea ice
the salt contained in sea ice is driven out of the ice so that the seawater around the ice
is more saline and hence denser than the rest of the seawater, sinks down and becomes
part of a colder and denser layer. The expulsion of salt in the formation process of sea
ice is called salt rejection. The sinking of the cold and salty seawater also increases the
mixing in the surface layer. The sea ice also has an important effect on the atmosphere
above it through modified heat fluxes. A major effect on the atmosphere has the albedo of
the ice. The albedo describes the fraction of solar radiation reflected by the sea ice surface.
Thereby, the albedo strongly depends on the characteristics of the surface. In this way, sea
ice affects the sea or ice surface temperature, which is an essential quantity in large-scale
modelling.
The general melting of sea ice consists of the melting processes at the base, the sides,
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3 Modern Sea Ice Modelling

and the surface of the ice. The conductive heat flux determines the melting at the base
through the ice and the ocean heat flux. The open water next to the sea ice has a smaller
albedo than the sea ice, absorbs more shortwave radiation, and therefore heats up more
and increases the lateral melting in summer. The surface melt of sea ice is also controlled
by the albedo.
Nevertheless, the temporal evolution of sea ice depends not only on thermodynamic
processes that were shortly described until now, but also on dynamic processes. Dynamic
processes are induced by external forcing. The important external forces interacting with
ice are wind, Coriolis forcing, and gravitational forcing caused by differences in the sea
surface height. All three forcings lead to internal stress within the ice and eventually to
the deformation of ice. The relation between internal stress and deformation is called
rheology and will be discussed in detail in chapter 4. When it comes to dynamic processes
and sea ice movement from one point to another, there are significant implications for
the ice-ocean-atmosphere interactions. Sea ice driven by a wind field can create openings.
Large openings in an otherwise fully covered ocean are called polynyas. Due to wind
forcing, the sea ice can also form leads which are long openings or cracks in the ice shield.
These openings of seawater are exposed to the atmosphere directly. This is why in winter,
leads and polynyas are preferred locations where new sea ice forms because the ocean is
directly exposed to the cold atmosphere an loses heat. The inverse situation can be found
in summer. Melting at the sides of polynyas is increased due to the lower albedo. If sea ice
is pushed together, so-called pressure ridges can form where either ice is piled up on top
of each other or is pushed beneath each other. In both cases, the mean sea ice thickness
increases, and the sea ice is more likely to survive summer melting.
Sea ice modelling attempts to parameterize all the aforementioned properties and more
detailed features. To do that, sea ice models use equations based on four fundamental laws:
the conservation of momentum, the conservation of mass, the conservation of energy and
the conservation of salt. For the implementation of the newMEB rheology, the momentum
equation is of the highest interest.

Momentum equation The thickness of sea ice (O(1m)) is much smaller than the
horizontal scales of motion (O(100m-1000 km)), so that vertical variations of sea ice
properties are not important for sea ice dynamics. Hence, sea ice momentum equations are
vertically integrated leading to the following 2D equations of the horizontal momentum:

𝑚d𝒖
d𝑡

= − ̂𝒛 × 𝑚𝑓𝑐𝒖 + 𝑎𝝉𝒂 + 𝑎𝝉𝒘 + 𝛁 ⋅ 𝝈 − 𝑚𝑔∇𝐻0 (3.1)

where 𝑚 is the mass per area, 𝒖 = 𝑢�̂� + 𝑣 ̂𝒚 is the horizontal velocity vector with the
unit vectors �̂� and ̂𝑦 and the velocity in 𝑥 -direction 𝑢 and the velocity in 𝑦 -direction 𝑣.
Furthermore, 𝑓𝑐 is the Coriolis parameter, 𝑎 is the sea ice concentration, and 𝝉𝒂 and 𝝉𝒘 are
wind and water stress. The divergence of the stress tensor ∇ ⋅ 𝝈 is called rheology term,
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𝑔 is the gravity acceleration parameter and 𝐻0 is the sea surface height. In the case of
sea ice, the stress terms and the rheology term dominate the ice dynamic. The typical
horizontal velocity of sea ice is between 0 to 1m/s. Depending on the ice concentration
in an area, the external forcing increases the internal stresses. In areas with higher ice
concentrations, the rheology term dominates the dynamics. When the ice concentration
is low, the interaction between ice floes can be neglected, the rheology term is small, and
the ice is in “free drift”. The rheology itself is represented by the constitutive equation
and describes how sea ice reacts to external forcing as well as other stresses.

Constitutive equation This equation describes the relation between stress 𝝈 and
deformation 𝜺. In general, sea ice can resist some external forcing without permanent
deformation, but there is a critical value above which sea ice deformation starts. For
different rheologies, there are different constitutive equations. As mentioned in chapter 2,
most sea ice models use a viscous-plastic rheology based on Hibler (1977). Chapter 4
treats the elastic theory of solid materials and discusses the VP rheology and the new MEB
rheology in detail.

Characteristics of the deformation of sea ice The behaviour described with the
constitutive equation follows observations of sea ice. As mentioned in chapter 2, the
AIDJEX found ice to resist compression with a fixed stress and to have little to no resistance
to diverging strains once a converging deformation had occurred. More recent observations
also observed the mechanism of fracturing and the subsequent deformation in more detail.
Weiss et al. (2007) analysed in-situ ice stress data, satellite-derived ice strain rates and
laboratory observations and found the strain rate not to be proportional to the stress.
Instead, they observed inelastic deformations for all spatial and time scales, even under
small stresses, and therefore, higher strain rates than assumed by models. Sea ice exhibits
temporal intermittency where a small, local perturbation can trigger other and larger
events while being spatially heterogeneous. For example, linear kinematic features (LKFs)
can form. These are areas where the deformation is highly localized, and the velocity
gradient is spatially discontinuous as it is the case for leads and ridges. Following this, Coon
et al. (2007) stated that an accurate sea ice model has to directly account for discontinuities
in the velocity field due to the opening and closing of leads and allow anisotropic behaviour.
Intersection angles of deformation patterns observed via Landsat, Seasat/SAR, and areal
photographs, AVHRR emerged in the range of (15 ± 2)∘ at scales from 100m to 100 km
(Erlingsson 1988).
A detailed description of the numerical implementation of these equations is presented in
chapter 5, specifically for the MITgcm framework.
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4 Rheologies in Sea Ice Models

This chapter outlines the elastic theory of solid materials and discusses the VP rheology
and the new MEB rheology in detail.

4.1 Elastic Theory

Many terms and equations of the elastic theory can be used to describe the 2D ice layer.
In the case of the MEB rheology, the brittle part is added to a continuous model. Also,
many sea ice rheologies assume the ice behaves elastically up to a certain level of stress.
Therefore, the basis for the VP and MEB rheology is the elastic theory that covers the
mechanics of solid, continuous bodies.
Continuous bodies deform under stress. The deformation 𝛥𝑥𝑖 = 𝑥′𝑖 − 𝑥𝑖 per unit length
𝑥𝑖 (with 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧) is the strain 𝜀𝑖. In a 2D material, there can be uniaxial and
biaxial strains. All strains can be described by a strain tensor 𝜀𝑖𝑘 which can be written for
small deformations as

𝜀𝑖𝑘 =
1
2
(
∂𝛥𝑥𝑖
∂𝑥𝑘

+
∂𝛥𝑥𝑘
∂𝑥𝑖

) (4.1)

(Landau et al. 1989, chapter 1) with 𝑖, 𝑘 ∈ [1, 2].
The stress component is vertically integrated over the ice thickness to model stress in the
whole ice sheet. Consequently, the unit of stress is Nm−1. The stress acting on the 2D
layer can be described by four stress components: two normal stresses (𝜎11, 𝜎22) acting
perpendicular to the surface and two shear stresses (𝜎12, 𝜎21) acting tangential to the
surface (see Figure 4.1). The stress tensor is symmetric (𝜎12 = 𝜎21) in a system without
rotational forces. To be coherent with the later used sign convention for stress, normal
stresses in the negative 𝑥 or 𝑦 direction are tensile stresses, and normal stresses in the
opposite direction are compressive stresses.
Following Landau et al. (1989), the linear dependency between stress and strain allows
deriving the stress tensor from the strain tensor and vice versa for isotropic, solid bodies.
In 3D, the classical elastic constitutive equation is called generalized Hook’s law and consists
of nine equations expressing the stress components as linear homogeneous functions
of the strain components. For an elastical isotropic material, in which no direction is
preferred, the constitutive equation is

𝜎𝑖𝑗 = 𝛬𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝛭𝜀𝑖𝑗 (4.2)
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4.1 Elastic Theory

with 𝛬 and 𝛭 being the Lamé elastic constants and 𝛿𝑖𝑗 the Kronecker delta (Malvern 1969,
chapter 6). The Lamé elastic constants can be written in terms of the elastic modulus 𝐸,
the shear modulus 𝐺 and Poisson’s ration 𝜈

𝛭 = 𝐺 = 𝐸
2(1 + 𝜈)

and 𝛬 = 𝜈𝐸
(1 + 𝜈)(1 − 2𝜈)

(4.3)

(Malvern 1969, chapter 6). The elastic modulus 𝐸 is the proportionality factor for the
normal stress-strain relation along the same axis. Poisson’s ratio gives the ratio of the
perpendicular strain to the strain in the direction of the stress

𝜈 =
𝜀11
𝜀22

, (4.4)

here for stress acting in 𝑦 -direction (Landau et al. 1989, chapter 1). The proportionality
factor for the shear stress-strain relation is the shear modulus 𝐺.
The generalized Hooke’s law can be written in matrix form. In 2D, using the plane stress
assumption, the matrix form is

⎛
⎜
⎜
⎝

𝜎11
𝜎22
𝜎12

⎞
⎟
⎟
⎠

= 𝐸𝑪
⎛
⎜
⎜
⎝

𝜀11
𝜀22
𝜀12

⎞
⎟
⎟
⎠

(4.5)

with

𝑪 =
⎛
⎜
⎜
⎝

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

⎞
⎟
⎟
⎠

(4.6)

and

𝐶11 = 𝐶22 =
1

1 − 𝜈2
,

𝐶12 = 𝐶21 =
𝜈

1 − 𝜈2
,

𝐶33 =
(1 − 𝜈)
1 − 𝜈2

,and

𝐶13 = 𝐶23 = 𝐶31 = 𝐶32 = 0

(Malvern 1969, chapter 6). Following Malvern 1969 (chapter 3) the stress state can also
be described with the eigenvalues, the principal stresses 𝜎1 and 𝜎2, of the stress matrix.
In the coordinate system of the principal stresses, the normal stresses are extremal, and
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4 Rheologies in Sea Ice Models

y-
𝜎22

𝜎21

𝜎12

𝜎11

x-

Figure 4.1: The four stress components in a 2D plane. Two normal stresses (𝜎11, 𝜎22) and
two shear stresses (𝜎12, 𝜎21).

there is no shear stress. The principal stresses are

𝜎1 =
𝜎11 + 𝜎22

2
+
√
(
𝜎11 − 𝜎22

2
)
2
+ 𝜎212,

𝜎2 =
𝜎11 + 𝜎22

2
−
√
(
𝜎11 − 𝜎22

2
)
2
+ 𝜎212.

(4.7)

The principal stresses can describe a circle, Mohr’s circle, where the same stress states in
a material are on the circle. Mohr’s circle exists in the invariant stress plane with the
center

𝑍 = (
𝜎11 + 𝜎22

2
, 0) (4.8)

and the radius

𝑟 =
√
(
𝜎11 − 𝜎22

2
)
2
+ 𝜎212. (4.9)

The center 𝑍 and the radius 𝑟 are the invariants 𝜎𝐼 and 𝜎𝐼 𝐼 with

𝜎𝐼 =
𝜎11 + 𝜎22

2

𝜎𝐼 𝐼 =
√
(
𝜎11 − 𝜎22

2
)
2
+ 𝜎212.

(4.10)

The invariant 𝜎𝐼 is used to describe the divergent part of stress, and the invariant 𝜎𝐼 𝐼 to
describe the shear stress.
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4.1 Elastic Theory

In addition to Hookean solids, where the stress depends upon strain, there is a second
category for continuous bodies: The ideal Newtonian fluid. The stress in ideal Newtonian
fluids depends upon the rate of deformation

̇𝜀𝑖𝑘 =
1
2
(
∂𝛥𝑢𝑖
∂𝑥𝑘

+
∂𝛥𝑢𝑘
∂𝑥𝑖

) (4.11)

with the velocity vector 𝒖. Invariant deformation rates ̇𝜀𝐼 and ̇𝜀𝐼 𝐼 can be defined analogously
to the invariant stresses (4.10) as

̇𝜀𝐼 = ̇𝜀11 + ̇𝜀22

̇𝜀𝐼 𝐼 = √( ̇𝜀11 − ̇𝜀22)
2 + 4 ̇𝜀212.

