
Glob Change Biol. 2022;28:969–989.  wileyonlinelibrary.com/journal/gcb | 969

Received: 25 July 2021  | Accepted: 20 October 2021

DOI: 10.1111/gcb.15972  

P R I M A R Y  R E S E A R C H  A R T I C L E

Low statistical power and overestimated anthropogenic 
impacts, exacerbated by publication bias, dominate field 
studies in global change biology

Yefeng Yang1,2,3  |   Helmut Hillebrand4,5,6  |   Malgorzata Lagisz1  |   Ian Cleasby7  |   
Shinichi Nakagawa1

1Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 
Australia
2Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
3Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong 
Kong, China
4Plankton Ecology Lab, Institute for Chemistry and Biology of Marine Environments (ICBM), Carl- von- Ossietzky University Oldenburg, Oldenburg, Germany
5Helmholtz- Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
6Alfred Wegener Institute, Helmholtz- Centre for Polar and Marine Research (AWI), Bremerhaven, Germany
7RSPB Centre for Conservation Science, North Scotland Regional Office, Inverness, UK

Correspondence
Yefeng Yang and Shinichi Nakagawa, 
Evolution & Ecology Research Centre 
and School of Biological, Earth and 
Environmental Sciences, University of 
New South Wales, Sydney, NSW 2052, 
Australia.
Email: yefeng.yang1@unsw.edu.au and 
s.nakagawa@unsw.edu.au

Funding information
National Natural Science Foundation of 
China, Grant/Award Number: 32102597; 
China Agriculture Research System, 
Grant/Award Number: CARS- 40; 
Deutsche Forschungsgemeinschaft, 
Grant/Award Number: DFG HI 848/26- 1; 
Alfred- Wegener- Institute, Helmholtz- 
Center for Polar and Marine Research; 
Ministry for Science and Culture of Lower 
Saxony and the Volkswagen Foundation, 
Grant/Award Number: ZN3285; Australian 
Research Council (ARC) Discovery Grant, 
Grant/Award Number: DP210100812

Abstract
Field studies are essential to reliably quantify ecological responses to global change 
because they are exposed to realistic climate manipulations. Yet such studies are 
limited in replicates, resulting in less power and, therefore, potentially unreliable ef-
fect estimates. Furthermore, while manipulative field experiments are assumed to 
be more powerful than non- manipulative observations, it has rarely been scrutinized 
using extensive data. Here, using 3847 field experiments that were designed to esti-
mate the effect of environmental stressors on ecosystems, we systematically quan-
tified their statistical power and magnitude (Type M) and sign (Type S) errors. Our 
investigations focused upon the reliability of field experiments to assess the effect 
of stressors on both ecosystem's response magnitude and variability. When control-
ling for publication bias, single experiments were underpowered to detect response 
magnitude (median power: 18%– 38% depending on effect sizes). Single experiments 
also had much lower power to detect response variability (6%– 12% depending on ef-
fect sizes) than response magnitude. Such underpowered studies could exaggerate 
estimates of response magnitude by 2– 3 times (Type M errors) and variability by 4– 10 
times. Type S errors were comparatively rare. These observations indicate that low 
power, coupled with publication bias, inflates the estimates of anthropogenic impacts. 
Importantly, we found that meta- analyses largely mitigated the issues of low power 
and exaggerated effect size estimates. Rather surprisingly, manipulative experiments 
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1  |  INTRODUC TION

As human- induced environmental changes accelerate, it is more im-
portant than ever that we can reliably quantify ecological responses 
to a range of environmental stressors (Hanson & Walker, 2020; Sage, 
2020; Way, 2021). Although laboratory experiments could elucidate 
the underlying mechanisms of such ecological responses, they are 
often too small, too short- lived, and too artificial to reflect naturally 
occurring responses accurately (Rineau et al., 2019). Therefore, field 
experiments (both manipulations and non- manipulative observations) 
are essential to understand how an ecosystem responds to global 
change (Elmendorf et al., 2015; Sternberg & Yakir, 2015; Wolkovich 
et al., 2012). In particular, field experimental manipulations are para-
mount because they could quantify the effect of stressor magnitudes 
that go well beyond currently observed levels (Hillebrand et al., 2020; 
Rineau et al., 2019). Accordingly, thousands of field experiments have 
been conducted in the field to investigate ecological responses to a 
wide range of different anthropologic environmental impacts such 
as climate change, biodiversity loss, and agricultural intensification 
(Hanson & Walker, 2020; Scheffer et al., 2001). Yet, few researchers 
seem to have asked whether these thousands of global change ex-
periments could provide statistically reliable results to advance our 
understanding of ecosystems of the future (Korell et al., 2020). While 
field experiments offer the possibility to work with realistic abun-
dances and naturally occurring environmental conditions (and their 
variation), their replications often are limited by logistical constraints 
(Filazzola & Cahill, 2021; Fraser et al., 2020; Nakagawa & Parker, 

2015). Therefore, it is essential to know whether these field exper-
iments are adequately powered and reliable.

Earlier work suggests that ecological studies seem to be under-
powered in some subfields (Fidler et al., 2017; Jennions & Møller, 
2003; T. H. Parker et al., 2016). That is, a study usually has a sample 
size too small to detect a “true” effect size as statistically significant 
(for a given alpha level .05). An important yet often underappreciated 
consequence of underpowered studies is that empirical studies with 
small sample sizes often present distorted estimates of true effects 
(Button et al., 2013; Nakagawa & Foster, 2004). This is because, given 
an underpowered study, the observed effect often fails to achieve 
statistical significance (i.e., two- tailed p- value < .05), unless the effect 
is overestimated. In other words, when an observed effect reaches 
statistical significance in an underpowered or small- sample study, the 
observed effect will be always higher than the corresponding “true” 
effect in magnitude (Lemoine et al., 2016; Young et al., 2008; also see a 
simulated example in Figure S1). Then, due to preferential publications 
of statistically significant effects (i.e., publication bias), such overesti-
mated effects would dominate the literature. The inflation of magni-
tude concerning a “true” effect is known as exaggeration ratio or Type 
M (magnitude) error. A related concept is the Type S (sign) error that 
is the probability of obtaining a statistically significant effect in the 
opposite direction to the true effect (Gelman & Carlin, 2014).

Recently, a few papers have pointed out the importance of quan-
tifying the Type M and S error rates (Cleasby et al., 2021; Lemoine 
et al., 2016; T. H Parker et al., 2018). For example, Lemoine et al. 
(2016) showed that reported effect sizes of global warming on plant 

and non- manipulative observations had very similar results in terms of their power, 
Type M and S errors. Therefore, the previous assumption about the superiority of 
manipulative experiments in terms of power is overstated. These results call for highly 
powered field studies to reliably inform theory building and policymaking, via more 
collaboration and team science, and large- scale ecosystem facilities. Future studies 
also require transparent reporting and open science practices to approach reproduc-
ible and reliable empirical work and evidence synthesis.

K E Y W O R D S
climate change, exaggerated effect size, experimentation, meta- research, meta- science, 
reproducibility, second- order meta- analysis, selective reporting bias, small- study effect, 
transparency

