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Consider a cooperation game on a spatial network of habitat patches, where players can
relocate between patches if they judge the local conditions to be unfavorable. In time,
the relocation events may lead to a homogeneous state where all patches harbor the
same relative densities of cooperators and defectors, or they may lead to self-organized
patterns, where some patches become safe havens that maintain an elevated cooperator
density. Here we analyze the transition between these states mathematically. We show
that safe havens form once a certain threshold in connectivity is crossed. This threshold
can be analytically linked to the structure of the patch network and specifically to
certain network motifs. Surprisingly, a forgiving defector avoidance strategy may be
most favorable for cooperators. Our results demonstrate that the analysis of cooperation
games in ecological metacommunity models is mathematically tractable and has the
potential to link topics such as macroecological patterns, behavioral evolution, and
network topology.
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Cooperation, behavior that leads to benefits for others at a cost to oneself, is widespread
across biological systems, ranging from cells cooperating to form organisms, to coopera-
tion among individuals in populations and among microbiotic and macrobiotic taxa in
ecosystems. In many cases the costs of cooperation are high. Hence, how cooperative
behavior persists in a population represents a fundamental question in biology (1–8).
In general, cooperation is most likely to evolve and persist if there are mechanisms that
directly or indirectly benefit cooperators’ reproductive success. Examples include kin
selection, punishment of defectors who forgo the cooperative investment, or a direct self-
benefit such as in cases of investment into a common good (4).

Among the most general mechanisms that can favor cooperation is the notion of
network or spatial reciprocity (1, 9–11). In classical examples of reciprocity, cooperation
creates favorable conditions for other proximal cooperators (4). A result is the emergence
of cooperative havens, where the rewards generated by mutual cooperation have enriched
some physical or topological neighborhoods. The formation of cooperative neighborhoods
in structured populations, where individuals interact with only a limited subset of the
population, has traditionally been studied on networks, where each node represents an
individual agent and an edge means that the two connected individuals play against
each other (1, 10, 12–19). By assuming weak selection and treating space implicitly,
the resulting systems can often be analyzed mathematically. Although this framework has
become a powerful tool for conceptual understanding, it represents a strong abstraction
from real-world ecology where interactions, and hence cooperative behaviors, occur often
randomly within a location that is itself embedded in a larger spatial context (20–23).
By focusing on spatially explicit models of cooperation, we gain the opportunity to
understand feedbacks between the rules of the game, movement strategies, and long-term
persistence of cooperation at larger scales (10, 20, 23–27).

Here we study a model of cooperation in spatially structured populations inspired
by ecological metacommunities (21–23, 28), where network nodes—instead of
individuals—represent habitat patches containing many interacting individuals, and edges
mean that two patches are connected by dispersal of those individuals (Fig. 1A). Each patch
is a location where games are played, harboring cooperator and defector subpopulations
which grow and shrink in time due to internal interactions and movement among loca-
tions. Metacommunity models allow one to represent the effects of physical spatial struc-
ture directly and explicitly. Moreover, they can be analyzed using master stability functions,
which can be used to untangle the impacts of local dynamics and network structure
(28–30). We use this ability to explore how different movement strategies impact the
outcomes of a cooperation game as a function of network structure.
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Fig. 1. Emergence of a heterogeneous stationary state on a two-patch net-
work. (A) Schematic of the spatial game, showing local payoff (Π) relationships
among cooperators and defectors occupying the same patch (gray circles) and
the dispersal route between them. (B) Difference in equilibrium densities of
both types in patches 1 and 2 as link strength is varied. Arrows refer to the
example time series shown in C and D. Initial conditions were uniformly drawn
from [10−4, 10−3], and the patch with the largest initial cooperator density
is patch 1. (C) The homogeneous steady state, with the same equilibrium
densities of C and D across locations. (Inset) Network showing the proportions
of each type in each patch. (D) The same game but with faster diffusion
(larger δ), showing emergence of a heterogeneous steady state with higher
cooperator densities in patch 1. Parameters are R = 3, S = 2, T = 5, P = 0.2,
μ = 1, and α = 3.

