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Compositional measurements from species assemblages define a high dimen-
sional dataspace in which the data can form complex structures, termed manifolds. 
Comparing assemblages in this dataspace is difficult because the data is often sparse 
relative to its dimensionality and the complex structure of the manifold introduces 
bias and error in measurements of distance. Here, we apply diffusion maps, a manifold 
learning method, to find and characterize manifolds in high-dimensional composi-
tional data. We show that diffusion maps embed the data in reduced dimensions in 
which the Euclidean distance between data points approximates the distance between 
them along the manifold. This is especially useful when species turnover is high, as it 
provides a way to measure meaningful distances between assemblages even when they 
harbor disjoint sets of species. We anticipate diffusion maps will therefore be particu-
larly useful for characterizing community change over large spatial and temporal scales.

Keywords: biodiversity change, compositional dissimilarity, diffusion maps, 
dimensionality reduction

Introduction

Quantifying compositional variation between communities, or beta diversity, is a 
prerequisite to understanding the processes that govern their assembly and structure. 
Measures of compositional dissimilarity can be used to quantify beta diversity among 
a set of communities (Jost et al. 2010). To calculate compositional dissimilarity, the 
vectors of species abundances (or relative abundances) at two or more sites are con-
sidered as points in multivariate space and some measure of pairwise (dis)similarity is 
calculated between them. These pairwise distances are commonly the starting point 
for two analyses (Tuomisto and Ruokolainen 2006): First, they can be used as the 
input for ordination methods, which order the sites along major axes of variation 
in reduced dimensions. This provides a lower-dimensional representation of the data 
which can be used to understand the relationship between community composition 
and environmental and spatial factors (Faith et al. 1987, Tuomisto and Ruokolainen 
2006, Legendre and Legendre 2012). Second, pairwise distances can be used as the 
response variable for regression analysis with the aim of predicting how different two 
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communities will be, based on the distance between them 
along environmental, spatial, or temporal gradients (Tuomisto 
and Ruokolainen 2006, Ferrier et al. 2007, Lichstein 2007, 
Anderson et al. 2011, Woolley et al. 2017).

Ordination and regression methods that utilize pairwise 
distances run into issues of distortion and saturation respec-
tively when comparing communities harboring disjoint sets 
of species. For instance, consider an environmental gradient 
along which complete replacement of the species inventory 
occurs multiple times. Ordinating sites along such a so-called 
‘long-gradient’ introduces distortions, the most severe of 
which is the horseshoe effect, wherein opposite ends of the 
gradient curve in towards one another in the ordination plot, 
erroneously showing that communities become more similar 
at opposite ends of the gradient (Podani and Miklόs 2002, 
Legendre and Legendre 2012). Additionally, many measures 
of ecologically meaningful distance are formulated in terms of 
species overlap and are thus bounded between 0 and 1, where 
a distance of zero means sites are identical with respect to 
species identity and abundance and a distance of one means 
no species are shared. Once complete replacement of the spe-
cies inventory occurs, such a distance will reach its maximum 
value of one after which no increase in compositional dis-
similarity will be apparent despite continued compositional 
change along the gradient. Regression of pairwise distances 
between sites along such a gradient is therefore hampered by 
the saturation of the distance metric.

More fundamentally, the comparison of communities is 
difficult because compositional data can form complex struc-
tures in multivariate space, and what is needed is a way to 
visualize and measure distances along such structures. For 
example, consider a simple case where three species exhibit 
a uni-modal response to a single environmental gradient 
(Fig. 1a). Sampling species assemblages along the gradi-
ent and plotting the resulting relative abundances yields 

a three-dimensional curve, termed a ‘manifold’ (Fig. 1b). 
Because the environmental gradient constrains the species’ 
abundances, the manifold represents the community com-
positions that can be realized. A natural measure of distance 
between communities, therefore, is the distance between 
them along the manifold (Orlόci 1975, Beals 1984, Barter 
and Gross 2019). However, calculating the distance directly 
between two points does not necessarily approximate their 
distance along the manifold. For instance, in Fig. 1b, the 
distance calculated directly between the communities at the 
beginning and end of the environmental gradient (red arrow) 
indicates that they are very similar. In fact, these two commu-
nities can only occur at opposite extremes of the environmen-
tal gradient, representing the traversal of the entire manifold 
(purple arrow).