F I G U R E  1  Conceptual diagrams of effect size calculations from existing field studies and meta- analyses in global change biology, and 
analytic approaches used to assess the reliability of manipulative experiments and non- manipulative observations to evaluate the effect 
of stressors on both ecosystem's response magnitude and variability. (a) An overview of the effect sizes used to quantify the ecosystem's 
response magnitude and variability. Mean differences metrics were utilized to quantify the response magnitude to environmental stressors 
(i.e., lnRR, SMD, and SMDH), while variance differences metrics were used to characterize the response variability to environmental 
stressors (i.e., lnVR and lnCVR). In the context of this paper, response variability was an indicator of heteroscedasticity (also known as 
heterogeneous variances or unequal variance). The detailed definitions and formulas for these effect size metrics are reported in Table 1. 
(b) An overview of the datasets used to quantify statistical power, Type M and Type S errors. The datasets were derived from the work 
of Hillebrand et al. (2020), compiling 36 meta- analyses. Our lnRR* dataset contained 30 meta- analyses whose effect size metrics were 
originally expressed as lnRR. Our lnRR dataset contained recalculated metric of lnRR using descriptive statistics available in 12 of 30 meta- 
analyses in the lnRR* dataset. Datasets SMD, SMDH, lnVR, and lnCVR contained corresponding metrics also calculated using descriptive 
statistics available in 12 out of 30 meta- analyses in the lnRR* dataset. nMA represents the number of meta- analyses per dataset. (c) The 
three- step modeling procedure was employed to test our hypotheses [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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growth were, on average, three times larger than a “true” effect that 
was approximated by an overall meta- analytic mean (Type M error 
rate: 3). In animal tracking studies, Cleasby et al. (2021) demon-
strated that researchers could be overestimating the effect of bio- 
logging devices on animal behavior by 10- fold (Type M error rate) 
and estimating the direction of the effect incorrectly 20% of the 

time (Type S error rate), using effect sizes derived from a previous 
meta- analysis (Cohen's d = 0.1; Bodey et al., 2018). Given these, 
both studies argued that understanding Type M (and S) error rates, 
along with statistical power, would lead to better interpretation of 
results and improve the experimental design in a field of study (cf. 
Button et al., 2013; Ioannidis et al., 2017; T. Stanley et al., 2018).
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However, no previous publications have systematically quanti-
fied statistical power, Type M and S error rates across global change 
studies (but see Lemoine et al., 2016). Importantly, although earlier 
work often used a meta- analytic mean as a surrogate of the true 
effect to quantify the statistical power and error rates (e.g., Cleasby 
et al., 2021; Lemoine et al., 2016), large- scale power analyses from 
other fields have shown that meta- analytic means often suffer from 
publication bias (Button et al., 2013; Ioannidis et al., 2017; T. Stanley 
et al., 2018). This can lead to an overestimation of statistical power 
unless the bias is corrected (Button et al., 2013; Ioannidis et al., 2017; 
T. Stanley et al., 2018). Furthermore, environmental stressors are 
likely to influence not only ecological responses in magnitude (mean 
value of a given ecological trait) but also the variance around the 
magnitude (i.e., heteroscedasticity; Figure 1a; for examples of bio-
logical explanations of heteroscedasticity see Cleasby & Nakagawa, 
2011; De Villemereuil et al., 2018; Seekell et al., 2011). Therefore, 
it is important to quantify the three statistical parameters not only 
for response magnitude but also for response variability. As far as 
we know, no such investigations for response variability exist in the 
entire scientific literature so far.

To this end, we conduct the first large- scale quantification of 
statistical power, Type M and S error rates, using manipulative 
field experiments and non- manipulative observations covering the 
dominant stressors in global change biology (cf. Sage, 2020). More 
specifically, we quantify these three parameters at two different 
levels, a single experiment, and meta- analysis (e.g., the statistical 
power of a field experiment vs. meta- analysis), for ecological re-
sponse magnitude and variability (i.e., mean and variance differ-
ences between an environmental stressor and a benign or control 
environment). In addition, we estimate true effects with and with-
out correcting for publication bias because, as mentioned, failing 
to correct for publication bias can lead to the overestimation of 
statistical power, and also of Type M and S errors. We hypothe-
size that global change studies are generally underpowered with 
high exaggeration ratios, although Type S error rates are relatively 
low. We also predict that manipulative field experiments will have 
greater statistical power and lower Type M and S errors than non- 
manipulative field observations because manipulative experiments 
would often involve stressor levels beyond currently observed lev-
els so that ecological responses (i.e., effect size) should be higher 
both in magnitude and variation (Hillebrand et al., 2020; Kreyling 
& Beier, 2013).

2  |  MATERIAL S AND METHODS

2.1  |  An overview of the methodology

To address our main aims above, we chose to use a database of global 
change biology, containing 30 meta- analyses (3847 field experi-
ments/observations) over a multitude of environmental stressors 
(see Section 2.2 below; Hillebrand et al., 2020). Using this database, 
we calculated five standardized effect size statistics to quantify 

response magnitude (mean difference) and variability (variance dif-
ference) to environmental stressors in global change studies. For 
response magnitude, we used (1) the natural logarithm of response 
ratio, (lnRR; Hedges et al., 1999), (2) standardized mean difference, 
SMD (also known as Hedges’ g or Cohen's d; Hedges, 1982), and (3) 
standardized mean difference with heteroscedastic population vari-
ances in the two groups, SMDH (see formulas in Table 1). Note that 
SMD assumes homoscedasticity (i.e., equal variances; Hedges, 1982) 
whereas SMDH allows for heteroscedasticity (Bonett, 2008, 2009). 
Also, heteroscedasticity only affects the sampling variance of lnRR, 
not the point estimate (Sánchez- Tójar et al., 2020). For quantifying 
response variability, we used (4) the natural logarithm of variability 
ratio, lnVR (Nakagawa et al., 2015), and (5) the natural logarithm of 
the coefficients of variation, lnCVR (Nakagawa et al., 2015) which 
adjusts for changes in mean values (see formulas in Table 1).

We used a three- step modeling procedure to test our main 
hypotheses (Figure 1c). In the first step, we used a meta- analytic 
approach to obtain the key quantity for power calculations— an 
estimate of the “true” effect size of a phenomenon (Nakagawa 
& Foster, 2004). To achieve this, we employed the meta- analytic 
(overall) mean, rather than the “observed” effect size from a given 
study, as a proxy of true effect to avoid overestimating statistical 
power (for examples using this approach, see Button et al., 2013; 
Cleasby et al., 2021). Therefore, we meta- analyzed five effect size 
statistics (Table 1) separately to obtain meta- analytic means for 
each meta- analytic case (Section 2.3). For lnRR, SMD and SMDH, 
we also estimated bias- corrected versions of corresponding effect 
sizes to adjust for publication bias (also known as the small- study 
effect; Vevea & Hedges, 1995; Section 2.4). Contrastingly, we can-
not calculate bias- corrected lnVR and lnCVR because statistical 
significance, rather than response variability (heteroscedasticity 
or variance difference), drives publication bias (see Senior, Gosby, 
et al., 2016). Therefore, we assumed that lnVR and lnCVR were not 
affected by publication bias in the way lnRR, SMD, and SMDH were.

In the second step, we calculated the statistical power to detect 
the estimates of true effects and their magnitude (Type M) and sign 
(Type S) error rates, for each meta- analysis and every single experi-
ment included in the meta- analysis (Section 2.5.1; Table 2). In the third 
step, to obtain overall estimates of the three parameters across differ-
ent meta- analyses (which provided us with comparable summaries of 
the three parameters), we used a weighted regression to statistically 
aggregate over the three parameters obtained at the meta- analysis 
level, whereas we used a mixed- effects model to aggregate these 
parameters at the experiment level. Both procedures involved ag-
gregating the parameters across meta- analyses (i.e., between- meta- 
analysis modeling; Section 2.5.2). We also conducted a secondary 
synthesis of the true effects (which were estimated from the first 
step) across meta- analyses (i.e., conducting a meta- analysis of overall 
means obtained from the included 30 meta- analyses; also referred to 
as a second- order meta- analysis or meta- meta- analysis; cf. Nakagawa 
et al., 2019; Section 2.6). We conducted all analyses in the r environ-
ment v. 4.0.3 (R Core Team, 2020). All relevant data and code can be 
found at https://zenodo.org/recor d/54967 89#.YTmbi I4zY2w.

https://zenodo.org/record/5496789#.YTmbiI4zY2w
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2.2  |  Global change meta- analysis database

Our global change meta- analysis database reflected a range of the 
responses of ecosystem processes to the most pervasive anthro-
pogenic global change stressors, including climate warming, fire 

eutrophication, and nitrogen fertilization (Hillebrand et al., 2020). 
The database was originally used to quantify how evident thresh-
olds were in ecological responses to anthropogenic global change (at 
https://zenodo.org/recor d/54967 89#.YTmbi I4zY2w). The dataset did 
not contain single species experiments and included experimental/