(4.12)

In contrast to solids, a fluid cannot support shear stresses. This means that shear defor-
mation occurs in fluids as long as a shear stress is exerted. As mentioned, the viscous
constitutive equation

𝜎𝑖𝑗 = 2𝜂 ̇𝜀𝑖𝑗 (4.13)

shows a linear dependency between stress 𝜎𝑖𝑗 and strain rate ̇𝜀𝑖𝑗with the viscosity 𝜂 (Malvern
1969, chapter 6). Unlike elastic materials, viscous materials do not have a memory of its
initial state, and the stress at a point only depends on the instantaneous rate of deformation
at that point. Viscous dynamics are not reversible as elastic dynamics.
The third category of dynamics within a body is plastic deformation. In the case of
plastic deformation, the relation between the stress and the strain is non-linear and the
deformation is irreversible (Malvern 1969, chapter 6).
In both of the following rheologies, stress states define the deformation of the ice. There
are stress states in which the ice behaves elastically or viscously and stress states in which
the ice deforms plastically. Yield criteria are used to describe the transition from one
(dynamic) state to another. The yield criteria for both VP and MEB rheology are pictured
in Figure 4.2 in both invariant (black) and principal (gray) stress states. Within the yield
curve, the material behaves like an elastic or viscous material. Once one yield criterium is
reached, the material deforms plastically.
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4 Rheologies in Sea Ice Models

4.2 Viscous-Plastic Rheology

The rheology used in many sea ice models is the VP rheology. The original model was
introduced by Hibler (1979). In the following VP rheology, the “ice interacts in a rigid-
plastic manner for normal deformation rates and as a linear viscous fluid, with a pressure
term, for small deformation rates” (Hibler 1979, p. 817). Furthermore, the maximum
compressive stress 𝑃 depends on the ice thickness ℎ and the sea ice concentration 𝑎.
The transition between viscous and plastic treatment is defined with an elliptical yield
curve (Figure 4.2). The elliptic yield curve describes a 2D rigid plastic law and can be
expressed as

𝐹(𝜎1, 𝜎2) = (
𝜎1 + 𝜎2 + 𝑃

𝑃
)
2
+ (

𝜎2 − 𝜎1
𝑃

𝑒)
2
− 1 = 0 (4.14)

with 𝑃 = 2𝑎 being the length of the ellipse’s major axis and the ratio of the two semi-major
axes is 𝑒 = 𝑎/𝑏. The ellipse is centered at (−𝑃/2, −𝑃/2). In this way, 𝑃 is the maximum
compressive stress. From the ellipse equation (4.14), an explicit expression for the stress
𝜎𝑖𝑗 in dependency of the strain rate ̇𝜀𝑖𝑗 can be derived by using the associated flow rule for
plastic deformations on the ellipse

̇𝜀𝑖𝑗 = 𝛾 ∂𝐹
∂𝜎𝑖𝑗

. (4.15)

with 𝛾 being a function of the strain rate. 𝛾 can be derived by combining Equation 4.14
and Equation 4.15 (Hibler 1977). The constitutive equation follows as

𝜎𝑖𝑗 = 2𝜂 ̇𝜀𝑖𝑗 + [(𝜁 − 𝜂) ̇𝜀𝑘𝑘 −
𝑃
2
]𝛿𝑖𝑗 (4.16)

with
𝜁 = 𝑃

2𝛥
,

𝜂 = 𝑃
2𝛥𝑒2

,

𝛥 =
√
( ̇𝜀11 + ̇𝜀22)2 + (( ̇𝜀11 − ̇𝜀22)2 + 4 ̇𝜀212)

1
𝑒2

(Hibler 1977). Within the VP rheology, it is distinguished between the shear viscosity 𝜂
and the bulk viscosity 𝜁. In all other chapters, 𝜂 is the viscosity. The parameter 𝛥 rewritten
in terms of the strain rate invariants (4.12)

𝛥 =
√

̇𝜀2𝐼 +
1
𝑒2

̇𝜀2𝐼 𝐼, (4.17)

shows the dependency of the viscosities 𝜁 and 𝜂 on the strain rate ̇𝜀𝑖𝑗 and the maximum
compressive stress 𝑃. The dependency of 𝜁, 𝜂, ̇𝜀𝑖𝑗, and 𝑃 is chosen in a way that the stress
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4.2 Viscous-Plastic Rheology

states lie on the elliptical yield curve (Hibler 1979). Both viscosities 𝜁 and 𝜂 become
arbitrarily large for small strain rates because 𝛥 → 0. Consequently, the viscosities 𝜁 and 𝜂
are limited from above by setting a minimum 𝛥min. Once Equation 4.17 is smaller than the
minimum 𝛥min, 𝛥 is set to 𝛥min and is not dependent on the strain rate anymore. Hence,
the dynamic follows a linear viscous law and the stress states lie in the inside of the ellipse.
Also, a limiting value for the maximum compressive stress state, depending on the ice
strength, is set. This way, stress states inside the ellipse behave in a viscous manner and
stress states on the ellipse in a plastic manner.
The maximum compressive stress 𝑃 is coupled to the ice strength parameter 𝑃∗, the sea
ice thickness ℎ and the sea ice concentration 𝑎

𝑃 = 𝑃∗ℎe−𝐶
∗(1−𝑎) (4.18)

with the free parameter 𝐶∗ (Hibler 1979).
Hibler (1979) stated that his model considers sea ice to be on average isotropic on large
scales, the effective tensile strength to be low for all strain rates, the stress states to
be relatively independent of the strain rate magnitude, and the sea ice to exhibit large
compressive strength under convergence.
Apart from the elliptic yield curve, a circular yield curve was suggested by Coon et al.
(1974a), and a teardrop-shaped yield curve was used by Coon et al. (1974b). Recently,
yield curves, such as the Coulombic yield curve which allows tensile stresses, have been
tested. The Coulombic yield curve was introduced by Hibler et al. (2000) and consists of
an ellipse shifted towards tensile stresses, which is truncated comparable to the Mohr-
Colomb (MC) yield curve shown in Figure 4.2 which is used with the MEB rheology.
For example, Ringeisen et al. (2019) compared intersection angles between faults using
the standard elliptic yield curve and a Coulombic yield curve. The intersection angles
calculated with the Coulombic yield curve grossly matched the observations in contrast to
the ones calculated with the elliptic yield curve which could not match the observations.
The critical constants of a VP sea ice model are the ice strength parameter 𝑃∗, the ratio of
the semi-major axes of the yield curve 𝑒 and the free parameter 𝐶∗. In Hibler (1977), it was
suggested to set the shear viscosity 𝜂 smaller than the bulk viscosity 𝜁. Therefore, 𝑒 = 2 is
chosen in many VP models. The free parameter 𝐶∗ is set to 20 so that the 10 % of open
water have a substantial impact on the sea ice strength (diminished by a factor e−2) (Hibler
1979). The ice strength 𝑃∗ itself is a free parameter, which was adjusted to fit observed
and predicted ice drifts. In Hibler (1979), the ice strength was set to 𝑃∗ =5 × 103N/m.
Later paper chose the ice strength parameter up to 25 times bigger (Tran et al. 2015). In
this thesis, the ice strength or the compressive strength in MEB is set to 27.5 × 103N/m
following Ringeisen et al. (2019), Dumont et al. (2009) and others.
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4 Rheologies in Sea Ice Models

4.3 Maxwell Elasto-brittle Rheology

The MEB rheology was invented as an alternative to the commonly used VP rheology.
After observations of the strain rate and the fracturing processes within ice either by
in-situ measurements, satellite data or laboratory experiments carried out by Weiss et al.
(2007) and others, Girard et al. (2011, p. 123) found the VP rheology to be “not suited to
describe the multi-scale fracturing processes that accommodate sea-ice deformation”.
The VP model was found to be inadequate to model long-range elastic interactions and to
reproduce scaling properties and temporal intermittency compared to observations (Weiss
et al. 2007). Based on those findings, Girard et al. (2011) proposed an elasto-brittle (EB)
rheology, in which the sea ice is treated as a continuous elastic plate with implemented
damage, which allows to trigger avalanches of damage. The EB rheology was used for
rock mechanics before. It was shown that the EB rheology could give better results than
the VP rheology for the distribution of strain rates and the scaling laws in a sea ice model
(Girard et al. 2011).
Dansereau et al. (2016) developed the MEB rheology based on the EB rheology. The main
adaptation was the extension of the constitutive equation with a viscous-like relaxation
term and the coupling of both mechanical parameters to the brittle damage. The viscous
part describes the dissipation of the elastic strains into permanent deformation. The reason
for the adaptation, Dansereau et al. (2016) argued, is the lack of representation of the
permanent deformations following damaging events. In the EB rheology, reversible and
irreversible deformations cannot be solved separately. Consequently, the actual ice drift
has to be calculated by making assumptions on the reversible and irreversible parts of the
deformation, which were calculated simultaneously. The MEB rheology can be understood
as a simple connection in series of a viscous damper and an elastic spring

𝜎𝜎𝜎 +
𝜂
𝐸
�̇̇��̇�𝜎 = 𝜂𝑓 ( ̇𝜀 ̇𝜀 ̇𝜀) (4.19)

with the stress tensor 𝜎𝜎𝜎 and a function of the strain rate tensor 𝑓 ( ̇𝜀 ̇𝜀 ̇𝜀). In detail, the aim of
the MEB rheology is to use a completely isotropic rheology that reproduces the anisotropy
and extreme gradients within the ice based only on the constitutive equation and not
by treating discontinuities within the velocity field explicitly. The following description
of the MEB rheology follows Dansereau et al. (2016). The MEB rheology consists of a
linear elastic part of the constitutive equation for a continuous solid, a viscous part of the
constitutive equation for irreversible deformations, a local Mohr Coulomb (MC) criterium
for brittle failure and an isotropic progressive damage mechanism that rescales the viscous
and elastic dynamics to initiate avalanches of damage. A healing mechanism to counteract
the effect of the damage can be added.
The constitutive equation for a 2D compressible, elastic, continuous solid follows from
Equation 4.19 as

�̇̇��̇�𝜎 +𝜆(𝑡)−1𝜎𝜎𝜎 = 𝐸(𝛿)[𝐶𝐶𝐶 ∶ ̇𝜀 ̇𝜀 ̇𝜀] (4.20)
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4.3 Maxwell Elasto-brittle Rheology

with

𝜆(𝑡)−1 =
𝐸(𝛿)
𝜂(𝛿)

,

the elastic modulus tensor 𝐶𝐶𝐶 in Equation 4.6 and

[𝐶𝐶𝐶 ∶ ̇𝜀 ̇𝜀 ̇𝜀] =
⎛
⎜
⎜
⎝

𝐶11 𝐶12 𝐶13
𝐶21 𝐶22 𝐶23
𝐶31 𝐶32 𝐶33

⎞
⎟
⎟
⎠

⋅
⎛
⎜
⎜
⎝

̇𝜀11
̇𝜀22
̇𝜀12

⎞
⎟
⎟
⎠

. (4.21)

Both parameters 𝐸 and 𝜂 depend on the integrity parameter 𝛿. Because of different
definitions of damage in literature, the integrity 𝛿 is used following the definition of
damage by Dansereau et al. (2016). The integrity is a scalar parameter equal to 1 for
undamaged ice and 0 for entirely damaged ice. A damage parameter 𝑑 is introduced to
describe damaging events which is 𝑑 = 1 − 𝛿. The relative positions of the stress states to
the critical stress values on the yield curve define 𝛿. The yield curve used for the MEB
rheology is the MC criterion and is pictured in Figure 4.2. In the principal stress plane and
with the convention of compressive stresses being positive, the MC criterion is

𝜎1 = 𝑞𝜎2 + 𝜎𝑐 (4.22)

where 𝑞 is the slope of the envelope defined by the internal friction coefficient 𝜇 as

𝑞 = ((𝜇2 + 1)1/2 + 𝜇)
2
. (4.23)

The critical uniaxial compressive stress 𝜎𝑐, the intersection of the MC criterion with the 𝜎1
axis (see Figure 4.2), is

𝜎𝑐 = 2𝑐√𝑞 (4.24)

where 𝑐 is the cohesion. In contrast to the elliptic yield curve, this yield curve permits
tensile stresses, and Dansereau et al. (2016) introduce an extended MC criterion. The
critical tensile stress is defined as the intersection of the 𝜎2 axis with the MC criterion so
that