Results

We start by illustrating the existence of sharp thresholds in the
onset of spatial reciprocity by considering the well-studied snow-
drift game (3, 31) on a spatial network of two patches (Fig. 1A)
and showing when a specific dispersal strategy for relocating
between patches can lead to the formation of cooperative safe
havens for this game. Most of the assumptions made here will be
relaxed in the next section where we present the general theory,
which can be extended to any scenario with minor modifications
(28), including to n-strategy games (27), higher-order interac-
tions (32), and explicit resource- or object-mediated cooperation
(7, 33).

Introductory Example. Consider a spatial network of two linked
nodes, where each node i ∈ [1, 2] is a habitat patch in which
organisms live, interact, and reproduce. The link between them
represents an avenue of dispersal that individuals occasionally use
to disperse to the other patch (Fig. 1A). Some of the individuals
within each patch i are cooperators (Ci ) who make an investment
that creates a shared benefit, whereas other individuals are defec-
tors (Di ) who forego this investment. Within patches, individuals
undergo random pairwise encounters defined by a payoff matrix

Π=

[
R S
T P

]
, [1]

which specifies rewards for mutual cooperation R (C encounters
another C ), the sucker’s payoff S (C encounters D), the temp-
tation to defect T (D encounters C ), and the punishment for
mutual defection P (D encounters another D); the payoffs satisfy
P < S < R < T to define a snowdrift game (31, 34).

We focus first on a straightforward dispersal strategy for coop-
erators in a spatial setting: attempting to avoid defectors. Suppose
that the defector avoidance strategy is such that cooperators
leave a patch if they have been cheated in multiple consecutive
interactions. Although easy to motivate psychologically, the choice

to allow the cooperators to selectively “walk away” from a patch
remains less explored as authors are generally hesitant to give co-
operators such an ability that confers a direct advantage (35, 36).
As we show below, defector avoidance is not always beneficial for
cooperators, often leaving outcomes unchanged. However, when
a threshold in network connectivity is crossed, self-organized
patterns form where some patches maintain significantly higher
or lower cooperator densities indefinitely.

In the model, individuals in both patches are subject to popu-
lation dynamics of the form

Ċi =GC,i −MC,i + δ (EC,j − EC,i), [2a]

Ḋi =GD,i −MD,i + δ (ED,j − ED,i), [2b]

where G , M , and E are functions of cooperator and defector
densities that are described below and represent the effects of
reproduction, mortality, and dispersal, and δ is the link strength
of the spatial network.

We assume that the reproduction of individuals is directly
proportional to the payoff that they achieve in the game. Using
mass-action laws for the encounters, this yields the reproduction
rates

GC,i =GC,i(Ci ,Di) = Ci
RCi + SDi

Ci +Di
, [3a]

GD,i =GD,i(Ci ,Di) =Di
TCi + PDi

Ci +Di
, [3b]

where, following ref. 20, intrinsic growth and encounter rates are
accommodated as part of R, S , T , and P . We assume density-
dependent mortality, resulting in

MC,i =MC,i(Ci ,Di) = μCi(Ci +Di), [4a]
MD,i =MD,i(Ci ,Di) = μDi(Ci +Di), [4b]

where μ is a rate constant. Finally, the effects of dispersal are

EC,i = EC,i(Ci ,Di) = CiZC,i , [5a]
ED,i = ED,i(Ci ,Di) =DiZD,i , [5b]

where Z is the per capita rate at which individuals leave a habitat.
Here we consider a situation where defectors disperse at a

constant rate ZD,i = 1, whereas cooperators leave if they have
been cheated α times in a row (Materials and Methods),

ZC,i = ZC,i(Ci ,Di) =

(
Di

Ci +Di

)α

. [6]