TA B L E  1  The formulas for effect size statistics used to quantify the effect of environmental stressors on ecosystems response magnitude 
(mean difference: lnRR, SMD, and SMDH) and response variability (variance difference or heteroscedasticity: lnVR and lnCVR). In this 
paper's context, lnRR, SMD, and SMDH represent differences in mean values (magnitude) between a group under a global change stressor 
and another group under a benign environment, whereas lnVR and lnCVR represent differences in variance around mean between the two 
groups, without and with adjusting the effect of mean change, respectively

Effect size Statistics Annotation

Natural logarithm of response 
ratio, lnRR (ratio of means)

lnRR = ln

(

mp

mc

)

 (1) mp and mc denote the average values of measurements from 
a group with an environmental stressor (p) and a control 
(c) group

Sampling variance of lnRR
S2
lnRR

=
sd2

p

npm
2
p

+
sd2

c

ncm
2
c

 (2) sd2
p
 and sd2

c
 denote corresponding variances of mp and mc 

(standard deviations of the sample), and np and nc denote 
the sample sizes for environmental stressor (p) and a 
control (c) group. Other symbols are as with Equation (1)

Standard mean difference, SMD 
(Hedges’ g or Cohen's d)

SMD =
mp −mc

√

(np − 1)sd2p + (nc − 1)sd2c
np + nc − 2

 (3) Symbols are as with Equations (1 and 2)

Sampling variance of SMD S2
SMD

=
np + nc

npnc
+

SMD
2

2(np + nc)
 (4) Symbols are as with Equations (1 and 2)

Standardized mean difference with 
heteroscedasticity, SMDH

SMDH =
mp −mc

√

sd2p + sd2c

2

 (5) Symbols are as with Equations (1 and 2)

Sampling variance of SMDH
S2
SMDH

=
SMDH

2

(

sd4p

np − 1
+

sd4c

nc − 1

)

2(sd2p+sd
2
c )

2
+

sd2p

np − 1
+

sd2c

nc − 1

sd2p + sd2c

2

 (6)
Symbols are as with Equations (1 and 2)

Natural logarithm of variability 
ratio, lnVR

lnVR = ln

(

sdp

sdc

)

+
1

2

(

1

np − 1
−

1

nc − 1

)

 (7) Positive values of lnVR indicate that environmental stressor 
increases the variance of measurements without 
adjusting for the effect of mean change (i.e., more 
variable traits). Symbols are as with Equations (1 and 2)

Sampling variance of lnVR S2
lnVR

=
1

2

(

1

np − 1
−

1

nc − 1

)

 (8) Symbols are as with Equation (2)

Natural logarithm of the 
coefficients of variation, lnCVR

lnCVR = ln

(

CVp

CVc

)

+
1

2

(

1

np − 1
−

1

nc − 1

)

 (9) CVp and CVc are the coefficient of variation (i.e., standard 
deviation divided by its mean) for Environmental stressor 
(p) and control (c) groups. Other symbols are as with 
Equation (2)

Positive values of lnCVR indicate that environmental stressor 
increases the variance of measurements, while adjusting 
the effect of mean change (i.e., more variable traits). 
Other symbols are as with Equation (2)

Sampling variance of lnCVR
S2
lnCVR

=
sd2

p

npm
2
p

+
sd2

c

ncm
2
c

+
1

2

(

1

np − 1
+

1

nc − 1

)

 (10) Symbols are as with Equations (1 and 2)

TA B L E  2  The definitions of statistical power, Type M and S error rates. For the definitions of lnRR, SMD, SMDH, lnVR, and lnCVR, see 
Table 1

Terms Definitions

Statistical power The probability of detecting a statistically significant effect size: response magnitude (lnRR and SMD) or response variability 
(lnVR or lnCVR), given that the effect size is non- zero. Given a sample size, the smaller the true effect size (response 
mangnitude or variability), the lower the statistical power. Also, note that statistical power is 1— Type 2 error

Type S error The probability of a statistically significant effect size having an opposite sign to the true direction (for lnRR, SMD, lnVR, 
or lnCVR), if the true effect size is non- zero. Given a sample size, the smaller the effect size (response mangnitude or 
variability), the higher the Type S error rate

Type M error The multiplicative factor by which the magnitude of an effect size (lnRR, SMD, lnVR, or lnCVR) might be exaggerated when 
the true effect size is non- zero. Given a sample size, the smaller the effect size (response mangnitude or variability), the 
higher the Type M error

https://zenodo.org/record/5496789#.YTmbiI4zY2w
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manipulative community level experiments, mostly in the field, and 
non- manipulative observations. It followed strict inclusion and ex-
clusion criteria (as depicted in Hillebrand et al., 2020) and finally 
contained 36 meta- analyses (providing 4601 effect sizes in the form 
of lnRR).

We excluded six meta- analyses from the original database be-
cause they did not provide sampling variance (S2

lnRR
; Table 1), which 

was required for formal weighted meta- analyses and calculations of 
statistical power and Type M and S errors. Thus, our final database 
contained 30 meta- analyses (Figure 1b), which provided 3850 es-
timates of lnRR paired with a corresponding estimate of sampling 
variance (S2

lnRR
). For these 30 meta- analyses in the form of lnRR 

(referred to as dataset lnRR*), the number of studies (N) included 
in meta- analysis ranged from 11 to 186 (M = 37.3, median = 26.5, 
SD = 37.1). The number of effect sizes (k) of lnRR* ranged from 35 
to 562 (M = 128.2, median = 85.0, SD = 121). In addition, within 
dataset lnRR*, 12 of 30 meta- analyses provided descriptive statis-
tics in included primary studies: mean (mp or mc), standard deviation 
(sd2

p
 or sd2

c
), and sample size (np or nc), which enabled us to calcu-

late SMD, SMDH, lnVR, and lnCVR and their sampling errors for 
these 12 meta- analyses. We also re- calculated lnRR (to distinguish 
with lnRR*, we referred it to as dataset lnRR) using these 12 meta- 
analyses so as to compare the statistical power, Type M and S er-
rors for lnRR, SMD, SMDH, lnVR, and lnCVR (Section 2.5). For the 
12 meta- analyses (effect size in the form of lnRR, SMD, SMDH, 
lnVR, and lnCVR), N ranged from 11 to 186 (M = 42.8, median = 19, 
SD = 58.2), k ranged from 44 to 450 (M = 164.8, median = 119.5, 
SD = 119.2). The replicates (n; sample size per study) in each study 
of the 12 datasets ranged from 4 to 10,000 (M = 38.4, median = 12, 
SD = 83.0).

Of the 30 meta- analyses, 11 meta- analyses used non- 
manipulative observations and 17 used manipulative experiments, 
while 2 used both non- manipulative observations and manipula-
tive experiments. We followed the original database in defining the 
categories of environmental stressors; namely, acidification (Acid, 
k = 62; Nagelkerken & Connell, 2015), biodiversity loss (BD loss, 
k = 942; Cardinale et al., 2006; Griffin et al., 2013; Östman et al., 
2016), fertilization (Fert, k = 811; Akiyama et al., 2010; Elser et al., 
2007; Liang et al., 2016; Treseder, 2008), bush fire (Fire, k = 179; 
Dijkstra & Adams, 2015; Dooley & Treseder, 2012), plant invasion 
(Inv, k = 316; Gaertner et al., 2014; Gallardo et al., 2016; Vilà et al., 
2011), land use change (LUC, k = 612; Gibson et al., 2011; Van Lent 
et al., 2014), precipitation (Precip, k = 138; Liu et al., 2016), and 
global warming (Warm, k = 790; Ateweberhan & McClanahan, 2010; 
Lin et al., 2010; Lu et al., 2013).

2.3  |  Meta- analyses and estimating the proxies of 
“true” effects

As the first step of our three- step modeling procedure, we estimated 
various proxies of “true” effects for each meta- analysis. The proxies 
of “true” effects included (1) meta- analytic overall means (MAOMs), 

which represented a common “true” effect shared by the multiple 
experiments within a given meta- analysis (Section 2.3.1), (2) effect 
size specific predictions (ESSPs), which represented experiment- 
dependent effects (i.e., multiple true effects within a given meta- 
analysis; Section 2.3.2), and (3) the publication- bias- corrected 
versions of MAOMs and ESSPs (Section 2.4).