𝜎𝑡 = −
𝜎𝑐
𝑞

(4.25)

(see Figure 4.2). Damaging occurs when stress states exceed the yield curve. Contrary to
the VP yield curve, the stress states exceed the yield curve, and there is no normal flow
rule on the yield curve. Instead, the distance to the yield curve 𝑑crit (called the critical
damage) is calculated for each stress component and the maximum distance is taken

𝑑crit = min [1,
𝜎𝑡
𝜎2
,

𝜎𝑐
𝜎1 − 𝑞𝜎2

] . (4.26)
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4 Rheologies in Sea Ice Models

The critical damage 𝑑crit is used to set the stress back onto the yield curve and to update 𝛿.
The stress before the correction 𝝈 ′ is set back onto the yield curve as following

𝝈 = 𝑑crit ⋅ 𝝈 ′. (4.27)

The integrity 𝛿 is supposed to contain the history of previous damaging events, so the
time evolution is a simple relaxation and is defined as

∂𝛿
∂𝑡

=
𝑑crit − 1

𝑇𝑑
𝛿 + 1

𝑇ℎ
(4.28)

on a timescale 𝑇𝑑. Healing can be included by choosing a healing time 𝑇ℎ on time scales of
the damage time 𝑇𝑑. Additionally, the mechanical parameters are scaled with 𝛿

𝐸(𝑡) = 𝐸0𝛿(𝑡) = 𝑓1(𝐸0, 𝛿) (4.29)

𝜂(𝑡) = 𝜂0𝛿(𝑡)𝛼 = 𝑓2(𝜂0, 𝛿) (4.30)

with 0 < 𝛿(𝑡 = 0) ≤ 1 so that the relaxation parameter is

𝜆(𝑡) =
𝜂0

𝐸0
𝛿(𝑡)𝛼−1, (4.31)

with 𝜂0 and 𝐸0 being the mechanical parameters without damage and 𝛼 a constant greater
than 1. This means that within an undamaged ice cover, the viscosity 𝜂 is very large, the
relaxation parameter increases, the viscous term in Equation 4.20 is negligible, and defor-
mations are strictly elastic. Along highly damaged zones, the elastic modulus 𝐸 vanishes,
the relaxation parameter decreases, and most stress leads to permanent deformations.
Furthermore, a local drop in 𝐸 can cause a redistribution in stress so that the damage
propagates through the medium. The viscosity 𝜂 and the elastic modulus 𝐸 are coupled
to the ice concentration 𝑎 in the same way the ice strength parameter 𝑃∗ within the VP
rheology:

𝐸 = 𝑓1(𝐸0, 𝛿)e𝐶
∗(1−𝑎) (4.32)

𝜂 = 𝑓2(𝜂0, 𝛿)e𝐶
∗(1−𝑎) (4.33)

with 𝑓1(𝐸0, 𝛿) and 𝑓2(𝜂0, 𝛿) representing the functional dependency on the level of damage
of the mechanical parameter 𝐸0 and 𝜂0.
For a discretization in space and in time, the MEB implementation follows, for the most
parts, Plante et al. (2020) and is introduced in chapter 5 in detail.
For the simulation, the model parameters are chosen to match the physical observations
of sea ice. Dansereau et al. (2016) suggest setting the internal friction coefficient 𝜇 to 0.7
following observations (eg. Schulson et al. 2006). The undamaged elastic modulus 𝐸0 can
be calculated from the elastic shear wave propagation speed 𝑐𝑤 = 500m/s and the ice
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4.3 Maxwell Elasto-brittle Rheology

density 𝜌 = 900 kg/m3 to 𝐸0 = 2𝑐2𝑤(1 + 𝜈)𝜌 = 5.58 × 108 Pa. Timco et al. (2010) recommend
𝐸0 =10 × 109 Pa for the undamaged elastic modulus. The undamaged viscosity 𝜂0 can be
set to 1 × 107 ⋅𝐸0 Pa s (Dansereau et al. 2016). Dansereau et al. 2016 also suggest a value
between 25 × 103 Pa and 50 × 103 Pa for the ice cohesion 𝑐 and propose to use noise in the
spatial distribution of the cohesion.
The Courant–Friedrichs–Lewy condition has to be considered for the timescale parameter
for damage 𝑇𝑑. The parameterization of the damage is sensitive to the model time step 𝛥𝑡.
Therefore, Dansereau et al. (2016) chose 𝑇𝑑 = 𝛥𝑡, so that the damage does not travel faster
than elastic waves within the ice. Plante et al. (2020) go further and propose a damage
time 𝑇𝑑 < 𝛥𝑡.
Other implementations and adaptions of the MEB rheology followed Dansereau et al.
(2016) and Plante et al. (2020). For example, Rampal et al. (2016) implemented a Lagrangian
sea ice model called neXtSIM using the MEB rheology. They state that the neXtSIM model
can simulate sea ice over a wide range of spatial and temporal scales in good agreement
with observational data. However, the implementation itself differs significantly from
the presented implementation of the MEB rheology since a Lagrangian method is used
instead of a finite-volume method. Olason et al. (2022) on the other hand, adapted the
MEB rheology and used a Birmingham-Maxwell constitutive law. In both cases, the models
represent the scaling properties of sea ice in time and space (Rampal et al. 2016 and Olason
et al. 2022).
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4.4 Cohesive Material

𝜎𝐼 𝐼 𝜎2

𝜎 𝐼
= 𝜎

𝐼 𝐼

a

b

𝜎𝐼
𝜎𝑡

𝜎1

𝜎𝑐

Figure 4.2: Illustration of elliptic yield curve (VP)
and yield curve with tensile stresses (MEB). In-
variant stress axes (𝜎𝐼, 𝜎𝐼 𝐼) in black and principal
stress axes (𝜎1, 𝜎2) in grey. 𝜎𝑡 is the critical tensile
stress and 𝜎𝑐 is the uniaxial compressive stress. 𝑎
and 𝑏 denote the semi-major axes of the elliptic
yield curve. Cohesive stress states in both rheolo-
gies are marked blue.

A material is cohesive if it can sustain uni-
axial stresses either in tension and/or com-
pression. In the stress plane, the yield
curve of such material touches or even
crosses the principle stress axes. In terms
of the Mohr-Coulomb theory, this is true
for 𝜎𝐼 < |𝜎𝐼 𝐼|. For the VP and the MEB
rheology, this is marked by blue shading
in Figure 4.2. In the case of the VP ellip-
tic yield curve, the cohesion 𝑐 of the sim-
ulated ice increases by increasing 𝑏. Con-
sequently, decreasing the ratio of the two
semi-major axes 𝑒 has the same effect. The
ice strength parameter 𝑃∗ can also control
the cohesion 𝑐. In the case of the MEB rhe-
ology, the cohesion 𝑐 is its specific input
parameter and controls the slope of the
yield curve. A higher cohesion and also
a higher ice concentration leads to a higher
resistance of the ice. Walker (1966) found
cohesive material to allow higher shear
stresses and thereby to be able to create
a self-obstruction to flow within restricted

environments such as hoppers, channel, and tubes. For small-scale ice channel exper-
iments, Ip (1993) found that ice arching is only possible for rheologies with cohesive
strength. Following Plante et al. (2020) the cohesion 𝑐 is treated constant in space if not
stated otherwise. Girard et al. (2011) and Dansereau et al. (2017) used a variable cohesion
parameter 𝑐 that is randomly drawn from a uniform distribution to account for faults and
cracks on the subgrid scale.
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5 The MITgcm Framework

All work presented was computed with the Massachusetts Institute of Technology general
circulation model (MITgcm Group 2021). The MITgcm is a general circulation model
used to study the atmosphere, the ocean, and the climate. It is discretized with a finite
volume discretization on an Arakawa C-grid (Adcroft et al. 2004). The sea ice model is
coupled to the ocean model and inherits the horizontal discretization and grid of the
ocean model (Losch et al. 2010). The surface stresses are computed from the atmospheric
state and are modified by the ice model at every time step. No-slip and free-slip lateral
boundary conditions are possible with the FV C-grid code (Losch et al. 2010). The MITgcm
framework and a documentation can be found at https://mitgcm.org.
The thermodynamic modules, including the treatment of the conservation of salt and
conservation of energy, are not used for the idealized experiments. Also, the module in
which healing of sea ice is included, is, for now, not coupled to the thermodynamics. The
healing evolves only with the damage parametrisation using a constant healing rate.
The momentum equations are derived from the conservation of momentum. The general
momentum equation (3.1) contains terms for the Coriolis deflection, the wind-ice and
ocean ice-stresses, a term for the gravity acceleration and a rheology term. To simplify
the equation for the following discussions, all terms which are linear in the velocity 𝑢𝑢𝑢 and
the ice-ocean stress term are summed up in one variable 𝐹𝐹𝐹 and the momentum equation
follows as

𝑚∂𝒖
∂𝑡

= ∇ ⋅ 𝝈 + 𝑭 . (5.1)

The presented discretization closely follows the implementation presented in Plante et al.
(2020). To solve the momentum equation (5.1), the stress 𝝈 needs to be expressed in terms
of the constitutive equation (4.20) which itself depends on the velocity 𝒖. This is why a
semi-implicit backward Euler scheme is used to discretize the constitutive equation

𝜎 ′𝑛𝑖𝑗 = 𝛥𝑡
1 + 𝛥𝑡

𝜆𝑛
𝐸𝑛 [𝑪 ∶ ̇𝜺𝒏] + 1

1 + 𝛥𝑡
𝜆𝑛
𝜎𝑛−1𝑖𝑗 (5.2)

with 𝑛 denoting the variables are calculated in the present time step and 𝑛 − 1 denoting
the variables were calculated in the previous time step. Thereby, 𝜎𝑛−1𝑖𝑗 is a stress memory
term. 𝝈 ′ is the stress state before applying a correction required to ensure that the stress
state lies within the yield curve (Equation 4.27). The semi-implicit backward Euler scheme
is only a minor modification to the standard Euler approximation (Cromer 1981).
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Putting Equation 5.2 into the momentum equation (5.1) and using the components of the
elastic modulus tensor (4.6) leads to

𝑚𝑢𝑛 − 𝑢𝑛−1

𝛥𝑡
= ∂

∂𝑥
(𝜒𝑛−1𝐶11 ̇𝜀𝑛𝑥𝑥) +

∂
∂𝑥

(𝜒𝑛−1𝐶12 ̇𝜀𝑛𝑦𝑦) +
∂
∂𝑦

(𝜒𝑛−1𝐶33 ̇𝜀𝑛𝑥𝑦)

+ ∂
∂𝑥

(
𝜒𝑛−1

𝐸𝑛−1𝛥𝑡
𝜎𝑛−1𝑥𝑥 ) + ∂

∂𝑦
(

𝜒𝑛−1

𝐸𝑛−1𝛥𝑡
𝜎𝑛−1𝑥𝑦 ) + 𝐹 𝑛𝑥 (5.3)

𝑚𝑣𝑛 − 𝑣𝑛−1

𝛥𝑡
= ∂

∂𝑦
(𝜒𝑛−1𝐶11 ̇𝜀𝑛𝑦𝑦) +

∂
∂𝑦

(𝜒𝑛−1𝐶21 ̇𝜀𝑛𝑥𝑥) +
∂
∂𝑥

(𝜒𝑛−1𝐶33 ̇𝜀𝑛𝑥𝑦)

+ ∂
∂𝑦

(
𝜒𝑛−1

𝐸𝑛−1𝛥𝑡
𝜎𝑛−1𝑦𝑦 ) + ∂

∂𝑥
(

𝜒𝑛−1

𝐸𝑛−1𝛥𝑡
𝜎𝑛−1𝑥𝑦 ) + 𝐹 𝑛𝑦 (5.4)

with 𝜒𝑛−1 = 𝐸𝑛−1𝛥𝑡
1+𝛥𝑡/𝜆𝑛−1 . An implicit backward Euler method is used for the time discretiza-

tion of the integrity parameter 𝛿, so that

𝛿𝑛 = 𝛿𝑛−1 (𝛥𝑡
𝑇𝑑
(𝑑𝑛crit − 1) + 1) + 𝛥𝑡

𝑇ℎ
. (5.5)