An additional difficulty is that compositional data is often 
high-dimensional and sparse: we typically have a low number 
of samples relative to the dimensionality of the data space and 
the number of corners in the data space is even larger than 
the number of dimensions. Consider that an N-dimensional 
space has 2N corners. For example, an assemblage with only 
a single species has two corners: species one can be abundant 
or rare. An assemblage with two species can exhibit the fol-
lowing four combinations, or corners, of species one and spe-
cies two: abundant/abundant, abundant/rare, rare/abundant, 
rare/rare. So, already a 10-species data space has 210 = 1024 
corners which is greater than the number of samples in many 
ecological datasets. However, because the environment con-
strains the possible combinations of species’ abundances, 
compositional data often cluster around a manifold that is 
relatively low-dimensional compared to the data space. This 
means that practically obtainable ecological datasets may still 
contain enough information to characterize the manifold. 
Moreover, quantifying the position of a community on the 
manifold provides a lower-dimensional description of the 

Figure 1. Example of how species responses to an environmental gradient cause compositional data points to cluster around a lower-
dimensional manifold in the data space. (a) Response curves for three species to a single environmental gradient. Each curve defines the 
expected number of individuals sampled at a given value of the environmental gradient. (b) Plot of the relative abundance of the three 
species at 50 locations along the environmental gradient. Abundances were obtained as Poisson variates with expectation values defined by 
the response curves. Points are shaded by their location along the environmental gradient. The red arrow denotes the distance calculated 
directly between the communities at the beginning and end of the environmental gradient. The purple arrow denotes the distance between 
them along the manifold.
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community that captures the main features of its composi-
tion. What is needed is a method that can reduce the dimen-
sionality of the data and characterize the manifold on which 
the data lie.

Diffusion maps are a manifold learning method that find 
complex manifolds in high-dimensional data (Coifman et al. 
2005). In doing so, diffusion maps provide a lower-dimen-
sional embedding for the data in which the Euclidean dis-
tance between data points approximates the distance between 
them along the manifold. Crucially, diffusion maps rely only 
on comparisons between objects that are sufficiently similar, 
avoiding the issues associated with comparing very dissimilar 
objects.

Diffusion maps have previously been used to charac-
terize the niche space of bacteria based on genomic data 
(Fahimipour and Gross 2020) and to infer functional traits 
of phytoplankton based on species associations estimated 
from monitoring data (Ryabov et al. 2022). In both cases, the 
focus was on individual species and their location in a multi-
dimensional trait space defined by their functional character-
istics, wherein the primary difficulty lies in comparing species 
with very different traits. When comparing ecological com-
munities, the primary difficulty is instead comparing assem-
blages with very different species compositions.

Here, using simulated species assemblages, we show that 
diffusion maps can be used to embed high-dimensional com-
positional data in reduced dimensions, effectively captur-
ing the main features of community composition in a few 
variables. Additionally, we demonstrate that this embedding 
can be used to calculate unbounded distances between data 
points, yielding good measures of compositional dissimilarity 
even when species turnover is high.

Diffusion maps

Diffusion maps use the notion of a diffusion process to 
explore the structure of multivariate data. But instead of a 
physical diffusion process, diffusion maps are inspired by 
the notion of a diffusion process on a network in the data 
space. Diffusion maps treat data points – in this case vec-
tors of species total or relative abundances – as nodes in a 
network with weighted links defined by some measure of 
distance between them. Importantly, nodes are connected to 
only a small number of nearest neighbors such that links rep-
resent local distances. In practice, this is achieved by calculat-
ing an appropriately chosen measure of distance between all 
data points and then discarding distances over some thresh-
old. We are left with a set of shorter, trusted distances which 
are treated as weighted links between data points, forming a 
network.

By modeling a random walk of particles on the thesholded 
network, diffusion maps essentially integrate over local dis-
tances to yield a global representation of the manifold. But 
rather than explicitly simulating a random walk, the struc-
ture of the network is explored using harmonic analysis 
(Coifman et al. 2005, Barter and Gross 2019). Specifically, 

the eigenvalues and eigenvectors of the network Laplacian 
are computed. The smallest, non-zero eigenvalues encode the 
direction of largest variation of the data (they span the mani-
fold) and their associated eigenvectors define a new, lower 
dimensional coordinate system in which the data points are 
embedded. Within this new coordinate system, or ‘diffusion 
map’, the Euclidean distance between points approximates 
the ‘diffusion distance’ between them along the manifold, 
thus allowing the calculation of distance between data points 
that are very dissimilar.