2.3.1  |  Meta- analytic overall means

To estimate “true” effects for each meta- analysis, we employed a 
multilevel model to estimate MAOMs (Nakagawa & Santos, 2012), 
in which the non- independence in the datasets (i.e., multiple effect 
sizes per study) was accounted for by incorporating effect size and 
study identities as random factors (Noble et al., 2017). We used the 
rma.mv function in the metafor package (Viechtbauer, 2010) to run 
the following multilevel meta- analytic model for lnRR*, lnRR, SMD, 
SMDH, lnVR, or lnCVR, respectively (Nakagawa & Santos, 2012):

where sj ∼ N
(

0, �2
)

,wji ∼ N
(

0, �2
)

, eji ∼ N
(

0, vi
)

 with N being a nor-
mal distribution with two parameters, mean and variance. Here ESji is 
the observed effect size estimates (i.e., lnRR, SMD, SMDH, lnVR, or 
lnCVR), �0 is the intercept (i.e., MAOM), and sj is the between- study 
effect for the study j, wji is the within- study effect for the effect size i 
in the study j, eji is the sampling error for the effect size i in the study j, 
and �2, �2, and vi are associated variance components.

2.3.2  |  Effect size specific predictions

Given the high heterogeneities in ecological datasets (I2 > 90%; 
Senior, Grueber, et al., 2016), there rarely exists a common effect 
size between different studies within a meta- analysis. For example, 
nutrient enrichment has a large effect on plant biomass, whereas 
lack of light stimuli will largely reduce this effect. Therefore, we 
used an alternative proxy of true effect to accommodate such an 
experiment- dependent effect (i.e., multiple true effects within a 
given meta- analysis): ESSP (see Equation 12). ESSPs can be esti-
mated by using the best linear unbiased predictions in the observa-
tion level, which are defined as (conditional) point estimates given a 
set of random effects in a mixed effect model (Hadfield et al., 2010). 
We defined ESSPs as follows:

where the notations are the same as Equation (11) (note that �0, sj  , 
and wji are the estimated parameters from Equation 11). Equation 
(12) shows that ESSPs are the sum of the overall mean (MAOM), the 
between- study effect sj, the within- study (effect size specific) ef-
fect wji. ESSPs were obtained using the rma.mv function in metafor 
(Viechtbauer, 2010).

(11)ESji = �0 + sj + wji + eji,

(12)ESji(ESSP) = �0 + sj + wji ,
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2.4  |  Obtaining bias- corrected meta- 
analytic estimates

For response magnitude (i.e., lnRR, SDM, and SMDH), publica-
tion bias can translate into overestimated meta- analytic means, 
MAOMs (Vevea & Hedges, 1995). To alleviate such a bias, we em-
ployed an extended version of Egger's regression approach (multi-
level meta- regression, cf. Nakagawa, Lagisz, Jennions, et al., 2021) 
which resulted in a bias- corrected version of MAOMs. In brief, this 
approach incorporates uncertainty term as a moderator in a multi-
level meta- regression model: the inverse of “effective sample size” 
1∕ñi =

(

np + nc
)

∕npnc or its square root 
√

1∕ñi (strictly speaking, 
 “effective sample size” = 4ñi).

�0 is the (conditional) bias- corrected meta- analytic overall mean 
(cMAOM, hereafter) when assuming no uncertainty exists: 

√

1∕ñi = 0 
in Equation (13) or 1∕ñi = 0 in Equation (14). If �1 in Equation (13) 
is statistically non- significant (p- value > .05), �0 in Equation (13) 
(the slope of 1∕ñi) is the best estimate of cMAOM. If �1 in Equation 
(13) (the slope of 

√

1∕ñi) is statistically significant (p- value < .05), 
�0 in Equation (14) is the best estimate of cMAOM (T. D. Stanley & 
Doucouliagos, 2014; T. D. Stanley et al., 2017).

We note that the slope (�1) of Equation (13) could be in the oppo-
site direction from what was expected from publication bias (Figure 
S2); in such a case, we considered the dataset did not suffer from the 
publication bias and we used MAOMs as their cMAOMs. Eighteen 
meta- analyses within lnRR* dataset did not report replicates (n; sam-
ple size per study) for calculation of “effective sample size;” we used 
sampling error (sei, the square root of the sampling variance) and 
sampling variance (vi) to replace 1∕ñi in Equation (13) and 

√

1∕ñi in 
Equation (14), respectively. When calculating statistical power, Type 
M and S error rates, we used unconditional standard error (SE) rather 
than a conditional SE (viz, using SE for �0 in Equation 11 to replace 
that of Equations 13 or 14). The models in Equations (13 and 14) 
were implemented by the rma.mv function in metafor. Furthermore, 
with cMAOMs, we used Equation (12) to obtain ‘bias- corrected ef-
fect size specific predictions (cESSPs). In our datasets, lnRR*, lnRR, 
SMD, and SMDH had 20 of 30, 6 of 12, 5 of 12, and 5 of 12 meta- 
analyses, respectively, which did not show the statistical evidence of 
the small- study effect (Figure S3).

2.5  |  Estimating statistical power, Type M and S 
error rates

2.5.1  |  (Within- )meta- analysis level modeling

We calculated statistical power, Type M and S errors at two lev-
els: the meta- analysis level (i.e., three parameters for each of the 

meta- analysis identified), and single experiment level (i.e., three pa-
rameters for experiments or effect sizes within a given meta- analysis; 
Figure 1c). We expected that statistical power at the meta- analysis 
level would be much higher than that at the single experiment level, 
although it would still be possible that a meta- analysis might not 
have enough statistical power to detect the estimated overall effect 
(i.e., non- significant overall effect; Cohn & Becker, 2003). In addition 
to the proxies of “true” effects (i.e., MAOMs, ESSPs, cMAOMs, and 
cESSPs), we required SE for each effect size estimate to calculate 
statistical power, Type M and S errors. For the meta- analysis level, 
we used SEs from the meta- analytic models (i.e., Equations 11, 13, or 
14). For the single experiment level, we used the square root of the 
sampling variance for each effect size (see Table 1) as SEs.

2.5.2  |  Between- meta- analysis modeling

Importantly, we also obtained an overall (average) statistical power, 
Type M and S errors for each effect size statistic across different 
meta- analyses (i.e., between- meta- analyses estimates; Figure 1c). 
Such overall estimates provided us with comparable summaries of 
statistical power, Type M and S errors. For the meta- analysis level, 
we used a weighted regression, implemented with the base r func-
tion, lm, with the number of effect sizes (k) for each meta- analysis 
as weight. The weighted regression models allowed us to average 
over the estimates of meta- analysis level power and Type M and S 
errors (using MAOMs and cMAOMs). For the single experiment level, 
we used mixed- effects models employing the lmer function in the r 
package lme4 (Bates et al., 2014), with study identities as a random 
factor. These mixed- effects models allowed us to average over the 
single experiment level estimates (using MAOMs, cMAOMs, ESSPs, 
and cESSPs). Furthermore, to these mixed- effects models, we added 
study approach (manipulative experiment vs. non- manipulative ob-
servation) as a fixed factor, and stressor categories as a random factor 
to compare the average statistical power, Type M and S errors be-
tween manipulative experiments and non- manipulative observations.

Before constructing the above models using lm and lmer, we 
ln- transformed the response variables (estimates of statistical 
power, Type M and S error rates) to better meet the “normal resid-
uals” assumption (Figures S4– S6). For easy interpretation, we back- 
transformed (i.e., exponentiated) the intercept of lm and lmer models 
so that we obtained the median value on the original scale (Nakagawa 
et al., 2017). We also obtained the mean value on the original scale 
(using equation 5.8; Nakagawa et al., 2017). Furthermore, for the 
Type S error rate, we added 0.025 to all the cases because the esti-
mates of Type S error included many zeros and extremely small val-
ues, which made ln- transformation impossible or ineffective. Note 
that when we back- transformed estimates from these models, we 
adjusted these estimates on the original scale by subtracting a value 
of 0.025. Furthermore, when back- transformed estimates (statis-
tical power and Type S error) went below or above the boundary 
values (i.e., 0 or 1, respectively), we constrained the estimates to the 
boundaries.