It is essential to mention that the integrity 𝛿 is calculated multiple times within one time
step. The details follow in the algorithm shown in (algorithm 1).
When implementing the discretized momentum equation (5.4) and the discretized integrity
(5.5), two aspects must be considered. First of all, a similarity with the constitutive equation
of the VP rheology can be used to decrease the number of code changes. Most of the VP
code can be used by re-interpreting model variables. Secondly, the numerical stability of
the solution depends on how often variables are averaged from one point on the grid to
another point. Averaging becomes necessary when variables defined at the center of the
grid (C-point) and on the corner of the grid (Z-point) are used in the same calculation.
Starting with the similarity to the VP constitutive equation (4.16), the elastic part of the
constitutive equation of the MEB rheology, the first term in (5.2), can be rewritten as

[𝑪 ∶ ̇𝜺]𝑖𝑗 =
𝜈

(1 + 𝜈)(1 − 𝜈)
̇𝜀𝑘𝑘𝛿𝑖𝑗 +

1
1 + 𝜈

̇𝜀𝑖𝑗

= 2 1 − 𝜈
2(1 − 𝜈2)

̇𝜀𝑖𝑗 + [( 𝜈 + 1
2(1 − 𝜈2)

− 1 − 𝜈
2(1 − 𝜈2)

) ̇𝜀𝑖𝑗 −
0
2
] 𝛿𝑖𝑗

= 2
𝐶22
2

̇𝜀𝑖𝑗 + [(
𝐶11 + 𝐶12

2
−
𝐶22
2

) ̇𝜀𝑖𝑗 −
0
2
] 𝛿𝑖𝑗. (5.6)

Therefore, the already existing VP code with 𝜂 = 𝐶22
2 and 𝜁 = 𝐶11+𝐶12

2 can be used to
implement the elastic part of the stress (5.6).
The different parameters in the momentum equation (5.4) are defined at different grid
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points in the MITgcm framework. Scalars such as the ice thickness ℎ, the ice concentration
𝐴, the relaxation parameter 𝜆, and the elastic modulus 𝐸 are originally defined at C-points.
The vector field of the sea ice velocity 𝒖 is defined at the sides of the grid cell. With
finite differences on the C-grid the diagonal terms of the strain rate tensor ̇𝜀𝑥𝑥 and ̇𝜀𝑦𝑦 are
naturally defined at C-points

( ̇𝜀𝑥𝑥)𝐶𝑖𝑗 =
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

𝛥𝑥𝐹𝑖,𝑗
, (5.7)

( ̇𝜀𝑦𝑦)𝐶𝑖𝑗 =
𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗

𝛥𝑦𝐹𝑖,𝑗
, (5.8)

and the off-diagonal components ̇𝜀𝑥𝑦 at Z-points

( ̇𝜀𝑥𝑦)𝑍𝑖𝑗 =
1
2
(
𝑣𝑖,𝑗 − 𝑣𝑖−1,𝑗

𝛥𝑥𝑣𝑖,𝑗
+
𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

𝛥𝑦𝑢𝑖,𝑗
) . (5.9)

In the case of an equidistant, squared C-grid, all distances between velocity components
are the same (𝛥𝑥𝐹𝑖,𝑗 = 𝛥𝑦𝐹𝑖,𝑗 = 𝛥𝑥𝑣𝑖,𝑗 = 𝛥𝑦𝑢𝑖,𝑗). Consequently, the tensor fields of the strain
rate ̇𝜺 and of the stress tensor 𝝈 are defined at the C- and Z-points. The main diagonal
components ( ̇𝜀𝑥𝑥, ̇𝜀𝑦𝑦, 𝜎𝑥𝑥, 𝜎𝑦𝑦) are located at C-points and off-diagonal components ( ̇𝜀𝑥𝑦,
𝜎𝑥𝑦) at Z-points. Each time a variable defined at a C-point has to be computed in the same
operation as a variable defined at a Z-point, one of the two has to be averaged to the other
one’s position. For example, the MC criterion (4.22) to calculate the critical damage 𝑑crit
uses all three stress components which are defined at C and Z-points

𝜎𝑐,C =
𝜎11,C + 𝜎22,C

2
+
√
(
𝜎11,C + 𝜎22,C

2
)
2
+ 𝜎212,𝑍

− 𝑞𝐶
𝜎11,C + 𝜎22,C

2
−
√
(
𝜎11,C − 𝜎22,C

2
)
2
+ 𝜎212,𝑍 . (5.10)

To calculate the critical stress 𝜎𝑐,C at C-points the shear stress component 𝜎12 has to be
averaged from Z- to C-points. These averaging operations lead to numerical instabilities.
Averaging variables from C- to Z-points and vice versa can lead to a computational
mode. This computational mode carries no spatial information. Consequently, two
averaged variables can evolve independently of each other because they are decoupled.
When decoupled variables lead to independent solutions the resulting field can exhibit a
checkerboard instability. A solution of the problem is to define some variables on both
C- and Z-points and also to have the least averaging operations possible. Using variables
from which many other variables can be computed, reduces the number of averaging
further.
With this in mind, different combinations of variable definitions at both grid points were
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5 The MITgcm Framework

compared. The following variables showed the least numerical instabilities and are defined
at both C- and Z points: the shear stress 𝜎12, the critical damage 𝑑crit and the integrity 𝛿, the
relaxation parameter 𝜆, and the shear viscosity 𝜂. Moreover, in some cases it was possible
to define the second parameter at the other grid point without the need of averaging. In
this way, the number of averaging operations was reduced to three.
Both 𝑑crit and 𝑑 are defined as scalars originally at C-points. To calculate 𝑑crit (4.26) at
C-points, the shear stress 𝜎12 needs to be available at C-points. Instead of averaging the
shear stress component 𝜎12 from Z-points to C-points each time the critical damage 𝑑crit
is averaged, a second shear stress at C-points 𝜎12,C is defined. Following Equation 5.2, the
shear strain rate component ̇𝜀𝑥𝑦 needs to be averaged from Z-points to C-points to calculate
the shear stress component 𝜎12,C. In this way, the shear stress at C-points 𝜎12,C evolves
without coupling to the shear stress at Z-points and the shear strain rate is averaged
instead of the shear stress. Many other combinations of averaging were tried in the course
of this thesis, but this method proved to be the only stable one. The same was observed
for the shear stresses in Plante et al. (2020). This is one of the three averaging operations.
Next, the original shear stress component 𝜎12 is defined on Z-points and all scalars used
in Equation 5.2 need to be available at Z-points. However, only the integrity parameter 𝛿
needs to be averaged from C-points to Z-points because the other parameters are derived
from it. After obtaining 𝛿𝑍 by averaging 𝛿, the relaxation parameter on Z-points 𝜆𝑍 and the
shear viscosity on Z-points 𝜂𝑍 can be recomputed from 𝛿𝑍. This is the second averaging
operation.
Lastly, the critical damage 𝑑crit needs to be available on Z-points to correct the shear stress
component 𝜎12,𝑍. This is the third averaging operation.
In this thesis, all averaging operations from C-points to Z-points are done by a linear
average

𝛼𝑖𝑗,𝑍 = 1
4
(𝛼𝑖𝑗,C + 𝛼𝑖+1𝑗,C + 𝛼𝑖𝑗+1,C + 𝛼𝑖+1𝑗+1,C) (5.11)

and a quadratic average is used to average from Z-points to C-points

𝛼𝑖𝑗,C =
√
1
4
(𝛼2𝑖𝑗,𝑍 + 𝛼2𝑖+1𝑗,𝑍 + 𝛼2𝑖𝑗+1,𝑍 + 𝛼2𝑖+1𝑗+1,𝑍). (5.12)

5.1 Iterative Solver

In the MITgcm framework, several different solver options are implemented. For this
thesis, a Jacobian-Free-Newton-Krylov (JFNK) solver (Losch et al. 2014) is used for the VP
simulations and a Picard solver with a matrix-free Krylov solver (Lemieux et al. 2008) is
used for the simulations with the MEB rheology.
Starting with the solver for the MEB rheology, a standard Picard solver using a line-
successive-relaxation (LSR) (Losch et al. 2010) is adapted with a Krylov solver using a
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5.1 Iterative Solver

Flexible General Minimum RESidual (FGMRES) to solve the nonlinear system of the mo-
mentum equation (5.4). The integrity parameter 𝛿 is additionally calculated using an
IMplicit-EXplicit (IMEX) approach (Lemieux et al. 2014). The algorithm is described in
algorithm 1. Each time step 𝑛, values of the ocean and the atmospheric model, such as the
surface tilt and the wind forcing, are passed to the ice model. The nonlinear momentum
equation is then solved in an iterative scheme. In the Picard solver, the nonlinear equations
are linearized and solved using a preconditioned FGMRES. The LSR is used to precondition
the equation. The FGMRES is a Krylov method which uses the Krylov subspace to solve
the linear equation in Equation 5.4 of the form 𝐴(𝒖𝑖−1) ⋅ 𝒖𝑖 − 𝒃𝑖−1 = 0 without the need
to find the inverse 𝐴(𝒖𝑖−1)−1. The Picard iteration is repeated until the residual error is
reduced by a factor of 1 × 10−4. The integrity 𝛿, the critical damage 𝑑crit, and the elasticity
𝐸 are calculated based on the recent solution of the velocity 𝒖𝑖 each Picard iteration. After
the Picard iteration, the stress state is corrected by the latest critical damage and stored as
the stress memory for the next step. The same happens with 𝛿. Differing from Plante et al.
(2020), only the integrity 𝛿 and the elasticity 𝐸 are included and recalculated in the IMEX
scheme.
The JFNK solver is used to solve the nonlinear system of equation of the momentum
equations for the VP rheology as described in Losch et al. (2014). In each time step, the
nonlinear system of equations is solved implicitly. An inexact Newton method is used,
where the linear system is solved with an accuracy depending on the nonlinear conver-
gence rate. Again, LSR is used as a preconditioner and the inverse of the Jacobian matrix
is calculated with the matrix-free Krylov solver using FGMRES.
The JFNK solver could not be used for the MEB rheology because it requires continu-
ous (differentiable) solutions, but the damage scheme of the MEB rheology introduces
discontinuities by the definition of the critical damage 𝑑crit (4.26).

23



5 The MITgcm Framework

Algorithm 1 MEB solver

1. Receive values from the atmosphere and ocean
2. Start nonlinear Picard iteration 𝒖𝑛−1 → 𝒖0
while 𝑖 < 𝑖𝑚𝑎𝑥 & not converged do

2.1 𝑖 = 𝑖 + 1
2.2 Calculate external stresses 𝝉𝑖
2.3 Calculate strain rates ̇𝜺𝑖
2.4 Calculate viscosities 𝜂𝑖−1, 𝜁𝑖−1 and relaxation parameter 𝜆𝑖−1
2.5 Calculate 𝑏 (𝒖𝑖−1)
2.6 Calculate 𝐴(𝒖𝑖−1) 𝒖𝑖
2.7 Initial residual
2.8 Krylov loop
while not converged do
2.8.1 Calculate 𝒖𝑖 by solving the linear system with FGMRES

end while
2.9 Calculate damage criterion 𝑑𝑐𝑟 𝑖𝑡 ,𝑖 and damage parameter 𝑑𝑖 (IMEX)
2.10 Calculate elasticity 𝐸𝑖

end while
3. 𝒖𝑖 → 𝒖𝑛
4. 𝑑𝑖 → 𝑑𝑛
5. 𝑑𝑐𝑟 𝑖𝑡 ,𝑖 → 𝑑𝑛crit
6. 𝐸𝑖 → 𝐸𝑛
7. Update stress to yield curve 𝝈𝑛 = 𝑑𝑛crit ⋅ 𝝈

′𝑛
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6 Simple Analytical Solutions

(a) Wind vertical to boundaries in the 𝑥 -direction. (b) Wind along boundaries in the 𝑦 -direction.

Figure 6.1: Ice channel along y-axis to recreate steady state solutions.