The use of local versus global distances is the most impor-
tant distinguishing factor between diffusion maps and other 
commonly used dimensionality reduction methods in ecol-
ogy such as principal coordinates analysis (PCoA) and non-
metric multidimensional scaling (NMDS). To illustrate this 
difference, we diffusion mapped the data plotted in Fig. 1b. 
To construct the diffusion map (Fig. 2a), we first calculated 
the Horn distance (Horn 1966) between all pairs of sites 
(Supporting information). We then thresholded the distance 
matrix, keeping the two-nearest neighbors for each site. By 
integrating over these local distances, the diffusion map essen-
tially spreads the manifold out over a single dimension con-
taining the most variation and successfully recovers the order 
of the sites along the one-dimensional environmental gradi-
ent. Contrast this with the two-dimensional configuration 
produced by NMDS (Fig. 2b). Because NMDS seeks to 
preserve the rank order of the entire distance matrix, it is 
forced to place samples at the end of the gradient close to one 
another which misorders them along MDS1 (the same mis-
ordering results from using a one-dimensional configuration 
but is easier to see in two dimensions).

Within the diffusion map, the Euclidean distance between 
sites (i.e. the diffusion distance) now approximates the dis-
tance between them along the manifold, quantifying the 
amount of compositional change that is accumulated across 
the environmental gradient (Fig. 2c). In contrast, plotting 
the non-thresholded distances indicates that compositional 
dissimilarity increases and then decreases along the environ-
mental gradient (Fig. 2d).

Evaluation with simulated and empirical 
data

We evaluated the ability of diffusion maps to capture the 
main features of multivariate compositional data using simu-
lated species assemblages and an empirical dataset. First, we 
simulated species assemblages at 100 sites structured by two 
environmental gradients. Both gradients ranged from 0 to 1 
such that the environmental space is represented by a unit 
square. The response of a given species to these environmen-
tal factors was modeled as a bivariate Gaussian response sur-
face. We artificially generated 1000 such response surfaces 
whose location, width, and orientation were randomly cho-
sen with respect to the environmental space (Fig. 3a–c, see 
the Supporting information for full details). Each response 
surface can be thought of as the expected density of a species 
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with respect to a given pair of environmental values. To gen-
erate assemblages, we chose 100 locations, or sites, on the 
environmental space as an evenly spaced 10 × 10 grid on the 
interval of environmental values from 0.1 to 0.9 (Fig. 3a–c). 
For a given site, we took the value of each response surface as 
the expectation value of a Poisson sampling process. Poisson 
variates were thus generated for each species to yield a vector 
of sampled abundances for each site on the environmental 
space. Each vector was transformed to proportional abun-
dance. To account for sampling error, we repeated this sam-
pling process 100 times, yielding 100 different realizations 
for each site. All analysis were performed and results sum-
marized over these 100 realizations. 

The amount of turnover along the gradients was tuned by 
adjusting the width of the species response surfaces. We con-
sidered three scenarios: a high turnover scenario where ≈ 40% 
of site pairs harbor disjoint sets of species (Fig. 3d), a low turn-
over scenario where no site pairs harbor disjoint sets of species 
(Fig. 3g), and a variable turnover scenario where ≈ 25% of site 
pairs harbor disjoint sets of species (Fig. 3a). In the variable 
turnover scenario, turnover and species richness varied along 
environmental variable one, with higher-turnover/lower-rich-
ness from 0 to 0.5 and lower-turnover/higher-richness from 
0.5 to 1. Average species richness was 158 (SD = 20) for the 
high turnover scenario, 532 (SD = 104) for the low turnover 
scenario, and 179 (SD = 60) for the variable turnover scenario.

Diffusion maps of the simulated assemblages were con-
structed by first calculating the Horn index of overlap (Horn 

1966) between all pairs of sites. The similarity matrix was 
then thresholded by retaining only the ten nearest neighbors 
for each site. See the Supporting information for full details 
on construction of the diffusion maps.

To evaluate the ability of diffusion maps to capture the 
main features of compositional change across the environ-
mental gradients, we asked three questions: first, we asked if 
the diffusion maps successfully identify the main dimensions 
of variation in the data; second, we asked if the location of 
the sites in the diffusion maps correspond with their loca-
tion along the environmental gradients, correctly recovering 
the underlying structure of the data; and third, we asked if 
the diffusion distance successfully captures the relationship 
between environmental distance and compositional dis-
similarity. Additionally, we compared the results obtained 
using diffusion maps to a more traditional workflow using 
a bounded measure of dissimilarity and two commonly used 
dimensionality reduction techniques: principal coordinates 
analysis (PCoA) and non-metric multidimensional scaling 
(NMDS). All analyses were carried out in the R program-
ming language (www.r-project.org).