(13)ESji = �0 + �1

√

1∕ñi + sj + wji + eji,

(14)ESji = �0 + �1
(

1∕%ñi
)

+ sj + wji + eji,
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2.6  |  Response magnitude and variability across 
environmental stressors

To estimate the overall response magnitude and variability 
across meta- analyses (i.e., between- meta- analysis synthesis), we 
conducted a secondary synthesis of the estimates of response 
magnitude and variability from each meta- analysis. Of note, one 
meta- analysis represented one specific stressor (e.g., a meta- 
analysis of acidification, a meta- analysis of global warming; see 
Section 2.2). We also assessed whether there were significant 
differences in such overall effects between manipulative experi-
ments and non- manipulative observations. To achieve this, first, 
we obtained the absolute values of (c) MAOMs and their sampling 
variances (i.e., the variance estimated from a folded normal distri-
bution; see Morrissey, 2016) for each meta- analysis (that is, across 
stressors). Second, we statistically aggregated these absolute es-
timates (|MAOM| and |cMAOM|) via a random- effect model using 
rma function in the r package metafor (Viechtbauer, 2010). Third, 
we conducted meta- regression with the study approach as a mod-
erator to quantify effects for manipulative experiments and non- 
manipulative observations (we excluded two meta- analyses that 
contained both experimental and observational data; see Section 
2.2).

3  |  RESULTS

3.1  |  The effects of stressors on ecosystem 
response magnitude and variability

Overall, environmental stressors had a statistically significant 
impact on response magnitude (more than a 33.7% increase; 
Figure 2a). For the result of each stressor, see Figures S7– S9 (each 
meta- analysis was focused upon a specific stressor, but a given 

stressor may be covered by multiple different meta- analyses, e.g., 
Warm 1, Warm 2, and Warm 3 were three meta- analyses all con-
cerned with global warming). Bias- corrected estimates of response 
magnitude declined by 17%– 31% (Figure 2b). Similarly, stressors 
had a statistically significant effect on response variability (more 

F I G U R E  2  Orchard (forest- like) plots showing the weighted 
average of response magnitude and variability across all 
environmental stressors. (a) The effects of environmental 
stressors on ecosystem response magnitude measured as 
lnRR*, lnRR, SMD, and SMDH. (b) Bias- corrected ecosystem 
response magnitude. (c) The effects of environmental stressors 
on ecosystem response variability measured as lnVR and lnCVR. 
The unfilled circles represent the weighted overall average of 
response magnitude and variability. The filled circles represent 
the associated MAOM of each type of environmental stressors 
(MAOMs or cMAOMs estimated at each meta- analysis). The size 
of filled circles signifies the estimates of single stressors scaled 
proportionally to their precisions (precision is the inverse of 
standard error, SE). Bold whisker line = 95% confidence interval 
(CI), thin whisker line = 95% prediction interval (PI), k = number 
of effect sizes (in the context of this figure, it represents the 
number of MAOM or cMAOM estimates). cMAOM, bias- corrected 
meta- analytic overall mean; MAOM, meta- analytic overall mean. 
We used the r package orchaRd (Nakagawa, Lagisz, O'Dea, 
et al., 2021) for visualizations [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/


    |  977YANG et Al.

than a 20% increase; Figure 2c; shown by a stressor in Figure 
S10). Furthermore, manipulative experiments had a statistically 
significant larger response magnitude than non- manipulative 
observations for some effect size types (i.e., uncorrected SMD, 
uncorrected SMDH, corrected SMDH; Table S1). In contrast, the 
differences in response variability between manipulative experi-
ments and non- manipulative observations were not statistically 
significant.

3.2  |  Statistical power in global change studies

3.2.1  |  Statistical power in detecting 
response magnitude

Across all stressors, single experiments had much lower power 
to detect bias- corrected response magnitude compared to the 
nominal 80% power (Table 3): 23.3% for lnRR* (Figure 3a), 38.5% 

Effect size True effect

Model estimates of Statistical power

k NMedian CI.lb CI.ub Mean

Single experiment

lnRR* cMAOM 0.233 0.218 0.248 0.433 3847 1119

cESSP 0.279 0.262 0.2887 0.547 3847 1119

MAOM 0.277 0.260 0.2885 0.515 3847 1119

ESSP 0.286 0.269 0.304 0.560 3847 1119

lnRR cMAOM 0.385 0.353 0.420 0.716 1940 516

cESSP 0.359 0.331 0.390 0.704 1940 516

MAOM 0.523 0.486 0.780 0.973 1940 516

ESSP 0.401 0.370 0.436 0.786 1940 516

SMD cMAOM 0.191 0.179 0.205 0.356 1977 516

cESSP 0.209 0.194 0.225 0.195 1977 516

MAOM 0.318 0.288 0.343 0.591 1977 516

ESSP 0.268 0.249 0.288 0.526 1977 516

SMDH cMAOM 0.182 0.170 0.195 0.339 1977 516

cESSP 0.187 0.174 0.201 0.367 1977 516

MAOM 0.269 0.250 0.2881 0.501 1977 516

ESSP 0.234 0.217 0.252 0.458 1977 516

lnVR MAOM 0.115 0.109 0.122 0.214 1902 514

ESSP 0.186 0.172 0.201 0.365 1902 514

lnCVR MAOM 0.064 0.062 0.067 0.120 1886 513

ESSP 0.105 0.098 0.112 0.205 1886 513

Meta- analysis

lnRR* cMAOM 0.424 0.286 0.628 0.583 3847 1119

MAOM 0.567 0.424 0.756 0.780 3847 1119

lnRR cMAOM 0.512 0.249 1# 0.704 1940 516

MAOM 0.665 0.195 1# 0.915 1940 516

SMD cMAOM 0.621 0.330 1# 0.855 1977 516

MAOM 0.645 0.357 1# 0.887 1977 516

SMDH cMAOM 0.635 0.352 1# 0.873 1977 516

MAOM 0.646 0.362 1# 0.889 1977 516

lnVR MAOM 0.439 0.250 0.77 0.604 1902 514

lnCVR MAOM 0.526 0.315 0.878 0.723 1886 513

Abbreviations: cESSP, bias- corrected effect size- specific prediction; cMAOM, bias- corrected meta- 
analytic overall mean; ESSP, effect size- specific prediction; k, the number of effect sizes; MAOM, 
meta- analytic overall mean; N, the number of primary studies.

TA B L E  3  The model estimates of 
statistical power to detect the effect of 
environmental stressors on ecosystem 
response magnitude (lnRR*, lnRR, 
SMD, and SMDH and their publication 
bias- corrected versions) and response 
variability (or heteroscedasticity: lnVR 
and lnCVR). The model estimates of 
power were reported both on single 
experiment level and meta- analysis level. 
We used mixed- effects models and 
weighted regression models to average 
over single experiment level statistical 
power (using MAOMs, cMAOMs, ESSPs, 
and cESSPs), and meta- analysis level 
statistical power (using MAOMs and 
cMAOMs), respectively. We noted that 
(1) the confidence intervals of statistical 
estimates were asymmetrical due to the 
back- transformation, (2) statistical power 
estimates below or above the boundary 
values (i.e., 0 or 1) were constrained to the 
boundaries (i.e., 0# or 1#)
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F I G U R E  3  Single experiments’ median power to detect response magnitude and variability for each category of environmental stressors 
(on the y- axis; stressors with different subscripts denoted that a given stressor may be covered by multiple different meta- analytic cases), 
assuming one common “true” effect per stressor (MAOM), experiment- specific “true” effects within a stressor (ESSP), and their bias- 
corrected estimates (cMAOM and cESSP) as “true” effects. The use of meta- analysis increased the statistical power for some environmental 
stressors (MAOM.MA and cMAOM.MA). (a) The dataset lnRR* (nMA = 30, k = 3847). (b) The dataset SMD (nMA = 12, k = 1977). (c) 
The dataset lnVR (nMA = 12, k = 1902). (d) The dataset SMDH (nMA = 12, k = 1977). (e) The dataset lnCVR (nMA = 12, k = 1886). Acid, 
acidification; BD loss, biodiversity loss; cESSP, bias- corrected effect size- specific prediction; cMAOM, bias- corrected meta- analytic overall 
mean; ESSP, effect size specific prediction; Fert, fertilization; Fire, bush fire; Inv, plant invasion; k, the number of effect sizes; LUC, land 
use change; MAOM, meta- analytic overall mean; nMA, the number meta- analyses per dataset; Precip, precipitation; Warm, global warming 
[Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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for lnRR (Figure 3a), 19.1% for SMD (Figure 3b), and 18.2% for 
SMDH (Figure 3d). When considering that each experiment has 
its own true effect (cESSP), the power values were similar to the 
values estimated from a common true effect (cMAOM; Table 3; 
Figure 3). The corresponding power values for uncorrected re-
sponse magnitude were 19%– 66% higher than that of the bias- 
corrected version (Table 3; Figure 3). The median proportion 
of single experiments that had adequate power to detect bias- 
corrected lnRR*, lnRR, SMD, and SMDH were only 16.3%, 
33.2%, 6.6%, and 6.9%, respectively (Figure 3). As expected, 
the median power for meta- analysis to detect bias- corrected 
response magnitude was greater than that of single experiments 
although it fell short of the nominal 80% level: 42.4%– 63.5% 
(depending on effect size types; Table 3; Figure 3). As at the sin-
gle experiment level, uncorrected meta- analyses overestimated 
power by ~2%– 33% compared to the bias- corrected version 
(Table 3; Figure 3).