In the first step of testing the new implementation, model results are compared with
analytic solutions. For the analytic solutions, sea ice in an infinite channel along the
𝑦 -direction on a non-rotating plane is considered. The momentum equation (5.1) in 1D
for steady state (𝒖 = 0) simplifies to

∂𝜎𝑥𝑥
∂𝑥

+ 𝜏𝑥 = 0 (6.1)

and
∂𝜎𝑥𝑦
∂𝑥

+ 𝜏𝑦 = 0 (6.2)

only considering external wind forcings along the 𝑥 - and 𝑦 -axis. Derivatives in 𝑦 -direction
(∂/∂𝑦) can be neglected due to symmetry in translation of the experiment.
The normal stress component 𝜎𝑥𝑥 can be obtained by integrating Equation 6.1 over the
channel width in the 𝑥 -direction 𝑥 for external wind forcing only along the 𝑥 -axis

𝜎𝑥𝑥 (𝑥) = −𝜏𝑥 ⋅ 𝑥. (6.3)

The normal stress component 𝜎𝑦𝑦 results in

𝜎𝑦𝑦 (𝑥) = −𝜈 ⋅ 𝜎𝑥𝑥 (𝑥) (6.4)
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6 Simple Analytical Solutions

following Possion’s ration (4.4). Since the shear stress 𝜎𝑥𝑦 is zero due to zero forcing in
the 𝑦 -direction 𝜏𝑦, the stress invariants are

𝜎𝐼 (𝑥) =
𝜎𝑥𝑥 (𝑥)(1 + 𝜈)

2
and 𝜎𝐼 𝐼 (𝑥) =

𝜎𝑥𝑥 (𝑥)(1 − 𝜈)
2

. (6.5)

The analytic value for external wind forcing of 5m/s for the divergent stress 𝜎𝐼 at the
channel walls (𝑥 = ±𝑊) results in

𝜎𝐼 (±𝑊 ) = ±6286.8 N
m

(6.6)

and for the shear stress 𝜎𝐼 𝐼 in

𝜎𝐼 𝐼 (±𝑊 ) = 3385.2 N
m

(6.7)

by using the values for air density 𝜌𝑎 and air drag coefficient 𝐶𝑎 as stated in Table 7.1.

In the second case with wind forcing along the 𝑦 -axis, the normal stress components 𝜎𝑥𝑥
and 𝜎𝑦𝑦 are zero because 𝜏𝑥 = 0. Therefore, only the shear stress component 𝜎𝑥𝑦 defines the
invariant stresses 𝜎𝐼 and 𝜎𝐼 𝐼. For the shear stress component 𝜎𝑥𝑦, Equation 6.2 is integrated
over the channel width in 𝑥 -direction 𝑥

𝜎𝑥𝑦 (𝑥) = −𝜏𝑦 ⋅ 𝑥. (6.8)

So that the invariant stresses are

𝜎𝐼 (𝑥) = 0 and 𝜎𝐼 𝐼 (𝑥) = |𝜎12| . (6.9)

In this set-up, the analytic values for an external forcing of 5m/s and the same air density
and air drag coefficient lead to a divergent stress 𝜎𝐼 at the channel walls of

𝜎𝐼 (±𝑊 ) = 0.0 N
m

(6.10)

and a shear stress 𝜎𝐼 𝐼 of
𝜎𝐼 𝐼 (±𝑊 ) = 9672.0 N

m
. (6.11)

The idealized experiment is set up according to Figure 6.1, and the model parameters can
be found in Table 7.1. The model domain is a (512 x 512) km basin closed at the boundary
in the West and East and with periodic boundary conditions in the North and South. The
domain is covered by 30 cm of ice. The grid cell width 𝛥𝑥 is 8 km leading to 64 grid cells
in the 𝑥 -direction with an additional “dry” grid cell to form the solid boundaries in the
East and West.
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The results of the simulations can be found in Figure 6.2 and Figure 6.3. To reproduce
the idealized assumptions made for the analytical results, the simulation needs to be in
steady state. Therefore, the damage update has to be set to 0 so that Equation 6.1 and
Equation 6.2 are solved. To find a steady state, the domain-mean values for the divergent
and shear stress over time were compared (see graphics a) in Figure 6.2 and Figure 6.3).
Because the divergent stress has both negative and positive values equally distributed,
only in this specific case of a closed channel, the mean of the absolute divergent stress
values |𝜎𝐼| are investigated.
In both cases of external forcing, a steady state was found in which the values varied with
a relative deviation in orders of 1 × 10−5 or below. The steady state was reached after
14 416 s. In the experiment in which the wind direction is across the channel, an elastic
oscillation can be seen for the adjustment process before reaching the steady state for
both domain-mean stresses. Whereas, in the experiment in which the wind direction is
along the channel, the elastic oscillation can only be observed for the mean shear stress
since the mean divergent stress is zero.
In graphics b) (Figure 6.2, Figure 6.3), stress fields in a steady state are shown. The
theoretically predicted stress along the x-axis can be observed in both wind directions.
The theoretical equations of the stress along the x-axis in Equation 6.5 are compared to
the marked transects in the center of the channel in both stress fields. The comparison is
shown in c) respectively.
The results for wind in the 𝑥 -direction show the linear decay for the divergent stress 𝜎𝐼
and the triangular devolution for the shear stress 𝜎𝐼 𝐼. The results for the divergent stress
at the channel walls (𝑥 = ±𝑊) are

𝜎𝐼 (−𝑊 ) = −6282.7 N
m

and 𝜎𝐼 (+𝑊 ) = 6284.7 N
m

(6.12)

and for the shear stress

𝜎𝐼 𝐼 (−𝑊 ) = 3383.0 N
m

and 𝜎𝐼 𝐼 (+𝑊 ) = 3384.1 N
m
. (6.13)

The results for wind in the 𝑦 -direction show no divergent stress 𝜎𝐼 as foreseen since the ice
is uniformly accelerated along the boundary in the West. Moreover, the same triangular
devolution for the shear stress 𝜎𝐼 𝐼 can be observed as with the wind in the 𝑥 -direction.
The results for the divergent stress at the channel walls (𝑥 = ±𝑊 ) are

𝜎𝐼 (−𝑊 ) = 0.0 N
m

and 𝜎𝐼 (+𝑊 ) = 0.0 N
m

(6.14)

and for the shear stress

𝜎𝐼 𝐼 (−𝑊 ) = 9679.9 N
m

and 𝜎𝐼 𝐼 (+𝑊 ) = 9679.9 N
m
. (6.15)
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6 Simple Analytical Solutions

The highest relative deviation from the theoretical value to the modelled one is the value
for the shear stress 𝜎𝐼 𝐼 with forcing along the channel which deviates by 0.08 % from the the-
oretical value. All in all, the model shows the predicted analytic behaviour and reproduces
it nearly exactly in both wind directions and for both invariant stresses. Consequently, the
test yields confidence in the new implementation and shows that the averaging between
variables of stress does not trigger noise and the new MEB implementation can reproduce
the analytic predictions on this scale and with this time resolution.
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Figure 6.2: Invariant stress analysis in channel along the 𝑦 -axis with forcing in the
𝑥 -direction. Plot a) is the time evolution of the domain-mean stress invariant |𝜎𝐼| in green
and 𝜎𝐼 𝐼 in red. In b) there are snapshots of the stress invariants (𝜎𝐼, 𝜎𝐼 𝐼) after reaching
the steady state. The dashed black line indicates the transect taken for the plots c). In
c) the transects of the simulated stress invariants (𝜎𝐼, 𝜎𝐼 𝐼) are light blue and the analytic
prediction are dark blue dashed lines.
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Figure 6.3: Invariant stress analysis in channel along the 𝑦 -axis with forcing in the
𝑦 -direction. Plot a) is the time evolution of the domain-mean stress invariant |𝜎𝐼| in green
and 𝜎𝐼 𝐼 in red. In b) there are snapshots of the stress invariants (𝜎𝐼, 𝜎𝐼 𝐼) after reaching
the steady state. The dashed black line indicates the transect taken for the plots c). In
c) the transects of the simulated stress invariants (𝜎𝐼, 𝜎𝐼 𝐼) are light blue and the analytic
prediction are dark blue dashed lines.
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7 Phenomenological Testing

The following chapter sums up phenomenological tests to show the elementary behaviour
of the implemented rheology. Two idealized experimental set-ups were tested. Both
experiments have only external wind forcing, neglecting the Coriolis deflection.
First, the implementation is tested for simple symmetry in an experiment with symmetric
geometry and forcing. Secondly, the results of a reference run used in Plante et al. (2020)
are compared with the results of the MEB implementation of the MITgcm.
The analysis focuses on the fracturing of ice. Fracturing has a timescale of seconds, which
is well below thermodynamic timescales, so healing processes can be neglected for these
tests. The corresponding model parameters for each test can be found in Table 7.1.

Table 7.1: Model parameters of the test set-ups. The parameters for the symmetry test
on the left and the parameters of the channel test to compare with the reference run
(Plante et al. 2020) on the right.

Parameter Definition Symmetry test Channel test Unit

𝛥𝑥 Spatial resolution 8 2 km

𝛥𝑡 Time step 4 0.5 s

𝑡𝑑 Damage time 16 2 s

𝐸0 Elastic modulus 5 × 108 1 × 109 N/m
𝜈 Poisson ratio 0.3 0.3
𝜆0 Viscous relaxation 1 × 107 1 × 105 N s/m
𝜇 Internal friction 0.7 0.71
𝑐0 Cohesion 25 × 103 10 × 103 N/m
𝜌𝑎 Air density 1.3 1.3 1/m3

𝜌𝑖 Sea ice density 9 × 102 9 × 102 1/m3

𝜌𝑤 Water density 1.026 × 103 1.026 × 103 1/m3

𝐶𝑎 Air drag coefficient 1.2 × 10−3 1.2 × 10−3

𝐶𝑤 Water drag coefficient 5.5 × 10−3 5.5 × 10−3
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7.1 Symmetry

7.1 Symmetry

(a)Wind in 𝑥 -direction. (b) Wind in 𝑦 -direction. (c) Wind along diagonal axis.

Figure 7.1: Illustrations of set-ups to test for symmetry with different external wind
forcing direction.

The model domain is a (512 x 512) km closed basin covered by 30 cm of ice. The grid cell
width 𝛥𝑥 is 8 km leading to 64 grid cells in each direction with additional “dry” grid cells
to form the solid boundaries (see Figure 7.1).
Turning off all external forcings in the quadratic experiment, except for wind forcing,
allows testing the implementation for symmetry along the axis of wind forcing. The
symmetry is measured by the variance of the asymmetry of speed with respect to the
horizontal (h), vertical (v) or diagonal (d) axis:

𝛽(𝑠asym)𝑘 =
∑𝑖,𝑗 (𝑠𝑖𝑗 − 𝑠𝑘𝑖𝑗)

2

𝑁
(7.1)

with 𝑘 ∈ [h, v, d], 𝑠𝑖𝑗 the field of speed along the axis 𝑘, 𝑠𝑘𝑖𝑗 the field of speed reflected at the
axis 𝑘, 𝑁 the total of grid points in the domain and 𝑖, 𝑗 giving the position in the domain.
For the wind in the 𝑥 -direction (Figure 7.1a), reflection symmetry with respect to the
horizontal axis is expected until the non-linear processes, caused by damaging events,
dominate the ice dynamics.
The variance of the asymmetry 𝛽(𝑠asym)ℎ of speed with respect to the horizontal axis
shows exactly this (green) (Figure 7.2). The asymmetry for the first 4500 s of the simulation
is negligibly small and increases in response to a second strong increase in damage (dark
blue) (Figure 7.2).
In the case of external forcing along the y-axis, reflection symmetry with respect to the
vertical axis is expected and the simulation is expected to behave identically with wind in
the x- and the 𝑦 -direction. No difference in the evolution of damage means no preference
for one axis.
The asymmetry 𝛽(𝑠asym)𝑣 is small for the first 4500 s but the asymmetry increases after the
damage increased substantially (green) (Figure 7.3). Moreover, the behaviour of the model
is different for the two different forcing directions. Although, the evolution of the damage
shows no major difference between the wind in the x- or in the 𝑦 -direction, a difference in
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the model between the wind directions becomes visible with the variances of asymmetric
speed 𝛽(𝑠asym)ℎ, 𝛽(𝑠asym)𝑣. So the general behaviour of the damage is as expected, but the
differences between wind in the x- and the y-directions indicate a remaining issue with
the numerical stability.
The differences in the variance in speed 𝛽(𝑠asym)ℎ, 𝛽(𝑠asym)𝑣 were examined for systematic
errors because of the unequal increase of the variance. This is done by comparing the
evolution of the difference between the speed field for wind in the 𝑥 -direction and the
speed field for wind in the 𝑦 -direction. The difference in both fields did not appear in the
first 10 timesteps and increased randomly on a very small scale later. With this result,
a systematic error can be excluded. The reason for the resulting different behaviour is
attributed to numerical instabilities which increase asymmetry in the output field with
increasing damage. Increasing asymmetry with increasing damaging events could also
be observed in the second test (section 7.2) and hint at a numerically unstable damage
parametrisation.
As a second symmetry test, the same procedure was repeated with wind forcing in a
diagonal direction in the positive x- and 𝑦 -direction (see Figure 7.1c). The absolute speed
of wind is the same (|𝒖| = 10m/s). No difference in the variance of speed 𝛽(𝑠asym)𝑑 above
1 × 10−7 develops. There is no asymmetry in contrast to the first symmetry test with wind
forcings aligned with the grid in the x- or 𝑦 -direction.
This can be explained with overall fewer damaging events because fewer stress states
reach the yield curve. The damage does not reach a value of 𝑑 = 0.25 while the damage
in the experiment with the wind blowing in the x- or 𝑦 -direction significantly exceeds
𝑑 = 0.4. Damage is mainly triggered by the failure of the ice in tensile stress or shear
stress (cf. MC-yield curve in Figure 4.2). With wind along the diagonal, compressive stress
in the north-eastern corner, tensile stress in the south-western corner and shear stress
along the eastern and northern boundary forms (not shown). Only the tensile stress in
the south-western corner essentially contributes to the damaging of the ice. The shear
stress does not cause damage because the grid cells with high values in shear stress have
high values in compressive stress at the same time and the critical value for shear stress
rises with increasing compressive stress (cf. MC-yield curve in Figure 4.2).
The absence of asymmetry with small damage values in the case of diagonal wind forcing
confirms that the parametrisation of damage is one reason for numerical instabilities.
Consequently, all three results show negligible asymmetry for the first 2000 s of the test
and the appearing asymmetry follows the expectations of being triggered by damage.
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Figure 7.2: Evolution of the asymmetry of speed 𝑠asym with the relative variance of
asymmetric speed 𝛽(𝑠asym)ℎ in green and the domain averaged damage per time step in
dark blue for a simulation with external wind forcing in the 𝑥 -direction.
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Figure 7.3: Evolution of the asymmetry of speed 𝑠asym with the relative variance of
asymmetric speed 𝛽(𝑠asym)𝑣 in green the domain averaged damage per time step in dark
blue for a simulation with external wind forcing in the 𝑦 -direction.
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x- and the 𝑦 -direction.
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7.2 Comparing with another MEB Implementation

Figure 7.5: Illustration of
downstream ice arch.