To determine whether diffusion maps successfully iden-
tify the main dimensions of variation, we plotted the inverse 
of the ranked non-zero eigenvalues. The inverse eigenvalues 
should be larger for meaningful dimensions of variation and 
relatively small for non-meaningful dimensions of variation. 
Because the composition of the simulated assemblages is 
determined entirely by the two environmental gradients, the 

Figure 2. Example of how diffusion maps use local distances to characterize and calculate distances along a manifold. (a) Diffusion map and 
(b) two-dimensional NMDS configuration of the data plotted in Fig. 1b. By using local distances, the diffusion map ‘unrolls’ the manifold 
in a single dimension, correctly ordering sites along the environmental gradient. In contrast, the use of global distances forces NMDS to 
place sites at opposite ends of the environmental gradient close together, misordering sites along the environmental gradient. (c) Calculating 
the Euclidean distance between sites within the diffusion map correctly indicates that compositional dissimilarities accumulates along the 
environmental gradient. (d) Plotting global distances incorrectly indicates that compositional dissimilarity does not accumulate along the 
environmental gradient.
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two largest non-zero inverse eigenvalues should identify the 
major axes of variation in the data. The eigenvectors asso-
ciated with these two eigenvalues provide a new coordinate 
system for the data, i.e. the diffusion map.

To determine if the diffusion maps successfully recover the 
underlying structure of the data with respect to the environ-
mental gradients, we compared the matrix of diffusion map 
coordinates with the matrix of site coordinates in the envi-
ronmental space (equivalent to the environmental values at 
each site) via the Procrustes test. The Procrustes test measures 
the amount of discordance between two matrices after they 
have been scaled and rotated to maximize their superposition. 
Specifically, we computed the sum of squares error, m2, of a 
symmetric Procrustes test (Peres-Neto and Jackson 2001). 
Larger values of m2 correspond to larger discordance between 

the two matrices. The Procrustes m2 was calculated using the 
‘vegan’ package (Oksanen et al. 2020).

To determine if the diffusion distance successfully cap-
tures the relationship between environmental distance and 
compositional change, we calculated both linear and ordi-
nal correlations between the pairwise diffusion distances and 
pairwise environmental distances. We calculated the pairwise 
environmental distance between all sites as the Euclidean dis-
tance between the locations of the sites in the environmental 
space.

Using the simulated assemblages, we also compared the 
diffusion map method to more traditional methods of analy-
sis based on a bounded measure of dissimilarity: the Horn 
dissimilarity. The Horn dissimilarity can be calculated as the 
one complement of the Horn similarity used to construct the 

Figure 3. Species response surfaces and sampled sites, selected diffusion maps, and eigenvalue spectrum for all three turnover scenarios. 
Response surfaces for 100 species in relation to two environmental gradients for the (a) high turnover, (b) low turnover scenarios, and (c) 
variable turnover scenarios. Each color denotes a separate species and points represent the 100 sampled sites. Only 100 of the 1000 species 
are shown for visual clarity. Diffusion map of a single realization of the (d) high turnover, (e) low turnover and (f ) variable turnover sce-
narios. Ranked inverse eigenvalue (1/λ) spectrum summarized (mean and standard deviation) across all 100 realizations of the (g) high 
turnover, (h) low turnover and (i) variable turnover scenarios.
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diffusion maps. First, we compared the ability of diffusion 
maps to recover the underlying structure of the data with 
two dimensionality reduction techniques commonly used 
in ecology: PCoA and NMDS. Starting with the Horn dis-
similarity, we used PCoA and NMDS to project the data into 
two dimensions. PCoA was performed using R package ‘ape’ 
(www.r-project.org, Paradis and Schliep 2019) and NMDS 
was performed using package ‘vegan’ (Oksanen et al. 2020). 
We compared the resulting ordinations with the matrix of site 
coordinates in the environmental space using the Procrustes 
m2. Second, we computed the linear and ordinal correla-
tions between the Horn dissimilarity and the environmental 
distance.

Finally, we applied diffusion maps to a previously well-
characterized empirical dataset: fish assemblages along the 
Doubs river (Verneaux 1973, Verneaux et al. 2003). The 
Doubs river and its tributaries span an 832 km network near 
the France–Switzerland border in the Jura mountains. Fish 
and insect communities have previously been shown to exhibit 
continuous compositional change along an upstream–down-
stream gradient in the river system (Verneaux et al. 2003). 
This dataset therefore presents an ideal test for diffusion maps 
ability to recover the main dimensions of variation in com-
positional data.

We used a subset of the data from Verneaux (1973), 
included in the R package ‘ade4’ (www.r-project.org, 
Thioulouse et al. 2018), which contains the abundance classes 
for 27 species sampled from 29 sites along the main course 
of the Doubs river. Because the abundance classes represent 
course-grained information on the relative abundance of each 
species, we transformed them to relative abundance and mea-
sured community overlap via the Horn index. We retained 
the 10 nearest neighbors for each sample to construct the 
diffusion map. For comparison, we also used NMDS to find 
a two-dimensional configuration for the data using the Horn 
dissimilarity. From the diffusion map, we calculated the 
diffusion distance and compared to the full matrix of Horn 
dissimilarities. Finally, to demonstrate the effect of retain-
ing different numbers of nearest neighbors, we constructed 
diffusion maps retaining 2, 5, 15 and 29 nearest neighbors.