Exploring the model numerically for α= 3 (Fig. 1), we find
that at low link strengths δ (i.e., low diffusion rates) the system
approaches a homogeneous stable state, where each patch harbors
the same relative densities of cooperators and defectors (Fig. 1 B
and C ; equilibrium densities are denoted by C �

i , D�
i ). In this

example, defectors are the most abundant type in all habitat
patches, C �

i −D�
i < 0 for all i (Fig. 1B). When the link strength

is increased beyond a critical point, then the homogeneous state
becomes unstable to perturbations, and the system undergoes a
bifurcation and instead approaches a heterogeneous state (Fig. 1 B
and D), where the cooperators constitute a majority in one patch
while they largely abandon the other.
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General Theory. We now describe a general theory for the stabil-
ity of homogeneous states in a broad class of games on arbitrary
patch networks, using a master stability function approach (28,
29). Consider a game with the following properties: 1) the inter-
action dynamics within a patch can be faithfully modeled by a
system of differential equations and 2) if played on a single patch
the system will approach a stationary state. Now consider this
game on a network of patches, where 3) patches are of identical
quality, 4) links are bidirectional and lossless, and 5) the emigra-
tion rate from a patch is proportional to the number of links.
These conditions do not exclude very high-dimensional systems,
strong nonlinearities, strong selection in the evolutionary dy-
namics, or complex decision rules [e.g., cross-diffusion, adaptive
dispersal (23)].

Under the conditions above, at least one steady state exists
where the communities in each patch are identical (e.g., Fig. 1C );
we call these states homogeneous. In homogeneous states, com-
munity compositions are independent of spatial network topology
and can be found, even for very large networks, by analyzing a
patch in isolation (Materials and Methods). However, the stability
of homogeneous states is sensitive to network topologies, and thus,
stable homogeneous behavior may be possible on some patch
networks, while instability may lead to heterogeneous behaviors
emerging in others (28, 37–39).

The stability of homogeneous states can be computed from
local linearizations of the dynamics, captured by the Jacobian
matrix J. For a model with N heritable types or player strategies
per patch and M patches, J has the dimension NM × NM .
However, the Jacobian is not an unstructured matrix but instead
intricately reflects the structure of the system, which we can make
explicit by writing

J = I ⊗ P − L ⊗ C, [7]

where I is an N × N identity matrix, P is the Jacobian matrix
for the game played on an isolated patch, the coupling matrix C
is a Jacobian-like matrix that consists of partial derivatives of the
emigration rates from one patch with respect to population sizes
in that patch, L is the weighted Laplacian matrix of the patch
network, and ⊗ is a Kronecker product (28, 37, 40) (see Materials
and Methods for details on these matrices).

A stationary state is stable if all eigenvalues of the Jacobian ma-
trix, Ev(J), have negative real parts. Using Eq. 7 these eigenvalues
can be computed as

Ev(J) =
M⋃

m=1

Ev(P − κmC), [8]

where Ev returns the set of eigenvalues of a matrix and κm is the
mth eigenvalue of L (28) (Materials and Methods). An attractive
feature of this approach is that it separates the impact of spatial
network structure encoded in L from the effect of local dynamics.
Specifically, it shows that the spatial network structure can affect
the stability of the system only via the Laplacian eigenvalues, κ.

An alternative interpretation of Eq. 8 is to view κ as an
unknown, real-valued parameter and define a master stability
function that captures the general relationship between the struc-
ture of all patch networks and pattern-forming instabilities. The
master stability function can be defined as

S (κ) = Evmax (P − κC), [9]

where Evmax denotes the eigenvalue with the largest real part.
If a particular value of κ leads to a positive S , S (κ)> 0, then
we can say that any network with that Laplacian eigenvalue κ

will be susceptible to pattern-forming instabilities for a particular
game (P) and movement strategy (C). Because the effect of space
is thus encapsulated in the Laplacian eigenvalues, the remaining
eigenvalue problem in Eq. 9 is easier since the relevant matrix has
the size N × N , even for very large spatial networks.