The second test set-up is a domain that is periodic in the
𝑥 -direction and features “islands” with a channel in the 𝑦 -
direction (Figure 7.5). The closed ice cover is forced by the
wind in a negative 𝑦 -direction. With this configuration,
the results can be directly compared to the MEB model of
Plante et al. (2020) and their reference run. The behaviour
of ice being advected through a channel is a common test
to qualitatively assess the dynamic sea ice pattern through
constrictions (cf. Dumont et al. 2009, Dansereau et al. 2017,
West et al. 2022).
The MEB implementation used in Plante et al. (2020) is
the one of McGill VP sea ice model (Tremblay et al. 1997).
McGill’s sea ice model is not coupled to an ocean. The nu-
merical framework of Plante et al. (2020) is very similar to
the MITgcm in that it uses the finite differences method
on a C-grid. The difference between the two frameworks
is the treatment of the nonlinear part of the momentum
equation, which is solved simultaneously using an IMplicit-
EXplicit (IMEX) (Lemieux et al. 2014) approach in Plante
et al. (2020)s framework. In the MITgcm the momentum
equations are solved implicitly with a Picard solver and only
the damage is included via IMEX. Both frameworks use a
Flexible General Minimum RESidual method (FGMRES) to
solve the linearised momentum equations. In contrast to
McGill’s framework, the damage is advected in the MITgcm

framework.
The channel configuration (Figure 7.5) leads to landfast sea ice. Landfast ice or fast ice
is sea ice that forms along and is attached to the coast, for example, between schoals or
icebergs (World Meterological Organization 1970).
When such sea ice is driven through a narrow channel, an ice arch can form at the end of
the channel and the ice upstream of the arch is locked. Sea ice can exhibit self-obstruction
to flow by forming stress-free areas in a curved concave shape. The formation of an ice
arch within a narrow channel impedes the flow through the channel (Sodhi 1977).
Sea ice divergence downstream of the channel leads to open water. When an ice arch
collapses, the outflow of the channel increases drastically. Therefore, ice arches are an
example of large-scale sea ice patterns triggered by small-scale sea ice deformation events
leading to long-lasting discontinuities in the ice. Observed and studied ice arches are the
Nares Strait and Lincoln Sea ice bridge (Kozo 1991, Dansereau et al. 2017 and Dumont
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et al. 2009).
This test aims to recreate Plante et al. (2020) observations and to show that the formation of
ice arches is possible with the new implementation within the MITgcm, too. The test exper-
iment is 800 km long and 200 km wide with a grid resolution of 2 km. The channel itself is
200 km long and 60 km wide. The boundary condition at the sides (𝑥 = 0 km, 𝑥 = 200 km)
is periodic, closed in the North and open in the South. External wind forcing increases
the surface stress linearly from 0 to 0.625N/m2 within 10 h in the simulation. The model
parameters can be found in Table 7.1 in the right column.
The overall behaviour of the dynamics is identical to the results shown in Plante et al.
(2020). The invariant stress components show the same physical behaviour (see Figure 7.6,
Figure 7.7 and Figure 7.8). Plante et al. (2020) uses the opposite sign convention, therefore
the negative divergent stress of the MITgcm results is used for the comparison. The stress
values are similar at all three different stages of the simulation.
In Figure 7.6, after 300 s (𝜏 = 0.005N/m2), both results show large tensile stresses on the
downstream coastline, compressive stresses on the upstream coastline and shear stresses
in the four corners of the channel. The ice is being pushed into the narrow channel while
moving away from the boundaries in the North and the lower boundaries of the channel.
Up to this point, no significant damaging events have happend (not shown) as described
in Plante et al. (2020). In Figure 7.7, after 3300 s (𝜏 = 0.06N/m2), the general appearance
of stress fields are similar to the stress field at 300 s (𝜏 = 0.005N/m2) only the stress values
have increased significantly. A concave shape at the southern end of the channel is visible
in both simulations. In Figure 7.8, after 11 700 s (𝜏 = 0.2N/m2), divergent and shear stress
have formed triangular shapes north of the channel entrance and the area below the
channel is stress free. Again the results of the MITgcm align with the results in Plante
et al. (2020).
For a more detailed comparison, the evolution of damage over time was analysed and

different stages of damage were compared to observe the formation of an ice arch. The
results generated with the MITgcm framework can be seen in Figure 7.9 and are compared
to the results shown in Figure 7.10. Compared to Plante et al. (2020)’s simulation, the
damaging events are less localized in time and happen with smaller forcing. However, the
overall dynamic is the same. At the beginning (point I in Figure 7.9), the tensile stresses
downstream of the channel increase and a damage line south of each channel boundary
appears. With the time, the tensile stresses as well as the shear, stresses in the downstream
corners of the channel, increase so that a damage line along the downstream coastline
forms (point II in Figure 7.9). This damage line extends over the channel connecting both
downstream corners triggered by the further increasing tensile and shear stresses in this
area. This is how the ice arch starts to form (Plante et al. 2020). When the ice arch has
formed, both divergent and shear stress (left and right panels in Figure 7.7b) exhibit a
concave shape at the downstream end of the channel. The divergent stress in the middle
of the channel is close to zero. The ice does not experience compressive stresses within
the channel. The effect of the ice arch can be seen in the sea ice drift (Figure 7.11).
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7.2 Comparing with another MEB Implementation

(a) Divergent stress 𝜎𝐼 (left) and shear stress
𝜎𝐼 𝐼 (right) in the reference simulation Plante
et al. (2020).

(b) The negative divergent stress 𝜎𝐼 (left) and
the shear stress 𝜎𝐼 𝐼 (right) after a simulation
time of 300 s and 𝜏 = 0.005N/m2.

Figure 7.6: Results of downstream ice channel experiment in Plante et al. (2020) (left)
and the MITgcm (right) before the formation of an ice arch.

(a) Divergent stress 𝜎𝐼 (left) and shear stress
𝜎𝐼 𝐼 (right) in the reference simulation (Plante
et al. 2020).

(b) The negative divergent stress 𝜎𝐼 (left) and
the shear stress 𝜎𝐼 𝐼 (right) after a simulation
time of 3300 s and 𝜏 = 0.06N/m2.

Figure 7.7: Results of downstream ice channel experiment in Plante et al. (2020) (left)
and the results of the MITgcm (right) in which the ice arch starts to form.
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(a) Divergent stress 𝜎𝐼 (left) and shear stress
𝜎𝐼 𝐼 (right) in the reference simulation by
Plante et al. (2020).

(b) The negative divergent stress 𝜎𝐼 (left) and
the shear stress 𝜎𝐼 𝐼 (right) after a simulation
time of 11 700 s and 𝜏 = 0.2N/m2.

Figure 7.8: Results of downstream ice channel experiment in Plante et al. (2020) (left) and
the results of the MITgcm (right) after the ice has detached in the South of the channel.
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7.2 Comparing with another MEB Implementation

Figure 7.10: Time evolution of the mean domain damage for the McGills framework
with dashed lines indicating the beginning and end of simulation phases described by
Plante et al. (2020).

Between snapshots I and III (Figure 7.11), the ice bridge builds up. In snapshot III (Fig-
ure 7.11), the sea ice has detached from the coastline in the North. In IV (Figure 7.11), the
ice at the channel walls is detached and no longer landfast sea ice. The ice north of the
channel does not move because it is still one undamaged block of ice. Because the ice
north of the channel cannot move yet, tensile forces south of the channel lead to damage
and detachment there. The ice mass has split up into a moving part south of the channel
and a still resting part north of the channel. Both shear and divergent stress fields south
of the ice channel drop to zero when the ice detaches (Figure 7.8b). The ice south of the
channel is drifting, accelerated by the wind forcing. What can be observed is not yet due to
the formation of the ice bridge. At the time V, damage lines connecting the corners of the
channel entrance and the sides north of the channel have been formed (Figure 7.9). The ice
north of the channel could be moving without the effect of the ice bridge. Consequently,
the same blocked ice in the North can be seen as described in Plante et al. 2020. At the
time VI, the ice north of the channel is, after all, strongly damaged and moves (Figure 7.9,
Figure 7.11). Plante et al. (2020) speak of a collapse of the ice arch.
The highly damaged ice north of the ice channel is a difference to the reference simulation.
After the damage lines along the sides in the North of the domain show up, more and more
damage lines appear, also in the middle of the ice field. Also, the damage lines are not
symmetric even though the experimental set-up is. Therefore, the asymmetric part of the
stresses was analysed. The analysis (not shown) showed that the damage is localized in
time until asymmetry kicks in, so there is no systematic error leading to the high increase
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in damage. One can also observe periodic elastic waves, which originate in the elastic
part of the rheology. After more time has passed, all ice is damaged. Plante et al. (2020)
observed highly damaged ice as well and attributed it to a residual error of the solver (see
Plante et al. 2021). The same problem likely arises in the MITgcm because of the similarity
of the two implementations. Plante et al. (2021) proposed a new damage parameterization
that can be tested to be implemented into the MITgcm framework in the future. The
damage in the MItgcm is advected in contrast to Plante et al. (2021) and different advection
patterns can be observed. The latter can be an explanation to why damage appears in
earlier stages and stress increases faster than in the reference run.
As described, the same blocking of ice within the channel was observed with the MITgcm
as in Plante et al. (2020), but the effect of the boundary conditions and the ice arching
effect itself cannot be distinguished in the test with closed boundaries in the North. The
boundary condition at the northern boundary is closed following Plante et al. (2020). To
implement this in the test set-up, there is a no-slip condition meaning “no flow” for normal
velocities at the boundary. Before the ice can move the inner stress has to overcome the
critical values in tension and/or compression. The boundary condition, therefore, has a
decelerating effect on the sea ice dynamic. It cannot be said with complete certainty that
the ice north of the ice arch does not move at the time V when it is detached from the sides
only because of the ice arch. It could still be the deceleration of the boundary condition.
To see the effect of the ice arch separately, the ice channel experiment was modified. The
modifications follow other ice arch experiments (Dumont et al. 2009, Dansereau et al. 2017
and West et al. 2022). In this experiment, this means opening the boundary in the North,
adding walls all along the sides and quadruplicating the simulation time. After 10 h of
simulated time with linearly increasing forcing as before, the simulation is run for another
30 h with no further increase of the forcing. In this case, the ice sheet starts to flow as
observed before, after being stuck and slows down again. In the second experimental
set-up, the ice in the North does not have to detach before it moves and the stopping is
caused only by the ice arch. The effect of the ice arch can be seen in the ice drift pattern
(Figure 7.12). The velocity north of the channel in the 𝑦 -direction increases approximately
for the first 15 h of the experiment and starts to slow down afterward. The maximum ice
velocity at one grid cell north of the channel in a negative 𝑦 -direction is 0.15m/s. Within
the modeled 40 h the ice does not come to a complete stop, but the evolution of the ice
velocity in y-directions indicates a continuous decrease. In a longer run (not shown) even
more slowing down of the ice could be seen.
Following Dansereau et al. (2017) in their argumentation for a higher cohesion to see the
effect of an ice arch a cohesion of 30 × 103 1/m2 was chosen. Knowing that the formation
of an ice arch depends on several other parameters than the cohesion 𝑐, in the MITgcm an
ice arch was only observed for a cohesion of 𝑐 = 30 × 103 1/m2 and not for cohesions of
𝑐 = 10 × 103 1/m2 or 𝑐 = 20 × 103 1/m2.
Except for the highly damaging events caused by asymmetry the results show that the
model can capture stable ice arches in a channel and therefore satisfies the requirement to
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model realistically long-lasting and large-scale discontinuities of sea ice.
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Figure 7.11: Snapshots of the effective ice thickness ℎ and the ice drift velocity (arrows)
at the same times (I, II, III, IV, V, VI) as in Figure 7.9.
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Figure 7.12: Snapshots of the effective ice thickness ℎ and the ice drift velocity (arrows)
for an ice channel with open boundaries in the North and the South.
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8 Direct Comparison to Results of a
Viscous-Plastic Model