Results

The diffusion maps successfully capture the main dimensions 
of variation in the simulated data set for all three turnover 
scenarios (Fig. 3g–i). The inverse eigenvalue spectrum for 
all three scenarios reveals a substantial gap between the first 

two non-zero eigenvalues and the remaining eigenvalues. The 
relative magnitude of each inverse eigenvalue is proportional 
to the magnitude of variation contained in the correspond-
ing dimension. The large gap separating the first two inverse 
eigenvalues from the rest indicates that two dimensions 
contain most of the variation in the data. Additionally, the 
eigenvalue spectrum for the variable turnover scenario indi-
cates that one dimension contains higher variation, correctly 
capturing the reduced amount of turnover along the first 
environmental gradient relative to the second environmental 
gradient (Fig. 3i). The two leading inverse eigenvalues and 
their associated eigenvectors correspond to the two environ-
mental gradients and define the new coordinate system into 
which the data points can be embedded. Figure 3d–f show 
this embedding, or diffusion map, for a single realization of 
the high, low, and variable turnover scenarios, respectively.

The diffusion maps successfully recover the underlying 
structure of the data with respect to the two environmen-
tal gradients for all three scenarios. Visual comparison of the 
diffusion maps (Fig. 3d–f ) with the original sampling grid 
(Fig. 3a–c) show that they successfully recover the positions 
of the sites in the environmental space, albeit with some dis-
tortion. Note that the orientation of a given diffusion map is 
arbitrary in the sense that any dimension can be flipped by 
multiplying the corresponding eigenvector by − 1 without 
changing the interpretation (in fact, when solving for eigen-
vectors, the value and sign of the first entry is arbitrary).

Table 1 summarizes the Procrustes m2 for each of the 
dimensionality reduction methods – diffusion mapping, 
PCoA, and NMDS – across all 100 realizations for the high, 
low, and variable turnover scenarios. For the high turnover 
scenario the diffusion map (mean = 0.0287, SD = 0.0006) 
outperformed PCoA (mean = 0.2247, SD = 0.0006). For the 
low turnover scenario the diffusion map (mean = 0.0471, 
SD = 0.0020) performed similarly to PCoA (mean = 0.0484, 
SD = 0.0001). NMDS outperformed diffusion maps and 
PCoA for the high turnover (mean = 0.0003, SD =), low 
turnover (mean = 0.0009, SD = 0), and variable turnover 
(mean = 0.0804, SD = 0.0015) scenarios. Visual inspection 
of selected Procrustes plots highlights additional features 
(Fig. 4). For the high turnover scenario, PCoA misorders 
sites (Fig. 4d) as shown by the multiple criss-crossed arrows. 
Diffusion maps, on the other hand, do not misorder sites 
(Fig. 4a). In the low turnover scenario, PCoA orders sites 
more successfully (Fig. 4e) but shows more distortion of the 
sampled grid compared to the diffusion map (Fig. 4b). In the 
variable turnover scenario, PCoA misorders sites and shows a 
large degree of distortion (Fig. 4f ). In contrast, the diffusion 

Table 1. Summary of the Procrustes sum of squares error m2 for all 100 realizations of the high, low, and variable turnover scenarios for dif-
fusion maps, PCoA ordinations, and NMDS ordinations

High turnover Low turnover Variable turnover
Mean SD Mean SD Mean SD

Diffusion map 0.0287 0.0006 0.0471 0.0020 0.0870 0.0010
PCoA 0.2247 0.0006 0.0484 0.0001 0.3437 0.0006
NMDS 0.0003 0.0000 0.0009 0.0000 0.0804 0.0015
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map correctly recovers the sampled grid (Fig. 4c) In the high, 
low, and variable turnover scenarios, NMDS successfully 
recovers the structure of the sampling scheme (Fig. 4g–i).