To illustrate the master stability function let us return to the
game from the introductory example, which we now consider on
arbitrary networks described by a weighted adjacency matrix A,
such that link weight between node i and j is Aij . In this more
general case the game is described by the following equations:

Ċi =GC,i −MC,i − wiEC,i +
∑
j

AijEC,i , [10]

Ḋi =GD,i −MD,i − wiED,i −
∑
j

AijED,i , [11]

where wi =
∑

j Aij is the weighted degree of i .
Using the same parameters as before (Fig. 1), the nonspatial

Jacobian P and the coupling matrix C calculated at equilibrium
(Materials and Methods) are

P =

[
−0.92 −1.4
0.028 −2.5

]
C =

[
−0.06 0.19

0 1

]
. [12]

This leads to the master stability function (Fig. 2)

S (κ) =
1

2

(√
1.13κ2 + 3.33κ+ 2.33− 0.94κ− 3.42

)
. [13]

We can see that S > 0 on any network that has a Laplacian
eigenvalue κ > 15.13; we refer to this as the critical κ, or κcrit,
which is specific to the game but independent of the network
structure on which the game is played.

For example, a pair of nodes connected by a single link of
weight δ has a leading eigenvalue of κ1 = 2δ. This shows that the
homogeneous state in our example game must become unstable
on such an isolated link if δ > 7.56, which explains our previous
observations (Fig. 1B). Together, the results from this section
illustrate that the master stability function approach can be used
to disentangle the impacts of game parameters from the impact of
the topological structure of the underlying network.

Impact of Network Motifs. There is a wealth of mathematical
knowledge that links Laplacian eigenvalues to specific network
properties. Because the Laplacian is symmetric, it must have an

Fig. 2. The appearance of heterogeneous stationary states on arbitrary
networks. Master stability function (Eq. 9) of the example snowdrift game.
A vertical gray line marks κcrit for this game, above which spatial patterns
emerge.
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eigenvalue κ that is greater or equal to the largest eigenvalue in any
subgraph of the network (41). Hence, if any motif in the network
has an eigenvalueκ > κcrit, the whole network must also have such
an eigenvalue, and the homogeneous state must be unstable.

The subgraph rule allows us to extend our results on isolated
links in the network to any link in the network. We can for
instance say that the homogeneous state is unstable if there is any
link of strength δ > κcrit/2. Similar criteria can be constructed
for any conceivable motif. For example, a node that is connected
to n other nodes via links with a strength of least δ has an
eigenvalue κ≥ (n + 1)δ. This shows that the homogeneous state
in our example game is definitely unstable if there is a node that
has at least 15 links of strength 1 or more. It is also possible to
derive sufficient criteria for stability of the homogeneous state.
For example, Gershgorin’s theorem implies that any Laplacian
eigenvalue obeys κ≤ 2kmax, where kmax = maxj

∑
i Aij is the

maximum weighted node degree in the network (41). Thus, in the
example game the homogeneous state is guaranteed to be stable if
kmax < κcrit/2 (e.g., Fig. 1B).

The examples in the present section illustrate that one can
derive topological stability criteria that link dynamical transitions
to features of the network, such as the presence or absence of
certain network motifs. Additional rules for specific kinds of
networks (e.g., regular graphs and lattices) can also be derived (19,
42). Such criteria are particularly easy to formulate for games that
are characterized by rising master stability functions, including our
example system. As a next step we explore the conditions under
which a game has this property.

The Value of Forgiving Dispersal Strategies. Diffusion generally
has an equalizing effect that favors homogeneous outcomes (23,
28, 43). Nonlinear mortality, which is needed in the model to
avoid boundless growth, constitutes a further dampening force
that drives the system to homogeneity. It can be shown that
strong nonlinearities in the movement behavior are necessary to
overcome this dampening and allow pattern formation. In our
example game, the rule that a cooperator leaves, on average, when
cheated α times in a row leads to factors [D/(C +D)]

α (Ma-
terials and Methods). One can quickly verify that an overzealous
dispersal strategy, where one leaves after being cheated for the first
time, is not nonlinear enough to destabilize the homogeneous
state. Thus, in a world where everybody is eager to emigrate to
avoid defectors, emigration is useless as the conditions would
become identical in all nodes. By contrast, a more forgiving
strategy where agents only disperse after having been cheated 10
times in a row leads to very nonlinear dispersal functions that
are likely to destabilize the homogeneous state. Thus, a forgiving
dispersal strategy may be rewarded indirectly by the formation of
safe havens for cooperation.