In chapter 6 and chapter 7, the framework in which a MEB rheology can be used instead
of the VP rheology without changing any of the other model components, was set-up and
tested. In this chapter, the framework is used to directly compare LKF formation and sea ice
deformation to previous results with a VP rheology by Mehlmann et al. (2021). Afterwards,
the reported issues with the VP rheology, which led to the idea of the MEB rheology, in
the first place by Girard et al. (2011), are discussed again based on the possibility of using
comparable parametrisations of sub-grid variability in the sea ice strength in both VP and
MEB rheology.
LKFs are areas where the deformation is highly localized. They can divide the ice cover
into different floes that are then akin to solid bodies. Consequently, LKFs greatly influence
the sea ice dynamics, the mass balance and the matter exchange between the ocean, ice
and atmosphere and it is important to model LKFs correctly.

8.1 Reproduction and Comparison of Sea Ice Dynamics

Mehlmann et al. (2021) introduced a benchmark problem to analyse the capability of
different VP models to simulate sea ice deformation, in specific LKFs. The benchmark
problem is an idealised quadratic ice field driven by an anticyclonic (clockwise) ocean
circulation and moving atmospheric cyclone (see Figure 8.1a). The atmospheric cyclone
has a maximum velocity of 30/e ms−1, which equals approximately 11m/s. The cyclones
center travels from the center to the upper right corner. The ice field dimensions are (512 x
512) km. To explore the effect of grid resolution on spatial heterogeneity, the grid spacing
𝛥𝑥 is varied between 2 km, 4 km and 8 km. The experiment is run for 2 days with a time
step 𝛥𝑡 = 120 s. Ocean dynamics and thermodynamic processes are neglected. The initial
ice conditions have a constant ice concentration 𝑎 = 1.0 and an initial ice thickness ℎ0(𝑥, 𝑦)
of 0.3m with small perturbations

ℎ0(𝑥, 𝑦) = 0.3m + 0.005m (sin ( 60𝑥
1000 km

) + sin (
30𝑦

1000 km
)) (8.1)

where 𝑥, 𝑦 are given in km. No-slip and ”no-flow” boundary conditions are applied on
the solid (land) boundaries around the domain. The set of parameters used to run the
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(a) Illustration of quadratic ice field driven by an an-
ticyclonic (clockwise) ocean circulation and moving
atmospheric cyclon.
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(b) Results of the sea ice concentration
𝑎 with arrows indicating the ice drift ve-
locity after 2 h of simulation of the orig-
inal benchmark problem by Mehlmann et
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https://doi.org/10.17632/kj58y3sdtk.1.

Figure 8.1: Idealized set-up and results of the benchmark problem by Mehlmann et al.
(2021).

model can be found in Table 8.1. The simulation using the VP rheology uses the same
JFNK solver as in the reference. For more details, see Mehlmann et al. (2021).
In the first step, the solutions of the benchmark problem (Mehlmann et al. 2021) were
reproduced with the VP rheology. The reproduced snapshot of the sea ice concentration 𝑎
after 2 h (Figure 8.2 in the lower left-hand corner) agrees with the results of the original data
of the benchmark problem (Mehlmann et al. 2021) shown in Figure 8.1b. Quantitatively,
the number of detected LKFs was compared. Mehlmann et al. (2021) found 51 (𝛥𝑥 =
2 km), 31 (𝛥𝑥 = 4 km) and 7 (𝛥𝑥 = 8 km) LKFs. In the reproduced simulation 72 (𝛥𝑥 =
2 km), 31 (𝛥𝑥 = 4 km) and 7 (𝛥𝑥 = 8 km) LKFs were found. Hence, the results with a
grid resolution of 𝛥𝑥 = 4 km and 𝛥𝑥 = 8 km were replicable and the results with 𝛥𝑥 =
2 km deviate. As the model configuration and all parameters in both the model and the
LKF detection algorithm are identical, the difference in the number of LKFs detected is
attributed to truncation errors on different computer platforms. In spite of the apparently
large difference in LKFs, the actual difference between the runs are small: the deviation
of the mean sea ice concentration of the reproduced 2 km resolution simulation is on the
order of 1 × 10−5 (not shown). The tracking algorithm and further discussion of the LKF
analysis follows in section 8.2.
In the second step, the same benchmark problem was simulated using the MEB rheology.
MEB-specific model parameters can be found in Table 8.1. The damage time 𝑇𝑑 is set to
the size of a time step 𝛥𝑡. In contrast to the VP simulation, the MEB simulation includes a
healing process of the ice, which, however, does not have a big effect on the short time scale
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8 Direct Comparison to Results of a Viscous-Plastic Model

Table 8.1:Model parameters of benchmark problem for the VP rheology and the MEB
rheology.

Parameter Definition VP MEB Unit

𝑇𝑑 Damage time 120 s

𝑇ℎ Healing time 1 × 105 s

𝐸0 Elastic modulus 5 × 108 N/m
𝑃∗ Ice strength 27.5 × 103 N/m
𝜈 Poisson ratio 0.3
𝜆0 Viscous relaxation 1 × 107 N s/m
𝜇 Internal friction 0.7
𝑐0 Cohesion 25 × 103 N/m
𝑒 Ellipse aspect ratio 2
𝜌𝑎 Air density 1.3 1.3 1/m3

𝜌𝑖 Sea ice density 9 × 102 9 × 102 1/m3

𝜌𝑤 Water density 1.026 × 103 1.026 × 103 1/m3

𝐶𝑎 Air drag coefficient 1.2 × 10−3 1.2 × 10−3

𝐶𝑤 Water drag coefficient 5.5 × 10−3 5.5 × 10−3

𝑓0 Coriolis parameter 1.46 × 10−4 1.46 × 10−4 1/s
𝐶∗ Ice concentration parameter 20 20

of the simulation. The parameter for the Elastic modulus is set to 𝐸0 = 5 × 108N/m and
the cohesion is set to 𝑐0 = 25 × 103 N/m. Those are the same values as in chapter 7. Again,
the solver is the Krylov solver with an implicit-explicit method used for the damage as in
section 7.2. To compare the ice dynamic, snapshots of the ice drift and ice concentration
(Figure 8.2) and the principle stresses (Figure 8.3, Figure 8.4) after 2 h of simulated time are
shown.
The ice drift and sea ice concentration show similar behaviour on all spatial resolutions
(Figure 8.2). Higher ice drift velocities can be observed with the VP model. Also, the
simulated sea ice concentration 𝑎 with the VP rheology shows more details than the MEB
rheology. Darker blue lines marking low ice concentration show a different pattern. While
the MEB rheology has mostly circular features, the VP simulation also has radial features.
The same features are visible in the principal stresses (Figure 8.3, Figure 8.4). The divergent
stress (Figure 8.3) shows one of the main differences in both used rheologies. While the
MEB rheology allows tensile stresses, the VP rheology with the commonly used elliptical
yield curve does not. Also, stress values of the MEB rheology are twice the size of the
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VP values. It is difficult to directly compare values for the stress because they depend on
different yield curves (cf. Figure 4.2). For high values on the 𝜎𝐼-axis, the MEB yield curve
allows substantially higher values on the 𝜎𝐼 𝐼-axis. Comparing the 𝜎𝐼 𝐼-values inside the
MC-yield curve at the width of the ellipse to the highest 𝜎𝐼 𝐼-values of the ellipse, a factor 2
in between these is possible. Depending on the sea ice strength 𝑃∗ and the parameters
defining the MC-yield curve, even higher differences between the allowed 𝜎𝐼 𝐼-values are
possible. The shear stress snapshots in Figure 8.4 and the divergent stress snapshots in
Figure 8.3 for the MEB rheology show that the MEB rheology also produces gradients in
the ice.
It was shown that a direct comparison between the VP and the MEB rheology is possible
with the MITgcm. Furthermore, the results of the model using the MEB rheology are
reassuring concerning the capability of the MEB model to simulate sea ice deformation in
a more complex set-up with an ocean circulation and an atmosphere cyclone as forcing.
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Figure 8.2: Snapshot of the ice concentration 𝑎 with arrows indicating the ice drift
velocity after 2 h in the simulation. Results for simulations using the VP rheology below
and for simulations using the MEB rheology above.

45



8 Direct Comparison to Results of a Viscous-Plastic Model

0 200 400
0

200

400

y/
km

MEB-2km

0 200 400
0

200

400

MEB-4km

0 200 400
0

160

320

480
MEB-8km

0 200 400
x/km

0

200

400

y/
km

VP-2km

0 200 400
x/km

0

200

400

VP-4km

0 200 400
x/km

0

160

320

480
VP-8km

10000

0

10000

I/N
m

5000

0

5000

I/N
m

Figure 8.3: Snapshot of the divergent stress field 𝜎𝐼 of the MEB simulation above and the
VP rheology below. The snapshots are taken after 2 h in the simulation.
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Figure 8.4: Snapshot of the shear stress field 𝜎𝐼 𝐼 of the MEB simulation above and the
VP rheology below. The snapshots are taken after 2 h in the simulation.
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8.2 Linear Kinematic Features

8.2 Linear Kinematic Features

The analysis of the number of LKFs is used to compare the results of Mehlmann et al. (2021)
to the reproduced results in more detail. The tracking algorithm of Hutter et al. (2020) was
used for identifying the LKFs. LKFs are characterized by large gradients in the deformation
field and therefore can be tracked by classifying higher deformation rates compared to
surrounding ones. The tracking algorithm consists of three steps: the preprocessing of
the data to create a binary map of pixels, splitting the high-deformation pixels into the
smallest possible segments and reconnecting the segments depending on their distance
and orientation relative to each other.
The tracking algorithm by Hutter et al. (2020) is applied with some modifications following
Mehlmann et al. (2021) to the shear deformation rate ̇𝜀𝐼 𝐼 (4.12). To preprocess the data and
detect LKF features, the local differences in the field across different scales are emphasized
by using the natural logarithm of the field. Then a difference of Gaussian filter, acting
as a bandpass filter, is used to pick the highest differences in this field. The parameters
of the bandpass filter define the range of LKFs by setting a lower and an upper limit.
The output is a list of pixels belonging to LKFs. In the last step the algorithm identifies
the pixels that belong to the same LKF by making statistical assumptions based on the
pixel’s distance, difference in orientation and difference in the shear deformation rate. The
complete tracking algorithm can be found in Hutter et al. (2020). The parameters to tune
the algorithm are the same as Mehlmann et al. (2021) used. An example of tracked LKFs
in the shear deformation field is given in Figure 8.5b.
Following Mehlmann et al. (2021), a larger number of LKFs for a wider grid spacing is
one attribute for a good capability to simulate sea ice dynamics. Mehlmann et al. (2021)
considered three attributes: the number of LKFs, the length of LKFs and the direct visual
evaluation of the approximation. More refined LKFs were found as the spatial resolution
increases. Mehlmann et al. (2021) associated the formation of LKFs with the staggering and
discretization of the velocity vector components on the grid with a given spatial resolution.
In the used set-up, the staggering of the velocity vector components is the same for both
rheologies.
The number of detected LKFs depending on the grid space 𝛥𝑥 for the VP and MEB simula-
tion can be found in Figure 8.5a marked with crosses. The numbers in both cases increase
with increasing resolution. But, the number of LKFs for the VP rheology increases more
than the numbers of LKFs of the MEB simulations. More LKFs were generally detected
with the VP rheology for 𝛥𝑥 =2 km and 𝛥𝑥 =4 km. For a resolution of 𝛥𝑥 =8 km, the
same number of LKFs was found. The results show that the MEB rheology is able to model
LKFs.
Furthermore, the stress snapshots (see Figure 8.3 and Figure 8.4) show more spatial het-
erogeneity for the simulations using the MEB rheology consistent with Girard et al. (2011)
at first sight. But the spatial heterogeneity measured by the number of LKFs does not
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8 Direct Comparison to Results of a Viscous-Plastic Model

confirm this because it is higher for the simulation with the VP rheology than with the
MEB rheology. Therefore, further analysis of spatial heterogeneity follows in section 8.3.
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Figure 8.5: LKF analysis for direct comparison of VP and MEB and to show spatial
heterogeneity in both rheologies.