Diffusion maps successfully recover the relationship 
between environmental distance and compositional dissimi-
larity for all three turnover scenarios. For the high turnover 
scenario, the diffusion distance has higher linear correlation 

(mean = 0.9512, SD = 0.0009) with environmental distance 
than the Horn distance (mean = 0.6298, SD = 0.0002) and 
similar ordinal correlation (mean = 0.9594, SD = 0.0009) 
as the Horn distance (mean = 0.9631, SD = 0.0008; 
summarized in Table 2). For the variable turnover sce-
nario, the diffusion distance has higher linear correlation 
(mean = .8786, SD = 0.0010) with environmental distance 

Figure 4. Procrustes errors for diffusion maps, PCoA ordinations, and NMDS ordinations (rows) from a single realization of the high, low, 
and variable turnover scenarios (columns). Blue arrows point from sites plotted in reduced dimensions to the target matrix of environmental 
values. Diffusion maps recover the structure qualitatively in the (a) high turnover and (b) low turnover, and (c) variable turnover scenarios. 
PCoA shows large errors in the (d) high turnover and (f ) variable turnover scenarios. PCoA qualitatively recovers the structure in the (e) 
low turnover scenario but with large distortion of the grid. NMDS recovers the structure in the (g) high turnover, (h) low turnover and (i) 
variable turnover scenarios.

Table 2. Linear and ordinal correlations of the Horn and diffusion distances with environmental distance for the high, low, and variable 
turnover scenarios

High turnover Low turnover Variable turnover
Mean SD Mean SD Mean SD

Diffusion distance Pearson r 0.9512 0.0009 0.9230 0.0028 0.8786 0.0010
Spearman ρ 0.9594 0.0009 0.9351 0.0038 0.8810 0.0011

Horn distance Pearson r 0.6298 0.0002 0.9443 0.0001 0.6379 0.0002
Spearman ρ 0.9631 0.0008 0.9974 0.0000 0.8718 0.0021
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than the Horn distance (mean = .6379, SD = 0.0002) and 
similar ordinal correlation (mean = 0.8810, SD = 0.0011) 
as the Horn distance (mean = 0.8718, SD = 0.0021). For 
the low turnover scenario, the diffusion distance has similar 
linear (mean = 0.9230, SD = 0.0028) correlation with envi-
ronmental distance as the Horn distance (mean = 0.9443, 
SD = 0.0001) and similar ordinal correlation (mean = 0.9351, 
SD = 0.0038) as the Horn distance (mean = 0.9974, SD = 0).

Plotting the Horn distance against environmental distance 
for the high and variable turnover scenarios shows that the 
Horn distance quickly reaches the maximum value of 1, after 
which no more accumulation of compositional dissimilar-
ity is detected (Fig. 5d, f ). In contrast, the diffusion distance 
shows that compositional dissimilarity increases as environ-
mental distance increases for the high and variable turnover 
scenarios (Fig. 5a, c). For the low turnover scenario, both the 
diffusion distance and Horn distance capture the increase in 
compositional dissimilarity with increasing environmental 
distance (Fig. 5b, e).

Applying diffusion maps to the Doubs dataset, we success-
fully recovered an upstream–downstream gradient in compo-
sitional change. Figure 6a shows the locations of the samples 
along the course of the river shaded by distance from the 
river source. The eigenvalue spectrum indicates that nearly 
all of the compositional variation can be captured in a single 
dimension (Fig. 6b). Plotting the diffusion map and shading 
the points by distance from source reveals that this dimension 
corresponds closely with position along the river (Fig. 6c). 
Additionally, the diffusion map indicates potential clustering 
within the upper and lower halves of the river which may cor-
respond with the salmonid and cyprinid regions previously 
identified by Verneaux et al. (2003). While an upstream–
downstream pattern of compositional change is evident in 

the two-dimensional NMDS configuration, it does not as 
clearly indicate how strongly community composition is 
shaped by a single gradient.

Plotting the diffusion and Horn distances against dis-
tance along the river reveals a pattern of increasing compo-
sitional dissimilarity with increasing distance between sites 
(Fig. 6e– f ). The Horn distance shows that an increasing 
number of site-pairs show complete species replacement 
above an inter-site distance of 150 km (Fig. 6f ). However, 
because the Horn distance reaches a maximum value of one, 
it is unclear whether compositional dissimilarity reaches a 
true maximum after 150 km or if it continues to increase. 
The diffusion distance shows that compositional dissimilar-
ity does in fact asymptote around 150 km, after which the 
maximum compositional dissimilarity does not continue to 
increase (Fig. 6e).

Diffusion mapping the Doubs data while retaining 
increasing numbers of nearest neighbors for each node high-
lights some considerations that should be taken into account 
when performing the analysis. If too few nearest neighbors 
are retained, the network of data points is fragmented into 
separate components. This is easily detected because eigen-
decomposition will yield more than one zero eigenvalue if 
the network has been fragmented. Figure 7a illustrates the 
consequence of fragmenting the network: several sites form 
a separate component and are all given the same coordinate 
of (0, 0). The number of neighbors that fragments the net-
work represents a lower bound on the choice of how many 
to retain. The diffusion map constructed using five nearest 
neighbors (Fig. 7b) already closely resembles the diffusion 
map constructed using 10 nearest neighbors (Fig. 6c).