We tested the counterintuitive benefit of forgiving dispersal
strategies in numerical experiments, where we considered a large
number (2× 107) of feasible steady states in systems with dif-
ferent parameter values (Table 1 and Materials and Methods). We
focus only on systems where the homogeneous state is stable at
sufficiently low values of coupling and then ask how much the
coupling strength has to be increased to trigger instability. The
results show that more forgiving strategies, where cooperators en-
dure more contiguous interactions with defectors before emigrat-
ing on average, consistently lead to instability at lower coupling
strength, even as the benefits to defection increase (Fig. 3). This
provides further evidence that forgiving dispersal strategies favor
the formation of spatially heterogeneous states.

Locations of Safe Havens for Cooperation. So far we have shown
that defector avoidance has no impact on the outcomes of the

Table 1. Comparison of the fitted potential energy
surfaces and ab initio benchmark electronic energy
calculations

Parameter Interpretation Value
R Reward from mutual U(0.25, 2.5)

cooperation
S C reward when R − zR, z ∼ U(10−2, 1)

encountering D
T D award when zR, z ∼ U(2, 7)

encountering C
P Punishment from mutual S − zS, z ∼ U(10−2, 1)

defection
μ Per capita mortality rate U(0, 1)

Nomenclature for the TSs refers to the numbered species in the table.

game unless certain thresholds are crossed, which in turn can be
linked to topological features of the underlying network. We now
use simulations to explore the behavior beyond this threshold.
For illustration we consider 100-node random geometric graphs,
which provide a reasonable approximation for real networks of
habitats and the dispersal connections between them (23). The
coupling strength κ is chosen for each simulation such that it
exceeds the threshold value (Eq. 9) at which the homogeneous
state becomes unstable.

Visual inspection of simulated metacommunities quickly re-
veals that some of the nodes become cooperator dominated.
Moreover, these safe havens of cooperation seem to occupy locally
well-connected nodes but not the most highly connected nodes in
the whole network (Fig. 4A).

In network science the number of connections (degree central-
ity) is a relatively crude notion of the topological importance of
a node in the network. A more sophisticated metric is provided
by adjacency-based eigenvector centrality (44), which is loosely
related to Google’s PageRank (45) algorithm. Analyzing an en-
semble of 1,000 network simulations (parameters as in Fig. 1)
reveals that the nodes of lowest eigenvector centrality become
defector dominated, whereas better connected nodes with a higher
centrality can sustain a majority of cooperators. However, the
most-central nodes in each network are a toss-up, containing
almost equal populations of defectors and cooperators (Fig. 4B).
Hence, at least in our example game, the locations where coop-
erative safe havens form are highly connected nodes, but not the

Fig. 3. Correlation between log10 κcrit and key parameters: normalized
temptation, T − R, and the tolerance for consecutive defector encounters, α.
Points and error bars show mean ± SEM, which are too small to see for most
values. Parameter ranges are given in Table 1.
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Fig. 4. (A) Snapshots of dynamics on an example network with κ1 > κcrit (gray line in Fig. 2). Nodes show the proportion of cooperators (blue) and defectors
(red); node radius is proportional to |C�

i − D�
i |. Parameters are the same as in Fig. 1. (B) Simulations on 1,000 random geometric graphs, showing the association

between relative cooperator densities at equilibrium (C�
i − D�

i ) and patch eigenvector centrality (bin means ± SEM).

most-highly connected nodes, and this pattern is seen consistently
across distinct spatial networks.

Shortwave Instabilities and Other Dispersal Strategies. A dis-
tinctive feature of the example game is that it is unstable for
sufficiently high values of κ. Drawing on an analogy with pattern
formation in continuous space, we call this behavior shortwave
instability.

As pointed out in refs. 28, 30, 37, there is a deep analogy
between the master stability function on networks and the Turing
instability in partial differential equations (PDEs). The master
stability function equation becomes identical to Turing’s seminal
approach if we replace the negative network Laplacian −L with
the Laplace operator in continuous space. The eigenvalue κ can
then be interpreted as a wave number. A rising master stability
function shows that the instability is most pronounced at arbitrar-
ily high wave numbers, i.e., arbitrarily short waves, which would
be unphysical in PDE systems, but is meaningful in a network.