3.2.2  |  Statistical power in detecting response 
variability

Overall, at the single experiment level, lnVR and lnCVR showed 
comparatively low statistical power to detect heteroscedasticity 
than the nominal 80% level: 11.5% for lnVR and 6.4% for lnCVR 
(Table 3; Figure 3c,e). The median proportion of experimental lnVR 
and lnCVR that had adequate power to detect response variability 
was only 3.7% and 0%, respectively (Figure 3). Meta- analysis in-
creased the overall power to identify response variability roughly 
by four-  to six- fold: power was now 43.9% for lnVR and 52.6% 
for lnCVR (Table 3; Figure 3). The proportion of single experi-
ments that had adequate power increased to 33.3% and 16.7% 
when using meta- analysis to detect lnVR and lnCVR, respectively 
(Figure 4).

3.3  |  Type M and S error rates in global 
change studies

3.3.1  |  Type M and S error rates in detecting 
response magnitude

Single experiments tended to overestimate the effect of the en-
vironmental stressors consistently (Type M error rates; Table 4; 
Figure 4). Depending on which effect metric was used, single ex-
periments were on average two to threefold larger than the true 
effect size estimated as MAOMs. Single experiments rarely had 
the wrong estimation of the sign of the true effect size (Type S 
error rate; Table 5; Figure 5). As expected, meta- analyses largely 
reduced the magnitude of Type M (1– 2; see Table 4; Figure 4). 
When bias correction was not employed, the overestimation of 
the true effect was even larger (Type M error rates by 2– 6 and S 
error rates by 10%– 30%).

3.3.2  |  Type M and S error rates in variance 
differences

At the single experiment level, lnVR and lnCVR on average showed 
large Type M error rates (~4 and 10, respectively; Table 4; Figure 4), 
but low Type S error rates (5%– 19.9%; Table 5; Figure 5). By contrast, 
meta- analyses only overestimated lnVR and lnCVR by 1.6- fold and 
1.5- fold, respectively.

3.4  |  Contrasting manipulative 
experiments and non- manipulative observations

Both single manipulative experiments and non- manipulative obser-
vations were underpowered to detect the effects of environmental 
stressors on ecosystem response magnitude and variability (16%– 
39% depending on effect metrics; Figure 6a– f). With one excep-
tion, the differences in power between manipulative experiments 
and non- manipulative observations were not statistically significant 
(Figure 6d). When bias correction of ESSPs was employed, ma-
nipulative experiments had statistically greater power than non- 
manipulative observations (32% vs. 20%). Similarly, differences 
between manipulative experiments and non- manipulative observa-
tions were not significant in terms of their Type M (with one excep-
tion: bias- corrected lnRR*; Figure 6g– l). Manipulative experiments 
had statistically larger Type M error than non- manipulative obser-
vations if bias correction of ESSPs was used (twofold vs. sixfold). A 
similar pattern was found for Type S errors in manipulative experi-
ments and non- manipulative observations (Figure 6m– r).

4  |  DISCUSSION

We have conducted the first study to systematically assess the power, 
Type M and Type S error rates for global change studies. Concurring 
with our hypotheses, global change studies are generally underpow-
ered, resulting in high Type M error rates (overestimating the magnitude 
of the response) whereas Type S error rates (wrong estimation of sign) 
are relatively low. Across different ecosystems and stressors, single 
experiments were underpowered to detect bias- corrected response 
magnitude (~18%– 38% depending on effect size types; Table 3; 
Figure 3). Similarly, single experiments also had a much lower power 
to detect response variability (heteroscedasticity) than response 
magnitude (~6%– 12%; Table 3; Figure 3). Such underpowered field 
experiments could exaggerate an effect by 2– 3 times for response 
magnitude (with bias- correction) and by 4– 10 times for response vari-
ability when their results are statistically significant (Table 4; Figure 4). 
Also, single experiments rarely incorrectly estimated the direction of 
the true anthropogenic impact (Table 5; Figure 5). Notably, our results 
were consistent regardless of assuming one “true” effect per meta- 
analysis (e.g., cMAOM) or experiment- specific “true” effects within 
a meta- analysis (cESSP). In contrast to our expectation, apart from 
one exception, manipulative field experiments and non- manipulative 
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observations were not statistically different in terms of their statisti-
cal power or Type M/S errors. Taken together, we conclude that the 
low statistical power, coupled with publication bias, may have led 
to distorted estimates of anthropogenic impacts in the literature. 

Below, we first extend our discussion on the comparisons between 
manipulative experiments and non- manipulative observations. Then, 
we consider three statistical (but biologically relevant) points that 
emerged from our results and how they can improve future empirical 

F I G U R E  4  Single experiments’ median Type M error rates (i.e., exaggeration ratio) in detecting response magnitude to each category of 
environmental stressors (on the y- axis; stressors with different subscripts denoted that a given stressor may be covered by multiple different 
meta- analytic cases), assuming one common “true” effect per stressor (MAOM), experiment- specific “true” effects within a stressor (ESSP), 
and their bias- corrected estimates (cMAOM and cESSP) as “true” effects. The use of meta- analysis reduced the Type M error rates in some 
environmental stressors (MAOM.MA). (a) The dataset lnRR*. (b) The dataset SMD. (c) The dataset lnVR. (d) The dataset. (e) The dataset 
lnCVR. The definition of Type M error rate can be found at Table 2. Gray cells indicate that Type M errors are greater than 3. See more 
details in the legend of Figure 3 [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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studies (manipulative experiments and non- manipulative observa-
tions) and meta- analyses in global change biology in general.