If too many nearest neighbors are retained, the diffusion 
map will not be able to ‘unroll’ the manifold because it will 

Figure 5. Diffusion and Horn distance in relation to environmental distance for the high, low, and variable turnover scenarios. The diffusion 
distance increases with environmental distance even after complete replacement of the species inventory for both the (a) high turnover and 
(c) variable turnover scenarios. The Horn distance does not increase with environmental distance after complete replacement of the species 
inventory for both the (d) high turnover and (f ) low turnover scenarios. The diffusion distance (b) and Horn distance (e) both capture the 
relationship between compositional dissimilarity and environmental distance for the low turnover scenario.
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be constrained by long-range comparisons. Retaining 15 
nearest neighbors, the diffusion map (Fig. 7c) already begins 
to resemble the two-dimensional NMDS configuration 
(Fig. 6d). When the full similarity matrix is used to con-
struct the diffusion map (Fig. 7d), it is nearly identical to the 
NMDS configuration (Fig. 6d).

Discussion

Two distinct but closely related approaches can be taken to 
understand how beta diversity is related to environmental and 
spatial gradients (Tuomisto and Ruokolainen 2006). First, we 
might wish to know how community composition changes 
in response to environmental factors or geographical loca-
tion (i.e. will a community have a specific composition for a 
specific set of environmental values or at a specific location). 

Second, we might wish to know how dissimilar two com-
munities will be based on how environmentally dissimilar or 
geographically distant they are (i.e. how much compositional 
change can we expect for a given change in environmental 
conditions or geographic distance).

When seeking to understand how community com-
position changes in response to environmental factors or 
geographical location, it is often desirable to reduce the 
dimensionality of the data, summarizing the main features of 
community composition in a reduced number of variables. 
We show that diffusion maps can find and characterize mani-
folds in high dimensional compositional data and that the 
location of samples on the manifold serves as a lower-dimen-
sional characterization of the community composition. In 
the simulated assemblages, the manifold on which the data 
lie is a two-dimensional plane defined by the two environ-
mental factors that structure the communities. We show that 

Figure 6. Diffusion map analysis of the Doubs fish assemblages. (a) Geographical location of the sites along the Doubs river. Sites are shaded 
by distance from source (DFS). (b) Eigenvalue spectrum indicates that a single dimension is sufficient to characterize the data. (c) The dif-
fusion map indicates a strong upstream–downstream gradient in compositional change which is captured in a single dimension. (d) The 
two-dimensional NMDS configuration of the compositional data does not capture how strongly the upstream–downstream gradient struc-
tures the data as effectively as the diffusion map. (e) the diffusion distance captures the compositional turnover that accumulates along the 
single dimensional manifold and agrees closely with (f ) the Horn distance calculated between all site-pairs. Unlike the Horn distance, the 
diffusion distance captures additional compositional change even after complete species replacement.

 16000706, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/oik.10249 by A

lfred W
egener Institut F. Polar- U

. M
eeresforschung A

w
i, W

iley O
nline L

ibrary on [27/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Page 10 of 12

diffusion maps correctly identify the dimensionality of the 
manifold and recover the location of the communities in the 
environmental space. Because the coordinates of each com-
munity in the diffusion map correspond to their location in 
the environmental space, these coordinates serve as a com-
pact description of community composition and its relation-
ship to the two environmental gradients.

Principal coordinates analysis (PCoA) and non-metric 
multidimensional scaling (NMDS) are two commonly used 
methods for reducing the dimensionality of compositional 
data. Using simulated assemblages, we compared diffusion 
maps with the ability of these methods to correctly recover 
the underlying structure of the data and found that diffusion 
maps consistently outperform PCoA, especially when turn-
over is high. Diffusion maps and NMDS both correctly 
recover the structure of the data, but NMDS consistently per-
formed better as measured by the Procrustes sum of squares 
error, m2. This is not surprising given the simple underlying 
structure of the simulated data and the logic behind NMDS. 
NMDS seeks a lower-dimensional configuration of the data 
in which the rank order of pairwise distances is as close as 
possible to the original dissimilarity matrix. The ability of 
NMDS to optimally recover the location of the simulated 
communities in the environmental space indicates that com-
positional change along the two environmental gradients is 
accurately represented by the full dissimilarity matrix. Despite 
this, diffusion maps are still able to recover the underlying 

structure of the data nearly as well as NMDS using only local 
distances.