To explore when shortwave instabilities occur, consider that
except for some pathological cases, we can assume that as the
weighted degree of at least one node in the network approaches
infinity,

lim
κ→∞

Evmax(P − κC) =−κEvmax(C), [14]

as P becomes negligible in comparison to κC. This shows that
the shortwave instability occurs when the dispersal strategy is such
thatC has a negative eigenvalue. For games with two types (C and
D) the coupling matrix has the form.

C =

(
∂CEC ∂DEC
∂CED ∂DED

)
. [15]

At least one eigenvalue with negative real part exists if either

0> λ1 + λ2 = Tr(C) = ∂CEC + ∂DED [16]

or

0> λ1λ2 = |C|= ∂CEC∂DED − ∂DEC∂CED. [17]

One can think of the two terms in the first condition as the degree
to which cooperators promote the emigration of cooperators

(∂CEC) and vice versa for defectors. Hence, the first condition is
met if cooperators suppress the emigration of cooperators strongly
enough to overcome the effect of defectors promoting their own
emigration. Assuming that presence of defectors promotes the
emigration of both cooperators and defectors we can write the
second condition as ∂CEC

∂DEC
< ∂CED

∂DED
. The fraction on the right-

hand side can be assumed to be negative or zero because the
presence of cooperators should reduce defector emigration or leave
it unchanged in reasonable models. By contrast the left-hand side
can be positive as ∂CEC can either be negative, due to retention
of cooperators in a cooperative environment, or positive due to
the mass-action effect leading to a positive scaling of cooperator
emigration with cooperator numbers. However, the condition can
again be satisfied if cooperators suppress their own emigration
strongly enough.

Summarizing these results, we can say that shortwave instabil-
ities are primarily expected in those systems where cooperators
strongly (nonlinearly) increase the retention of other cooperators
in their patch. The defector avoidance rule analyzed in this paper
is a special case of this general condition.

Discussion

We showed that ecologically motivated models of cooperation
games on networks can be studied mathematically. In particular,
the master-stability function approach from synchronization pro-
vides a powerful tool to explore when a particular game will lead
to heterogeneous states where spatial reciprocity becomes possible
and safe havens for cooperation can be formed.

A focus of prior work has been on understanding the evo-
lution and persistence of cooperation in structured populations,
where individuals interact through pairwise encounters that con-
stitute a network (1, 9, 13–15, 46), or via diffusive public goods
(7, 8, 47), sometimes on a featureless, continuous spatial plane
(25, 26). In this study, we build on this work by studying pop-
ulations that are structured in a different way, namely, as patchy
communities where interactions occur randomly within patches
and movement among patches in a spatial landscape define the
network links (Fig. 1A). We find that cooperation can thrive in
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metacommunities but that it is mediated by the ability of co-
operators and defectors to move between patches. Our findings
indicate that the specific movement strategies deployed by both
cooperators and defectors are an important factor in the mainte-
nance of cooperation in spatially structured populations (e.g., Eq.
17). Future work could explore this result in metacommunities of
heterogeneous habitat patches (48, 49) or with lossy links, with
individuals who follow adaptive dispersal strategies (50), or in
systems with multiple interaction types (33, 51–53). Extending
our results to nonstationary dynamics will also be useful for
understanding more complicated games that show different types
of pattern-forming instabilities (Materials and Methods).

The work presented here revealed two main findings which
some readers may find counterintuitive: First, allowing cooper-
ators to emigrate selectively (23, 35, 36), in response to defector
density, does not always confer a direct benefit to the cooperators.
Defector avoidance can only result in an increased payoff for
cooperators if it is sufficiently strong to overcome a sharply defined
threshold, where the system leaves the homogeneous state. The
master stability function approach allows us not only to compute
this threshold precisely but to disentangle the effects of the game
and the underlying network topology. This opens up a promising
angle for future investigations on the impact of specific scenarios
and specific network motifs.