4.1  |  Manipulative experiments and non- 
manipulative observations both lack power

Rather surprisingly, the statistical power of manipulative ex-
periments and non- manipulative observations was similar (e.g., 
uncorrected SMD and bias- corrected SMD in Table S1). The dif-
ferences between manipulative experiments and non- manipulative 

observations have been often assumed because experimental work 
usually has greater effect magnitude (Palmer, 2000). Yet, as far as 
we are aware, no work has identified whether such differences em-
pirically occur. The lack of power differences between manipulative 
experiments and non- manipulative observations may be due to the 
trade- off between the magnitude of effect sizes and the number of 
replicates (i.e., sample size). That is, higher experimental effect sizes 
are offset by smaller sample sizes in manipulative experiments than 
non- manipulative observations. Indeed, we found that manipula-
tive experiments had larger effects than non- manipulative observa-
tions. For example, manipulative experiments had statistically larger 

TA B L E  4  The model estimates of Type M error rate in detecting the effect of environmental stressors on ecosystem response magnitude 
(lnRR*, lnRR, SMD, and SMDH and their publication bias- corrected versions) and response variability (or heteroscedasticity: lnVR and 
lnCVR). The model estimates of Type M error rate were reported both on single experiment level and meta- analysis level. See more details in 
Table 3

Effect size True effect

Model estimates of Type M error rate

k NMedian CI.lb CI.ub Mean

Single experiment

lnRR* cMAOM 3.220 2.960 3.503 6.286 3847 1119

cESSP 2.900 2.666 3.154 6.947 3847 1119

MAOM 2.604 2.429 2.793 5.084 3847 1119

ESSP 2.727 2.539 2.930 6.533 3847 1119

lnRR cMAOM 2.004 1.835 2.188 3.911 1940 516

cESSP 2.100 1.946 2.267 5.031 1940 516

MAOM 1.526 1.431 1.628 2.980 1940 516

ESSP 1.968 1.819 2.127 4.714 1940 516

SMD cMAOM 2.875 2.680 3.085 5.613 1977 516

cESSP 3.016 2.778 3.274 7.226 1977 516

MAOM 2.028 1.902 2.162 3.958 1977 516

ESSP 2.450 2.272 2.641 5.869 1977 516

SMDH cMAOM 2.936 2.748 3.137 5.731 1977 516

cESSP 3.151 2.912 3.409 7.548 1977 516

MAOM 2.259 2.116 2.413 4.410 1977 516

ESSP 2.703 2.498 2.924 6.474 1977 516

lnVR MAOM 3.949 3.734 4.176 7.709 1902 514

ESSP 3.386 3.132 3.660 8.112 1902 514

lnCVR MAOM 9.925 9.311 10.58 19.375 1886 513

ESSP 6.292 5.713 6.929 15.073 1886 513

Meta- analysis

lnRR* cMAOM 1.823 1.252 2.648 2.037 3847 1119

MAOM 1.345 1.123 1.610 1.504 3847 1119

lnRR cMAOM 1.600 0.897 2.839 1.788 1940 516

MAOM 1.251 0.879 1.776 1.399 1940 516

SMD cMAOM 1.379 0.836 2.265 1.542 1977 516

MAOM 1.292 0.868 1.917 1.445 1977 516

SMDH cMAOM 1.305 0.875 1.940 1.459 1977 516

MAOM 1.286 0.874 1.887 1.438 1977 516

lnVR MAOM 1.555 1.081 2.231 1.738 1902 514

lnCVR MAOM 1.488 0.911 2.421 1.664 1886 513
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estimates of SMD than non- manipulative observations (see Table 
S1). Contrastingly, non- manipulative observations had 2.5- fold 
larger replicates (sample sizes), on average, than manipulative ex-
periments (25 vs. 10; Figures S11 and S12). Although we may tend to 
think manipulative experiments have greater power and are there-
fore more reliable, this assumption is not tenable, at least in the field 
of global change studies.

4.2  |  Meta- analysis is not only a powerful tool but 
maybe the only tool?

As expected, meta- analyses have increased the power to detect re-
sponse magnitude (both before and after correcting for publication 

bias) by at least 30% compared to single experiments. For exam-
ple, the overall power for meta- analyses was 51.2% and 62.1% 
for lnRR and SMD, respectively, compared to 38.5% and 19.1% 
for single experiments (Table 3). Indeed, the nominal 80% power 
is difficult to achieve in many disciplines in a single experiment 
level, such as Neuroscience (median power = 21%; Button et al., 
2013), Clinical medicine (median power = 20%; Lamberink et al., 
2018), Psychology (median power = 36%; T. Stanley et al., 2018), 
and Economics (median power = 18%; Ioannidis et al., 2017). Such 
low statistical power averages for single experiments highlight 
the importance of meta- analyzing response magnitude (Gurevitch 
et al., 2018). We note that, although single experiments are often 
underpowered and more prone to Type M error, they are essential 
to global change biology research. Such experiments contribute to 

Effect size True effect

Model estimates of Type S error rate

k NMedian CI.lb CI.ub Mean

Single experiment

lnRR* cMAOM 0.032 0.029 0.036 0.079 3847 1119

cESSP 0.027 0.024 0.030 0.070 3847 1119

MAOM 0.025 0.022 0.028 0.060 3847 1119

ESSP 0.027 0.024 0.03 0.069 3847 1119

lnRR cMAOM 0.014 0.011 0.017 0.035 1940 516

cESSP 0.018 0.015 0.020 0.042 1940 516

MAOM 0.007 0.005 0.009 0.016 1940 516

ESSP 0.015 0.012 0.018 0.038 1940 516

SMD cMAOM 0.023 0.020 0.027 0.046 1977 516

cESSP 0.028 0.024 0.032 0.064 1977 516

MAOM 0.013 0.010 0.015 0.025 1977 516

ESSP 0.020 0.016 0.023 0.045 1977 516

SMDH cMAOM 0.026 0.022 0.029 0.049 1977 516

cESSP 0.030 0.026 0.034 0.065 1977 516

MAOM 0.016 0.013 0.019 0.031 1977 516

ESSP 0.023 0.019 0.026 0.051 1977 516

lnVR MAOM 0.050 0.046 0.056 0.077 1902 514

ESSP 0.037 0.033 0.042 0.083 1902 514

lnCVR MAOM 0.199 0.187 0.213 0.260 1886 513

ESSP 0.087 0.078 0.097 0.171 1886 513

Meta- analysis

lnRR* cMAOM 0.014 0.003 0.029 0.017 3847 1119

MAOM 0.004 0# 0.009 0.007 3847 1119

lnRR cMAOM 0.014 0# 0.045 0.017 1940 516

MAOM 0.004 0# 0.017 0.007 1940 516

SMD cMAOM 0.009 0# 0.031 0.012 1977 516

MAOM 0.007 0# 0.022 0.010 1977 516

SMDH cMAOM 0.007 0# 0.022 0.010 1977 516

MAOM 0.006 0# 0.021 0.009 1977 516

lnVR MAOM 0.007 0# 0.021 0.010 1902 514

lnCVR MAOM 0.005 0# 0.021 0.008 1886 513

TA B L E  5  The model estimates of Type 
S error rate in detecting the effect of 
environmental stressors on ecosystem 
response magnitude (lnRR*, lnRR, 
SMD, and SMDH and their publication 
bias- corrected versions) and response 
variability (or heteroscedasticity: lnVR 
and lnCVR). The model estimates of Type 
S error rate were reported both on single 
experiment level and meta- analysis level. 
See more details in Table 3
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evidence accumulation, providing raw materials for systematic re-
views and meta- analyses. Perhaps, more importantly, local field ex-
periments are an effective way to reveal the casual mechanisms of 
ecological responses at a particular ecosystem, and idiosyncrasies 

among ecosystems from different localities (Rineau et al., 2019; Roy 
et al., 2021).

Similarly, meta- analysis of variance (i.e., synthesizing lnVR and 
lnCVR from individual studies; Nakagawa et al., 2015) is a powerful 

F I G U R E  5  Single experiments’ median Type S error rates in detecting response magnitude to each category of environmental 
stressors (on the y- axis; stressors with different subscripts denoted that a given stressor may be covered by multiple different meta- 
analytic cases), assuming one common “true” effect per stressor (MAOM), experiment- specific “true” effects within a stressor (ESSP), and 
their bias- corrected estimates (cMAOM and cESSP) as “true” effects. The use of meta- analysis reduced the Type S error rates in some 
environmental stressors (MAOM.MA). (a) The dataset lnRR*. (b) The dataset SMD. (c) The dataset lnVR. (d) The dataset. (e) The dataset 
lnCVR. The definition of Type S error rate can be found at Table 2. See more details in the legend of Figure 3 [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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approach to detect response variability (i.e., heteroscedasticity). 
Indeed, we found meta- analysis of variance increased the statisti-
cal power by four to sixfold (meta- analytic lnVR vs. individual lnVR: 
43.9% vs. 11.5%, meta- analytic lnCVR vs. individual lnCVR: 52.6% 
vs. 6.4%; Table 3). Furthermore, meta- analysis of variance could 
mitigate Type M and S error rates compared to single experiments. 
Ecologists have been aware of difficulties in detecting response 
variability reliably (Andersen et al., 2009; Carpenter & Brock, 2006; 
Seekell et al., 2011), and have already discussed the need for a large 
sample size (Engle, 1982; Seekell et al., 2011). Yet, the number of rep-
licates (n; sample size per study) in global change studies was usually 
too small to detect response variability reliably (medium n = 12 in 
our dataset). Practically speaking, to get an adequate sample size for 
estimating effects on response variability, we need to organize more 
global research collaboration network, such as Nutrient Network 
(NutNet; Harpole et al., 2016; Lekberg et al., 2021), US Long- Term 
Ecological Research network (LTER; Crossley et al., 2020), and 
Zostera Experimental Network (ZEN; Wu et al., 2017). Alternatively, 
we would require heavily instrumented and controlled environmen-
tal facilities (e.g., UHasselt Ecotron, see Clobert et al., 2018; Rineau 
et al., 2019; Roy et al., 2021). Fortunately, meta- analysis of variance 
provides us with an alternative approach for increasing the chance 
of detecting changing response variability hidden in global change 
studies.