Applying diffusion maps to the Doubs dataset demon-
strates the advantage of using local distances to characterize 
the structure of more complex data. Compared to the NMDS 
configuration, the diffusion map more clearly indicates that 
community composition is changing along a single dimen-
sion which corresponds well with position along the river. 
While the pattern of compositional change along the course 
of the river is somewhat evident along the first dimension of 
the NMDS configuration, the diffusion map more effectively 
reveals the structure of the data by considering a thresholded 
subset of the original distance matrix. As an increasing num-
ber of long range comparisons are retained, the diffusion 
map increasingly resembles the NMDS configuration, dem-
onstrating how integrating over local distances allows the 
diffusion map to essentially ‘unroll’ the manifold along the 
dimensions of greatest variation.

Most importantly, by embedding the manifold on which 
the data lie in a lower number of dimensions, diffusion maps 
provide a way to calculate meaningful distances between data 
points along the manifold. Using simulated assemblages, we 
show that the diffusion distance recovers the relationship 
between environmental distance and community dissimilar-
ity for all three turnover scenarios. This is particularly useful 
when species turnover is high because diffusion maps can be 
used to make meaningful comparisons between communities 

Figure 7. The number of nearest neighbors retained (k) for each node affects the ability of diffusion maps to characterize the manifold. (a) 
Retaining too few (k = 2) nearest neighbors fragments the network into separate components, evidenced here by the multiple sites placed 
at the origin. (b) A modest increase in the number of nearest neighbors (k = 5) yields a single network component while excluding long-
range comparisons. (c) At k = 15, over half of the original distance matrix is retained and long-range comparisons begin to bias the diffusion 
map. (d) When the distance matrix is not thresholded at all (k = 29), long-range comparisons hinder the ability of the diffusion map to 
characterize the manifold and it closely resembles the two-dimensional NMDS configuration in Fig. 6d.
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along environmental or spatial gradients even when complete 
replacement of the species inventory occurs multiple times. 
However, we also show that diffusion maps are effective 
when turnover is low. Compositional data can form complex 
manifolds even in the absence of complete species turnover, 
in which case raw dissimilarities may not reflect the distance 
between sites on the manifold (for example Fig. 1, 2). By 
integrating over local distances, diffusion maps essentially 
quantify the amount of compositional change that accumu-
lates across the manifold. The diffusion distance can thus be 
used to quantify the relationship between compositional dis-
similarity and environmental/geographical distance over a 
range of scales.

The only tune-able parameter in diffusion maps is the 
number of nearest neighbors retained in the similarity matrix. 
The choice of number of nearest neighbors represents a bal-
ancing act between choosing too few and fragmenting the net-
work, and choosing too many thereby hindering the ability of 
diffusion maps to effectively characterize the manifold. A value 
of 10 nearest neighbors has performed well across a number 
of applications and can be recommended as a good rule of 
thumb (Barter and Gross 2019, Fahimipour and Gross 2020, 
Ryabov et al. 2022). Retaining 10 nearest neighbors worked 
well even for the relatively small Doubs dataset, and larger 
data sets should be less sensitive to the choice of number of 
nearest neighbors (Ryabov et al. 2022). However, the robust-
ness of the resulting diffusion map to the choice of number of 
nearest neighbors should be checked for any analysis.

It is important to note that unlike PCoA and NMDS, 
diffusion maps are not a method for ordination or visualiza-
tion per se. PCoA and NMDS are typically used to represent 
high dimensional data in a visually interpretable number of 
dimensions. Diffusion maps, on the other hand, find lower-
dimensional manifolds in high dimensional data. These man-
ifolds may themselves be high dimensional and therefore not 
easily visualized (Moon et al. 2019). For example, diffusion 
maps may find a 10-dimensional manifold in 1000-dimen-
sional data. In this case, further dimensionality reduction 
may be needed to visually ordinate the data. Alternatively, 
methods such as PHATE (Moon et al. 2019) could be used 
instead for visualization of the manifold. However, in cases 
where diffusion maps find a relatively low number of impor-
tant dimensions, the embedding can be plotted directly to 
yield interpretable visualizations.

Quantifying community changes at regional levels is 
difficult because many sites harbor disjoint sets of species 
(Ferrier et al. 2007). We envision that diffusion maps will 
be particularly useful when comparing communities across 
large spatial scales that encompass very different environ-
mental conditions and species assemblages. In this case, 
the diffusion distance could be used as a response in mod-
els that predict the amount of compositional change across 
large spatial or environmental gradients. Additionally, the 
diffusion map embedding could be used to visually map 
community types across these gradients or to predict com-
munity types based on environmental and spatial variables. 
Moreover, there is growing recognition of the need for more 

comprehensive surveys of ecological communities at local, 
regional and global scales. Therefore, the size and complexity 
of ecological data sets will continue to grow with a concor-
dant need for methods that can be used to analyze them. 
Diffusion maps show promise as an effective way to under-
stand the structure of complex ecological data sets at a range 
of scales.
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