Our second major finding concerns the role of forgiving disper-
sal strategies in triggering shortwave instabilities. The shortwave
instability is a genuine network effect that would not be observed
in continuous geometries. Based on our findings we expect this
instability to occur particularly if the cooperators respond strongly
nonlinearly to cooperation levels. Namely, the instability may be
triggered by forgiving dispersal strategies where the cooperator
only leaves a patch after being cheated several times in consecutive
games. Therefore, forgiving dispersal strategies may be far more
beneficial than stricter responses. In many scenarios only the
forgiving strategy will induce the heterogeneity in the system that
ultimately creates safe havens for cooperation, whereas a stricter
more immediate response to defection will result in maladaptive
dispersal in a system of identical patches.

One possible criticism may be that even in the heterogeneous
state, cooperation does not become widespread but mostly re-
mains confined to some nodes which typically occupy central
(but not most-central) positions in the network. We nevertheless
believe that the formation of such hubs for cooperation can be
an important stepping stone in the evolution of higher forms of
cooperation and social complexity. Beyond the scope of the class
of models explored here, the formation of local cooperation hubs
may enable secondary processes, such as the formation of social
norms and governance structures, which once established can help
promote cooperative behavior in the rest of the network.

Materials and Methods

Patch Steady States and Stability. The class of systems considered here
have homogeneous stationary states where all nodes approach the same state
regardless of the topology of the underlying spatial network (Fig. 1 B and C). In
these states the net biomass flows in and out of each patch must be equal, such
that neither dispersal (selective or otherwise) nor network topology can affect
population densities. In any homogeneous state, the densities of cooperators and
defectors in any patch are therefore identical to densities in the nonspatial case
(28) described by

Ċ = C
RC + SD

C + D
− μC(C + D), [18]

Ḋ = D
TC + PD

C + D
− μD(C + D). [19]

Setting time derivatives to 0 in Eqs. 18 and 19, we find that the system has
the three following homogeneous steady states that describe biomass densi-
ties across i identical patches: 1) only cooperators persist, with C�

i = R/μ and
D�

i = 0; 2) only defectors persist, with C�
i = 0 and D�

i = P/μ; and 3) coopera-
tors and defectors coexist, with

C�
i =

(P − S)(PR − ST)
μ(P + R − S − T)2 , [20]

D�
i =

(R − T)(PR − ST)
μ(P + R − S − T)2 . [21]

The coexistence state is only biologically feasible if C�
i > 0 and D�

i > 0,
which places conditions on the relative payoffs each type of player can receive
from interactions. This holds under two sets of conditions. The first occurs when
P > S and R > T . In these cases, the payoff from an interaction with a defector
is larger for defectors, while the payoff from an interaction with a cooperator is
larger for cooperators. Alternatively, positivity occurs when P < S and R < T .
This case includes the classical “snowdrift” game (34): a cooperator meeting a
defector pays the entire cost but still experiences the benefits, while a defector
encountering another defector results in no benefit to either (P < S). Meanwhile,
a cooperator meeting another cooperator invests a fraction of the cost, while a
defector meeting a cooperator gets the benefit for free (R < T ).

The within-patch Jacobian matrix P in the coexistence steady state is

P =

(
∂C Ċ ∂DĊ
∂C Ḋ ∂DḊ

)

=

(
− (P−S)(R(P−R+S)+T(R−2S))

(P+R−S−T)2
(P−S)(P(S−2R)+S(R−S+T))

(P+R−S−T)2

(R−T)(P(T−2R)+T(R+S−T))
(P+R−S−T)2 − (R−T)(P(R+S+T)−2ST−P2)

(P+R−S−T)2

)
,

[22]

which has eigenvalues

λ1 =
(P − S)(R − T)
P + R − S − T

, λ2 =
ST − PR

P + R − S − T
. [23]

Thus, when P > S and R > T , λ2 > 0, and the system is always unstable. By
contrast, if P < S and R < T , λ2 < 0, and so the state is stable as long as
ST − PR > 0, such that λ1 < 0. A stable homogeneous steady state, with coex-
istence of both types within each patch, exists if and only if P < S and R < T ,
proving that shortwave instability (e.g., Fig. 3) cannot occur in the prisoner’s
dilemma since it violates these conditions by definition (3).