8.3 Spatial Heterogeneity

Motivated by the observations of section 8.2 that the number LKFs is not necessarily larger
for models using the MEB rheology as predicted, the set-up is used to investigate another
way to create spatial heterogeneity.
Girard et al. (2011) and Dansereau et al. (2017) used a variable cohesion parameter 𝑐 instead
of a constant cohesion. In both references, the cohesion parameter 𝑐 was randomly drawn
from a uniform distribution to account for faults and cracks in the ice below the spatial
grid scale 𝛥𝑥. The same was done within the MITgcm framework for the MEB rheology.
The cohesion 𝑐0 at each grid cell was multiplied by a value drawn between 0.5 and 1.5.
This led to a heterogeneous cohesion field throughout the simulation. Along with the
cohesion, the yield curve of the MEB rheology changes (cf. Equation 4.24) because the
critical uniaxial compressive stress 𝜎𝑐 changes. Consequently, a noisy cohesion leads to a
different damage criterion for each grid cell. The damage criterion in a grid cell does not
vary with time.
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The benchmark problem was repeated with the modificated cohesion and the results show
a significant increase in the number of LKFs for each grid resolution (see Figure 8.5a blue
y-shaped crossses). The number of LKFs for the MEB simulation with noisy cohesion is
higher than for the VP simulation. With this modification the results confirm the statement
of Girard et al. 2011. The shear deformation rate snapshot in Figure 8.6, shows similar
results to Girard et al. (2011) and Dansereau et al. (2017) concerning spatial heterogene-
ity. Also, the shear deformation rate for the lowest grid resolution (𝛥𝑥 =8 km) shows
remarkable spatial heterogeneity compared to the shear deformation rate without the use
of stochastically perturbed parameters for the cohesion or the ice strength (Figure 8.7).
Nevertheless, a second test was made in which a comparable variability within the ice
was added to the VP rheology. The idea is to give the VP simulation the same material
heterogeneity and to use the framework in which VP and MEB rheology can be directly
compared.
As there is no explicit cohesion parameter in the VP model, the ice strength parameter
𝑃∗ was multiplied with the same random field drawn from a uniform distribution as the
cohesion in the MEB rheology. The ice strength parameter 𝑃∗ also changes the yield curve
and increases or decreases the cohesive properties of the ice as described in section 4.4.
In contrast to the MEB rheology, the VP yield curve can further change throughout the
simulation because of the dependency of the maximum compressive stress 𝑃 of the ice
thickness ℎ and the ice concentration 𝑎 (cf. Equation 4.18).
The number of LKFs of the modificated VP simulation are even higher than the results of
the modificated MEB simulation (Figure 8.5a green y-shaped crosses). Also, the difference
between the VP rheology with and without a noisy ice strength parameter 𝑃∗ is bigger than
the same difference between the two simulations using the MEB rheology. In comparison,
the number of LKFs in Figure 8.5a for the simulations with variability in the ice strength
(green y-shaped crosses) show the same relation as with a constant ice strength (green
crosses). The number of LKFs increase with the increase of spatial resolution and the
increase is higher for the VP rheology than for the MEB rheology. The shear deformation
field with the detected LKFs for the benchmark experiment after 2 h with 𝛥𝑥 = 2 km with
a perturbed ice strength is shown in Figure 8.5b.
These results (Figure 8.5a) do not support the statement that VP cannot have the same
spatial heterogeneity as the MEB rheology (Girard et al. 2011). Note, that here the random
ice strength perturbabtion was similar in both rheologies, whereas Girard et al. (2011)
compared a VP model with smooth ice strength to an EB model with randomly perturbed
cohesion. The results suggest that ice models with VP rheology reproduce the observed
spatial heterogeneity, if the variability within the ice’s mechanical properties is stochasti-
cally perturbed as the cohesion in the MEB model. The large number of LKFs with the
stochastic perturbation of the VP ice strength, compared to the stochastic perturbation of
the MEB cohesion, can be explained by the additional intrinsic feedback of the ice state
(thickness ℎ, ice concentration 𝑎) on the maximal compressive stress 𝑃.
It is unclear whether the issues of the VP rheology with the missing spatial heterogene-
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ity (Girard et al. 2011) is caused by the rheology itself, or because of missing material
heterogeneity such as faults and cracks in the ice below the spatial grid scale. In both
rheologies, spatial heterogeneity of the results can be increased by introducing spatial
variability within mechanical ice properties.
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Figure 8.6: Snapshot of the shear deformation rate ̇𝜀𝐼 𝐼 of the MEB simulation above and
the VP rheology below. Both simulations use a stochastically perturbed parameter for
the cohesion or the ice strength. The snapshots are taken after 2 h of simulation.
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Figure 8.7: Snapshot of the shear deformation rate ̇𝜀𝐼 𝐼 of the MEB simulation above and
the VP rheology below. Without the use of stochastically perturbed parameters for the
cohesion or the ice strength. The snapshots are taken after 2 h of simulation.
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9 Discussion and Conclusion

In this thesis, an implementation of a MEB rheology in a sea ice model coupled to an
ocean model was presented and tested. The main difficulty was to achieve numerical
stability. The presented implementation showed the least numerical instabilities when the
number of averaging operations was reduced and when three parameters were defined at
two grid points (chapter 5). Nevertheless, it is possible to find an even more stable way
of treating the variables, especially the damage parametrisation, which can be further
improved concerning numerical stability. The tests of the implementation and the com-
parison with another MEB implementation (Plante et al. 2020) yield confidence in the new
implementation, but showed numerical instabilities whenever the simulations developed
significant damage in the ice.
The model nearly exactly reproduced simple analytic predictions of an idealized experi-
mental set-up in steady state (chapter 6). In particular, the comparison showed that the
averaging between variables of stress does not trigger noise, which supports the double-
defined set of parameters. The parametrisation of the damage was not tested with this
comparison because the damaging mechanism was turned off to allow the model to reach
a steady state.
Idealized, symmetric experiments (section 7.1) showed negligible asymmetry at the begin-
ning of each simulation. This observation also reduces the probability of a significant error
in the main part of the implementation. However, the symmetry experiments showed
increasing asymmetry with increasing damaging events and small differences between
the tests with wind in the 𝑥 -direction and with wind in the 𝑦 -direction were found. Both
observations can be attributed to a small remaining numerical instability caused by the
damage parametrisation. The experiment with wind forcing along the diagonal of the
experiment showed no asymmetry. The absence of asymmetry while damage remained
low supports the hypothesis that the parametrisation of damage is the reason for the
remaining numerical instabilities.
The comparison with Plante et al. (2020) (section 7.2) leads to the same conclusion. On the
one hand, the same dynamics of the ice within the channel and the same blocking effect
of the ice as in Plante et al. (2020) could be observed which enforces the confidence in the
implementation. On the other hand, the highly damaged ice north of the channel and the
less localized damaging events in time support the concluded weakness of the damage
parametrisation.
Plante et al. (2020) stated to capture the ice arching effect with his model. The results with
the MITgcm showed the same arching behaviour as Plante et al. (2020): the ice did not
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stop after it had moved, but it did not start to move in the first place. In other similar
models (Dumont et al. 2009, Dansereau et al. 2017 and West et al. 2022), the ice flowed
through the channel before being stopped by the ice arching effect. In the modified ice
channel experiment with the MITgcm, these results could be reproduced: the ice started
to move and was stopped afterwards. The second test makes it possible to distinguish
between the effect of the boundary conditions preventing the ice from starting to move
and the ice being stopped because of the ice arching effect. This test showed with more
certainty that the MITgcm ice model can capture the ice arching effect.
With the new MEB implementation, the MITgcm code can now be used as a framework
where different rheologies can be compared without confounders. The main features of
the ice model are treated in the same way such as the staggering of the velocity fields.
Therefore, the framework allows to isolate the effect of the rheologies. The benchmark
problem introduced by Mehlmann et al. (2021) was used to directly compare the MEB
rheology to the VP rheology (chapter 8). One of the main motivations to develop a brittle
rheology was the observation that models with VP rheology underestimate observed
spatial heterogeneity (Girard et al. 2011). At first sight, the stress snapshots showed more
spatial heterogeneity for the simulations using the MEB rheology, consistent with Girard
et al. (2011), but the spatial heterogeneity measured by the number of LKFs did not support
the visual impression.
Dansereau et al. (2017) and Girard et al. (2011) used a spatially perturbed cohesion pa-
rameter in their MEB and EB rheology, respectively, in contrast to the implementation
of the MEB rheology in the MITgcm which follows Plante et al. (2020). Only with this
modification, which is a built-in variability at the grid scale, the MEB implementation in
the MITgcm reproduces the high spatial heterogeneity reported by Dansereau et al. (2017)
and Girard et al. (2011).
The method to increase spatial heterogeneity to a model was applied to simulations using
the VP rheology, as well. The results of simulations using the VP rheology with a perturbed
ice strength parameter in section 8.3 do not support the statement that VP cannot have
the same spatial heterogeneity as the MEB rheology (Girard et al. 2011).
In the results of the direct comparison of the VP and MEB rheology, the heterogeneity of
the model depends very much on applying randomly perturbed cohesion or ice strength
parameters. The differences between rheologies are much smaller than differences be-
tween models with and without perturbed parameters. Girard et al. (2011) based their
conclusion on a comparison of VP model with constant ice strength parameter to an EB
model with a randomly perturbed cohesion parameter. With this choice, the stronger
heterogeneity is built into the model and the comparison appears biased. One can only
assume that all subsequent implementations of brittle rheologies contain this build-in
randomness, although is it only mentioned explicitly in Dansereau et al. (2016) and Girard
et al. (2011).
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10 Outlook

The framework of this thesis provides the opportunity for further investigation of the
specific effects that different parts of rheologies have on sea ice dynamics. After consider-
ing the results of this thesis, some modifications of the MEB and the VP rheology appear
useful to further improve the models.
The presented numerical instabilities within the damage parametrisation of the MEB
rheology can be further analysed. A possible improvement of the implementation was
already suggested by Plante et al. (2021). Above this, an analysis of the energy balance
for the stress update in dependency of the damage may be helpful for finding a more
numerically stable damage parametrisation.
Additionally, the MEB rheology is missing a healing mechanism coupled to the thermody-
namics of the model and an advection scheme for the stresses. For example, the Lagrangian
sea ice model by Rampal et al. (2016) introduced a healing mechanism which includes the
formation of new ice in open water and a thermodynamical healing driven by the local
temperature gradient between the bottom of the ice and the snow-ice interface. In their
model, the damage decreases with the formation of new ice and the healing increases
with cooler temperatures (Rampal et al. 2016). Another possible improvement for the
MEB rheology can be a cohesion coupled to the ice state, such as the sea ice thickness and
concentration, comparable to the VP rheology.
Despite the possible improvements of the implementation, the MITgcm framework, as it
is, can be already used to compare rheologies. Especially, the discrepancy between the
spatial heterogeneity observed for the VP and MEB rheology in this thesis with the former
observed problems with the missing spatial heterogeneity of the VP rheology (Girard et al.
2009) needs to be further analysed. Concerning the spatial heterogeneity, the presented
results are based only on the number of LKFs. A scaling analysis (Hutter et al. 2018, Girard
et al. 2009, Olason et al. 2022) could be used to support or reject the findings. Moreover,
further research is needed on the extend to which the spatial heterogeneity depends on
the rheology itself, or on the choice of parameters such as the ice strength or cohesion
parameter. The MITgcm framework can be used to investigate the effect of introducing
spatial variability within mechanical ice properties on the spatial heterogeneity in both
rheologies, for example, by setting all parameters constant except one which is perturbed.
The same analysis can be made for different ways of perturb-parameter approaches on
small scales or stochastic parameter perturbations following Juricke et al. (2013).
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