4.3  |  Publication bias may have exacerbated the 
inflation of anthropologic effects

We have shown that meta- analyses result in a sizeable increase in 
power over single experiments, although some meta- analyses were 
generally underpowered relative to a nominal value of 80% power 
(Table 3; Figure 3). Furthermore, only half of the meta- analyses (15 of 
30) had tested for the existence of publication bias in their datasets. 
Furthermore, only half of the meta- analyses (15 of 30) had tested for 
the existence of publication bias in their datasets. The methods used 
to assess publication bias were: funnel plots (n = 8), rank correlation 
tests (n = 4), fail- safe N (n = 4), Egger's regression (n = 1), and normal 
quantile plots (n = 1). Among these, only two meta- analyses have 
corrected for the potential influence of publication bias (i.e., using 
the trim- and- fill method; see Gallardo et al., 2016; Liu et al., 2016). 
This means that meta- analyses in global change biology are likely 
to be overestimating overall effects. In this study, we have used a 
recently proposed multilevel meta- regression approach (Nakagawa, 
Lagisz, Jennions, et al., 2021) to adjust for publication bias in meta- 
analyses. After adjustment of publication bias, the magnitude of 

overall effect sizes has declined by 17%– 32% (see Figure 2). The 
corresponding values for single experiment power decreased by 
9%– 66%. Type M error rates increased by 20%, which indicates that 
publication bias might have exacerbated the overestimation of an-
thropogenic impacts in global change studies.

Our results indicate that effect sizes in global change studies are 
severely exaggerated and call into question their “reproducibility.” 
Peer- review journals are more likely to publish statistically signifi-
cant results, perhaps using statistical significance as a gate- keeping 
tool to maintain their “prestige” (e.g., inflated impact factors). Under 
the publish- or- perish research culture, ecologists may intentionally 
“pick” significant results or “hack” p- values (e.g., HARKing) to pursue 
a more publishable result (Amrhein et al., 2017; Fraser et al., 2018). 
However, the gate- keeping policy might not work well (e.g., failing to 
increase the citation of papers; Wardle, 2012) and more importantly 
does not equal good scientific research.

Evidence from other disciplines has also shown that meta- 
analyses without correcting publication bias subsequently led to a 
biased assessment of power (see Button et al., 2013; Ioannidis et al., 
2017; T. Stanley et al., 2018). However, even our bias- corrected ef-
fect sizes may still be biased (overestimating) to some degree. This 
is because our meta- regression approach could not control for 
heterogeneities between studies, which may have prevented more 
accurate adjustments for publication bias (i.e., potentially import-
ant moderators not available to incorporate in meta- regression; 
Nakagawa & Santos, 2012; Noble et al., 2017). Therefore, it is neces-
sary not only to test publication bias and further adjust the influence 
of publication bias in every meta- analysis, but also, to transparently 
report all predictors and model information in a publication so that 
any researchers can implement such adjustments later.

4.4  |  The choice of effect sizes for global 
change studies

Our study provides the first empirical evidence that lnRR is, on 
average, a more powerful and less biased effect size than SMD 
and SMDH. Experimental lnRR was twice powerful as SMD and 
SMDH (lnRR vs. SMD vs. SMDH: 38.5% vs. 19.1% vs. 18.2%; see 
Table 3; Figure 3) and less vulnerable to overestimation; lnRR has 
been exaggerated by twofold, whereas SMD and SMDH have been 
exaggerated by threefold (Table 4; Figure 4). However, lnRR has 
a major disadvantage; that is it is only appropriate for ratio scale 
data (i.e., measurements being bounded at zero; cf. Houle et al., 
2011; Nakagawa et al., 2015). Nonetheless, lnRR has many other 
merits over SMD (Nakagawa et al., 2015), which includes: (1) being 

F I G U R E  6  Forest plots showing the model estimates of statistical power, Type M and S errors. The mixed- effects models were used 
to compare the statistical power, Type M and S error rates between manipulative experiments and non- manipulative observations. (a– 
f) Statistical power of manipulative experiments and non- manipulative observations to detect response magnitude (lnRR*, lnRR, SMD, 
and SMDH) and variability (lnVR and lnCVR). (g– l) Type M errors in manipulative experiments and non- manipulative observations. (m– r) 
Type S errors in manipulative experiments and non- manipulative observations. *Indicates a statistically significant difference between 
manipulative experiments and non- manipulative observations. See more details in the legend of Figure 3 [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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more robust with small sample sizes (as SMD is biasedly estimated 
with small N; cf. Hamman et al., 2018), (2) incorporating hetero-
scedasticity (note that SMDH does assume heteroscedasticity; cf. 
Bonett, 2008, 2009; Sánchez- Tójar et al., 2020), and (3) being less 
affected by scale dependence (Spake et al., 2021). Incidentally, un-
like choosing the mean difference metrics based on the power, the 
choice between lnCVR and lnVR depends on biological questions, 
which is described elsewhere (Nakagawa et al., 2015; Senior et al., 
2020).

5  |  CONCLUSIONS AND FUTURE 
PERSPEC TIVES

We have demonstrated that low statistical power and exagger-
ated effect size estimates are potentially widespread across 
experimental studies in global change biology, especially when 
correcting for the influence of publication bias. Manipulative 
field experiments are not superior to non- manipulative observa-
tions in terms of their statistical power and Type M and S errors. 
Therefore, single experiments whether manipulations or non- 
manipulations may fail, on average, to provide reliable insights 
into the anthropogenic impacts of global change by themselves. 
Likewise, although response variability (heteroscedasticity or 
variance differences) has important biological and statistical 
implications in the field, our results have shown single experi-
ments are too underpowered to reliably detect response vari-
ability. Therefore, to address questions associated with variance, 
researchers should use meta- analysis of variation to increase 
power to reliably detect response variability (we have found 8 
of 12 meta- analyses showing significant response variability— 
lnCVR, which never have been revealed before; see Figure S10). 
Such use of meta- analysis of variation can generate new biologi-
cal hypotheses and inform methodological decisions (i.e., choice 
of standardized mean effect size; Nakagawa et al., 2015; Senior 
et al., 2020). Future global change studies warrant highly powered 
field studies to reliably inform theory building and policymaking. 
Such studies are likely to call for more collaboration and team 
science (Camerer et al., 2016; O’Dea et al., 2021), and the use of 
large- scale ecosystem research infrastructures (Roy et al., 2021). 
Moreover, researchers should strive for open and transparent 
science practices (Gallagher et al., 2020), such as controlling for 
magnitude and sign errors when planning field experiments (i.e., 
an extension of power analysis; Lemoine et al., 2016), archiving 
and sharing data, following the FAIR guideline (i.e., findable, ac-
cessible, interoperable, and reusable data; Wilkinson et al., 2016; 
see also, Crystal- Ornelas et al., 2021), increasing transparent 
reporting (T. H. Parker et al., 2016), embracing preregistrations 
and registered reports (T. Parker et al., 2019), and implement-
ing more replication projects (Fraser et al., 2020). Adopting these 
practices will not only aid further meta- analytical syntheses but 
also make ecological findings more reproducible and reliable in 
general (Nakagawa & Parker, 2015; O’Dea et al., 2021).”
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