Spatial Networks and Dispersal. To generate larger networks for simulations
(Fig. 4), we randomly assign coordinates drawn from a uniform distribution
∼U(0, 1) to patches in a two-dimensional space. Patches are connected if the
Euclidean distance between their coordinates falls below a threshold value
h = 0.195. Simulations were conducted with the Mathematica 12.3.1.0
software.

To define the defector avoidance rule for emigrating from patches, first sup-
pose that from the perspective of a cooperator, interactions occur at random
time points, amounting to some effective rate r (i.e., a Poisson process). Assume
further that in each interaction, the player is cheated with some probability p. In a
sequence of n interactions, we find n − α+ 1 subsequences of α consecutive
events, which can be treated as independent trials to very good accuracy. Each of
the subsequences will consist of α cheating events with probability pα, and so
the rate at which the player experiences α consecutive cheating events and then
leaves is rpα, explaining the form of Eq. 6.

A Master Stability Function Approach. If we start in a homogeneous state,
we cannot observe a beneficial effect of any dispersal strategy (e.g., defector
avoidance) unless the homogeneous state loses stability, the system departs from
the homogeneous state, and spatial patterns begin to form. Such patterns are
characterized by an unequal distribution of cooperators and defectors, which can
benefit cooperators.

To explore the stability of the homogeneous state we compute the Jacobian
matrix J, with a NM × NM dimension, where N is the number of player types
and M is the number of patches in the spatial network. The Jacobian of the spatial
system in the compact form can then be expressed as

J = I ⊗ P − L ⊗ C, [24]
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where I is the identity matrix, L is the Laplacian matrix of the spatial network
(M × M), and C is the coupling matrix (N × N). The Laplacian matrix is con-
structed by setting Lii =

∑
j Aij and subtracting A, where A is the weighted

adjacency matrix. For the case of defector avoidance, the coupling matrix is

C =

(
∂C EC ∂DEC

∂C ED ∂DED

)

=

(
[(1 + α)(R − T) + P − S]φ1+α −αφ1+α

0 1

)
,

[25]

where

φ=
P − S

R − T + P − S
. [26]

As the matrix J has a block structure, its eigenvectors also have a similar
structure (28), w = v ⊗ q, where v is an N-dimensional vector and q is an
M-dimensional vector. Let v be an eigenvector of L with eigenvalue κ, such that
Lv = κv. Also, let q be an eigenvector of P − κC with eigenvalue λ. Then, w is
an eigenvector of J with eigenvalue λ as the following calculation shows:

Jw = (I ⊗ P − L ⊗ C) · (v ⊗ q), [27]
= Iv ⊗ Pq − Lv ⊗ Cq, [28]
= v ⊗ Pq − κv ⊗ Cq, [29]
= v ⊗ (P − κC)q, [30]
= v ⊗ λq = λ(v ⊗ q) = λw. [31]

Since all eigenvectors of J can be constructed in this way, the complete spectrum
of J is then

Ev(J) =
M⋃
m

Ev(P − κmC), [32]

where κm is the mth eigenvalue of L (28). Since every Laplacian eigenvalue
κi generates a set of Jacobian eigenvalues which is independent of the other
Laplacian eigenvalues, Eq. 32 defines a master stability function using only
knowledge about the local system (P) with some minor modifications to account
for spatial processes (C). This method therefore permits the fast computation of
the leading Jacobian eigenvalue for a given Laplacian eigenvalue.

The resulting function S(κ) = Re[λmax(κ)] is then a master stability function
for the metacommunity. To achieve stability, all eigenvalues of the Jacobian need
to have negative real parts, which means only when Tr(J)< 0 and Det(J)> 0
if any Laplacian eigenvalue falls into a range where the master stability function
is positive. This enables us to analyze the stability of the spatial reaction–diffusion
system by first computing the spectrum of the Laplacian matrix.

Data, Materials, and Software Availability. There are no data underlying
this work.
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